Merge remote branch 'upstream/gallium-0.1' into nouveau-gallium-0.1
[mesa.git] / src / mesa / main / macros.h
1 /**
2 * \file macros.h
3 * A collection of useful macros.
4 */
5
6 /*
7 * Mesa 3-D graphics library
8 * Version: 6.5.2
9 *
10 * Copyright (C) 1999-2006 Brian Paul All Rights Reserved.
11 *
12 * Permission is hereby granted, free of charge, to any person obtaining a
13 * copy of this software and associated documentation files (the "Software"),
14 * to deal in the Software without restriction, including without limitation
15 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
16 * and/or sell copies of the Software, and to permit persons to whom the
17 * Software is furnished to do so, subject to the following conditions:
18 *
19 * The above copyright notice and this permission notice shall be included
20 * in all copies or substantial portions of the Software.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
23 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
25 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
26 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
27 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
28 */
29
30
31 #ifndef MACROS_H
32 #define MACROS_H
33
34 #include "imports.h"
35
36
37 /**
38 * \name Integer / float conversion for colors, normals, etc.
39 */
40 /*@{*/
41
42 /** Convert GLubyte in [0,255] to GLfloat in [0.0,1.0] */
43 extern GLfloat _mesa_ubyte_to_float_color_tab[256];
44 #define UBYTE_TO_FLOAT(u) _mesa_ubyte_to_float_color_tab[(unsigned int)(u)]
45
46 /** Convert GLfloat in [0.0,1.0] to GLubyte in [0,255] */
47 #define FLOAT_TO_UBYTE(X) ((GLubyte) (GLint) ((X) * 255.0F))
48
49
50 /** Convert GLbyte in [-128,127] to GLfloat in [-1.0,1.0] */
51 #define BYTE_TO_FLOAT(B) ((2.0F * (B) + 1.0F) * (1.0F/255.0F))
52
53 /** Convert GLfloat in [-1.0,1.0] to GLbyte in [-128,127] */
54 #define FLOAT_TO_BYTE(X) ( (((GLint) (255.0F * (X))) - 1) / 2 )
55
56
57 /** Convert GLushort in [0,65536] to GLfloat in [0.0,1.0] */
58 #define USHORT_TO_FLOAT(S) ((GLfloat) (S) * (1.0F / 65535.0F))
59
60 /** Convert GLshort in [-32768,32767] to GLfloat in [-1.0,1.0] */
61 #define SHORT_TO_FLOAT(S) ((2.0F * (S) + 1.0F) * (1.0F/65535.0F))
62
63 /** Convert GLfloat in [0.0,1.0] to GLshort in [-32768,32767] */
64 #define FLOAT_TO_SHORT(X) ( (((GLint) (65535.0F * (X))) - 1) / 2 )
65
66
67 /** Convert GLuint in [0,4294967295] to GLfloat in [0.0,1.0] */
68 #define UINT_TO_FLOAT(U) ((GLfloat) (U) * (1.0F / 4294967295.0F))
69
70 /** Convert GLfloat in [0.0,1.0] to GLuint in [0,4294967295] */
71 #define FLOAT_TO_UINT(X) ((GLuint) ((X) * 4294967295.0))
72
73
74 /** Convert GLint in [-2147483648,2147483647] to GLfloat in [-1.0,1.0] */
75 #define INT_TO_FLOAT(I) ((2.0F * (I) + 1.0F) * (1.0F/4294967294.0F))
76
77 /** Convert GLfloat in [-1.0,1.0] to GLint in [-2147483648,2147483647] */
78 /* causes overflow:
79 #define FLOAT_TO_INT(X) ( (((GLint) (4294967294.0F * (X))) - 1) / 2 )
80 */
81 /* a close approximation: */
82 #define FLOAT_TO_INT(X) ( (GLint) (2147483647.0 * (X)) )
83
84
85 #define BYTE_TO_UBYTE(b) ((GLubyte) ((b) < 0 ? 0 : (GLubyte) (b)))
86 #define SHORT_TO_UBYTE(s) ((GLubyte) ((s) < 0 ? 0 : (GLubyte) ((s) >> 7)))
87 #define USHORT_TO_UBYTE(s) ((GLubyte) ((s) >> 8))
88 #define INT_TO_UBYTE(i) ((GLubyte) ((i) < 0 ? 0 : (GLubyte) ((i) >> 23)))
89 #define UINT_TO_UBYTE(i) ((GLubyte) ((i) >> 24))
90
91
92 #define BYTE_TO_USHORT(b) ((b) < 0 ? 0 : ((GLushort) (((b) * 65535) / 255)))
93 #define UBYTE_TO_USHORT(b) (((GLushort) (b) << 8) | (GLushort) (b))
94 #define SHORT_TO_USHORT(s) ((s) < 0 ? 0 : ((GLushort) (((s) * 65535 / 32767))))
95 #define INT_TO_USHORT(i) ((i) < 0 ? 0 : ((GLushort) ((i) >> 15)))
96 #define UINT_TO_USHORT(i) ((i) < 0 ? 0 : ((GLushort) ((i) >> 16)))
97 #define UNCLAMPED_FLOAT_TO_USHORT(us, f) \
98 us = ( (GLushort) IROUND( CLAMP((f), 0.0, 1.0) * 65535.0F) )
99 #define CLAMPED_FLOAT_TO_USHORT(us, f) \
100 us = ( (GLushort) IROUND( (f) * 65535.0F) )
101
102 /*@}*/
103
104
105 /** Stepping a GLfloat pointer by a byte stride */
106 #define STRIDE_F(p, i) (p = (GLfloat *)((GLubyte *)p + i))
107 /** Stepping a GLuint pointer by a byte stride */
108 #define STRIDE_UI(p, i) (p = (GLuint *)((GLubyte *)p + i))
109 /** Stepping a GLubyte[4] pointer by a byte stride */
110 #define STRIDE_4UB(p, i) (p = (GLubyte (*)[4])((GLubyte *)p + i))
111 /** Stepping a GLfloat[4] pointer by a byte stride */
112 #define STRIDE_4F(p, i) (p = (GLfloat (*)[4])((GLubyte *)p + i))
113 /** Stepping a GLchan[4] pointer by a byte stride */
114 #define STRIDE_4CHAN(p, i) (p = (GLchan (*)[4])((GLubyte *)p + i))
115 /** Stepping a GLchan pointer by a byte stride */
116 #define STRIDE_CHAN(p, i) (p = (GLchan *)((GLubyte *)p + i))
117 /** Stepping a \p t pointer by a byte stride */
118 #define STRIDE_T(p, t, i) (p = (t)((GLubyte *)p + i))
119
120
121 /**********************************************************************/
122 /** \name 4-element vector operations */
123 /*@{*/
124
125 /** Zero */
126 #define ZERO_4V( DST ) (DST)[0] = (DST)[1] = (DST)[2] = (DST)[3] = 0
127
128 /** Test for equality */
129 #define TEST_EQ_4V(a,b) ((a)[0] == (b)[0] && \
130 (a)[1] == (b)[1] && \
131 (a)[2] == (b)[2] && \
132 (a)[3] == (b)[3])
133
134 /** Test for equality (unsigned bytes) */
135 #if defined(__i386__)
136 #define TEST_EQ_4UBV(DST, SRC) *((GLuint*)(DST)) == *((GLuint*)(SRC))
137 #else
138 #define TEST_EQ_4UBV(DST, SRC) TEST_EQ_4V(DST, SRC)
139 #endif
140
141 /** Copy a 4-element vector */
142 #define COPY_4V( DST, SRC ) \
143 do { \
144 (DST)[0] = (SRC)[0]; \
145 (DST)[1] = (SRC)[1]; \
146 (DST)[2] = (SRC)[2]; \
147 (DST)[3] = (SRC)[3]; \
148 } while (0)
149
150 /** Copy a 4-element vector with cast */
151 #define COPY_4V_CAST( DST, SRC, CAST ) \
152 do { \
153 (DST)[0] = (CAST)(SRC)[0]; \
154 (DST)[1] = (CAST)(SRC)[1]; \
155 (DST)[2] = (CAST)(SRC)[2]; \
156 (DST)[3] = (CAST)(SRC)[3]; \
157 } while (0)
158
159 /** Copy a 4-element unsigned byte vector */
160 #if defined(__i386__)
161 #define COPY_4UBV(DST, SRC) \
162 do { \
163 *((GLuint*)(DST)) = *((GLuint*)(SRC)); \
164 } while (0)
165 #else
166 /* The GLuint cast might fail if DST or SRC are not dword-aligned (RISC) */
167 #define COPY_4UBV(DST, SRC) \
168 do { \
169 (DST)[0] = (SRC)[0]; \
170 (DST)[1] = (SRC)[1]; \
171 (DST)[2] = (SRC)[2]; \
172 (DST)[3] = (SRC)[3]; \
173 } while (0)
174 #endif
175
176 /**
177 * Copy a 4-element float vector (avoid using FPU registers)
178 * XXX Could use two 64-bit moves on 64-bit systems
179 */
180 #define COPY_4FV( DST, SRC ) \
181 do { \
182 const GLuint *_s = (const GLuint *) (SRC); \
183 GLuint *_d = (GLuint *) (DST); \
184 _d[0] = _s[0]; \
185 _d[1] = _s[1]; \
186 _d[2] = _s[2]; \
187 _d[3] = _s[3]; \
188 } while (0)
189
190 /** Copy \p SZ elements into a 4-element vector */
191 #define COPY_SZ_4V(DST, SZ, SRC) \
192 do { \
193 switch (SZ) { \
194 case 4: (DST)[3] = (SRC)[3]; \
195 case 3: (DST)[2] = (SRC)[2]; \
196 case 2: (DST)[1] = (SRC)[1]; \
197 case 1: (DST)[0] = (SRC)[0]; \
198 } \
199 } while(0)
200
201 /** Copy \p SZ elements into a homegeneous (4-element) vector, giving
202 * default values to the remaining */
203 #define COPY_CLEAN_4V(DST, SZ, SRC) \
204 do { \
205 ASSIGN_4V( DST, 0, 0, 0, 1 ); \
206 COPY_SZ_4V( DST, SZ, SRC ); \
207 } while (0)
208
209 /** Subtraction */
210 #define SUB_4V( DST, SRCA, SRCB ) \
211 do { \
212 (DST)[0] = (SRCA)[0] - (SRCB)[0]; \
213 (DST)[1] = (SRCA)[1] - (SRCB)[1]; \
214 (DST)[2] = (SRCA)[2] - (SRCB)[2]; \
215 (DST)[3] = (SRCA)[3] - (SRCB)[3]; \
216 } while (0)
217
218 /** Addition */
219 #define ADD_4V( DST, SRCA, SRCB ) \
220 do { \
221 (DST)[0] = (SRCA)[0] + (SRCB)[0]; \
222 (DST)[1] = (SRCA)[1] + (SRCB)[1]; \
223 (DST)[2] = (SRCA)[2] + (SRCB)[2]; \
224 (DST)[3] = (SRCA)[3] + (SRCB)[3]; \
225 } while (0)
226
227 /** Element-wise multiplication */
228 #define SCALE_4V( DST, SRCA, SRCB ) \
229 do { \
230 (DST)[0] = (SRCA)[0] * (SRCB)[0]; \
231 (DST)[1] = (SRCA)[1] * (SRCB)[1]; \
232 (DST)[2] = (SRCA)[2] * (SRCB)[2]; \
233 (DST)[3] = (SRCA)[3] * (SRCB)[3]; \
234 } while (0)
235
236 /** In-place addition */
237 #define ACC_4V( DST, SRC ) \
238 do { \
239 (DST)[0] += (SRC)[0]; \
240 (DST)[1] += (SRC)[1]; \
241 (DST)[2] += (SRC)[2]; \
242 (DST)[3] += (SRC)[3]; \
243 } while (0)
244
245 /** Element-wise multiplication and addition */
246 #define ACC_SCALE_4V( DST, SRCA, SRCB ) \
247 do { \
248 (DST)[0] += (SRCA)[0] * (SRCB)[0]; \
249 (DST)[1] += (SRCA)[1] * (SRCB)[1]; \
250 (DST)[2] += (SRCA)[2] * (SRCB)[2]; \
251 (DST)[3] += (SRCA)[3] * (SRCB)[3]; \
252 } while (0)
253
254 /** In-place scalar multiplication and addition */
255 #define ACC_SCALE_SCALAR_4V( DST, S, SRCB ) \
256 do { \
257 (DST)[0] += S * (SRCB)[0]; \
258 (DST)[1] += S * (SRCB)[1]; \
259 (DST)[2] += S * (SRCB)[2]; \
260 (DST)[3] += S * (SRCB)[3]; \
261 } while (0)
262
263 /** Scalar multiplication */
264 #define SCALE_SCALAR_4V( DST, S, SRCB ) \
265 do { \
266 (DST)[0] = S * (SRCB)[0]; \
267 (DST)[1] = S * (SRCB)[1]; \
268 (DST)[2] = S * (SRCB)[2]; \
269 (DST)[3] = S * (SRCB)[3]; \
270 } while (0)
271
272 /** In-place scalar multiplication */
273 #define SELF_SCALE_SCALAR_4V( DST, S ) \
274 do { \
275 (DST)[0] *= S; \
276 (DST)[1] *= S; \
277 (DST)[2] *= S; \
278 (DST)[3] *= S; \
279 } while (0)
280
281 /** Assignment */
282 #define ASSIGN_4V( V, V0, V1, V2, V3 ) \
283 do { \
284 V[0] = V0; \
285 V[1] = V1; \
286 V[2] = V2; \
287 V[3] = V3; \
288 } while(0)
289
290 /*@}*/
291
292
293 /**********************************************************************/
294 /** \name 3-element vector operations*/
295 /*@{*/
296
297 /** Zero */
298 #define ZERO_3V( DST ) (DST)[0] = (DST)[1] = (DST)[2] = 0
299
300 /** Test for equality */
301 #define TEST_EQ_3V(a,b) \
302 ((a)[0] == (b)[0] && \
303 (a)[1] == (b)[1] && \
304 (a)[2] == (b)[2])
305
306 /** Copy a 3-element vector */
307 #define COPY_3V( DST, SRC ) \
308 do { \
309 (DST)[0] = (SRC)[0]; \
310 (DST)[1] = (SRC)[1]; \
311 (DST)[2] = (SRC)[2]; \
312 } while (0)
313
314 /** Copy a 3-element vector with cast */
315 #define COPY_3V_CAST( DST, SRC, CAST ) \
316 do { \
317 (DST)[0] = (CAST)(SRC)[0]; \
318 (DST)[1] = (CAST)(SRC)[1]; \
319 (DST)[2] = (CAST)(SRC)[2]; \
320 } while (0)
321
322 /** Copy a 3-element float vector */
323 #define COPY_3FV( DST, SRC ) \
324 do { \
325 const GLfloat *_tmp = (SRC); \
326 (DST)[0] = _tmp[0]; \
327 (DST)[1] = _tmp[1]; \
328 (DST)[2] = _tmp[2]; \
329 } while (0)
330
331 /** Subtraction */
332 #define SUB_3V( DST, SRCA, SRCB ) \
333 do { \
334 (DST)[0] = (SRCA)[0] - (SRCB)[0]; \
335 (DST)[1] = (SRCA)[1] - (SRCB)[1]; \
336 (DST)[2] = (SRCA)[2] - (SRCB)[2]; \
337 } while (0)
338
339 /** Addition */
340 #define ADD_3V( DST, SRCA, SRCB ) \
341 do { \
342 (DST)[0] = (SRCA)[0] + (SRCB)[0]; \
343 (DST)[1] = (SRCA)[1] + (SRCB)[1]; \
344 (DST)[2] = (SRCA)[2] + (SRCB)[2]; \
345 } while (0)
346
347 /** In-place scalar multiplication */
348 #define SCALE_3V( DST, SRCA, SRCB ) \
349 do { \
350 (DST)[0] = (SRCA)[0] * (SRCB)[0]; \
351 (DST)[1] = (SRCA)[1] * (SRCB)[1]; \
352 (DST)[2] = (SRCA)[2] * (SRCB)[2]; \
353 } while (0)
354
355 /** In-place element-wise multiplication */
356 #define SELF_SCALE_3V( DST, SRC ) \
357 do { \
358 (DST)[0] *= (SRC)[0]; \
359 (DST)[1] *= (SRC)[1]; \
360 (DST)[2] *= (SRC)[2]; \
361 } while (0)
362
363 /** In-place addition */
364 #define ACC_3V( DST, SRC ) \
365 do { \
366 (DST)[0] += (SRC)[0]; \
367 (DST)[1] += (SRC)[1]; \
368 (DST)[2] += (SRC)[2]; \
369 } while (0)
370
371 /** Element-wise multiplication and addition */
372 #define ACC_SCALE_3V( DST, SRCA, SRCB ) \
373 do { \
374 (DST)[0] += (SRCA)[0] * (SRCB)[0]; \
375 (DST)[1] += (SRCA)[1] * (SRCB)[1]; \
376 (DST)[2] += (SRCA)[2] * (SRCB)[2]; \
377 } while (0)
378
379 /** Scalar multiplication */
380 #define SCALE_SCALAR_3V( DST, S, SRCB ) \
381 do { \
382 (DST)[0] = S * (SRCB)[0]; \
383 (DST)[1] = S * (SRCB)[1]; \
384 (DST)[2] = S * (SRCB)[2]; \
385 } while (0)
386
387 /** In-place scalar multiplication and addition */
388 #define ACC_SCALE_SCALAR_3V( DST, S, SRCB ) \
389 do { \
390 (DST)[0] += S * (SRCB)[0]; \
391 (DST)[1] += S * (SRCB)[1]; \
392 (DST)[2] += S * (SRCB)[2]; \
393 } while (0)
394
395 /** In-place scalar multiplication */
396 #define SELF_SCALE_SCALAR_3V( DST, S ) \
397 do { \
398 (DST)[0] *= S; \
399 (DST)[1] *= S; \
400 (DST)[2] *= S; \
401 } while (0)
402
403 /** In-place scalar addition */
404 #define ACC_SCALAR_3V( DST, S ) \
405 do { \
406 (DST)[0] += S; \
407 (DST)[1] += S; \
408 (DST)[2] += S; \
409 } while (0)
410
411 /** Assignment */
412 #define ASSIGN_3V( V, V0, V1, V2 ) \
413 do { \
414 V[0] = V0; \
415 V[1] = V1; \
416 V[2] = V2; \
417 } while(0)
418
419 /*@}*/
420
421
422 /**********************************************************************/
423 /** \name 2-element vector operations*/
424 /*@{*/
425
426 /** Zero */
427 #define ZERO_2V( DST ) (DST)[0] = (DST)[1] = 0
428
429 /** Copy a 2-element vector */
430 #define COPY_2V( DST, SRC ) \
431 do { \
432 (DST)[0] = (SRC)[0]; \
433 (DST)[1] = (SRC)[1]; \
434 } while (0)
435
436 /** Copy a 2-element vector with cast */
437 #define COPY_2V_CAST( DST, SRC, CAST ) \
438 do { \
439 (DST)[0] = (CAST)(SRC)[0]; \
440 (DST)[1] = (CAST)(SRC)[1]; \
441 } while (0)
442
443 /** Copy a 2-element float vector */
444 #define COPY_2FV( DST, SRC ) \
445 do { \
446 const GLfloat *_tmp = (SRC); \
447 (DST)[0] = _tmp[0]; \
448 (DST)[1] = _tmp[1]; \
449 } while (0)
450
451 /** Subtraction */
452 #define SUB_2V( DST, SRCA, SRCB ) \
453 do { \
454 (DST)[0] = (SRCA)[0] - (SRCB)[0]; \
455 (DST)[1] = (SRCA)[1] - (SRCB)[1]; \
456 } while (0)
457
458 /** Addition */
459 #define ADD_2V( DST, SRCA, SRCB ) \
460 do { \
461 (DST)[0] = (SRCA)[0] + (SRCB)[0]; \
462 (DST)[1] = (SRCA)[1] + (SRCB)[1]; \
463 } while (0)
464
465 /** In-place scalar multiplication */
466 #define SCALE_2V( DST, SRCA, SRCB ) \
467 do { \
468 (DST)[0] = (SRCA)[0] * (SRCB)[0]; \
469 (DST)[1] = (SRCA)[1] * (SRCB)[1]; \
470 } while (0)
471
472 /** In-place addition */
473 #define ACC_2V( DST, SRC ) \
474 do { \
475 (DST)[0] += (SRC)[0]; \
476 (DST)[1] += (SRC)[1]; \
477 } while (0)
478
479 /** Element-wise multiplication and addition */
480 #define ACC_SCALE_2V( DST, SRCA, SRCB ) \
481 do { \
482 (DST)[0] += (SRCA)[0] * (SRCB)[0]; \
483 (DST)[1] += (SRCA)[1] * (SRCB)[1]; \
484 } while (0)
485
486 /** Scalar multiplication */
487 #define SCALE_SCALAR_2V( DST, S, SRCB ) \
488 do { \
489 (DST)[0] = S * (SRCB)[0]; \
490 (DST)[1] = S * (SRCB)[1]; \
491 } while (0)
492
493 /** In-place scalar multiplication and addition */
494 #define ACC_SCALE_SCALAR_2V( DST, S, SRCB ) \
495 do { \
496 (DST)[0] += S * (SRCB)[0]; \
497 (DST)[1] += S * (SRCB)[1]; \
498 } while (0)
499
500 /** In-place scalar multiplication */
501 #define SELF_SCALE_SCALAR_2V( DST, S ) \
502 do { \
503 (DST)[0] *= S; \
504 (DST)[1] *= S; \
505 } while (0)
506
507 /** In-place scalar addition */
508 #define ACC_SCALAR_2V( DST, S ) \
509 do { \
510 (DST)[0] += S; \
511 (DST)[1] += S; \
512 } while (0)
513
514 /** Assign scalers to short vectors */
515 #define ASSIGN_2V( V, V0, V1 ) \
516 do { \
517 V[0] = V0; \
518 V[1] = V1; \
519 } while(0)
520
521 /*@}*/
522
523
524 /** \name Linear interpolation macros */
525 /*@{*/
526
527 /**
528 * Linear interpolation
529 *
530 * \note \p OUT argument is evaluated twice!
531 * \note Be wary of using *coord++ as an argument to any of these macros!
532 */
533 #define LINTERP(T, OUT, IN) ((OUT) + (T) * ((IN) - (OUT)))
534
535 /* Can do better with integer math
536 */
537 #define INTERP_UB( t, dstub, outub, inub ) \
538 do { \
539 GLfloat inf = UBYTE_TO_FLOAT( inub ); \
540 GLfloat outf = UBYTE_TO_FLOAT( outub ); \
541 GLfloat dstf = LINTERP( t, outf, inf ); \
542 UNCLAMPED_FLOAT_TO_UBYTE( dstub, dstf ); \
543 } while (0)
544
545 #define INTERP_CHAN( t, dstc, outc, inc ) \
546 do { \
547 GLfloat inf = CHAN_TO_FLOAT( inc ); \
548 GLfloat outf = CHAN_TO_FLOAT( outc ); \
549 GLfloat dstf = LINTERP( t, outf, inf ); \
550 UNCLAMPED_FLOAT_TO_CHAN( dstc, dstf ); \
551 } while (0)
552
553 #define INTERP_UI( t, dstui, outui, inui ) \
554 dstui = (GLuint) (GLint) LINTERP( (t), (GLfloat) (outui), (GLfloat) (inui) )
555
556 #define INTERP_F( t, dstf, outf, inf ) \
557 dstf = LINTERP( t, outf, inf )
558
559 #define INTERP_4F( t, dst, out, in ) \
560 do { \
561 dst[0] = LINTERP( (t), (out)[0], (in)[0] ); \
562 dst[1] = LINTERP( (t), (out)[1], (in)[1] ); \
563 dst[2] = LINTERP( (t), (out)[2], (in)[2] ); \
564 dst[3] = LINTERP( (t), (out)[3], (in)[3] ); \
565 } while (0)
566
567 #define INTERP_3F( t, dst, out, in ) \
568 do { \
569 dst[0] = LINTERP( (t), (out)[0], (in)[0] ); \
570 dst[1] = LINTERP( (t), (out)[1], (in)[1] ); \
571 dst[2] = LINTERP( (t), (out)[2], (in)[2] ); \
572 } while (0)
573
574 #define INTERP_4CHAN( t, dst, out, in ) \
575 do { \
576 INTERP_CHAN( (t), (dst)[0], (out)[0], (in)[0] ); \
577 INTERP_CHAN( (t), (dst)[1], (out)[1], (in)[1] ); \
578 INTERP_CHAN( (t), (dst)[2], (out)[2], (in)[2] ); \
579 INTERP_CHAN( (t), (dst)[3], (out)[3], (in)[3] ); \
580 } while (0)
581
582 #define INTERP_3CHAN( t, dst, out, in ) \
583 do { \
584 INTERP_CHAN( (t), (dst)[0], (out)[0], (in)[0] ); \
585 INTERP_CHAN( (t), (dst)[1], (out)[1], (in)[1] ); \
586 INTERP_CHAN( (t), (dst)[2], (out)[2], (in)[2] ); \
587 } while (0)
588
589 #define INTERP_SZ( t, vec, to, out, in, sz ) \
590 do { \
591 switch (sz) { \
592 case 4: vec[to][3] = LINTERP( (t), (vec)[out][3], (vec)[in][3] ); \
593 case 3: vec[to][2] = LINTERP( (t), (vec)[out][2], (vec)[in][2] ); \
594 case 2: vec[to][1] = LINTERP( (t), (vec)[out][1], (vec)[in][1] ); \
595 case 1: vec[to][0] = LINTERP( (t), (vec)[out][0], (vec)[in][0] ); \
596 } \
597 } while(0)
598
599 /*@}*/
600
601
602
603 /** Clamp X to [MIN,MAX] */
604 #define CLAMP( X, MIN, MAX ) ( (X)<(MIN) ? (MIN) : ((X)>(MAX) ? (MAX) : (X)) )
605
606 /** Assign X to CLAMP(X, MIN, MAX) */
607 #define CLAMP_SELF(x, mn, mx) \
608 ( (x)<(mn) ? ((x) = (mn)) : ((x)>(mx) ? ((x)=(mx)) : (x)) )
609
610
611
612 /** Minimum of two values: */
613 #define MIN2( A, B ) ( (A)<(B) ? (A) : (B) )
614
615 /** Maximum of two values: */
616 #define MAX2( A, B ) ( (A)>(B) ? (A) : (B) )
617
618 /** Dot product of two 2-element vectors */
619 #define DOT2( a, b ) ( (a)[0]*(b)[0] + (a)[1]*(b)[1] )
620
621 /** Dot product of two 3-element vectors */
622 #define DOT3( a, b ) ( (a)[0]*(b)[0] + (a)[1]*(b)[1] + (a)[2]*(b)[2] )
623
624 /** Dot product of two 4-element vectors */
625 #define DOT4( a, b ) ( (a)[0]*(b)[0] + (a)[1]*(b)[1] + \
626 (a)[2]*(b)[2] + (a)[3]*(b)[3] )
627
628 /** Dot product of two 4-element vectors */
629 #define DOT4V(v,a,b,c,d) (v[0]*(a) + v[1]*(b) + v[2]*(c) + v[3]*(d))
630
631
632 /** Cross product of two 3-element vectors */
633 #define CROSS3(n, u, v) \
634 do { \
635 (n)[0] = (u)[1]*(v)[2] - (u)[2]*(v)[1]; \
636 (n)[1] = (u)[2]*(v)[0] - (u)[0]*(v)[2]; \
637 (n)[2] = (u)[0]*(v)[1] - (u)[1]*(v)[0]; \
638 } while (0)
639
640
641 /* Normalize a 3-element vector to unit length. */
642 #define NORMALIZE_3FV( V ) \
643 do { \
644 GLfloat len = (GLfloat) LEN_SQUARED_3FV(V); \
645 if (len) { \
646 len = INV_SQRTF(len); \
647 (V)[0] = (GLfloat) ((V)[0] * len); \
648 (V)[1] = (GLfloat) ((V)[1] * len); \
649 (V)[2] = (GLfloat) ((V)[2] * len); \
650 } \
651 } while(0)
652
653 #define LEN_3FV( V ) (SQRTF((V)[0]*(V)[0]+(V)[1]*(V)[1]+(V)[2]*(V)[2]))
654 #define LEN_2FV( V ) (SQRTF((V)[0]*(V)[0]+(V)[1]*(V)[1]))
655
656 #define LEN_SQUARED_3FV( V ) ((V)[0]*(V)[0]+(V)[1]*(V)[1]+(V)[2]*(V)[2])
657 #define LEN_SQUARED_2FV( V ) ((V)[0]*(V)[0]+(V)[1]*(V)[1])
658
659
660 /** casts to silence warnings with some compilers */
661 #define ENUM_TO_INT(E) ((GLint)(E))
662 #define ENUM_TO_FLOAT(E) ((GLfloat)(GLint)(E))
663 #define ENUM_TO_DOUBLE(E) ((GLdouble)(GLint)(E))
664 #define ENUM_TO_BOOLEAN(E) ((E) ? GL_TRUE : GL_FALSE)
665
666
667 #endif