mesa: Fix compiler warnings when ALIGN's alignment is "1 << value".
[mesa.git] / src / mesa / main / macros.h
1 /**
2 * \file macros.h
3 * A collection of useful macros.
4 */
5
6 /*
7 * Mesa 3-D graphics library
8 *
9 * Copyright (C) 1999-2006 Brian Paul All Rights Reserved.
10 *
11 * Permission is hereby granted, free of charge, to any person obtaining a
12 * copy of this software and associated documentation files (the "Software"),
13 * to deal in the Software without restriction, including without limitation
14 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
15 * and/or sell copies of the Software, and to permit persons to whom the
16 * Software is furnished to do so, subject to the following conditions:
17 *
18 * The above copyright notice and this permission notice shall be included
19 * in all copies or substantial portions of the Software.
20 *
21 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
22 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
23 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
24 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
25 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
26 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
27 * OTHER DEALINGS IN THE SOFTWARE.
28 */
29
30
31 #ifndef MACROS_H
32 #define MACROS_H
33
34 #include "imports.h"
35
36
37 /**
38 * \name Integer / float conversion for colors, normals, etc.
39 */
40 /*@{*/
41
42 /** Convert GLubyte in [0,255] to GLfloat in [0.0,1.0] */
43 extern GLfloat _mesa_ubyte_to_float_color_tab[256];
44 #define UBYTE_TO_FLOAT(u) _mesa_ubyte_to_float_color_tab[(unsigned int)(u)]
45
46 /** Convert GLfloat in [0.0,1.0] to GLubyte in [0,255] */
47 #define FLOAT_TO_UBYTE(X) ((GLubyte) (GLint) ((X) * 255.0F))
48
49
50 /** Convert GLbyte in [-128,127] to GLfloat in [-1.0,1.0] */
51 #define BYTE_TO_FLOAT(B) ((2.0F * (B) + 1.0F) * (1.0F/255.0F))
52
53 /** Convert GLfloat in [-1.0,1.0] to GLbyte in [-128,127] */
54 #define FLOAT_TO_BYTE(X) ( (((GLint) (255.0F * (X))) - 1) / 2 )
55
56
57 /** Convert GLbyte to GLfloat while preserving zero */
58 #define BYTE_TO_FLOATZ(B) ((B) == 0 ? 0.0F : BYTE_TO_FLOAT(B))
59
60
61 /** Convert GLbyte in [-128,127] to GLfloat in [-1.0,1.0], texture/fb data */
62 #define BYTE_TO_FLOAT_TEX(B) ((B) == -128 ? -1.0F : (B) * (1.0F/127.0F))
63
64 /** Convert GLfloat in [-1.0,1.0] to GLbyte in [-128,127], texture/fb data */
65 #define FLOAT_TO_BYTE_TEX(X) CLAMP( (GLint) (127.0F * (X)), -128, 127 )
66
67 /** Convert GLushort in [0,65535] to GLfloat in [0.0,1.0] */
68 #define USHORT_TO_FLOAT(S) ((GLfloat) (S) * (1.0F / 65535.0F))
69
70 /** Convert GLfloat in [0.0,1.0] to GLushort in [0, 65535] */
71 #define FLOAT_TO_USHORT(X) ((GLuint) ((X) * 65535.0F))
72
73
74 /** Convert GLshort in [-32768,32767] to GLfloat in [-1.0,1.0] */
75 #define SHORT_TO_FLOAT(S) ((2.0F * (S) + 1.0F) * (1.0F/65535.0F))
76
77 /** Convert GLfloat in [-1.0,1.0] to GLshort in [-32768,32767] */
78 #define FLOAT_TO_SHORT(X) ( (((GLint) (65535.0F * (X))) - 1) / 2 )
79
80 /** Convert GLshort to GLfloat while preserving zero */
81 #define SHORT_TO_FLOATZ(S) ((S) == 0 ? 0.0F : SHORT_TO_FLOAT(S))
82
83
84 /** Convert GLshort in [-32768,32767] to GLfloat in [-1.0,1.0], texture/fb data */
85 #define SHORT_TO_FLOAT_TEX(S) ((S) == -32768 ? -1.0F : (S) * (1.0F/32767.0F))
86
87 /** Convert GLfloat in [-1.0,1.0] to GLshort in [-32768,32767], texture/fb data */
88 #define FLOAT_TO_SHORT_TEX(X) ( (GLint) (32767.0F * (X)) )
89
90
91 /** Convert GLuint in [0,4294967295] to GLfloat in [0.0,1.0] */
92 #define UINT_TO_FLOAT(U) ((GLfloat) ((U) * (1.0F / 4294967295.0)))
93
94 /** Convert GLfloat in [0.0,1.0] to GLuint in [0,4294967295] */
95 #define FLOAT_TO_UINT(X) ((GLuint) ((X) * 4294967295.0))
96
97
98 /** Convert GLint in [-2147483648,2147483647] to GLfloat in [-1.0,1.0] */
99 #define INT_TO_FLOAT(I) ((GLfloat) ((2.0F * (I) + 1.0F) * (1.0F/4294967294.0)))
100
101 /** Convert GLfloat in [-1.0,1.0] to GLint in [-2147483648,2147483647] */
102 /* causes overflow:
103 #define FLOAT_TO_INT(X) ( (((GLint) (4294967294.0 * (X))) - 1) / 2 )
104 */
105 /* a close approximation: */
106 #define FLOAT_TO_INT(X) ( (GLint) (2147483647.0 * (X)) )
107
108 /** Convert GLfloat in [-1.0,1.0] to GLint64 in [-(1<<63),(1 << 63) -1] */
109 #define FLOAT_TO_INT64(X) ( (GLint64) (9223372036854775807.0 * (double)(X)) )
110
111
112 /** Convert GLint in [-2147483648,2147483647] to GLfloat in [-1.0,1.0], texture/fb data */
113 #define INT_TO_FLOAT_TEX(I) ((I) == -2147483648 ? -1.0F : (I) * (1.0F/2147483647.0))
114
115 /** Convert GLfloat in [-1.0,1.0] to GLint in [-2147483648,2147483647], texture/fb data */
116 #define FLOAT_TO_INT_TEX(X) ( (GLint) (2147483647.0 * (X)) )
117
118
119 #define BYTE_TO_UBYTE(b) ((GLubyte) ((b) < 0 ? 0 : (GLubyte) (b)))
120 #define SHORT_TO_UBYTE(s) ((GLubyte) ((s) < 0 ? 0 : (GLubyte) ((s) >> 7)))
121 #define USHORT_TO_UBYTE(s) ((GLubyte) ((s) >> 8))
122 #define INT_TO_UBYTE(i) ((GLubyte) ((i) < 0 ? 0 : (GLubyte) ((i) >> 23)))
123 #define UINT_TO_UBYTE(i) ((GLubyte) ((i) >> 24))
124
125
126 #define BYTE_TO_USHORT(b) ((b) < 0 ? 0 : ((GLushort) (((b) * 65535) / 255)))
127 #define UBYTE_TO_USHORT(b) (((GLushort) (b) << 8) | (GLushort) (b))
128 #define SHORT_TO_USHORT(s) ((s) < 0 ? 0 : ((GLushort) (((s) * 65535 / 32767))))
129 #define INT_TO_USHORT(i) ((i) < 0 ? 0 : ((GLushort) ((i) >> 15)))
130 #define UINT_TO_USHORT(i) ((i) < 0 ? 0 : ((GLushort) ((i) >> 16)))
131 #define UNCLAMPED_FLOAT_TO_USHORT(us, f) \
132 us = ( (GLushort) F_TO_I( CLAMP((f), 0.0F, 1.0F) * 65535.0F) )
133 #define CLAMPED_FLOAT_TO_USHORT(us, f) \
134 us = ( (GLushort) F_TO_I( (f) * 65535.0F) )
135
136 #define UNCLAMPED_FLOAT_TO_SHORT(s, f) \
137 s = ( (GLshort) F_TO_I( CLAMP((f), -1.0F, 1.0F) * 32767.0F) )
138
139 /***
140 *** UNCLAMPED_FLOAT_TO_UBYTE: clamp float to [0,1] and map to ubyte in [0,255]
141 *** CLAMPED_FLOAT_TO_UBYTE: map float known to be in [0,1] to ubyte in [0,255]
142 ***/
143 #if defined(USE_IEEE) && !defined(DEBUG)
144 /* This function/macro is sensitive to precision. Test very carefully
145 * if you change it!
146 */
147 #define UNCLAMPED_FLOAT_TO_UBYTE(UB, F) \
148 do { \
149 fi_type __tmp; \
150 __tmp.f = (F); \
151 if (__tmp.i < 0) \
152 UB = (GLubyte) 0; \
153 else if (__tmp.i >= IEEE_ONE) \
154 UB = (GLubyte) 255; \
155 else { \
156 __tmp.f = __tmp.f * (255.0F/256.0F) + 32768.0F; \
157 UB = (GLubyte) __tmp.i; \
158 } \
159 } while (0)
160 #define CLAMPED_FLOAT_TO_UBYTE(UB, F) \
161 do { \
162 fi_type __tmp; \
163 __tmp.f = (F) * (255.0F/256.0F) + 32768.0F; \
164 UB = (GLubyte) __tmp.i; \
165 } while (0)
166 #else
167 #define UNCLAMPED_FLOAT_TO_UBYTE(ub, f) \
168 ub = ((GLubyte) F_TO_I(CLAMP((f), 0.0F, 1.0F) * 255.0F))
169 #define CLAMPED_FLOAT_TO_UBYTE(ub, f) \
170 ub = ((GLubyte) F_TO_I((f) * 255.0F))
171 #endif
172
173 static inline GLfloat INT_AS_FLT(GLint i)
174 {
175 fi_type tmp;
176 tmp.i = i;
177 return tmp.f;
178 }
179
180 static inline GLfloat UINT_AS_FLT(GLuint u)
181 {
182 fi_type tmp;
183 tmp.u = u;
184 return tmp.f;
185 }
186
187 /*@}*/
188
189
190 /** Stepping a GLfloat pointer by a byte stride */
191 #define STRIDE_F(p, i) (p = (GLfloat *)((GLubyte *)p + i))
192 /** Stepping a GLuint pointer by a byte stride */
193 #define STRIDE_UI(p, i) (p = (GLuint *)((GLubyte *)p + i))
194 /** Stepping a GLubyte[4] pointer by a byte stride */
195 #define STRIDE_4UB(p, i) (p = (GLubyte (*)[4])((GLubyte *)p + i))
196 /** Stepping a GLfloat[4] pointer by a byte stride */
197 #define STRIDE_4F(p, i) (p = (GLfloat (*)[4])((GLubyte *)p + i))
198 /** Stepping a \p t pointer by a byte stride */
199 #define STRIDE_T(p, t, i) (p = (t)((GLubyte *)p + i))
200
201
202 /**********************************************************************/
203 /** \name 4-element vector operations */
204 /*@{*/
205
206 /** Zero */
207 #define ZERO_4V( DST ) (DST)[0] = (DST)[1] = (DST)[2] = (DST)[3] = 0
208
209 /** Test for equality */
210 #define TEST_EQ_4V(a,b) ((a)[0] == (b)[0] && \
211 (a)[1] == (b)[1] && \
212 (a)[2] == (b)[2] && \
213 (a)[3] == (b)[3])
214
215 /** Test for equality (unsigned bytes) */
216 static inline GLboolean
217 TEST_EQ_4UBV(const GLubyte a[4], const GLubyte b[4])
218 {
219 #if defined(__i386__)
220 return *((const GLuint *) a) == *((const GLuint *) b);
221 #else
222 return TEST_EQ_4V(a, b);
223 #endif
224 }
225
226
227 /** Copy a 4-element vector */
228 #define COPY_4V( DST, SRC ) \
229 do { \
230 (DST)[0] = (SRC)[0]; \
231 (DST)[1] = (SRC)[1]; \
232 (DST)[2] = (SRC)[2]; \
233 (DST)[3] = (SRC)[3]; \
234 } while (0)
235
236 /** Copy a 4-element unsigned byte vector */
237 static inline void
238 COPY_4UBV(GLubyte dst[4], const GLubyte src[4])
239 {
240 #if defined(__i386__)
241 *((GLuint *) dst) = *((GLuint *) src);
242 #else
243 /* The GLuint cast might fail if DST or SRC are not dword-aligned (RISC) */
244 COPY_4V(dst, src);
245 #endif
246 }
247
248 /** Copy a 4-element float vector */
249 static inline void
250 COPY_4FV(GLfloat dst[4], const GLfloat src[4])
251 {
252 /* memcpy seems to be most efficient */
253 memcpy(dst, src, sizeof(GLfloat) * 4);
254 }
255
256 /** Copy \p SZ elements into a 4-element vector */
257 #define COPY_SZ_4V(DST, SZ, SRC) \
258 do { \
259 switch (SZ) { \
260 case 4: (DST)[3] = (SRC)[3]; \
261 case 3: (DST)[2] = (SRC)[2]; \
262 case 2: (DST)[1] = (SRC)[1]; \
263 case 1: (DST)[0] = (SRC)[0]; \
264 } \
265 } while(0)
266
267 /** Copy \p SZ elements into a homegeneous (4-element) vector, giving
268 * default values to the remaining */
269 #define COPY_CLEAN_4V(DST, SZ, SRC) \
270 do { \
271 ASSIGN_4V( DST, 0, 0, 0, 1 ); \
272 COPY_SZ_4V( DST, SZ, SRC ); \
273 } while (0)
274
275 /** Subtraction */
276 #define SUB_4V( DST, SRCA, SRCB ) \
277 do { \
278 (DST)[0] = (SRCA)[0] - (SRCB)[0]; \
279 (DST)[1] = (SRCA)[1] - (SRCB)[1]; \
280 (DST)[2] = (SRCA)[2] - (SRCB)[2]; \
281 (DST)[3] = (SRCA)[3] - (SRCB)[3]; \
282 } while (0)
283
284 /** Addition */
285 #define ADD_4V( DST, SRCA, SRCB ) \
286 do { \
287 (DST)[0] = (SRCA)[0] + (SRCB)[0]; \
288 (DST)[1] = (SRCA)[1] + (SRCB)[1]; \
289 (DST)[2] = (SRCA)[2] + (SRCB)[2]; \
290 (DST)[3] = (SRCA)[3] + (SRCB)[3]; \
291 } while (0)
292
293 /** Element-wise multiplication */
294 #define SCALE_4V( DST, SRCA, SRCB ) \
295 do { \
296 (DST)[0] = (SRCA)[0] * (SRCB)[0]; \
297 (DST)[1] = (SRCA)[1] * (SRCB)[1]; \
298 (DST)[2] = (SRCA)[2] * (SRCB)[2]; \
299 (DST)[3] = (SRCA)[3] * (SRCB)[3]; \
300 } while (0)
301
302 /** In-place addition */
303 #define ACC_4V( DST, SRC ) \
304 do { \
305 (DST)[0] += (SRC)[0]; \
306 (DST)[1] += (SRC)[1]; \
307 (DST)[2] += (SRC)[2]; \
308 (DST)[3] += (SRC)[3]; \
309 } while (0)
310
311 /** Element-wise multiplication and addition */
312 #define ACC_SCALE_4V( DST, SRCA, SRCB ) \
313 do { \
314 (DST)[0] += (SRCA)[0] * (SRCB)[0]; \
315 (DST)[1] += (SRCA)[1] * (SRCB)[1]; \
316 (DST)[2] += (SRCA)[2] * (SRCB)[2]; \
317 (DST)[3] += (SRCA)[3] * (SRCB)[3]; \
318 } while (0)
319
320 /** In-place scalar multiplication and addition */
321 #define ACC_SCALE_SCALAR_4V( DST, S, SRCB ) \
322 do { \
323 (DST)[0] += S * (SRCB)[0]; \
324 (DST)[1] += S * (SRCB)[1]; \
325 (DST)[2] += S * (SRCB)[2]; \
326 (DST)[3] += S * (SRCB)[3]; \
327 } while (0)
328
329 /** Scalar multiplication */
330 #define SCALE_SCALAR_4V( DST, S, SRCB ) \
331 do { \
332 (DST)[0] = S * (SRCB)[0]; \
333 (DST)[1] = S * (SRCB)[1]; \
334 (DST)[2] = S * (SRCB)[2]; \
335 (DST)[3] = S * (SRCB)[3]; \
336 } while (0)
337
338 /** In-place scalar multiplication */
339 #define SELF_SCALE_SCALAR_4V( DST, S ) \
340 do { \
341 (DST)[0] *= S; \
342 (DST)[1] *= S; \
343 (DST)[2] *= S; \
344 (DST)[3] *= S; \
345 } while (0)
346
347 /** Assignment */
348 #define ASSIGN_4V( V, V0, V1, V2, V3 ) \
349 do { \
350 V[0] = V0; \
351 V[1] = V1; \
352 V[2] = V2; \
353 V[3] = V3; \
354 } while(0)
355
356 /*@}*/
357
358
359 /**********************************************************************/
360 /** \name 3-element vector operations*/
361 /*@{*/
362
363 /** Zero */
364 #define ZERO_3V( DST ) (DST)[0] = (DST)[1] = (DST)[2] = 0
365
366 /** Test for equality */
367 #define TEST_EQ_3V(a,b) \
368 ((a)[0] == (b)[0] && \
369 (a)[1] == (b)[1] && \
370 (a)[2] == (b)[2])
371
372 /** Copy a 3-element vector */
373 #define COPY_3V( DST, SRC ) \
374 do { \
375 (DST)[0] = (SRC)[0]; \
376 (DST)[1] = (SRC)[1]; \
377 (DST)[2] = (SRC)[2]; \
378 } while (0)
379
380 /** Copy a 3-element vector with cast */
381 #define COPY_3V_CAST( DST, SRC, CAST ) \
382 do { \
383 (DST)[0] = (CAST)(SRC)[0]; \
384 (DST)[1] = (CAST)(SRC)[1]; \
385 (DST)[2] = (CAST)(SRC)[2]; \
386 } while (0)
387
388 /** Copy a 3-element float vector */
389 #define COPY_3FV( DST, SRC ) \
390 do { \
391 const GLfloat *_tmp = (SRC); \
392 (DST)[0] = _tmp[0]; \
393 (DST)[1] = _tmp[1]; \
394 (DST)[2] = _tmp[2]; \
395 } while (0)
396
397 /** Subtraction */
398 #define SUB_3V( DST, SRCA, SRCB ) \
399 do { \
400 (DST)[0] = (SRCA)[0] - (SRCB)[0]; \
401 (DST)[1] = (SRCA)[1] - (SRCB)[1]; \
402 (DST)[2] = (SRCA)[2] - (SRCB)[2]; \
403 } while (0)
404
405 /** Addition */
406 #define ADD_3V( DST, SRCA, SRCB ) \
407 do { \
408 (DST)[0] = (SRCA)[0] + (SRCB)[0]; \
409 (DST)[1] = (SRCA)[1] + (SRCB)[1]; \
410 (DST)[2] = (SRCA)[2] + (SRCB)[2]; \
411 } while (0)
412
413 /** In-place scalar multiplication */
414 #define SCALE_3V( DST, SRCA, SRCB ) \
415 do { \
416 (DST)[0] = (SRCA)[0] * (SRCB)[0]; \
417 (DST)[1] = (SRCA)[1] * (SRCB)[1]; \
418 (DST)[2] = (SRCA)[2] * (SRCB)[2]; \
419 } while (0)
420
421 /** In-place element-wise multiplication */
422 #define SELF_SCALE_3V( DST, SRC ) \
423 do { \
424 (DST)[0] *= (SRC)[0]; \
425 (DST)[1] *= (SRC)[1]; \
426 (DST)[2] *= (SRC)[2]; \
427 } while (0)
428
429 /** In-place addition */
430 #define ACC_3V( DST, SRC ) \
431 do { \
432 (DST)[0] += (SRC)[0]; \
433 (DST)[1] += (SRC)[1]; \
434 (DST)[2] += (SRC)[2]; \
435 } while (0)
436
437 /** Element-wise multiplication and addition */
438 #define ACC_SCALE_3V( DST, SRCA, SRCB ) \
439 do { \
440 (DST)[0] += (SRCA)[0] * (SRCB)[0]; \
441 (DST)[1] += (SRCA)[1] * (SRCB)[1]; \
442 (DST)[2] += (SRCA)[2] * (SRCB)[2]; \
443 } while (0)
444
445 /** Scalar multiplication */
446 #define SCALE_SCALAR_3V( DST, S, SRCB ) \
447 do { \
448 (DST)[0] = S * (SRCB)[0]; \
449 (DST)[1] = S * (SRCB)[1]; \
450 (DST)[2] = S * (SRCB)[2]; \
451 } while (0)
452
453 /** In-place scalar multiplication and addition */
454 #define ACC_SCALE_SCALAR_3V( DST, S, SRCB ) \
455 do { \
456 (DST)[0] += S * (SRCB)[0]; \
457 (DST)[1] += S * (SRCB)[1]; \
458 (DST)[2] += S * (SRCB)[2]; \
459 } while (0)
460
461 /** In-place scalar multiplication */
462 #define SELF_SCALE_SCALAR_3V( DST, S ) \
463 do { \
464 (DST)[0] *= S; \
465 (DST)[1] *= S; \
466 (DST)[2] *= S; \
467 } while (0)
468
469 /** In-place scalar addition */
470 #define ACC_SCALAR_3V( DST, S ) \
471 do { \
472 (DST)[0] += S; \
473 (DST)[1] += S; \
474 (DST)[2] += S; \
475 } while (0)
476
477 /** Assignment */
478 #define ASSIGN_3V( V, V0, V1, V2 ) \
479 do { \
480 V[0] = V0; \
481 V[1] = V1; \
482 V[2] = V2; \
483 } while(0)
484
485 /*@}*/
486
487
488 /**********************************************************************/
489 /** \name 2-element vector operations*/
490 /*@{*/
491
492 /** Zero */
493 #define ZERO_2V( DST ) (DST)[0] = (DST)[1] = 0
494
495 /** Copy a 2-element vector */
496 #define COPY_2V( DST, SRC ) \
497 do { \
498 (DST)[0] = (SRC)[0]; \
499 (DST)[1] = (SRC)[1]; \
500 } while (0)
501
502 /** Copy a 2-element vector with cast */
503 #define COPY_2V_CAST( DST, SRC, CAST ) \
504 do { \
505 (DST)[0] = (CAST)(SRC)[0]; \
506 (DST)[1] = (CAST)(SRC)[1]; \
507 } while (0)
508
509 /** Copy a 2-element float vector */
510 #define COPY_2FV( DST, SRC ) \
511 do { \
512 const GLfloat *_tmp = (SRC); \
513 (DST)[0] = _tmp[0]; \
514 (DST)[1] = _tmp[1]; \
515 } while (0)
516
517 /** Subtraction */
518 #define SUB_2V( DST, SRCA, SRCB ) \
519 do { \
520 (DST)[0] = (SRCA)[0] - (SRCB)[0]; \
521 (DST)[1] = (SRCA)[1] - (SRCB)[1]; \
522 } while (0)
523
524 /** Addition */
525 #define ADD_2V( DST, SRCA, SRCB ) \
526 do { \
527 (DST)[0] = (SRCA)[0] + (SRCB)[0]; \
528 (DST)[1] = (SRCA)[1] + (SRCB)[1]; \
529 } while (0)
530
531 /** In-place scalar multiplication */
532 #define SCALE_2V( DST, SRCA, SRCB ) \
533 do { \
534 (DST)[0] = (SRCA)[0] * (SRCB)[0]; \
535 (DST)[1] = (SRCA)[1] * (SRCB)[1]; \
536 } while (0)
537
538 /** In-place addition */
539 #define ACC_2V( DST, SRC ) \
540 do { \
541 (DST)[0] += (SRC)[0]; \
542 (DST)[1] += (SRC)[1]; \
543 } while (0)
544
545 /** Element-wise multiplication and addition */
546 #define ACC_SCALE_2V( DST, SRCA, SRCB ) \
547 do { \
548 (DST)[0] += (SRCA)[0] * (SRCB)[0]; \
549 (DST)[1] += (SRCA)[1] * (SRCB)[1]; \
550 } while (0)
551
552 /** Scalar multiplication */
553 #define SCALE_SCALAR_2V( DST, S, SRCB ) \
554 do { \
555 (DST)[0] = S * (SRCB)[0]; \
556 (DST)[1] = S * (SRCB)[1]; \
557 } while (0)
558
559 /** In-place scalar multiplication and addition */
560 #define ACC_SCALE_SCALAR_2V( DST, S, SRCB ) \
561 do { \
562 (DST)[0] += S * (SRCB)[0]; \
563 (DST)[1] += S * (SRCB)[1]; \
564 } while (0)
565
566 /** In-place scalar multiplication */
567 #define SELF_SCALE_SCALAR_2V( DST, S ) \
568 do { \
569 (DST)[0] *= S; \
570 (DST)[1] *= S; \
571 } while (0)
572
573 /** In-place scalar addition */
574 #define ACC_SCALAR_2V( DST, S ) \
575 do { \
576 (DST)[0] += S; \
577 (DST)[1] += S; \
578 } while (0)
579
580 /** Assign scalers to short vectors */
581 #define ASSIGN_2V( V, V0, V1 ) \
582 do { \
583 V[0] = V0; \
584 V[1] = V1; \
585 } while(0)
586
587 /*@}*/
588
589 /** Copy \p sz elements into a homegeneous (4-element) vector, giving
590 * default values to the remaining components.
591 * The default values are chosen based on \p type.
592 */
593 static inline void
594 COPY_CLEAN_4V_TYPE_AS_FLOAT(GLfloat dst[4], int sz, const GLfloat src[4],
595 GLenum type)
596 {
597 switch (type) {
598 case GL_FLOAT:
599 ASSIGN_4V(dst, 0, 0, 0, 1);
600 break;
601 case GL_INT:
602 ASSIGN_4V(dst, INT_AS_FLT(0), INT_AS_FLT(0),
603 INT_AS_FLT(0), INT_AS_FLT(1));
604 break;
605 case GL_UNSIGNED_INT:
606 ASSIGN_4V(dst, UINT_AS_FLT(0), UINT_AS_FLT(0),
607 UINT_AS_FLT(0), UINT_AS_FLT(1));
608 break;
609 default:
610 ASSIGN_4V(dst, 0.0f, 0.0f, 0.0f, 1.0f); /* silence warnings */
611 ASSERT(!"Unexpected type in COPY_CLEAN_4V_TYPE_AS_FLOAT macro");
612 }
613 COPY_SZ_4V(dst, sz, src);
614 }
615
616 /** \name Linear interpolation functions */
617 /*@{*/
618
619 static inline GLfloat
620 LINTERP(GLfloat t, GLfloat out, GLfloat in)
621 {
622 return out + t * (in - out);
623 }
624
625 static inline void
626 INTERP_3F(GLfloat t, GLfloat dst[3], const GLfloat out[3], const GLfloat in[3])
627 {
628 dst[0] = LINTERP( t, out[0], in[0] );
629 dst[1] = LINTERP( t, out[1], in[1] );
630 dst[2] = LINTERP( t, out[2], in[2] );
631 }
632
633 static inline void
634 INTERP_4F(GLfloat t, GLfloat dst[4], const GLfloat out[4], const GLfloat in[4])
635 {
636 dst[0] = LINTERP( t, out[0], in[0] );
637 dst[1] = LINTERP( t, out[1], in[1] );
638 dst[2] = LINTERP( t, out[2], in[2] );
639 dst[3] = LINTERP( t, out[3], in[3] );
640 }
641
642 /*@}*/
643
644
645
646 /** Clamp X to [MIN,MAX] */
647 #define CLAMP( X, MIN, MAX ) ( (X)<(MIN) ? (MIN) : ((X)>(MAX) ? (MAX) : (X)) )
648
649 /** Minimum of two values: */
650 #define MIN2( A, B ) ( (A)<(B) ? (A) : (B) )
651
652 /** Maximum of two values: */
653 #define MAX2( A, B ) ( (A)>(B) ? (A) : (B) )
654
655 /** Minimum and maximum of three values: */
656 #define MIN3( A, B, C ) ((A) < (B) ? MIN2(A, C) : MIN2(B, C))
657 #define MAX3( A, B, C ) ((A) > (B) ? MAX2(A, C) : MAX2(B, C))
658
659 static inline unsigned
660 minify(unsigned value, unsigned levels)
661 {
662 return MAX2(1, value >> levels);
663 }
664
665 /**
666 * Align a value up to an alignment value
667 *
668 * If \c value is not already aligned to the requested alignment value, it
669 * will be rounded up.
670 *
671 * \param value Value to be rounded
672 * \param alignment Alignment value to be used. This must be a power of two.
673 *
674 * \sa ROUND_DOWN_TO()
675 */
676 #define ALIGN(value, alignment) (((value) + (alignment) - 1) & ~((alignment) - 1))
677
678
679
680 /** Cross product of two 3-element vectors */
681 static inline void
682 CROSS3(GLfloat n[3], const GLfloat u[3], const GLfloat v[3])
683 {
684 n[0] = u[1] * v[2] - u[2] * v[1];
685 n[1] = u[2] * v[0] - u[0] * v[2];
686 n[2] = u[0] * v[1] - u[1] * v[0];
687 }
688
689
690 /** Dot product of two 2-element vectors */
691 static inline GLfloat
692 DOT2(const GLfloat a[2], const GLfloat b[2])
693 {
694 return a[0] * b[0] + a[1] * b[1];
695 }
696
697 static inline GLfloat
698 DOT3(const GLfloat a[3], const GLfloat b[3])
699 {
700 return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
701 }
702
703 static inline GLfloat
704 DOT4(const GLfloat a[4], const GLfloat b[4])
705 {
706 return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];
707 }
708
709
710 static inline GLfloat
711 LEN_SQUARED_3FV(const GLfloat v[3])
712 {
713 return DOT3(v, v);
714 }
715
716 static inline GLfloat
717 LEN_SQUARED_2FV(const GLfloat v[2])
718 {
719 return DOT2(v, v);
720 }
721
722
723 static inline GLfloat
724 LEN_3FV(const GLfloat v[3])
725 {
726 return sqrtf(LEN_SQUARED_3FV(v));
727 }
728
729 static inline GLfloat
730 LEN_2FV(const GLfloat v[2])
731 {
732 return sqrtf(LEN_SQUARED_2FV(v));
733 }
734
735
736 /* Normalize a 3-element vector to unit length. */
737 static inline void
738 NORMALIZE_3FV(GLfloat v[3])
739 {
740 GLfloat len = (GLfloat) LEN_SQUARED_3FV(v);
741 if (len) {
742 len = INV_SQRTF(len);
743 v[0] *= len;
744 v[1] *= len;
745 v[2] *= len;
746 }
747 }
748
749
750 /** Is float value negative? */
751 static inline GLboolean
752 IS_NEGATIVE(float x)
753 {
754 return signbit(x) != 0;
755 }
756
757 /** Test two floats have opposite signs */
758 static inline GLboolean
759 DIFFERENT_SIGNS(GLfloat x, GLfloat y)
760 {
761 return signbit(x) != signbit(y);
762 }
763
764
765 /** Compute ceiling of integer quotient of A divided by B. */
766 #define CEILING( A, B ) ( (A) % (B) == 0 ? (A)/(B) : (A)/(B)+1 )
767
768
769 /** casts to silence warnings with some compilers */
770 #define ENUM_TO_INT(E) ((GLint)(E))
771 #define ENUM_TO_FLOAT(E) ((GLfloat)(GLint)(E))
772 #define ENUM_TO_DOUBLE(E) ((GLdouble)(GLint)(E))
773 #define ENUM_TO_BOOLEAN(E) ((E) ? GL_TRUE : GL_FALSE)
774
775 /* Compute the size of an array */
776 #define ARRAY_SIZE(x) (sizeof(x) / sizeof(x[0]))
777
778
779 #endif