Re-org of register files for vertex/fragment programs. Will be easier to
[mesa.git] / src / mesa / main / macros.h
1 /**
2 * \file macros.h
3 * A collection of useful macros.
4 */
5
6 /*
7 * Mesa 3-D graphics library
8 * Version: 4.0.3
9 *
10 * Copyright (C) 1999-2002 Brian Paul All Rights Reserved.
11 *
12 * Permission is hereby granted, free of charge, to any person obtaining a
13 * copy of this software and associated documentation files (the "Software"),
14 * to deal in the Software without restriction, including without limitation
15 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
16 * and/or sell copies of the Software, and to permit persons to whom the
17 * Software is furnished to do so, subject to the following conditions:
18 *
19 * The above copyright notice and this permission notice shall be included
20 * in all copies or substantial portions of the Software.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
23 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
25 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
26 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
27 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
28 */
29
30
31 #ifndef MACROS_H
32 #define MACROS_H
33
34 #include "imports.h"
35
36
37 /**
38 * \name Integer / float conversion for colors, normals, etc.
39 */
40 /*@{*/
41
42 /** Convert GLubyte in [0,255] to GLfloat in [0.0,1.0] */
43 extern GLfloat _mesa_ubyte_to_float_color_tab[256];
44 #define UBYTE_TO_FLOAT(u) _mesa_ubyte_to_float_color_tab[(unsigned int)(u)]
45
46 /** Convert GLfloat in [0.0,1.0] to GLubyte in [0,255] */
47 #define FLOAT_TO_UBYTE(X) ((GLubyte) (GLint) ((X) * 255.0F))
48
49
50 /** Convert GLbyte in [-128,127] to GLfloat in [-1.0,1.0] */
51 #define BYTE_TO_FLOAT(B) ((2.0F * (B) + 1.0F) * (1.0F/255.0F))
52
53 /** Convert GLfloat in [-1.0,1.0] to GLbyte in [-128,127] */
54 #define FLOAT_TO_BYTE(X) ( (((GLint) (255.0F * (X))) - 1) / 2 )
55
56
57 /** Convert GLushort in [0,65536] to GLfloat in [0.0,1.0] */
58 #define USHORT_TO_FLOAT(S) ((GLfloat) (S) * (1.0F / 65535.0F))
59
60 /** Convert GLfloat in [0.0,1.0] to GLushort in [0,65536] */
61 #define FLOAT_TO_USHORT(X) ((GLushort) (GLint) ((X) * 65535.0F))
62
63 /** Convert GLshort in [-32768,32767] to GLfloat in [-1.0,1.0] */
64 #define SHORT_TO_FLOAT(S) ((2.0F * (S) + 1.0F) * (1.0F/65535.0F))
65
66 /** Convert GLfloat in [0.0,1.0] to GLshort in [-32768,32767] */
67 #define FLOAT_TO_SHORT(X) ( (((GLint) (65535.0F * (X))) - 1) / 2 )
68
69
70 /** Convert GLuint in [0,4294967295] to GLfloat in [0.0,1.0] */
71 #define UINT_TO_FLOAT(U) ((GLfloat) (U) * (1.0F / 4294967295.0F))
72
73 /** Convert GLfloat in [0.0,1.0] to GLuint in [0,4294967295] */
74 #define FLOAT_TO_UINT(X) ((GLuint) ((X) * 4294967295.0))
75
76
77 /** Convert GLint in [-2147483648,2147483647] to GLfloat in [-1.0,1.0] */
78 #define INT_TO_FLOAT(I) ((2.0F * (I) + 1.0F) * (1.0F/4294967294.0F))
79
80 /** Convert GLfloat in [-1.0,1.0] to GLint in [-2147483648,2147483647] */
81 /* causes overflow:
82 #define FLOAT_TO_INT(X) ( (((GLint) (4294967294.0F * (X))) - 1) / 2 )
83 */
84 /* a close approximation: */
85 #define FLOAT_TO_INT(X) ( (GLint) (2147483647.0 * (X)) )
86
87
88 #define BYTE_TO_UBYTE(b) ((GLubyte) ((b) < 0 ? 0 : (GLubyte) (b)))
89 #define SHORT_TO_UBYTE(s) ((GLubyte) ((s) < 0 ? 0 : (GLubyte) ((s) >> 7)))
90 #define USHORT_TO_UBYTE(s) ((GLubyte) ((s) >> 8))
91 #define INT_TO_UBYTE(i) ((GLubyte) ((i) < 0 ? 0 : (GLubyte) ((i) >> 23)))
92 #define UINT_TO_UBYTE(i) ((GLubyte) ((i) >> 24))
93
94
95 #define BYTE_TO_USHORT(b) ((b) < 0 ? 0 : ((GLushort) (((b) * 65535) / 255)))
96 #define UBYTE_TO_USHORT(b) (((GLushort) (b) << 8) | (GLushort) (b))
97 #define SHORT_TO_USHORT(s) ((s) < 0 ? 0 : ((GLushort) (((s) * 65535 / 32767))))
98 #define INT_TO_USHORT(i) ((i) < 0 ? 0 : ((GLushort) ((i) >> 15)))
99 #define UINT_TO_USHORT(i) ((i) < 0 ? 0 : ((GLushort) ((i) >> 16)))
100 #define UNCLAMPED_FLOAT_TO_USHORT(us, f) \
101 us = ( (GLushort) IROUND( CLAMP((f), 0.0, 1.0) * 65535.0F) )
102 #define CLAMPED_FLOAT_TO_USHORT(us, f) \
103 us = ( (GLushort) IROUND( (f) * 65535.0F) )
104
105
106 /** Stepping a GLfloat pointer by a byte stride */
107 #define STRIDE_F(p, i) (p = (GLfloat *)((GLubyte *)p + i))
108 /** Stepping a GLuint pointer by a byte stride */
109 #define STRIDE_UI(p, i) (p = (GLuint *)((GLubyte *)p + i))
110 /** Stepping a GLubyte[4] pointer by a byte stride */
111 #define STRIDE_4UB(p, i) (p = (GLubyte (*)[4])((GLubyte *)p + i))
112 /** Stepping a GLchan[4] pointer by a byte stride */
113 #define STRIDE_4CHAN(p, i) (p = (GLchan (*)[4])((GLubyte *)p + i))
114 /** Stepping a GLchan pointer by a byte stride */
115 #define STRIDE_CHAN(p, i) (p = (GLchan *)((GLubyte *)p + i))
116 /** Stepping a \p t pointer by a byte stride */
117 #define STRIDE_T(p, t, i) (p = (t)((GLubyte *)p + i))
118
119
120 /**********************************************************************/
121 /** \name 4-element vector operations */
122 /*@{*/
123
124 /** Zero */
125 #define ZERO_4V( DST ) (DST)[0] = (DST)[1] = (DST)[2] = (DST)[3] = 0
126
127 /** Test for equality */
128 #define TEST_EQ_4V(a,b) ((a)[0] == (b)[0] && \
129 (a)[1] == (b)[1] && \
130 (a)[2] == (b)[2] && \
131 (a)[3] == (b)[3])
132
133 /** Test for equality (unsigned bytes) */
134 #if defined(__i386__)
135 #define TEST_EQ_4UBV(DST, SRC) *((GLuint*)(DST)) == *((GLuint*)(SRC))
136 #else
137 #define TEST_EQ_4UBV(DST, SRC) TEST_EQ_4V(DST, SRC)
138 #endif
139
140 /** Copy a 4-element vector */
141 #define COPY_4V( DST, SRC ) \
142 do { \
143 (DST)[0] = (SRC)[0]; \
144 (DST)[1] = (SRC)[1]; \
145 (DST)[2] = (SRC)[2]; \
146 (DST)[3] = (SRC)[3]; \
147 } while (0)
148
149 /** Copy a 4-element unsigned byte vector */
150 #if defined(__i386__)
151 #define COPY_4UBV(DST, SRC) \
152 do { \
153 *((GLuint*)(DST)) = *((GLuint*)(SRC)); \
154 } while (0)
155 #else
156 /* The GLuint cast might fail if DST or SRC are not dword-aligned (RISC) */
157 #define COPY_4UBV(DST, SRC) \
158 do { \
159 (DST)[0] = (SRC)[0]; \
160 (DST)[1] = (SRC)[1]; \
161 (DST)[2] = (SRC)[2]; \
162 (DST)[3] = (SRC)[3]; \
163 } while (0)
164 #endif
165
166 /** Copy a 4-element float vector */
167 #define COPY_4FV( DST, SRC ) \
168 do { \
169 const GLfloat *_tmp = (SRC); \
170 (DST)[0] = _tmp[0]; \
171 (DST)[1] = _tmp[1]; \
172 (DST)[2] = _tmp[2]; \
173 (DST)[3] = _tmp[3]; \
174 } while (0)
175
176
177 /** Copy \p SZ elements into a 4-element vector */
178 #define COPY_SZ_4V(DST, SZ, SRC) \
179 do { \
180 switch (SZ) { \
181 case 4: (DST)[3] = (SRC)[3]; \
182 case 3: (DST)[2] = (SRC)[2]; \
183 case 2: (DST)[1] = (SRC)[1]; \
184 case 1: (DST)[0] = (SRC)[0]; \
185 } \
186 } while(0)
187
188 /** Copy \p SZ elements into a homegeneous (4-element) vector, giving
189 * default values to the remaining */
190 #define COPY_CLEAN_4V(DST, SZ, SRC) \
191 do { \
192 ASSIGN_4V( DST, 0, 0, 0, 1 ); \
193 COPY_SZ_4V( DST, SZ, SRC ); \
194 } while (0)
195
196 /** Subtraction */
197 #define SUB_4V( DST, SRCA, SRCB ) \
198 do { \
199 (DST)[0] = (SRCA)[0] - (SRCB)[0]; \
200 (DST)[1] = (SRCA)[1] - (SRCB)[1]; \
201 (DST)[2] = (SRCA)[2] - (SRCB)[2]; \
202 (DST)[3] = (SRCA)[3] - (SRCB)[3]; \
203 } while (0)
204
205 /** Addition */
206 #define ADD_4V( DST, SRCA, SRCB ) \
207 do { \
208 (DST)[0] = (SRCA)[0] + (SRCB)[0]; \
209 (DST)[1] = (SRCA)[1] + (SRCB)[1]; \
210 (DST)[2] = (SRCA)[2] + (SRCB)[2]; \
211 (DST)[3] = (SRCA)[3] + (SRCB)[3]; \
212 } while (0)
213
214 /** Element-wise multiplication */
215 #define SCALE_4V( DST, SRCA, SRCB ) \
216 do { \
217 (DST)[0] = (SRCA)[0] * (SRCB)[0]; \
218 (DST)[1] = (SRCA)[1] * (SRCB)[1]; \
219 (DST)[2] = (SRCA)[2] * (SRCB)[2]; \
220 (DST)[3] = (SRCA)[3] * (SRCB)[3]; \
221 } while (0)
222
223 /** In-place addition */
224 #define ACC_4V( DST, SRC ) \
225 do { \
226 (DST)[0] += (SRC)[0]; \
227 (DST)[1] += (SRC)[1]; \
228 (DST)[2] += (SRC)[2]; \
229 (DST)[3] += (SRC)[3]; \
230 } while (0)
231
232 /** Element-wise multiplication and addition */
233 #define ACC_SCALE_4V( DST, SRCA, SRCB ) \
234 do { \
235 (DST)[0] += (SRCA)[0] * (SRCB)[0]; \
236 (DST)[1] += (SRCA)[1] * (SRCB)[1]; \
237 (DST)[2] += (SRCA)[2] * (SRCB)[2]; \
238 (DST)[3] += (SRCA)[3] * (SRCB)[3]; \
239 } while (0)
240
241 /** In-place scalar multiplication and addition */
242 #define ACC_SCALE_SCALAR_4V( DST, S, SRCB ) \
243 do { \
244 (DST)[0] += S * (SRCB)[0]; \
245 (DST)[1] += S * (SRCB)[1]; \
246 (DST)[2] += S * (SRCB)[2]; \
247 (DST)[3] += S * (SRCB)[3]; \
248 } while (0)
249
250 /** Scalar multiplication */
251 #define SCALE_SCALAR_4V( DST, S, SRCB ) \
252 do { \
253 (DST)[0] = S * (SRCB)[0]; \
254 (DST)[1] = S * (SRCB)[1]; \
255 (DST)[2] = S * (SRCB)[2]; \
256 (DST)[3] = S * (SRCB)[3]; \
257 } while (0)
258
259 /** In-place scalar multiplication */
260 #define SELF_SCALE_SCALAR_4V( DST, S ) \
261 do { \
262 (DST)[0] *= S; \
263 (DST)[1] *= S; \
264 (DST)[2] *= S; \
265 (DST)[3] *= S; \
266 } while (0)
267
268 /** Assignment */
269 #define ASSIGN_4V( V, V0, V1, V2, V3 ) \
270 do { \
271 V[0] = V0; \
272 V[1] = V1; \
273 V[2] = V2; \
274 V[3] = V3; \
275 } while(0)
276
277 /*@}*/
278
279
280 /**********************************************************************/
281 /** \name 3-element vector operations*/
282 /*@{*/
283
284 /** Zero */
285 #define ZERO_3V( DST ) (DST)[0] = (DST)[1] = (DST)[2] = 0
286
287 /** Test for equality */
288 #define TEST_EQ_3V(a,b) ((a)[0] == (b)[0] && \
289 (a)[1] == (b)[1] && \
290 (a)[2] == (b)[2])
291
292 /** Copy a 3-element vector */
293 #define COPY_3V( DST, SRC ) \
294 do { \
295 (DST)[0] = (SRC)[0]; \
296 (DST)[1] = (SRC)[1]; \
297 (DST)[2] = (SRC)[2]; \
298 } while (0)
299
300 /** Copy a 3-element vector with cast */
301 #define COPY_3V_CAST( DST, SRC, CAST ) \
302 do { \
303 (DST)[0] = (CAST)(SRC)[0]; \
304 (DST)[1] = (CAST)(SRC)[1]; \
305 (DST)[2] = (CAST)(SRC)[2]; \
306 } while (0)
307
308 /** Copy a 3-element float vector */
309 #define COPY_3FV( DST, SRC ) \
310 do { \
311 const GLfloat *_tmp = (SRC); \
312 (DST)[0] = _tmp[0]; \
313 (DST)[1] = _tmp[1]; \
314 (DST)[2] = _tmp[2]; \
315 } while (0)
316
317 /** Subtraction */
318 #define SUB_3V( DST, SRCA, SRCB ) \
319 do { \
320 (DST)[0] = (SRCA)[0] - (SRCB)[0]; \
321 (DST)[1] = (SRCA)[1] - (SRCB)[1]; \
322 (DST)[2] = (SRCA)[2] - (SRCB)[2]; \
323 } while (0)
324
325 /** Addition */
326 #define ADD_3V( DST, SRCA, SRCB ) \
327 do { \
328 (DST)[0] = (SRCA)[0] + (SRCB)[0]; \
329 (DST)[1] = (SRCA)[1] + (SRCB)[1]; \
330 (DST)[2] = (SRCA)[2] + (SRCB)[2]; \
331 } while (0)
332
333 /** In-place scalar multiplication */
334 #define SCALE_3V( DST, SRCA, SRCB ) \
335 do { \
336 (DST)[0] = (SRCA)[0] * (SRCB)[0]; \
337 (DST)[1] = (SRCA)[1] * (SRCB)[1]; \
338 (DST)[2] = (SRCA)[2] * (SRCB)[2]; \
339 } while (0)
340
341 /** In-place element-wise multiplication */
342 #define SELF_SCALE_3V( DST, SRC ) \
343 do { \
344 (DST)[0] *= (SRC)[0]; \
345 (DST)[1] *= (SRC)[1]; \
346 (DST)[2] *= (SRC)[2]; \
347 } while (0)
348
349 /** In-place addition */
350 #define ACC_3V( DST, SRC ) \
351 do { \
352 (DST)[0] += (SRC)[0]; \
353 (DST)[1] += (SRC)[1]; \
354 (DST)[2] += (SRC)[2]; \
355 } while (0)
356
357 /** Element-wise multiplication and addition */
358 #define ACC_SCALE_3V( DST, SRCA, SRCB ) \
359 do { \
360 (DST)[0] += (SRCA)[0] * (SRCB)[0]; \
361 (DST)[1] += (SRCA)[1] * (SRCB)[1]; \
362 (DST)[2] += (SRCA)[2] * (SRCB)[2]; \
363 } while (0)
364
365 /** Scalar multiplication */
366 #define SCALE_SCALAR_3V( DST, S, SRCB ) \
367 do { \
368 (DST)[0] = S * (SRCB)[0]; \
369 (DST)[1] = S * (SRCB)[1]; \
370 (DST)[2] = S * (SRCB)[2]; \
371 } while (0)
372
373 /** In-place scalar multiplication and addition */
374 #define ACC_SCALE_SCALAR_3V( DST, S, SRCB ) \
375 do { \
376 (DST)[0] += S * (SRCB)[0]; \
377 (DST)[1] += S * (SRCB)[1]; \
378 (DST)[2] += S * (SRCB)[2]; \
379 } while (0)
380
381 /** In-place scalar multiplication */
382 #define SELF_SCALE_SCALAR_3V( DST, S ) \
383 do { \
384 (DST)[0] *= S; \
385 (DST)[1] *= S; \
386 (DST)[2] *= S; \
387 } while (0)
388
389 /** In-place scalar addition */
390 #define ACC_SCALAR_3V( DST, S ) \
391 do { \
392 (DST)[0] += S; \
393 (DST)[1] += S; \
394 (DST)[2] += S; \
395 } while (0)
396
397 /** Assignment */
398 #define ASSIGN_3V( V, V0, V1, V2 ) \
399 do { \
400 V[0] = V0; \
401 V[1] = V1; \
402 V[2] = V2; \
403 } while(0)
404
405 /*@}*/
406
407
408 /**********************************************************************/
409 /** \name 2-element vector operations*/
410 /*@{*/
411
412 /** Zero */
413 #define ZERO_2V( DST ) (DST)[0] = (DST)[1] = 0
414
415 /** Copy a 2-element vector */
416 #define COPY_2V( DST, SRC ) \
417 do { \
418 (DST)[0] = (SRC)[0]; \
419 (DST)[1] = (SRC)[1]; \
420 } while (0)
421
422 /** Copy a 2-element vector with cast */
423 #define COPY_2V_CAST( DST, SRC, CAST ) \
424 do { \
425 (DST)[0] = (CAST)(SRC)[0]; \
426 (DST)[1] = (CAST)(SRC)[1]; \
427 } while (0)
428
429 /** Copy a 2-element float vector */
430 #define COPY_2FV( DST, SRC ) \
431 do { \
432 const GLfloat *_tmp = (SRC); \
433 (DST)[0] = _tmp[0]; \
434 (DST)[1] = _tmp[1]; \
435 } while (0)
436
437 /** Subtraction */
438 #define SUB_2V( DST, SRCA, SRCB ) \
439 do { \
440 (DST)[0] = (SRCA)[0] - (SRCB)[0]; \
441 (DST)[1] = (SRCA)[1] - (SRCB)[1]; \
442 } while (0)
443
444 /** Addition */
445 #define ADD_2V( DST, SRCA, SRCB ) \
446 do { \
447 (DST)[0] = (SRCA)[0] + (SRCB)[0]; \
448 (DST)[1] = (SRCA)[1] + (SRCB)[1]; \
449 } while (0)
450
451 /** In-place scalar multiplication */
452 #define SCALE_2V( DST, SRCA, SRCB ) \
453 do { \
454 (DST)[0] = (SRCA)[0] * (SRCB)[0]; \
455 (DST)[1] = (SRCA)[1] * (SRCB)[1]; \
456 } while (0)
457
458 /** In-place addition */
459 #define ACC_2V( DST, SRC ) \
460 do { \
461 (DST)[0] += (SRC)[0]; \
462 (DST)[1] += (SRC)[1]; \
463 } while (0)
464
465 /** Element-wise multiplication and addition */
466 #define ACC_SCALE_2V( DST, SRCA, SRCB ) \
467 do { \
468 (DST)[0] += (SRCA)[0] * (SRCB)[0]; \
469 (DST)[1] += (SRCA)[1] * (SRCB)[1]; \
470 } while (0)
471
472 /** Scalar multiplication */
473 #define SCALE_SCALAR_2V( DST, S, SRCB ) \
474 do { \
475 (DST)[0] = S * (SRCB)[0]; \
476 (DST)[1] = S * (SRCB)[1]; \
477 } while (0)
478
479 /** In-place scalar multiplication and addition */
480 #define ACC_SCALE_SCALAR_2V( DST, S, SRCB ) \
481 do { \
482 (DST)[0] += S * (SRCB)[0]; \
483 (DST)[1] += S * (SRCB)[1]; \
484 } while (0)
485
486 /** In-place scalar multiplication */
487 #define SELF_SCALE_SCALAR_2V( DST, S ) \
488 do { \
489 (DST)[0] *= S; \
490 (DST)[1] *= S; \
491 } while (0)
492
493 /** In-place scalar addition */
494 #define ACC_SCALAR_2V( DST, S ) \
495 do { \
496 (DST)[0] += S; \
497 (DST)[1] += S; \
498 } while (0)
499
500
501
502 /**
503 * Linear interpolation
504 *
505 * \note \p OUT argument is evaluated twice!
506 * \note Be wary of using *coord++ as an argument to any of these macros!
507 */
508 #define LINTERP(T, OUT, IN) ((OUT) + (T) * ((IN) - (OUT)))
509
510 /* Can do better with integer math
511 */
512 #define INTERP_UB( t, dstub, outub, inub ) \
513 do { \
514 GLfloat inf = UBYTE_TO_FLOAT( inub ); \
515 GLfloat outf = UBYTE_TO_FLOAT( outub ); \
516 GLfloat dstf = LINTERP( t, outf, inf ); \
517 UNCLAMPED_FLOAT_TO_UBYTE( dstub, dstf ); \
518 } while (0)
519
520 #define INTERP_CHAN( t, dstc, outc, inc ) \
521 do { \
522 GLfloat inf = CHAN_TO_FLOAT( inc ); \
523 GLfloat outf = CHAN_TO_FLOAT( outc ); \
524 GLfloat dstf = LINTERP( t, outf, inf ); \
525 UNCLAMPED_FLOAT_TO_CHAN( dstc, dstf ); \
526 } while (0)
527
528 #define INTERP_UI( t, dstui, outui, inui ) \
529 dstui = (GLuint) (GLint) LINTERP( (t), (GLfloat) (outui), (GLfloat) (inui) )
530
531 #define INTERP_F( t, dstf, outf, inf ) \
532 dstf = LINTERP( t, outf, inf )
533
534 #define INTERP_4F( t, dst, out, in ) \
535 do { \
536 dst[0] = LINTERP( (t), (out)[0], (in)[0] ); \
537 dst[1] = LINTERP( (t), (out)[1], (in)[1] ); \
538 dst[2] = LINTERP( (t), (out)[2], (in)[2] ); \
539 dst[3] = LINTERP( (t), (out)[3], (in)[3] ); \
540 } while (0)
541
542 #define INTERP_3F( t, dst, out, in ) \
543 do { \
544 dst[0] = LINTERP( (t), (out)[0], (in)[0] ); \
545 dst[1] = LINTERP( (t), (out)[1], (in)[1] ); \
546 dst[2] = LINTERP( (t), (out)[2], (in)[2] ); \
547 } while (0)
548
549 #define INTERP_4CHAN( t, dst, out, in ) \
550 do { \
551 INTERP_CHAN( (t), (dst)[0], (out)[0], (in)[0] ); \
552 INTERP_CHAN( (t), (dst)[1], (out)[1], (in)[1] ); \
553 INTERP_CHAN( (t), (dst)[2], (out)[2], (in)[2] ); \
554 INTERP_CHAN( (t), (dst)[3], (out)[3], (in)[3] ); \
555 } while (0)
556
557 #define INTERP_3CHAN( t, dst, out, in ) \
558 do { \
559 INTERP_CHAN( (t), (dst)[0], (out)[0], (in)[0] ); \
560 INTERP_CHAN( (t), (dst)[1], (out)[1], (in)[1] ); \
561 INTERP_CHAN( (t), (dst)[2], (out)[2], (in)[2] ); \
562 } while (0)
563
564 #define INTERP_SZ( t, vec, to, out, in, sz ) \
565 do { \
566 switch (sz) { \
567 case 4: vec[to][3] = LINTERP( (t), (vec)[out][3], (vec)[in][3] ); \
568 case 3: vec[to][2] = LINTERP( (t), (vec)[out][2], (vec)[in][2] ); \
569 case 2: vec[to][1] = LINTERP( (t), (vec)[out][1], (vec)[in][1] ); \
570 case 1: vec[to][0] = LINTERP( (t), (vec)[out][0], (vec)[in][0] ); \
571 } \
572 } while(0)
573
574
575
576 /** Assign scalers to short vectors */
577 #define ASSIGN_2V( V, V0, V1 ) \
578 do { \
579 V[0] = V0; \
580 V[1] = V1; \
581 } while(0)
582
583 /*@}*/
584
585
586
587 /** Clamp X to [MIN,MAX] */
588 #define CLAMP( X, MIN, MAX ) ( (X)<(MIN) ? (MIN) : ((X)>(MAX) ? (MAX) : (X)) )
589
590 /** Assign X to CLAMP(X, MIN, MAX) */
591 #define CLAMP_SELF(x, mn, mx) \
592 ( (x)<(mn) ? ((x) = (mn)) : ((x)>(mx) ? ((x)=(mx)) : (x)) )
593
594
595
596 /** Minimum of two values: */
597 #define MIN2( A, B ) ( (A)<(B) ? (A) : (B) )
598
599 /** Maximum of two values: */
600 #define MAX2( A, B ) ( (A)>(B) ? (A) : (B) )
601
602 /** Dot product of two 2-element vectors */
603 #define DOT2( a, b ) ( (a)[0]*(b)[0] + (a)[1]*(b)[1] )
604
605 /** Dot product of two 3-element vectors */
606 #define DOT3( a, b ) ( (a)[0]*(b)[0] + (a)[1]*(b)[1] + (a)[2]*(b)[2] )
607
608 /** Dot product of two 4-element vectors */
609 #define DOT4( a, b ) ( (a)[0]*(b)[0] + (a)[1]*(b)[1] + \
610 (a)[2]*(b)[2] + (a)[3]*(b)[3] )
611
612 /** Dot product of two 4-element vectors */
613 #define DOT4V(v,a,b,c,d) (v[0]*(a) + v[1]*(b) + v[2]*(c) + v[3]*(d))
614
615
616 /** Cross product of two 3-element vectors */
617 #define CROSS3(n, u, v) \
618 do { \
619 (n)[0] = (u)[1]*(v)[2] - (u)[2]*(v)[1]; \
620 (n)[1] = (u)[2]*(v)[0] - (u)[0]*(v)[2]; \
621 (n)[2] = (u)[0]*(v)[1] - (u)[1]*(v)[0]; \
622 } while (0)
623
624
625 /* Normalize a 3-element vector to unit length. */
626 #define NORMALIZE_3FV( V ) \
627 do { \
628 GLfloat len = (GLfloat) LEN_SQUARED_3FV(V); \
629 if (len) { \
630 len = INV_SQRTF(len); \
631 (V)[0] = (GLfloat) ((V)[0] * len); \
632 (V)[1] = (GLfloat) ((V)[1] * len); \
633 (V)[2] = (GLfloat) ((V)[2] * len); \
634 } \
635 } while(0)
636
637 #define LEN_3FV( V ) (SQRTF((V)[0]*(V)[0]+(V)[1]*(V)[1]+(V)[2]*(V)[2]))
638 #define LEN_2FV( V ) (SQRTF((V)[0]*(V)[0]+(V)[1]*(V)[1]))
639
640 #define LEN_SQUARED_3FV( V ) ((V)[0]*(V)[0]+(V)[1]*(V)[1]+(V)[2]*(V)[2])
641 #define LEN_SQUARED_2FV( V ) ((V)[0]*(V)[0]+(V)[1]*(V)[1])
642
643
644 /*@}*/
645
646
647 #endif