mesa: add packing support for setting uniforms
[mesa.git] / src / mesa / main / mipmap.c
1 /*
2 * Mesa 3-D graphics library
3 *
4 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included
14 * in all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
17 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /**
27 * \file mipmap.c mipmap generation and teximage resizing functions.
28 */
29
30 #include "imports.h"
31 #include "formats.h"
32 #include "glformats.h"
33 #include "mipmap.h"
34 #include "mtypes.h"
35 #include "teximage.h"
36 #include "texobj.h"
37 #include "texstore.h"
38 #include "image.h"
39 #include "macros.h"
40 #include "util/half_float.h"
41 #include "util/format_rgb9e5.h"
42 #include "util/format_r11g11b10f.h"
43
44
45 /**
46 * Compute the expected number of mipmap levels in the texture given
47 * the width/height/depth of the base image and the GL_TEXTURE_BASE_LEVEL/
48 * GL_TEXTURE_MAX_LEVEL settings. This will tell us how many mipmap
49 * levels should be generated.
50 */
51 unsigned
52 _mesa_compute_num_levels(struct gl_context *ctx,
53 struct gl_texture_object *texObj,
54 GLenum target)
55 {
56 const struct gl_texture_image *baseImage;
57 GLuint numLevels;
58
59 baseImage = _mesa_get_tex_image(ctx, texObj, target, texObj->BaseLevel);
60
61 numLevels = texObj->BaseLevel + baseImage->MaxNumLevels;
62 numLevels = MIN2(numLevels, (GLuint) texObj->MaxLevel + 1);
63 if (texObj->Immutable)
64 numLevels = MIN2(numLevels, texObj->NumLevels);
65 assert(numLevels >= 1);
66
67 return numLevels;
68 }
69
70 static GLint
71 bytes_per_pixel(GLenum datatype, GLuint comps)
72 {
73 GLint b;
74
75 if (datatype == GL_UNSIGNED_INT_8_24_REV_MESA ||
76 datatype == GL_UNSIGNED_INT_24_8_MESA)
77 return 4;
78
79 b = _mesa_sizeof_packed_type(datatype);
80 assert(b >= 0);
81
82 if (_mesa_type_is_packed(datatype))
83 return b;
84 else
85 return b * comps;
86 }
87
88
89 /**
90 * \name Support macros for do_row and do_row_3d
91 *
92 * The macro madness is here for two reasons. First, it compacts the code
93 * slightly. Second, it makes it much easier to adjust the specifics of the
94 * filter to tune the rounding characteristics.
95 */
96 /*@{*/
97 #define DECLARE_ROW_POINTERS(t, e) \
98 const t(*rowA)[e] = (const t(*)[e]) srcRowA; \
99 const t(*rowB)[e] = (const t(*)[e]) srcRowB; \
100 const t(*rowC)[e] = (const t(*)[e]) srcRowC; \
101 const t(*rowD)[e] = (const t(*)[e]) srcRowD; \
102 t(*dst)[e] = (t(*)[e]) dstRow
103
104 #define DECLARE_ROW_POINTERS0(t) \
105 const t *rowA = (const t *) srcRowA; \
106 const t *rowB = (const t *) srcRowB; \
107 const t *rowC = (const t *) srcRowC; \
108 const t *rowD = (const t *) srcRowD; \
109 t *dst = (t *) dstRow
110
111 #define FILTER_SUM_3D(Aj, Ak, Bj, Bk, Cj, Ck, Dj, Dk) \
112 ((unsigned) Aj + (unsigned) Ak \
113 + (unsigned) Bj + (unsigned) Bk \
114 + (unsigned) Cj + (unsigned) Ck \
115 + (unsigned) Dj + (unsigned) Dk \
116 + 4) >> 3
117
118 #define FILTER_3D(e) \
119 do { \
120 dst[i][e] = FILTER_SUM_3D(rowA[j][e], rowA[k][e], \
121 rowB[j][e], rowB[k][e], \
122 rowC[j][e], rowC[k][e], \
123 rowD[j][e], rowD[k][e]); \
124 } while(0)
125
126 #define FILTER_SUM_3D_SIGNED(Aj, Ak, Bj, Bk, Cj, Ck, Dj, Dk) \
127 (Aj + Ak \
128 + Bj + Bk \
129 + Cj + Ck \
130 + Dj + Dk \
131 + 4) / 8
132
133 #define FILTER_3D_SIGNED(e) \
134 do { \
135 dst[i][e] = FILTER_SUM_3D_SIGNED(rowA[j][e], rowA[k][e], \
136 rowB[j][e], rowB[k][e], \
137 rowC[j][e], rowC[k][e], \
138 rowD[j][e], rowD[k][e]); \
139 } while(0)
140
141 #define FILTER_F_3D(e) \
142 do { \
143 dst[i][e] = (rowA[j][e] + rowA[k][e] \
144 + rowB[j][e] + rowB[k][e] \
145 + rowC[j][e] + rowC[k][e] \
146 + rowD[j][e] + rowD[k][e]) * 0.125F; \
147 } while(0)
148
149 #define FILTER_HF_3D(e) \
150 do { \
151 const GLfloat aj = _mesa_half_to_float(rowA[j][e]); \
152 const GLfloat ak = _mesa_half_to_float(rowA[k][e]); \
153 const GLfloat bj = _mesa_half_to_float(rowB[j][e]); \
154 const GLfloat bk = _mesa_half_to_float(rowB[k][e]); \
155 const GLfloat cj = _mesa_half_to_float(rowC[j][e]); \
156 const GLfloat ck = _mesa_half_to_float(rowC[k][e]); \
157 const GLfloat dj = _mesa_half_to_float(rowD[j][e]); \
158 const GLfloat dk = _mesa_half_to_float(rowD[k][e]); \
159 dst[i][e] = _mesa_float_to_half((aj + ak + bj + bk + cj + ck + dj + dk) \
160 * 0.125F); \
161 } while(0)
162 /*@}*/
163
164
165 /**
166 * Average together two rows of a source image to produce a single new
167 * row in the dest image. It's legal for the two source rows to point
168 * to the same data. The source width must be equal to either the
169 * dest width or two times the dest width.
170 * \param datatype GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT, GL_FLOAT, etc.
171 * \param comps number of components per pixel (1..4)
172 */
173 static void
174 do_row(GLenum datatype, GLuint comps, GLint srcWidth,
175 const GLvoid *srcRowA, const GLvoid *srcRowB,
176 GLint dstWidth, GLvoid *dstRow)
177 {
178 const GLuint k0 = (srcWidth == dstWidth) ? 0 : 1;
179 const GLuint colStride = (srcWidth == dstWidth) ? 1 : 2;
180
181 assert(comps >= 1);
182 assert(comps <= 4);
183
184 /* This assertion is no longer valid with non-power-of-2 textures
185 assert(srcWidth == dstWidth || srcWidth == 2 * dstWidth);
186 */
187
188 if (datatype == GL_UNSIGNED_BYTE && comps == 4) {
189 GLuint i, j, k;
190 const GLubyte(*rowA)[4] = (const GLubyte(*)[4]) srcRowA;
191 const GLubyte(*rowB)[4] = (const GLubyte(*)[4]) srcRowB;
192 GLubyte(*dst)[4] = (GLubyte(*)[4]) dstRow;
193 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
194 i++, j += colStride, k += colStride) {
195 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
196 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
197 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
198 dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
199 }
200 }
201 else if (datatype == GL_UNSIGNED_BYTE && comps == 3) {
202 GLuint i, j, k;
203 const GLubyte(*rowA)[3] = (const GLubyte(*)[3]) srcRowA;
204 const GLubyte(*rowB)[3] = (const GLubyte(*)[3]) srcRowB;
205 GLubyte(*dst)[3] = (GLubyte(*)[3]) dstRow;
206 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
207 i++, j += colStride, k += colStride) {
208 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
209 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
210 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
211 }
212 }
213 else if (datatype == GL_UNSIGNED_BYTE && comps == 2) {
214 GLuint i, j, k;
215 const GLubyte(*rowA)[2] = (const GLubyte(*)[2]) srcRowA;
216 const GLubyte(*rowB)[2] = (const GLubyte(*)[2]) srcRowB;
217 GLubyte(*dst)[2] = (GLubyte(*)[2]) dstRow;
218 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
219 i++, j += colStride, k += colStride) {
220 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) >> 2;
221 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) >> 2;
222 }
223 }
224 else if (datatype == GL_UNSIGNED_BYTE && comps == 1) {
225 GLuint i, j, k;
226 const GLubyte *rowA = (const GLubyte *) srcRowA;
227 const GLubyte *rowB = (const GLubyte *) srcRowB;
228 GLubyte *dst = (GLubyte *) dstRow;
229 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
230 i++, j += colStride, k += colStride) {
231 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) >> 2;
232 }
233 }
234
235 else if (datatype == GL_BYTE && comps == 4) {
236 GLuint i, j, k;
237 const GLbyte(*rowA)[4] = (const GLbyte(*)[4]) srcRowA;
238 const GLbyte(*rowB)[4] = (const GLbyte(*)[4]) srcRowB;
239 GLbyte(*dst)[4] = (GLbyte(*)[4]) dstRow;
240 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
241 i++, j += colStride, k += colStride) {
242 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
243 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
244 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
245 dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
246 }
247 }
248 else if (datatype == GL_BYTE && comps == 3) {
249 GLuint i, j, k;
250 const GLbyte(*rowA)[3] = (const GLbyte(*)[3]) srcRowA;
251 const GLbyte(*rowB)[3] = (const GLbyte(*)[3]) srcRowB;
252 GLbyte(*dst)[3] = (GLbyte(*)[3]) dstRow;
253 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
254 i++, j += colStride, k += colStride) {
255 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
256 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
257 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
258 }
259 }
260 else if (datatype == GL_BYTE && comps == 2) {
261 GLuint i, j, k;
262 const GLbyte(*rowA)[2] = (const GLbyte(*)[2]) srcRowA;
263 const GLbyte(*rowB)[2] = (const GLbyte(*)[2]) srcRowB;
264 GLbyte(*dst)[2] = (GLbyte(*)[2]) dstRow;
265 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
266 i++, j += colStride, k += colStride) {
267 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
268 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
269 }
270 }
271 else if (datatype == GL_BYTE && comps == 1) {
272 GLuint i, j, k;
273 const GLbyte *rowA = (const GLbyte *) srcRowA;
274 const GLbyte *rowB = (const GLbyte *) srcRowB;
275 GLbyte *dst = (GLbyte *) dstRow;
276 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
277 i++, j += colStride, k += colStride) {
278 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4;
279 }
280 }
281
282 else if (datatype == GL_UNSIGNED_SHORT && comps == 4) {
283 GLuint i, j, k;
284 const GLushort(*rowA)[4] = (const GLushort(*)[4]) srcRowA;
285 const GLushort(*rowB)[4] = (const GLushort(*)[4]) srcRowB;
286 GLushort(*dst)[4] = (GLushort(*)[4]) dstRow;
287 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
288 i++, j += colStride, k += colStride) {
289 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
290 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
291 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
292 dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
293 }
294 }
295 else if (datatype == GL_UNSIGNED_SHORT && comps == 3) {
296 GLuint i, j, k;
297 const GLushort(*rowA)[3] = (const GLushort(*)[3]) srcRowA;
298 const GLushort(*rowB)[3] = (const GLushort(*)[3]) srcRowB;
299 GLushort(*dst)[3] = (GLushort(*)[3]) dstRow;
300 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
301 i++, j += colStride, k += colStride) {
302 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
303 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
304 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
305 }
306 }
307 else if (datatype == GL_UNSIGNED_SHORT && comps == 2) {
308 GLuint i, j, k;
309 const GLushort(*rowA)[2] = (const GLushort(*)[2]) srcRowA;
310 const GLushort(*rowB)[2] = (const GLushort(*)[2]) srcRowB;
311 GLushort(*dst)[2] = (GLushort(*)[2]) dstRow;
312 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
313 i++, j += colStride, k += colStride) {
314 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
315 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
316 }
317 }
318 else if (datatype == GL_UNSIGNED_SHORT && comps == 1) {
319 GLuint i, j, k;
320 const GLushort *rowA = (const GLushort *) srcRowA;
321 const GLushort *rowB = (const GLushort *) srcRowB;
322 GLushort *dst = (GLushort *) dstRow;
323 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
324 i++, j += colStride, k += colStride) {
325 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4;
326 }
327 }
328
329 else if (datatype == GL_SHORT && comps == 4) {
330 GLuint i, j, k;
331 const GLshort(*rowA)[4] = (const GLshort(*)[4]) srcRowA;
332 const GLshort(*rowB)[4] = (const GLshort(*)[4]) srcRowB;
333 GLshort(*dst)[4] = (GLshort(*)[4]) dstRow;
334 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
335 i++, j += colStride, k += colStride) {
336 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
337 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
338 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
339 dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
340 }
341 }
342 else if (datatype == GL_SHORT && comps == 3) {
343 GLuint i, j, k;
344 const GLshort(*rowA)[3] = (const GLshort(*)[3]) srcRowA;
345 const GLshort(*rowB)[3] = (const GLshort(*)[3]) srcRowB;
346 GLshort(*dst)[3] = (GLshort(*)[3]) dstRow;
347 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
348 i++, j += colStride, k += colStride) {
349 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
350 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
351 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
352 }
353 }
354 else if (datatype == GL_SHORT && comps == 2) {
355 GLuint i, j, k;
356 const GLshort(*rowA)[2] = (const GLshort(*)[2]) srcRowA;
357 const GLshort(*rowB)[2] = (const GLshort(*)[2]) srcRowB;
358 GLshort(*dst)[2] = (GLshort(*)[2]) dstRow;
359 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
360 i++, j += colStride, k += colStride) {
361 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
362 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
363 }
364 }
365 else if (datatype == GL_SHORT && comps == 1) {
366 GLuint i, j, k;
367 const GLshort *rowA = (const GLshort *) srcRowA;
368 const GLshort *rowB = (const GLshort *) srcRowB;
369 GLshort *dst = (GLshort *) dstRow;
370 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
371 i++, j += colStride, k += colStride) {
372 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4;
373 }
374 }
375
376 else if (datatype == GL_FLOAT && comps == 4) {
377 GLuint i, j, k;
378 const GLfloat(*rowA)[4] = (const GLfloat(*)[4]) srcRowA;
379 const GLfloat(*rowB)[4] = (const GLfloat(*)[4]) srcRowB;
380 GLfloat(*dst)[4] = (GLfloat(*)[4]) dstRow;
381 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
382 i++, j += colStride, k += colStride) {
383 dst[i][0] = (rowA[j][0] + rowA[k][0] +
384 rowB[j][0] + rowB[k][0]) * 0.25F;
385 dst[i][1] = (rowA[j][1] + rowA[k][1] +
386 rowB[j][1] + rowB[k][1]) * 0.25F;
387 dst[i][2] = (rowA[j][2] + rowA[k][2] +
388 rowB[j][2] + rowB[k][2]) * 0.25F;
389 dst[i][3] = (rowA[j][3] + rowA[k][3] +
390 rowB[j][3] + rowB[k][3]) * 0.25F;
391 }
392 }
393 else if (datatype == GL_FLOAT && comps == 3) {
394 GLuint i, j, k;
395 const GLfloat(*rowA)[3] = (const GLfloat(*)[3]) srcRowA;
396 const GLfloat(*rowB)[3] = (const GLfloat(*)[3]) srcRowB;
397 GLfloat(*dst)[3] = (GLfloat(*)[3]) dstRow;
398 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
399 i++, j += colStride, k += colStride) {
400 dst[i][0] = (rowA[j][0] + rowA[k][0] +
401 rowB[j][0] + rowB[k][0]) * 0.25F;
402 dst[i][1] = (rowA[j][1] + rowA[k][1] +
403 rowB[j][1] + rowB[k][1]) * 0.25F;
404 dst[i][2] = (rowA[j][2] + rowA[k][2] +
405 rowB[j][2] + rowB[k][2]) * 0.25F;
406 }
407 }
408 else if (datatype == GL_FLOAT && comps == 2) {
409 GLuint i, j, k;
410 const GLfloat(*rowA)[2] = (const GLfloat(*)[2]) srcRowA;
411 const GLfloat(*rowB)[2] = (const GLfloat(*)[2]) srcRowB;
412 GLfloat(*dst)[2] = (GLfloat(*)[2]) dstRow;
413 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
414 i++, j += colStride, k += colStride) {
415 dst[i][0] = (rowA[j][0] + rowA[k][0] +
416 rowB[j][0] + rowB[k][0]) * 0.25F;
417 dst[i][1] = (rowA[j][1] + rowA[k][1] +
418 rowB[j][1] + rowB[k][1]) * 0.25F;
419 }
420 }
421 else if (datatype == GL_FLOAT && comps == 1) {
422 GLuint i, j, k;
423 const GLfloat *rowA = (const GLfloat *) srcRowA;
424 const GLfloat *rowB = (const GLfloat *) srcRowB;
425 GLfloat *dst = (GLfloat *) dstRow;
426 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
427 i++, j += colStride, k += colStride) {
428 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) * 0.25F;
429 }
430 }
431
432 else if (datatype == GL_HALF_FLOAT_ARB && comps == 4) {
433 GLuint i, j, k, comp;
434 const GLhalfARB(*rowA)[4] = (const GLhalfARB(*)[4]) srcRowA;
435 const GLhalfARB(*rowB)[4] = (const GLhalfARB(*)[4]) srcRowB;
436 GLhalfARB(*dst)[4] = (GLhalfARB(*)[4]) dstRow;
437 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
438 i++, j += colStride, k += colStride) {
439 for (comp = 0; comp < 4; comp++) {
440 GLfloat aj, ak, bj, bk;
441 aj = _mesa_half_to_float(rowA[j][comp]);
442 ak = _mesa_half_to_float(rowA[k][comp]);
443 bj = _mesa_half_to_float(rowB[j][comp]);
444 bk = _mesa_half_to_float(rowB[k][comp]);
445 dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
446 }
447 }
448 }
449 else if (datatype == GL_HALF_FLOAT_ARB && comps == 3) {
450 GLuint i, j, k, comp;
451 const GLhalfARB(*rowA)[3] = (const GLhalfARB(*)[3]) srcRowA;
452 const GLhalfARB(*rowB)[3] = (const GLhalfARB(*)[3]) srcRowB;
453 GLhalfARB(*dst)[3] = (GLhalfARB(*)[3]) dstRow;
454 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
455 i++, j += colStride, k += colStride) {
456 for (comp = 0; comp < 3; comp++) {
457 GLfloat aj, ak, bj, bk;
458 aj = _mesa_half_to_float(rowA[j][comp]);
459 ak = _mesa_half_to_float(rowA[k][comp]);
460 bj = _mesa_half_to_float(rowB[j][comp]);
461 bk = _mesa_half_to_float(rowB[k][comp]);
462 dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
463 }
464 }
465 }
466 else if (datatype == GL_HALF_FLOAT_ARB && comps == 2) {
467 GLuint i, j, k, comp;
468 const GLhalfARB(*rowA)[2] = (const GLhalfARB(*)[2]) srcRowA;
469 const GLhalfARB(*rowB)[2] = (const GLhalfARB(*)[2]) srcRowB;
470 GLhalfARB(*dst)[2] = (GLhalfARB(*)[2]) dstRow;
471 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
472 i++, j += colStride, k += colStride) {
473 for (comp = 0; comp < 2; comp++) {
474 GLfloat aj, ak, bj, bk;
475 aj = _mesa_half_to_float(rowA[j][comp]);
476 ak = _mesa_half_to_float(rowA[k][comp]);
477 bj = _mesa_half_to_float(rowB[j][comp]);
478 bk = _mesa_half_to_float(rowB[k][comp]);
479 dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
480 }
481 }
482 }
483 else if (datatype == GL_HALF_FLOAT_ARB && comps == 1) {
484 GLuint i, j, k;
485 const GLhalfARB *rowA = (const GLhalfARB *) srcRowA;
486 const GLhalfARB *rowB = (const GLhalfARB *) srcRowB;
487 GLhalfARB *dst = (GLhalfARB *) dstRow;
488 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
489 i++, j += colStride, k += colStride) {
490 GLfloat aj, ak, bj, bk;
491 aj = _mesa_half_to_float(rowA[j]);
492 ak = _mesa_half_to_float(rowA[k]);
493 bj = _mesa_half_to_float(rowB[j]);
494 bk = _mesa_half_to_float(rowB[k]);
495 dst[i] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
496 }
497 }
498
499 else if (datatype == GL_UNSIGNED_INT && comps == 1) {
500 GLuint i, j, k;
501 const GLuint *rowA = (const GLuint *) srcRowA;
502 const GLuint *rowB = (const GLuint *) srcRowB;
503 GLuint *dst = (GLuint *) dstRow;
504 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
505 i++, j += colStride, k += colStride) {
506 dst[i] = rowA[j] / 4 + rowA[k] / 4 + rowB[j] / 4 + rowB[k] / 4;
507 }
508 }
509
510 else if (datatype == GL_UNSIGNED_SHORT_5_6_5 && comps == 3) {
511 GLuint i, j, k;
512 const GLushort *rowA = (const GLushort *) srcRowA;
513 const GLushort *rowB = (const GLushort *) srcRowB;
514 GLushort *dst = (GLushort *) dstRow;
515 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
516 i++, j += colStride, k += colStride) {
517 const GLint rowAr0 = rowA[j] & 0x1f;
518 const GLint rowAr1 = rowA[k] & 0x1f;
519 const GLint rowBr0 = rowB[j] & 0x1f;
520 const GLint rowBr1 = rowB[k] & 0x1f;
521 const GLint rowAg0 = (rowA[j] >> 5) & 0x3f;
522 const GLint rowAg1 = (rowA[k] >> 5) & 0x3f;
523 const GLint rowBg0 = (rowB[j] >> 5) & 0x3f;
524 const GLint rowBg1 = (rowB[k] >> 5) & 0x3f;
525 const GLint rowAb0 = (rowA[j] >> 11) & 0x1f;
526 const GLint rowAb1 = (rowA[k] >> 11) & 0x1f;
527 const GLint rowBb0 = (rowB[j] >> 11) & 0x1f;
528 const GLint rowBb1 = (rowB[k] >> 11) & 0x1f;
529 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
530 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
531 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
532 dst[i] = (blue << 11) | (green << 5) | red;
533 }
534 }
535 else if (datatype == GL_UNSIGNED_SHORT_4_4_4_4 && comps == 4) {
536 GLuint i, j, k;
537 const GLushort *rowA = (const GLushort *) srcRowA;
538 const GLushort *rowB = (const GLushort *) srcRowB;
539 GLushort *dst = (GLushort *) dstRow;
540 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
541 i++, j += colStride, k += colStride) {
542 const GLint rowAr0 = rowA[j] & 0xf;
543 const GLint rowAr1 = rowA[k] & 0xf;
544 const GLint rowBr0 = rowB[j] & 0xf;
545 const GLint rowBr1 = rowB[k] & 0xf;
546 const GLint rowAg0 = (rowA[j] >> 4) & 0xf;
547 const GLint rowAg1 = (rowA[k] >> 4) & 0xf;
548 const GLint rowBg0 = (rowB[j] >> 4) & 0xf;
549 const GLint rowBg1 = (rowB[k] >> 4) & 0xf;
550 const GLint rowAb0 = (rowA[j] >> 8) & 0xf;
551 const GLint rowAb1 = (rowA[k] >> 8) & 0xf;
552 const GLint rowBb0 = (rowB[j] >> 8) & 0xf;
553 const GLint rowBb1 = (rowB[k] >> 8) & 0xf;
554 const GLint rowAa0 = (rowA[j] >> 12) & 0xf;
555 const GLint rowAa1 = (rowA[k] >> 12) & 0xf;
556 const GLint rowBa0 = (rowB[j] >> 12) & 0xf;
557 const GLint rowBa1 = (rowB[k] >> 12) & 0xf;
558 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
559 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
560 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
561 const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
562 dst[i] = (alpha << 12) | (blue << 8) | (green << 4) | red;
563 }
564 }
565 else if (datatype == GL_UNSIGNED_SHORT_1_5_5_5_REV && comps == 4) {
566 GLuint i, j, k;
567 const GLushort *rowA = (const GLushort *) srcRowA;
568 const GLushort *rowB = (const GLushort *) srcRowB;
569 GLushort *dst = (GLushort *) dstRow;
570 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
571 i++, j += colStride, k += colStride) {
572 const GLint rowAr0 = rowA[j] & 0x1f;
573 const GLint rowAr1 = rowA[k] & 0x1f;
574 const GLint rowBr0 = rowB[j] & 0x1f;
575 const GLint rowBr1 = rowB[k] & 0x1f;
576 const GLint rowAg0 = (rowA[j] >> 5) & 0x1f;
577 const GLint rowAg1 = (rowA[k] >> 5) & 0x1f;
578 const GLint rowBg0 = (rowB[j] >> 5) & 0x1f;
579 const GLint rowBg1 = (rowB[k] >> 5) & 0x1f;
580 const GLint rowAb0 = (rowA[j] >> 10) & 0x1f;
581 const GLint rowAb1 = (rowA[k] >> 10) & 0x1f;
582 const GLint rowBb0 = (rowB[j] >> 10) & 0x1f;
583 const GLint rowBb1 = (rowB[k] >> 10) & 0x1f;
584 const GLint rowAa0 = (rowA[j] >> 15) & 0x1;
585 const GLint rowAa1 = (rowA[k] >> 15) & 0x1;
586 const GLint rowBa0 = (rowB[j] >> 15) & 0x1;
587 const GLint rowBa1 = (rowB[k] >> 15) & 0x1;
588 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
589 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
590 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
591 const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
592 dst[i] = (alpha << 15) | (blue << 10) | (green << 5) | red;
593 }
594 }
595 else if (datatype == GL_UNSIGNED_SHORT_5_5_5_1 && comps == 4) {
596 GLuint i, j, k;
597 const GLushort *rowA = (const GLushort *) srcRowA;
598 const GLushort *rowB = (const GLushort *) srcRowB;
599 GLushort *dst = (GLushort *) dstRow;
600 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
601 i++, j += colStride, k += colStride) {
602 const GLint rowAr0 = (rowA[j] >> 11) & 0x1f;
603 const GLint rowAr1 = (rowA[k] >> 11) & 0x1f;
604 const GLint rowBr0 = (rowB[j] >> 11) & 0x1f;
605 const GLint rowBr1 = (rowB[k] >> 11) & 0x1f;
606 const GLint rowAg0 = (rowA[j] >> 6) & 0x1f;
607 const GLint rowAg1 = (rowA[k] >> 6) & 0x1f;
608 const GLint rowBg0 = (rowB[j] >> 6) & 0x1f;
609 const GLint rowBg1 = (rowB[k] >> 6) & 0x1f;
610 const GLint rowAb0 = (rowA[j] >> 1) & 0x1f;
611 const GLint rowAb1 = (rowA[k] >> 1) & 0x1f;
612 const GLint rowBb0 = (rowB[j] >> 1) & 0x1f;
613 const GLint rowBb1 = (rowB[k] >> 1) & 0x1f;
614 const GLint rowAa0 = (rowA[j] & 0x1);
615 const GLint rowAa1 = (rowA[k] & 0x1);
616 const GLint rowBa0 = (rowB[j] & 0x1);
617 const GLint rowBa1 = (rowB[k] & 0x1);
618 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
619 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
620 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
621 const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
622 dst[i] = (red << 11) | (green << 6) | (blue << 1) | alpha;
623 }
624 }
625
626 else if (datatype == GL_UNSIGNED_BYTE_3_3_2 && comps == 3) {
627 GLuint i, j, k;
628 const GLubyte *rowA = (const GLubyte *) srcRowA;
629 const GLubyte *rowB = (const GLubyte *) srcRowB;
630 GLubyte *dst = (GLubyte *) dstRow;
631 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
632 i++, j += colStride, k += colStride) {
633 const GLint rowAr0 = rowA[j] & 0x3;
634 const GLint rowAr1 = rowA[k] & 0x3;
635 const GLint rowBr0 = rowB[j] & 0x3;
636 const GLint rowBr1 = rowB[k] & 0x3;
637 const GLint rowAg0 = (rowA[j] >> 2) & 0x7;
638 const GLint rowAg1 = (rowA[k] >> 2) & 0x7;
639 const GLint rowBg0 = (rowB[j] >> 2) & 0x7;
640 const GLint rowBg1 = (rowB[k] >> 2) & 0x7;
641 const GLint rowAb0 = (rowA[j] >> 5) & 0x7;
642 const GLint rowAb1 = (rowA[k] >> 5) & 0x7;
643 const GLint rowBb0 = (rowB[j] >> 5) & 0x7;
644 const GLint rowBb1 = (rowB[k] >> 5) & 0x7;
645 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
646 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
647 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
648 dst[i] = (blue << 5) | (green << 2) | red;
649 }
650 }
651
652 else if (datatype == MESA_UNSIGNED_BYTE_4_4 && comps == 2) {
653 GLuint i, j, k;
654 const GLubyte *rowA = (const GLubyte *) srcRowA;
655 const GLubyte *rowB = (const GLubyte *) srcRowB;
656 GLubyte *dst = (GLubyte *) dstRow;
657 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
658 i++, j += colStride, k += colStride) {
659 const GLint rowAr0 = rowA[j] & 0xf;
660 const GLint rowAr1 = rowA[k] & 0xf;
661 const GLint rowBr0 = rowB[j] & 0xf;
662 const GLint rowBr1 = rowB[k] & 0xf;
663 const GLint rowAg0 = (rowA[j] >> 4) & 0xf;
664 const GLint rowAg1 = (rowA[k] >> 4) & 0xf;
665 const GLint rowBg0 = (rowB[j] >> 4) & 0xf;
666 const GLint rowBg1 = (rowB[k] >> 4) & 0xf;
667 const GLint r = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
668 const GLint g = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
669 dst[i] = (g << 4) | r;
670 }
671 }
672
673 else if (datatype == GL_UNSIGNED_INT_2_10_10_10_REV && comps == 4) {
674 GLuint i, j, k;
675 const GLuint *rowA = (const GLuint *) srcRowA;
676 const GLuint *rowB = (const GLuint *) srcRowB;
677 GLuint *dst = (GLuint *) dstRow;
678 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
679 i++, j += colStride, k += colStride) {
680 const GLint rowAr0 = rowA[j] & 0x3ff;
681 const GLint rowAr1 = rowA[k] & 0x3ff;
682 const GLint rowBr0 = rowB[j] & 0x3ff;
683 const GLint rowBr1 = rowB[k] & 0x3ff;
684 const GLint rowAg0 = (rowA[j] >> 10) & 0x3ff;
685 const GLint rowAg1 = (rowA[k] >> 10) & 0x3ff;
686 const GLint rowBg0 = (rowB[j] >> 10) & 0x3ff;
687 const GLint rowBg1 = (rowB[k] >> 10) & 0x3ff;
688 const GLint rowAb0 = (rowA[j] >> 20) & 0x3ff;
689 const GLint rowAb1 = (rowA[k] >> 20) & 0x3ff;
690 const GLint rowBb0 = (rowB[j] >> 20) & 0x3ff;
691 const GLint rowBb1 = (rowB[k] >> 20) & 0x3ff;
692 const GLint rowAa0 = (rowA[j] >> 30) & 0x3;
693 const GLint rowAa1 = (rowA[k] >> 30) & 0x3;
694 const GLint rowBa0 = (rowB[j] >> 30) & 0x3;
695 const GLint rowBa1 = (rowB[k] >> 30) & 0x3;
696 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
697 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
698 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
699 const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
700 dst[i] = (alpha << 30) | (blue << 20) | (green << 10) | red;
701 }
702 }
703
704 else if (datatype == GL_UNSIGNED_INT_5_9_9_9_REV && comps == 3) {
705 GLuint i, j, k;
706 const GLuint *rowA = (const GLuint*) srcRowA;
707 const GLuint *rowB = (const GLuint*) srcRowB;
708 GLuint *dst = (GLuint*)dstRow;
709 GLfloat res[3], rowAj[3], rowBj[3], rowAk[3], rowBk[3];
710 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
711 i++, j += colStride, k += colStride) {
712 rgb9e5_to_float3(rowA[j], rowAj);
713 rgb9e5_to_float3(rowB[j], rowBj);
714 rgb9e5_to_float3(rowA[k], rowAk);
715 rgb9e5_to_float3(rowB[k], rowBk);
716 res[0] = (rowAj[0] + rowAk[0] + rowBj[0] + rowBk[0]) * 0.25F;
717 res[1] = (rowAj[1] + rowAk[1] + rowBj[1] + rowBk[1]) * 0.25F;
718 res[2] = (rowAj[2] + rowAk[2] + rowBj[2] + rowBk[2]) * 0.25F;
719 dst[i] = float3_to_rgb9e5(res);
720 }
721 }
722
723 else if (datatype == GL_UNSIGNED_INT_10F_11F_11F_REV && comps == 3) {
724 GLuint i, j, k;
725 const GLuint *rowA = (const GLuint*) srcRowA;
726 const GLuint *rowB = (const GLuint*) srcRowB;
727 GLuint *dst = (GLuint*)dstRow;
728 GLfloat res[3], rowAj[3], rowBj[3], rowAk[3], rowBk[3];
729 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
730 i++, j += colStride, k += colStride) {
731 r11g11b10f_to_float3(rowA[j], rowAj);
732 r11g11b10f_to_float3(rowB[j], rowBj);
733 r11g11b10f_to_float3(rowA[k], rowAk);
734 r11g11b10f_to_float3(rowB[k], rowBk);
735 res[0] = (rowAj[0] + rowAk[0] + rowBj[0] + rowBk[0]) * 0.25F;
736 res[1] = (rowAj[1] + rowAk[1] + rowBj[1] + rowBk[1]) * 0.25F;
737 res[2] = (rowAj[2] + rowAk[2] + rowBj[2] + rowBk[2]) * 0.25F;
738 dst[i] = float3_to_r11g11b10f(res);
739 }
740 }
741
742 else if (datatype == GL_FLOAT_32_UNSIGNED_INT_24_8_REV && comps == 1) {
743 GLuint i, j, k;
744 const GLfloat *rowA = (const GLfloat *) srcRowA;
745 const GLfloat *rowB = (const GLfloat *) srcRowB;
746 GLfloat *dst = (GLfloat *) dstRow;
747 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
748 i++, j += colStride, k += colStride) {
749 dst[i*2] = (rowA[j*2] + rowA[k*2] + rowB[j*2] + rowB[k*2]) * 0.25F;
750 }
751 }
752
753 else if (datatype == GL_UNSIGNED_INT_24_8_MESA && comps == 2) {
754 GLuint i, j, k;
755 const GLuint *rowA = (const GLuint *) srcRowA;
756 const GLuint *rowB = (const GLuint *) srcRowB;
757 GLuint *dst = (GLuint *) dstRow;
758 /* note: averaging stencil values seems weird, but what else? */
759 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
760 i++, j += colStride, k += colStride) {
761 GLuint z = (((rowA[j] >> 8) + (rowA[k] >> 8) +
762 (rowB[j] >> 8) + (rowB[k] >> 8)) / 4) << 8;
763 GLuint s = ((rowA[j] & 0xff) + (rowA[k] & 0xff) +
764 (rowB[j] & 0xff) + (rowB[k] & 0xff)) / 4;
765 dst[i] = z | s;
766 }
767 }
768 else if (datatype == GL_UNSIGNED_INT_8_24_REV_MESA && comps == 2) {
769 GLuint i, j, k;
770 const GLuint *rowA = (const GLuint *) srcRowA;
771 const GLuint *rowB = (const GLuint *) srcRowB;
772 GLuint *dst = (GLuint *) dstRow;
773 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
774 i++, j += colStride, k += colStride) {
775 GLuint z = ((rowA[j] & 0xffffff) + (rowA[k] & 0xffffff) +
776 (rowB[j] & 0xffffff) + (rowB[k] & 0xffffff)) / 4;
777 GLuint s = (((rowA[j] >> 24) + (rowA[k] >> 24) +
778 (rowB[j] >> 24) + (rowB[k] >> 24)) / 4) << 24;
779 dst[i] = z | s;
780 }
781 }
782
783 else {
784 unreachable("bad format in do_row()");
785 }
786 }
787
788
789 /**
790 * Average together four rows of a source image to produce a single new
791 * row in the dest image. It's legal for the two source rows to point
792 * to the same data. The source width must be equal to either the
793 * dest width or two times the dest width.
794 *
795 * \param datatype GL pixel type \c GL_UNSIGNED_BYTE, \c GL_UNSIGNED_SHORT,
796 * \c GL_FLOAT, etc.
797 * \param comps number of components per pixel (1..4)
798 * \param srcWidth Width of a row in the source data
799 * \param srcRowA Pointer to one of the rows of source data
800 * \param srcRowB Pointer to one of the rows of source data
801 * \param srcRowC Pointer to one of the rows of source data
802 * \param srcRowD Pointer to one of the rows of source data
803 * \param dstWidth Width of a row in the destination data
804 * \param srcRowA Pointer to the row of destination data
805 */
806 static void
807 do_row_3D(GLenum datatype, GLuint comps, GLint srcWidth,
808 const GLvoid *srcRowA, const GLvoid *srcRowB,
809 const GLvoid *srcRowC, const GLvoid *srcRowD,
810 GLint dstWidth, GLvoid *dstRow)
811 {
812 const GLuint k0 = (srcWidth == dstWidth) ? 0 : 1;
813 const GLuint colStride = (srcWidth == dstWidth) ? 1 : 2;
814 GLuint i, j, k;
815
816 assert(comps >= 1);
817 assert(comps <= 4);
818
819 if ((datatype == GL_UNSIGNED_BYTE) && (comps == 4)) {
820 DECLARE_ROW_POINTERS(GLubyte, 4);
821
822 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
823 i++, j += colStride, k += colStride) {
824 FILTER_3D(0);
825 FILTER_3D(1);
826 FILTER_3D(2);
827 FILTER_3D(3);
828 }
829 }
830 else if ((datatype == GL_UNSIGNED_BYTE) && (comps == 3)) {
831 DECLARE_ROW_POINTERS(GLubyte, 3);
832
833 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
834 i++, j += colStride, k += colStride) {
835 FILTER_3D(0);
836 FILTER_3D(1);
837 FILTER_3D(2);
838 }
839 }
840 else if ((datatype == GL_UNSIGNED_BYTE) && (comps == 2)) {
841 DECLARE_ROW_POINTERS(GLubyte, 2);
842
843 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
844 i++, j += colStride, k += colStride) {
845 FILTER_3D(0);
846 FILTER_3D(1);
847 }
848 }
849 else if ((datatype == GL_UNSIGNED_BYTE) && (comps == 1)) {
850 DECLARE_ROW_POINTERS(GLubyte, 1);
851
852 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
853 i++, j += colStride, k += colStride) {
854 FILTER_3D(0);
855 }
856 }
857 else if ((datatype == GL_BYTE) && (comps == 4)) {
858 DECLARE_ROW_POINTERS(GLbyte, 4);
859
860 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
861 i++, j += colStride, k += colStride) {
862 FILTER_3D_SIGNED(0);
863 FILTER_3D_SIGNED(1);
864 FILTER_3D_SIGNED(2);
865 FILTER_3D_SIGNED(3);
866 }
867 }
868 else if ((datatype == GL_BYTE) && (comps == 3)) {
869 DECLARE_ROW_POINTERS(GLbyte, 3);
870
871 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
872 i++, j += colStride, k += colStride) {
873 FILTER_3D_SIGNED(0);
874 FILTER_3D_SIGNED(1);
875 FILTER_3D_SIGNED(2);
876 }
877 }
878 else if ((datatype == GL_BYTE) && (comps == 2)) {
879 DECLARE_ROW_POINTERS(GLbyte, 2);
880
881 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
882 i++, j += colStride, k += colStride) {
883 FILTER_3D_SIGNED(0);
884 FILTER_3D_SIGNED(1);
885 }
886 }
887 else if ((datatype == GL_BYTE) && (comps == 1)) {
888 DECLARE_ROW_POINTERS(GLbyte, 1);
889
890 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
891 i++, j += colStride, k += colStride) {
892 FILTER_3D_SIGNED(0);
893 }
894 }
895 else if ((datatype == GL_UNSIGNED_SHORT) && (comps == 4)) {
896 DECLARE_ROW_POINTERS(GLushort, 4);
897
898 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
899 i++, j += colStride, k += colStride) {
900 FILTER_3D(0);
901 FILTER_3D(1);
902 FILTER_3D(2);
903 FILTER_3D(3);
904 }
905 }
906 else if ((datatype == GL_UNSIGNED_SHORT) && (comps == 3)) {
907 DECLARE_ROW_POINTERS(GLushort, 3);
908
909 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
910 i++, j += colStride, k += colStride) {
911 FILTER_3D(0);
912 FILTER_3D(1);
913 FILTER_3D(2);
914 }
915 }
916 else if ((datatype == GL_UNSIGNED_SHORT) && (comps == 2)) {
917 DECLARE_ROW_POINTERS(GLushort, 2);
918
919 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
920 i++, j += colStride, k += colStride) {
921 FILTER_3D(0);
922 FILTER_3D(1);
923 }
924 }
925 else if ((datatype == GL_UNSIGNED_SHORT) && (comps == 1)) {
926 DECLARE_ROW_POINTERS(GLushort, 1);
927
928 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
929 i++, j += colStride, k += colStride) {
930 FILTER_3D(0);
931 }
932 }
933 else if ((datatype == GL_SHORT) && (comps == 4)) {
934 DECLARE_ROW_POINTERS(GLshort, 4);
935
936 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
937 i++, j += colStride, k += colStride) {
938 FILTER_3D(0);
939 FILTER_3D(1);
940 FILTER_3D(2);
941 FILTER_3D(3);
942 }
943 }
944 else if ((datatype == GL_SHORT) && (comps == 3)) {
945 DECLARE_ROW_POINTERS(GLshort, 3);
946
947 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
948 i++, j += colStride, k += colStride) {
949 FILTER_3D(0);
950 FILTER_3D(1);
951 FILTER_3D(2);
952 }
953 }
954 else if ((datatype == GL_SHORT) && (comps == 2)) {
955 DECLARE_ROW_POINTERS(GLshort, 2);
956
957 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
958 i++, j += colStride, k += colStride) {
959 FILTER_3D(0);
960 FILTER_3D(1);
961 }
962 }
963 else if ((datatype == GL_SHORT) && (comps == 1)) {
964 DECLARE_ROW_POINTERS(GLshort, 1);
965
966 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
967 i++, j += colStride, k += colStride) {
968 FILTER_3D(0);
969 }
970 }
971 else if ((datatype == GL_FLOAT) && (comps == 4)) {
972 DECLARE_ROW_POINTERS(GLfloat, 4);
973
974 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
975 i++, j += colStride, k += colStride) {
976 FILTER_F_3D(0);
977 FILTER_F_3D(1);
978 FILTER_F_3D(2);
979 FILTER_F_3D(3);
980 }
981 }
982 else if ((datatype == GL_FLOAT) && (comps == 3)) {
983 DECLARE_ROW_POINTERS(GLfloat, 3);
984
985 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
986 i++, j += colStride, k += colStride) {
987 FILTER_F_3D(0);
988 FILTER_F_3D(1);
989 FILTER_F_3D(2);
990 }
991 }
992 else if ((datatype == GL_FLOAT) && (comps == 2)) {
993 DECLARE_ROW_POINTERS(GLfloat, 2);
994
995 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
996 i++, j += colStride, k += colStride) {
997 FILTER_F_3D(0);
998 FILTER_F_3D(1);
999 }
1000 }
1001 else if ((datatype == GL_FLOAT) && (comps == 1)) {
1002 DECLARE_ROW_POINTERS(GLfloat, 1);
1003
1004 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1005 i++, j += colStride, k += colStride) {
1006 FILTER_F_3D(0);
1007 }
1008 }
1009 else if ((datatype == GL_HALF_FLOAT_ARB) && (comps == 4)) {
1010 DECLARE_ROW_POINTERS(GLhalfARB, 4);
1011
1012 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1013 i++, j += colStride, k += colStride) {
1014 FILTER_HF_3D(0);
1015 FILTER_HF_3D(1);
1016 FILTER_HF_3D(2);
1017 FILTER_HF_3D(3);
1018 }
1019 }
1020 else if ((datatype == GL_HALF_FLOAT_ARB) && (comps == 3)) {
1021 DECLARE_ROW_POINTERS(GLhalfARB, 3);
1022
1023 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1024 i++, j += colStride, k += colStride) {
1025 FILTER_HF_3D(0);
1026 FILTER_HF_3D(1);
1027 FILTER_HF_3D(2);
1028 }
1029 }
1030 else if ((datatype == GL_HALF_FLOAT_ARB) && (comps == 2)) {
1031 DECLARE_ROW_POINTERS(GLhalfARB, 2);
1032
1033 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1034 i++, j += colStride, k += colStride) {
1035 FILTER_HF_3D(0);
1036 FILTER_HF_3D(1);
1037 }
1038 }
1039 else if ((datatype == GL_HALF_FLOAT_ARB) && (comps == 1)) {
1040 DECLARE_ROW_POINTERS(GLhalfARB, 1);
1041
1042 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1043 i++, j += colStride, k += colStride) {
1044 FILTER_HF_3D(0);
1045 }
1046 }
1047 else if ((datatype == GL_UNSIGNED_INT) && (comps == 1)) {
1048 const GLuint *rowA = (const GLuint *) srcRowA;
1049 const GLuint *rowB = (const GLuint *) srcRowB;
1050 const GLuint *rowC = (const GLuint *) srcRowC;
1051 const GLuint *rowD = (const GLuint *) srcRowD;
1052 GLfloat *dst = (GLfloat *) dstRow;
1053
1054 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1055 i++, j += colStride, k += colStride) {
1056 const uint64_t tmp = (((uint64_t) rowA[j] + (uint64_t) rowA[k])
1057 + ((uint64_t) rowB[j] + (uint64_t) rowB[k])
1058 + ((uint64_t) rowC[j] + (uint64_t) rowC[k])
1059 + ((uint64_t) rowD[j] + (uint64_t) rowD[k]));
1060 dst[i] = (GLfloat)((double) tmp * 0.125);
1061 }
1062 }
1063 else if ((datatype == GL_UNSIGNED_SHORT_5_6_5) && (comps == 3)) {
1064 DECLARE_ROW_POINTERS0(GLushort);
1065
1066 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1067 i++, j += colStride, k += colStride) {
1068 const GLint rowAr0 = rowA[j] & 0x1f;
1069 const GLint rowAr1 = rowA[k] & 0x1f;
1070 const GLint rowBr0 = rowB[j] & 0x1f;
1071 const GLint rowBr1 = rowB[k] & 0x1f;
1072 const GLint rowCr0 = rowC[j] & 0x1f;
1073 const GLint rowCr1 = rowC[k] & 0x1f;
1074 const GLint rowDr0 = rowD[j] & 0x1f;
1075 const GLint rowDr1 = rowD[k] & 0x1f;
1076 const GLint rowAg0 = (rowA[j] >> 5) & 0x3f;
1077 const GLint rowAg1 = (rowA[k] >> 5) & 0x3f;
1078 const GLint rowBg0 = (rowB[j] >> 5) & 0x3f;
1079 const GLint rowBg1 = (rowB[k] >> 5) & 0x3f;
1080 const GLint rowCg0 = (rowC[j] >> 5) & 0x3f;
1081 const GLint rowCg1 = (rowC[k] >> 5) & 0x3f;
1082 const GLint rowDg0 = (rowD[j] >> 5) & 0x3f;
1083 const GLint rowDg1 = (rowD[k] >> 5) & 0x3f;
1084 const GLint rowAb0 = (rowA[j] >> 11) & 0x1f;
1085 const GLint rowAb1 = (rowA[k] >> 11) & 0x1f;
1086 const GLint rowBb0 = (rowB[j] >> 11) & 0x1f;
1087 const GLint rowBb1 = (rowB[k] >> 11) & 0x1f;
1088 const GLint rowCb0 = (rowC[j] >> 11) & 0x1f;
1089 const GLint rowCb1 = (rowC[k] >> 11) & 0x1f;
1090 const GLint rowDb0 = (rowD[j] >> 11) & 0x1f;
1091 const GLint rowDb1 = (rowD[k] >> 11) & 0x1f;
1092 const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
1093 rowCr0, rowCr1, rowDr0, rowDr1);
1094 const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
1095 rowCg0, rowCg1, rowDg0, rowDg1);
1096 const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
1097 rowCb0, rowCb1, rowDb0, rowDb1);
1098 dst[i] = (b << 11) | (g << 5) | r;
1099 }
1100 }
1101 else if ((datatype == GL_UNSIGNED_SHORT_4_4_4_4) && (comps == 4)) {
1102 DECLARE_ROW_POINTERS0(GLushort);
1103
1104 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1105 i++, j += colStride, k += colStride) {
1106 const GLint rowAr0 = rowA[j] & 0xf;
1107 const GLint rowAr1 = rowA[k] & 0xf;
1108 const GLint rowBr0 = rowB[j] & 0xf;
1109 const GLint rowBr1 = rowB[k] & 0xf;
1110 const GLint rowCr0 = rowC[j] & 0xf;
1111 const GLint rowCr1 = rowC[k] & 0xf;
1112 const GLint rowDr0 = rowD[j] & 0xf;
1113 const GLint rowDr1 = rowD[k] & 0xf;
1114 const GLint rowAg0 = (rowA[j] >> 4) & 0xf;
1115 const GLint rowAg1 = (rowA[k] >> 4) & 0xf;
1116 const GLint rowBg0 = (rowB[j] >> 4) & 0xf;
1117 const GLint rowBg1 = (rowB[k] >> 4) & 0xf;
1118 const GLint rowCg0 = (rowC[j] >> 4) & 0xf;
1119 const GLint rowCg1 = (rowC[k] >> 4) & 0xf;
1120 const GLint rowDg0 = (rowD[j] >> 4) & 0xf;
1121 const GLint rowDg1 = (rowD[k] >> 4) & 0xf;
1122 const GLint rowAb0 = (rowA[j] >> 8) & 0xf;
1123 const GLint rowAb1 = (rowA[k] >> 8) & 0xf;
1124 const GLint rowBb0 = (rowB[j] >> 8) & 0xf;
1125 const GLint rowBb1 = (rowB[k] >> 8) & 0xf;
1126 const GLint rowCb0 = (rowC[j] >> 8) & 0xf;
1127 const GLint rowCb1 = (rowC[k] >> 8) & 0xf;
1128 const GLint rowDb0 = (rowD[j] >> 8) & 0xf;
1129 const GLint rowDb1 = (rowD[k] >> 8) & 0xf;
1130 const GLint rowAa0 = (rowA[j] >> 12) & 0xf;
1131 const GLint rowAa1 = (rowA[k] >> 12) & 0xf;
1132 const GLint rowBa0 = (rowB[j] >> 12) & 0xf;
1133 const GLint rowBa1 = (rowB[k] >> 12) & 0xf;
1134 const GLint rowCa0 = (rowC[j] >> 12) & 0xf;
1135 const GLint rowCa1 = (rowC[k] >> 12) & 0xf;
1136 const GLint rowDa0 = (rowD[j] >> 12) & 0xf;
1137 const GLint rowDa1 = (rowD[k] >> 12) & 0xf;
1138 const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
1139 rowCr0, rowCr1, rowDr0, rowDr1);
1140 const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
1141 rowCg0, rowCg1, rowDg0, rowDg1);
1142 const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
1143 rowCb0, rowCb1, rowDb0, rowDb1);
1144 const GLint a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
1145 rowCa0, rowCa1, rowDa0, rowDa1);
1146
1147 dst[i] = (a << 12) | (b << 8) | (g << 4) | r;
1148 }
1149 }
1150 else if ((datatype == GL_UNSIGNED_SHORT_1_5_5_5_REV) && (comps == 4)) {
1151 DECLARE_ROW_POINTERS0(GLushort);
1152
1153 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1154 i++, j += colStride, k += colStride) {
1155 const GLint rowAr0 = rowA[j] & 0x1f;
1156 const GLint rowAr1 = rowA[k] & 0x1f;
1157 const GLint rowBr0 = rowB[j] & 0x1f;
1158 const GLint rowBr1 = rowB[k] & 0x1f;
1159 const GLint rowCr0 = rowC[j] & 0x1f;
1160 const GLint rowCr1 = rowC[k] & 0x1f;
1161 const GLint rowDr0 = rowD[j] & 0x1f;
1162 const GLint rowDr1 = rowD[k] & 0x1f;
1163 const GLint rowAg0 = (rowA[j] >> 5) & 0x1f;
1164 const GLint rowAg1 = (rowA[k] >> 5) & 0x1f;
1165 const GLint rowBg0 = (rowB[j] >> 5) & 0x1f;
1166 const GLint rowBg1 = (rowB[k] >> 5) & 0x1f;
1167 const GLint rowCg0 = (rowC[j] >> 5) & 0x1f;
1168 const GLint rowCg1 = (rowC[k] >> 5) & 0x1f;
1169 const GLint rowDg0 = (rowD[j] >> 5) & 0x1f;
1170 const GLint rowDg1 = (rowD[k] >> 5) & 0x1f;
1171 const GLint rowAb0 = (rowA[j] >> 10) & 0x1f;
1172 const GLint rowAb1 = (rowA[k] >> 10) & 0x1f;
1173 const GLint rowBb0 = (rowB[j] >> 10) & 0x1f;
1174 const GLint rowBb1 = (rowB[k] >> 10) & 0x1f;
1175 const GLint rowCb0 = (rowC[j] >> 10) & 0x1f;
1176 const GLint rowCb1 = (rowC[k] >> 10) & 0x1f;
1177 const GLint rowDb0 = (rowD[j] >> 10) & 0x1f;
1178 const GLint rowDb1 = (rowD[k] >> 10) & 0x1f;
1179 const GLint rowAa0 = (rowA[j] >> 15) & 0x1;
1180 const GLint rowAa1 = (rowA[k] >> 15) & 0x1;
1181 const GLint rowBa0 = (rowB[j] >> 15) & 0x1;
1182 const GLint rowBa1 = (rowB[k] >> 15) & 0x1;
1183 const GLint rowCa0 = (rowC[j] >> 15) & 0x1;
1184 const GLint rowCa1 = (rowC[k] >> 15) & 0x1;
1185 const GLint rowDa0 = (rowD[j] >> 15) & 0x1;
1186 const GLint rowDa1 = (rowD[k] >> 15) & 0x1;
1187 const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
1188 rowCr0, rowCr1, rowDr0, rowDr1);
1189 const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
1190 rowCg0, rowCg1, rowDg0, rowDg1);
1191 const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
1192 rowCb0, rowCb1, rowDb0, rowDb1);
1193 const GLint a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
1194 rowCa0, rowCa1, rowDa0, rowDa1);
1195
1196 dst[i] = (a << 15) | (b << 10) | (g << 5) | r;
1197 }
1198 }
1199 else if ((datatype == GL_UNSIGNED_SHORT_5_5_5_1) && (comps == 4)) {
1200 DECLARE_ROW_POINTERS0(GLushort);
1201
1202 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1203 i++, j += colStride, k += colStride) {
1204 const GLint rowAr0 = (rowA[j] >> 11) & 0x1f;
1205 const GLint rowAr1 = (rowA[k] >> 11) & 0x1f;
1206 const GLint rowBr0 = (rowB[j] >> 11) & 0x1f;
1207 const GLint rowBr1 = (rowB[k] >> 11) & 0x1f;
1208 const GLint rowCr0 = (rowC[j] >> 11) & 0x1f;
1209 const GLint rowCr1 = (rowC[k] >> 11) & 0x1f;
1210 const GLint rowDr0 = (rowD[j] >> 11) & 0x1f;
1211 const GLint rowDr1 = (rowD[k] >> 11) & 0x1f;
1212 const GLint rowAg0 = (rowA[j] >> 6) & 0x1f;
1213 const GLint rowAg1 = (rowA[k] >> 6) & 0x1f;
1214 const GLint rowBg0 = (rowB[j] >> 6) & 0x1f;
1215 const GLint rowBg1 = (rowB[k] >> 6) & 0x1f;
1216 const GLint rowCg0 = (rowC[j] >> 6) & 0x1f;
1217 const GLint rowCg1 = (rowC[k] >> 6) & 0x1f;
1218 const GLint rowDg0 = (rowD[j] >> 6) & 0x1f;
1219 const GLint rowDg1 = (rowD[k] >> 6) & 0x1f;
1220 const GLint rowAb0 = (rowA[j] >> 1) & 0x1f;
1221 const GLint rowAb1 = (rowA[k] >> 1) & 0x1f;
1222 const GLint rowBb0 = (rowB[j] >> 1) & 0x1f;
1223 const GLint rowBb1 = (rowB[k] >> 1) & 0x1f;
1224 const GLint rowCb0 = (rowC[j] >> 1) & 0x1f;
1225 const GLint rowCb1 = (rowC[k] >> 1) & 0x1f;
1226 const GLint rowDb0 = (rowD[j] >> 1) & 0x1f;
1227 const GLint rowDb1 = (rowD[k] >> 1) & 0x1f;
1228 const GLint rowAa0 = (rowA[j] & 0x1);
1229 const GLint rowAa1 = (rowA[k] & 0x1);
1230 const GLint rowBa0 = (rowB[j] & 0x1);
1231 const GLint rowBa1 = (rowB[k] & 0x1);
1232 const GLint rowCa0 = (rowC[j] & 0x1);
1233 const GLint rowCa1 = (rowC[k] & 0x1);
1234 const GLint rowDa0 = (rowD[j] & 0x1);
1235 const GLint rowDa1 = (rowD[k] & 0x1);
1236 const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
1237 rowCr0, rowCr1, rowDr0, rowDr1);
1238 const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
1239 rowCg0, rowCg1, rowDg0, rowDg1);
1240 const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
1241 rowCb0, rowCb1, rowDb0, rowDb1);
1242 const GLint a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
1243 rowCa0, rowCa1, rowDa0, rowDa1);
1244
1245 dst[i] = (r << 11) | (g << 6) | (b << 1) | a;
1246 }
1247 }
1248 else if ((datatype == GL_UNSIGNED_BYTE_3_3_2) && (comps == 3)) {
1249 DECLARE_ROW_POINTERS0(GLubyte);
1250
1251 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1252 i++, j += colStride, k += colStride) {
1253 const GLint rowAr0 = rowA[j] & 0x3;
1254 const GLint rowAr1 = rowA[k] & 0x3;
1255 const GLint rowBr0 = rowB[j] & 0x3;
1256 const GLint rowBr1 = rowB[k] & 0x3;
1257 const GLint rowCr0 = rowC[j] & 0x3;
1258 const GLint rowCr1 = rowC[k] & 0x3;
1259 const GLint rowDr0 = rowD[j] & 0x3;
1260 const GLint rowDr1 = rowD[k] & 0x3;
1261 const GLint rowAg0 = (rowA[j] >> 2) & 0x7;
1262 const GLint rowAg1 = (rowA[k] >> 2) & 0x7;
1263 const GLint rowBg0 = (rowB[j] >> 2) & 0x7;
1264 const GLint rowBg1 = (rowB[k] >> 2) & 0x7;
1265 const GLint rowCg0 = (rowC[j] >> 2) & 0x7;
1266 const GLint rowCg1 = (rowC[k] >> 2) & 0x7;
1267 const GLint rowDg0 = (rowD[j] >> 2) & 0x7;
1268 const GLint rowDg1 = (rowD[k] >> 2) & 0x7;
1269 const GLint rowAb0 = (rowA[j] >> 5) & 0x7;
1270 const GLint rowAb1 = (rowA[k] >> 5) & 0x7;
1271 const GLint rowBb0 = (rowB[j] >> 5) & 0x7;
1272 const GLint rowBb1 = (rowB[k] >> 5) & 0x7;
1273 const GLint rowCb0 = (rowC[j] >> 5) & 0x7;
1274 const GLint rowCb1 = (rowC[k] >> 5) & 0x7;
1275 const GLint rowDb0 = (rowD[j] >> 5) & 0x7;
1276 const GLint rowDb1 = (rowD[k] >> 5) & 0x7;
1277 const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
1278 rowCr0, rowCr1, rowDr0, rowDr1);
1279 const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
1280 rowCg0, rowCg1, rowDg0, rowDg1);
1281 const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
1282 rowCb0, rowCb1, rowDb0, rowDb1);
1283 dst[i] = (b << 5) | (g << 2) | r;
1284 }
1285 }
1286 else if (datatype == MESA_UNSIGNED_BYTE_4_4 && comps == 2) {
1287 DECLARE_ROW_POINTERS0(GLubyte);
1288
1289 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1290 i++, j += colStride, k += colStride) {
1291 const GLint rowAr0 = rowA[j] & 0xf;
1292 const GLint rowAr1 = rowA[k] & 0xf;
1293 const GLint rowBr0 = rowB[j] & 0xf;
1294 const GLint rowBr1 = rowB[k] & 0xf;
1295 const GLint rowCr0 = rowC[j] & 0xf;
1296 const GLint rowCr1 = rowC[k] & 0xf;
1297 const GLint rowDr0 = rowD[j] & 0xf;
1298 const GLint rowDr1 = rowD[k] & 0xf;
1299 const GLint rowAg0 = (rowA[j] >> 4) & 0xf;
1300 const GLint rowAg1 = (rowA[k] >> 4) & 0xf;
1301 const GLint rowBg0 = (rowB[j] >> 4) & 0xf;
1302 const GLint rowBg1 = (rowB[k] >> 4) & 0xf;
1303 const GLint rowCg0 = (rowC[j] >> 4) & 0xf;
1304 const GLint rowCg1 = (rowC[k] >> 4) & 0xf;
1305 const GLint rowDg0 = (rowD[j] >> 4) & 0xf;
1306 const GLint rowDg1 = (rowD[k] >> 4) & 0xf;
1307 const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
1308 rowCr0, rowCr1, rowDr0, rowDr1);
1309 const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
1310 rowCg0, rowCg1, rowDg0, rowDg1);
1311 dst[i] = (g << 4) | r;
1312 }
1313 }
1314 else if ((datatype == GL_UNSIGNED_INT_2_10_10_10_REV) && (comps == 4)) {
1315 DECLARE_ROW_POINTERS0(GLuint);
1316
1317 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1318 i++, j += colStride, k += colStride) {
1319 const GLint rowAr0 = rowA[j] & 0x3ff;
1320 const GLint rowAr1 = rowA[k] & 0x3ff;
1321 const GLint rowBr0 = rowB[j] & 0x3ff;
1322 const GLint rowBr1 = rowB[k] & 0x3ff;
1323 const GLint rowCr0 = rowC[j] & 0x3ff;
1324 const GLint rowCr1 = rowC[k] & 0x3ff;
1325 const GLint rowDr0 = rowD[j] & 0x3ff;
1326 const GLint rowDr1 = rowD[k] & 0x3ff;
1327 const GLint rowAg0 = (rowA[j] >> 10) & 0x3ff;
1328 const GLint rowAg1 = (rowA[k] >> 10) & 0x3ff;
1329 const GLint rowBg0 = (rowB[j] >> 10) & 0x3ff;
1330 const GLint rowBg1 = (rowB[k] >> 10) & 0x3ff;
1331 const GLint rowCg0 = (rowC[j] >> 10) & 0x3ff;
1332 const GLint rowCg1 = (rowC[k] >> 10) & 0x3ff;
1333 const GLint rowDg0 = (rowD[j] >> 10) & 0x3ff;
1334 const GLint rowDg1 = (rowD[k] >> 10) & 0x3ff;
1335 const GLint rowAb0 = (rowA[j] >> 20) & 0x3ff;
1336 const GLint rowAb1 = (rowA[k] >> 20) & 0x3ff;
1337 const GLint rowBb0 = (rowB[j] >> 20) & 0x3ff;
1338 const GLint rowBb1 = (rowB[k] >> 20) & 0x3ff;
1339 const GLint rowCb0 = (rowC[j] >> 20) & 0x3ff;
1340 const GLint rowCb1 = (rowC[k] >> 20) & 0x3ff;
1341 const GLint rowDb0 = (rowD[j] >> 20) & 0x3ff;
1342 const GLint rowDb1 = (rowD[k] >> 20) & 0x3ff;
1343 const GLint rowAa0 = (rowA[j] >> 30) & 0x3;
1344 const GLint rowAa1 = (rowA[k] >> 30) & 0x3;
1345 const GLint rowBa0 = (rowB[j] >> 30) & 0x3;
1346 const GLint rowBa1 = (rowB[k] >> 30) & 0x3;
1347 const GLint rowCa0 = (rowC[j] >> 30) & 0x3;
1348 const GLint rowCa1 = (rowC[k] >> 30) & 0x3;
1349 const GLint rowDa0 = (rowD[j] >> 30) & 0x3;
1350 const GLint rowDa1 = (rowD[k] >> 30) & 0x3;
1351 const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
1352 rowCr0, rowCr1, rowDr0, rowDr1);
1353 const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
1354 rowCg0, rowCg1, rowDg0, rowDg1);
1355 const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
1356 rowCb0, rowCb1, rowDb0, rowDb1);
1357 const GLint a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
1358 rowCa0, rowCa1, rowDa0, rowDa1);
1359
1360 dst[i] = (a << 30) | (b << 20) | (g << 10) | r;
1361 }
1362 }
1363
1364 else if (datatype == GL_UNSIGNED_INT_5_9_9_9_REV && comps == 3) {
1365 DECLARE_ROW_POINTERS0(GLuint);
1366
1367 GLfloat res[3];
1368 GLfloat rowAj[3], rowBj[3], rowCj[3], rowDj[3];
1369 GLfloat rowAk[3], rowBk[3], rowCk[3], rowDk[3];
1370
1371 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1372 i++, j += colStride, k += colStride) {
1373 rgb9e5_to_float3(rowA[j], rowAj);
1374 rgb9e5_to_float3(rowB[j], rowBj);
1375 rgb9e5_to_float3(rowC[j], rowCj);
1376 rgb9e5_to_float3(rowD[j], rowDj);
1377 rgb9e5_to_float3(rowA[k], rowAk);
1378 rgb9e5_to_float3(rowB[k], rowBk);
1379 rgb9e5_to_float3(rowC[k], rowCk);
1380 rgb9e5_to_float3(rowD[k], rowDk);
1381 res[0] = (rowAj[0] + rowAk[0] + rowBj[0] + rowBk[0] +
1382 rowCj[0] + rowCk[0] + rowDj[0] + rowDk[0]) * 0.125F;
1383 res[1] = (rowAj[1] + rowAk[1] + rowBj[1] + rowBk[1] +
1384 rowCj[1] + rowCk[1] + rowDj[1] + rowDk[1]) * 0.125F;
1385 res[2] = (rowAj[2] + rowAk[2] + rowBj[2] + rowBk[2] +
1386 rowCj[2] + rowCk[2] + rowDj[2] + rowDk[2]) * 0.125F;
1387 dst[i] = float3_to_rgb9e5(res);
1388 }
1389 }
1390
1391 else if (datatype == GL_UNSIGNED_INT_10F_11F_11F_REV && comps == 3) {
1392 DECLARE_ROW_POINTERS0(GLuint);
1393
1394 GLfloat res[3];
1395 GLfloat rowAj[3], rowBj[3], rowCj[3], rowDj[3];
1396 GLfloat rowAk[3], rowBk[3], rowCk[3], rowDk[3];
1397
1398 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1399 i++, j += colStride, k += colStride) {
1400 r11g11b10f_to_float3(rowA[j], rowAj);
1401 r11g11b10f_to_float3(rowB[j], rowBj);
1402 r11g11b10f_to_float3(rowC[j], rowCj);
1403 r11g11b10f_to_float3(rowD[j], rowDj);
1404 r11g11b10f_to_float3(rowA[k], rowAk);
1405 r11g11b10f_to_float3(rowB[k], rowBk);
1406 r11g11b10f_to_float3(rowC[k], rowCk);
1407 r11g11b10f_to_float3(rowD[k], rowDk);
1408 res[0] = (rowAj[0] + rowAk[0] + rowBj[0] + rowBk[0] +
1409 rowCj[0] + rowCk[0] + rowDj[0] + rowDk[0]) * 0.125F;
1410 res[1] = (rowAj[1] + rowAk[1] + rowBj[1] + rowBk[1] +
1411 rowCj[1] + rowCk[1] + rowDj[1] + rowDk[1]) * 0.125F;
1412 res[2] = (rowAj[2] + rowAk[2] + rowBj[2] + rowBk[2] +
1413 rowCj[2] + rowCk[2] + rowDj[2] + rowDk[2]) * 0.125F;
1414 dst[i] = float3_to_r11g11b10f(res);
1415 }
1416 }
1417
1418 else if (datatype == GL_FLOAT_32_UNSIGNED_INT_24_8_REV && comps == 1) {
1419 DECLARE_ROW_POINTERS(GLfloat, 2);
1420
1421 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1422 i++, j += colStride, k += colStride) {
1423 FILTER_F_3D(0);
1424 }
1425 }
1426
1427 else {
1428 unreachable("bad format in do_row()");
1429 }
1430 }
1431
1432
1433 /*
1434 * These functions generate a 1/2-size mipmap image from a source image.
1435 * Texture borders are handled by copying or averaging the source image's
1436 * border texels, depending on the scale-down factor.
1437 */
1438
1439 static void
1440 make_1d_mipmap(GLenum datatype, GLuint comps, GLint border,
1441 GLint srcWidth, const GLubyte *srcPtr,
1442 GLint dstWidth, GLubyte *dstPtr)
1443 {
1444 const GLint bpt = bytes_per_pixel(datatype, comps);
1445 const GLubyte *src;
1446 GLubyte *dst;
1447
1448 /* skip the border pixel, if any */
1449 src = srcPtr + border * bpt;
1450 dst = dstPtr + border * bpt;
1451
1452 /* we just duplicate the input row, kind of hack, saves code */
1453 do_row(datatype, comps, srcWidth - 2 * border, src, src,
1454 dstWidth - 2 * border, dst);
1455
1456 if (border) {
1457 /* copy left-most pixel from source */
1458 assert(dstPtr);
1459 assert(srcPtr);
1460 memcpy(dstPtr, srcPtr, bpt);
1461 /* copy right-most pixel from source */
1462 memcpy(dstPtr + (dstWidth - 1) * bpt,
1463 srcPtr + (srcWidth - 1) * bpt,
1464 bpt);
1465 }
1466 }
1467
1468
1469 static void
1470 make_2d_mipmap(GLenum datatype, GLuint comps, GLint border,
1471 GLint srcWidth, GLint srcHeight,
1472 const GLubyte *srcPtr, GLint srcRowStride,
1473 GLint dstWidth, GLint dstHeight,
1474 GLubyte *dstPtr, GLint dstRowStride)
1475 {
1476 const GLint bpt = bytes_per_pixel(datatype, comps);
1477 const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */
1478 const GLint dstWidthNB = dstWidth - 2 * border;
1479 const GLint dstHeightNB = dstHeight - 2 * border;
1480 const GLubyte *srcA, *srcB;
1481 GLubyte *dst;
1482 GLint row, srcRowStep;
1483
1484 /* Compute src and dst pointers, skipping any border */
1485 srcA = srcPtr + border * ((srcWidth + 1) * bpt);
1486 if (srcHeight > 1 && srcHeight > dstHeight) {
1487 /* sample from two source rows */
1488 srcB = srcA + srcRowStride;
1489 srcRowStep = 2;
1490 }
1491 else {
1492 /* sample from one source row */
1493 srcB = srcA;
1494 srcRowStep = 1;
1495 }
1496
1497 dst = dstPtr + border * ((dstWidth + 1) * bpt);
1498
1499 for (row = 0; row < dstHeightNB; row++) {
1500 do_row(datatype, comps, srcWidthNB, srcA, srcB,
1501 dstWidthNB, dst);
1502 srcA += srcRowStep * srcRowStride;
1503 srcB += srcRowStep * srcRowStride;
1504 dst += dstRowStride;
1505 }
1506
1507 /* This is ugly but probably won't be used much */
1508 if (border > 0) {
1509 /* fill in dest border */
1510 /* lower-left border pixel */
1511 assert(dstPtr);
1512 assert(srcPtr);
1513 memcpy(dstPtr, srcPtr, bpt);
1514 /* lower-right border pixel */
1515 memcpy(dstPtr + (dstWidth - 1) * bpt,
1516 srcPtr + (srcWidth - 1) * bpt, bpt);
1517 /* upper-left border pixel */
1518 memcpy(dstPtr + dstWidth * (dstHeight - 1) * bpt,
1519 srcPtr + srcWidth * (srcHeight - 1) * bpt, bpt);
1520 /* upper-right border pixel */
1521 memcpy(dstPtr + (dstWidth * dstHeight - 1) * bpt,
1522 srcPtr + (srcWidth * srcHeight - 1) * bpt, bpt);
1523 /* lower border */
1524 do_row(datatype, comps, srcWidthNB,
1525 srcPtr + bpt,
1526 srcPtr + bpt,
1527 dstWidthNB, dstPtr + bpt);
1528 /* upper border */
1529 do_row(datatype, comps, srcWidthNB,
1530 srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt,
1531 srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt,
1532 dstWidthNB,
1533 dstPtr + (dstWidth * (dstHeight - 1) + 1) * bpt);
1534 /* left and right borders */
1535 if (srcHeight == dstHeight) {
1536 /* copy border pixel from src to dst */
1537 for (row = 1; row < srcHeight; row++) {
1538 memcpy(dstPtr + dstWidth * row * bpt,
1539 srcPtr + srcWidth * row * bpt, bpt);
1540 memcpy(dstPtr + (dstWidth * row + dstWidth - 1) * bpt,
1541 srcPtr + (srcWidth * row + srcWidth - 1) * bpt, bpt);
1542 }
1543 }
1544 else {
1545 /* average two src pixels each dest pixel */
1546 for (row = 0; row < dstHeightNB; row += 2) {
1547 do_row(datatype, comps, 1,
1548 srcPtr + (srcWidth * (row * 2 + 1)) * bpt,
1549 srcPtr + (srcWidth * (row * 2 + 2)) * bpt,
1550 1, dstPtr + (dstWidth * row + 1) * bpt);
1551 do_row(datatype, comps, 1,
1552 srcPtr + (srcWidth * (row * 2 + 1) + srcWidth - 1) * bpt,
1553 srcPtr + (srcWidth * (row * 2 + 2) + srcWidth - 1) * bpt,
1554 1, dstPtr + (dstWidth * row + 1 + dstWidth - 1) * bpt);
1555 }
1556 }
1557 }
1558 }
1559
1560
1561 static void
1562 make_3d_mipmap(GLenum datatype, GLuint comps, GLint border,
1563 GLint srcWidth, GLint srcHeight, GLint srcDepth,
1564 const GLubyte **srcPtr, GLint srcRowStride,
1565 GLint dstWidth, GLint dstHeight, GLint dstDepth,
1566 GLubyte **dstPtr, GLint dstRowStride)
1567 {
1568 const GLint bpt = bytes_per_pixel(datatype, comps);
1569 const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */
1570 const GLint srcDepthNB = srcDepth - 2 * border;
1571 const GLint dstWidthNB = dstWidth - 2 * border;
1572 const GLint dstHeightNB = dstHeight - 2 * border;
1573 const GLint dstDepthNB = dstDepth - 2 * border;
1574 GLint img, row;
1575 GLint bytesPerSrcImage, bytesPerDstImage;
1576 GLint srcImageOffset, srcRowOffset;
1577
1578 (void) srcDepthNB; /* silence warnings */
1579
1580 bytesPerSrcImage = srcRowStride * srcHeight * bpt;
1581 bytesPerDstImage = dstRowStride * dstHeight * bpt;
1582
1583 /* Offset between adjacent src images to be averaged together */
1584 srcImageOffset = (srcDepth == dstDepth) ? 0 : 1;
1585
1586 /* Offset between adjacent src rows to be averaged together */
1587 srcRowOffset = (srcHeight == dstHeight) ? 0 : srcRowStride;
1588
1589 /*
1590 * Need to average together up to 8 src pixels for each dest pixel.
1591 * Break that down into 3 operations:
1592 * 1. take two rows from source image and average them together.
1593 * 2. take two rows from next source image and average them together.
1594 * 3. take the two averaged rows and average them for the final dst row.
1595 */
1596
1597 /*
1598 printf("mip3d %d x %d x %d -> %d x %d x %d\n",
1599 srcWidth, srcHeight, srcDepth, dstWidth, dstHeight, dstDepth);
1600 */
1601
1602 for (img = 0; img < dstDepthNB; img++) {
1603 /* first source image pointer, skipping border */
1604 const GLubyte *imgSrcA = srcPtr[img * 2 + border]
1605 + srcRowStride * border + bpt * border;
1606 /* second source image pointer, skipping border */
1607 const GLubyte *imgSrcB = srcPtr[img * 2 + srcImageOffset + border]
1608 + srcRowStride * border + bpt * border;
1609
1610 /* address of the dest image, skipping border */
1611 GLubyte *imgDst = dstPtr[img + border]
1612 + dstRowStride * border + bpt * border;
1613
1614 /* setup the four source row pointers and the dest row pointer */
1615 const GLubyte *srcImgARowA = imgSrcA;
1616 const GLubyte *srcImgARowB = imgSrcA + srcRowOffset;
1617 const GLubyte *srcImgBRowA = imgSrcB;
1618 const GLubyte *srcImgBRowB = imgSrcB + srcRowOffset;
1619 GLubyte *dstImgRow = imgDst;
1620
1621 for (row = 0; row < dstHeightNB; row++) {
1622 do_row_3D(datatype, comps, srcWidthNB,
1623 srcImgARowA, srcImgARowB,
1624 srcImgBRowA, srcImgBRowB,
1625 dstWidthNB, dstImgRow);
1626
1627 /* advance to next rows */
1628 srcImgARowA += srcRowStride + srcRowOffset;
1629 srcImgARowB += srcRowStride + srcRowOffset;
1630 srcImgBRowA += srcRowStride + srcRowOffset;
1631 srcImgBRowB += srcRowStride + srcRowOffset;
1632 dstImgRow += dstRowStride;
1633 }
1634 }
1635
1636
1637 /* Luckily we can leverage the make_2d_mipmap() function here! */
1638 if (border > 0) {
1639 /* do front border image */
1640 make_2d_mipmap(datatype, comps, 1,
1641 srcWidth, srcHeight, srcPtr[0], srcRowStride,
1642 dstWidth, dstHeight, dstPtr[0], dstRowStride);
1643 /* do back border image */
1644 make_2d_mipmap(datatype, comps, 1,
1645 srcWidth, srcHeight, srcPtr[srcDepth - 1], srcRowStride,
1646 dstWidth, dstHeight, dstPtr[dstDepth - 1], dstRowStride);
1647
1648 /* do four remaining border edges that span the image slices */
1649 if (srcDepth == dstDepth) {
1650 /* just copy border pixels from src to dst */
1651 for (img = 0; img < dstDepthNB; img++) {
1652 const GLubyte *src;
1653 GLubyte *dst;
1654
1655 /* do border along [img][row=0][col=0] */
1656 src = srcPtr[img * 2];
1657 dst = dstPtr[img];
1658 memcpy(dst, src, bpt);
1659
1660 /* do border along [img][row=dstHeight-1][col=0] */
1661 src = srcPtr[img * 2] + (srcHeight - 1) * srcRowStride;
1662 dst = dstPtr[img] + (dstHeight - 1) * dstRowStride;
1663 memcpy(dst, src, bpt);
1664
1665 /* do border along [img][row=0][col=dstWidth-1] */
1666 src = srcPtr[img * 2] + (srcWidth - 1) * bpt;
1667 dst = dstPtr[img] + (dstWidth - 1) * bpt;
1668 memcpy(dst, src, bpt);
1669
1670 /* do border along [img][row=dstHeight-1][col=dstWidth-1] */
1671 src = srcPtr[img * 2] + (bytesPerSrcImage - bpt);
1672 dst = dstPtr[img] + (bytesPerDstImage - bpt);
1673 memcpy(dst, src, bpt);
1674 }
1675 }
1676 else {
1677 /* average border pixels from adjacent src image pairs */
1678 assert(srcDepthNB == 2 * dstDepthNB);
1679 for (img = 0; img < dstDepthNB; img++) {
1680 const GLubyte *srcA, *srcB;
1681 GLubyte *dst;
1682
1683 /* do border along [img][row=0][col=0] */
1684 srcA = srcPtr[img * 2 + 0];
1685 srcB = srcPtr[img * 2 + srcImageOffset];
1686 dst = dstPtr[img];
1687 do_row(datatype, comps, 1, srcA, srcB, 1, dst);
1688
1689 /* do border along [img][row=dstHeight-1][col=0] */
1690 srcA = srcPtr[img * 2 + 0]
1691 + (srcHeight - 1) * srcRowStride;
1692 srcB = srcPtr[img * 2 + srcImageOffset]
1693 + (srcHeight - 1) * srcRowStride;
1694 dst = dstPtr[img] + (dstHeight - 1) * dstRowStride;
1695 do_row(datatype, comps, 1, srcA, srcB, 1, dst);
1696
1697 /* do border along [img][row=0][col=dstWidth-1] */
1698 srcA = srcPtr[img * 2 + 0] + (srcWidth - 1) * bpt;
1699 srcB = srcPtr[img * 2 + srcImageOffset] + (srcWidth - 1) * bpt;
1700 dst = dstPtr[img] + (dstWidth - 1) * bpt;
1701 do_row(datatype, comps, 1, srcA, srcB, 1, dst);
1702
1703 /* do border along [img][row=dstHeight-1][col=dstWidth-1] */
1704 srcA = srcPtr[img * 2 + 0] + (bytesPerSrcImage - bpt);
1705 srcB = srcPtr[img * 2 + srcImageOffset] + (bytesPerSrcImage - bpt);
1706 dst = dstPtr[img] + (bytesPerDstImage - bpt);
1707 do_row(datatype, comps, 1, srcA, srcB, 1, dst);
1708 }
1709 }
1710 }
1711 }
1712
1713
1714 /**
1715 * Down-sample a texture image to produce the next lower mipmap level.
1716 * \param comps components per texel (1, 2, 3 or 4)
1717 * \param srcData array[slice] of pointers to source image slices
1718 * \param dstData array[slice] of pointers to dest image slices
1719 * \param srcRowStride stride between source rows, in bytes
1720 * \param dstRowStride stride between destination rows, in bytes
1721 */
1722 void
1723 _mesa_generate_mipmap_level(GLenum target,
1724 GLenum datatype, GLuint comps,
1725 GLint border,
1726 GLint srcWidth, GLint srcHeight, GLint srcDepth,
1727 const GLubyte **srcData,
1728 GLint srcRowStride,
1729 GLint dstWidth, GLint dstHeight, GLint dstDepth,
1730 GLubyte **dstData,
1731 GLint dstRowStride)
1732 {
1733 int i;
1734
1735 switch (target) {
1736 case GL_TEXTURE_1D:
1737 make_1d_mipmap(datatype, comps, border,
1738 srcWidth, srcData[0],
1739 dstWidth, dstData[0]);
1740 break;
1741 case GL_TEXTURE_2D:
1742 case GL_TEXTURE_CUBE_MAP_POSITIVE_X:
1743 case GL_TEXTURE_CUBE_MAP_NEGATIVE_X:
1744 case GL_TEXTURE_CUBE_MAP_POSITIVE_Y:
1745 case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y:
1746 case GL_TEXTURE_CUBE_MAP_POSITIVE_Z:
1747 case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z:
1748 make_2d_mipmap(datatype, comps, border,
1749 srcWidth, srcHeight, srcData[0], srcRowStride,
1750 dstWidth, dstHeight, dstData[0], dstRowStride);
1751 break;
1752 case GL_TEXTURE_3D:
1753 make_3d_mipmap(datatype, comps, border,
1754 srcWidth, srcHeight, srcDepth,
1755 srcData, srcRowStride,
1756 dstWidth, dstHeight, dstDepth,
1757 dstData, dstRowStride);
1758 break;
1759 case GL_TEXTURE_1D_ARRAY_EXT:
1760 assert(srcHeight == 1);
1761 assert(dstHeight == 1);
1762 for (i = 0; i < dstDepth; i++) {
1763 make_1d_mipmap(datatype, comps, border,
1764 srcWidth, srcData[i],
1765 dstWidth, dstData[i]);
1766 }
1767 break;
1768 case GL_TEXTURE_2D_ARRAY_EXT:
1769 case GL_TEXTURE_CUBE_MAP_ARRAY:
1770 for (i = 0; i < dstDepth; i++) {
1771 make_2d_mipmap(datatype, comps, border,
1772 srcWidth, srcHeight, srcData[i], srcRowStride,
1773 dstWidth, dstHeight, dstData[i], dstRowStride);
1774 }
1775 break;
1776 case GL_TEXTURE_RECTANGLE_NV:
1777 case GL_TEXTURE_EXTERNAL_OES:
1778 /* no mipmaps, do nothing */
1779 break;
1780 default:
1781 unreachable("bad tex target in _mesa_generate_mipmaps");
1782 }
1783 }
1784
1785
1786 /**
1787 * compute next (level+1) image size
1788 * \return GL_FALSE if no smaller size can be generated (eg. src is 1x1x1 size)
1789 */
1790 GLboolean
1791 _mesa_next_mipmap_level_size(GLenum target, GLint border,
1792 GLint srcWidth, GLint srcHeight, GLint srcDepth,
1793 GLint *dstWidth, GLint *dstHeight, GLint *dstDepth)
1794 {
1795 if (srcWidth - 2 * border > 1) {
1796 *dstWidth = (srcWidth - 2 * border) / 2 + 2 * border;
1797 }
1798 else {
1799 *dstWidth = srcWidth; /* can't go smaller */
1800 }
1801
1802 if ((srcHeight - 2 * border > 1) &&
1803 target != GL_TEXTURE_1D_ARRAY_EXT &&
1804 target != GL_PROXY_TEXTURE_1D_ARRAY_EXT) {
1805 *dstHeight = (srcHeight - 2 * border) / 2 + 2 * border;
1806 }
1807 else {
1808 *dstHeight = srcHeight; /* can't go smaller */
1809 }
1810
1811 if ((srcDepth - 2 * border > 1) &&
1812 target != GL_TEXTURE_2D_ARRAY_EXT &&
1813 target != GL_PROXY_TEXTURE_2D_ARRAY_EXT &&
1814 target != GL_TEXTURE_CUBE_MAP_ARRAY &&
1815 target != GL_PROXY_TEXTURE_CUBE_MAP_ARRAY) {
1816 *dstDepth = (srcDepth - 2 * border) / 2 + 2 * border;
1817 }
1818 else {
1819 *dstDepth = srcDepth; /* can't go smaller */
1820 }
1821
1822 if (*dstWidth == srcWidth &&
1823 *dstHeight == srcHeight &&
1824 *dstDepth == srcDepth) {
1825 return GL_FALSE;
1826 }
1827 else {
1828 return GL_TRUE;
1829 }
1830 }
1831
1832
1833 /**
1834 * Helper function for mipmap generation.
1835 * Make sure the specified destination mipmap level is the right size/format
1836 * for mipmap generation. If not, (re) allocate it.
1837 * \return GL_TRUE if successful, GL_FALSE if mipmap generation should stop
1838 */
1839 static GLboolean
1840 prepare_mipmap_level(struct gl_context *ctx,
1841 struct gl_texture_object *texObj, GLuint level,
1842 GLsizei width, GLsizei height, GLsizei depth,
1843 GLsizei border, GLenum intFormat, mesa_format format)
1844 {
1845 const GLuint numFaces = _mesa_num_tex_faces(texObj->Target);
1846 GLuint face;
1847
1848 if (texObj->Immutable) {
1849 /* The texture was created with glTexStorage() so the number/size of
1850 * mipmap levels is fixed and the storage for all images is already
1851 * allocated.
1852 */
1853 if (!texObj->Image[0][level]) {
1854 /* No more levels to create - we're done */
1855 return GL_FALSE;
1856 }
1857 else {
1858 /* Nothing to do - the texture memory must have already been
1859 * allocated to the right size so we're all set.
1860 */
1861 return GL_TRUE;
1862 }
1863 }
1864
1865 for (face = 0; face < numFaces; face++) {
1866 struct gl_texture_image *dstImage;
1867 const GLenum target = _mesa_cube_face_target(texObj->Target, face);
1868
1869 dstImage = _mesa_get_tex_image(ctx, texObj, target, level);
1870 if (!dstImage) {
1871 /* out of memory */
1872 return GL_FALSE;
1873 }
1874
1875 if (dstImage->Width != width ||
1876 dstImage->Height != height ||
1877 dstImage->Depth != depth ||
1878 dstImage->Border != border ||
1879 dstImage->InternalFormat != intFormat ||
1880 dstImage->TexFormat != format) {
1881 /* need to (re)allocate image */
1882 ctx->Driver.FreeTextureImageBuffer(ctx, dstImage);
1883
1884 _mesa_init_teximage_fields(ctx, dstImage,
1885 width, height, depth,
1886 border, intFormat, format);
1887
1888 ctx->Driver.AllocTextureImageBuffer(ctx, dstImage);
1889
1890 /* in case the mipmap level is part of an FBO: */
1891 _mesa_update_fbo_texture(ctx, texObj, face, level);
1892
1893 ctx->NewState |= _NEW_TEXTURE_OBJECT;
1894 }
1895 }
1896
1897 return GL_TRUE;
1898 }
1899
1900
1901 /**
1902 * Prepare all mipmap levels beyond 'baseLevel' for mipmap generation.
1903 * When finished, all the gl_texture_image structures for the smaller
1904 * mipmap levels will be consistent with the base level (in terms of
1905 * dimensions, format, etc).
1906 */
1907 void
1908 _mesa_prepare_mipmap_levels(struct gl_context *ctx,
1909 struct gl_texture_object *texObj,
1910 unsigned baseLevel, unsigned maxLevel)
1911 {
1912 const struct gl_texture_image *baseImage =
1913 _mesa_select_tex_image(texObj, texObj->Target, baseLevel);
1914 const GLint border = 0;
1915 GLint width = baseImage->Width;
1916 GLint height = baseImage->Height;
1917 GLint depth = baseImage->Depth;
1918 const GLenum intFormat = baseImage->InternalFormat;
1919 const mesa_format texFormat = baseImage->TexFormat;
1920 GLint newWidth, newHeight, newDepth;
1921
1922 /* Prepare baseLevel + 1, baseLevel + 2, ... */
1923 for (unsigned level = baseLevel + 1; level <= maxLevel; level++) {
1924 if (!_mesa_next_mipmap_level_size(texObj->Target, border,
1925 width, height, depth,
1926 &newWidth, &newHeight, &newDepth)) {
1927 /* all done */
1928 break;
1929 }
1930
1931 if (!prepare_mipmap_level(ctx, texObj, level,
1932 newWidth, newHeight, newDepth,
1933 border, intFormat, texFormat)) {
1934 break;
1935 }
1936
1937 width = newWidth;
1938 height = newHeight;
1939 depth = newDepth;
1940 }
1941 }
1942
1943
1944 static void
1945 generate_mipmap_uncompressed(struct gl_context *ctx, GLenum target,
1946 struct gl_texture_object *texObj,
1947 const struct gl_texture_image *srcImage,
1948 GLuint maxLevel)
1949 {
1950 GLuint level;
1951 GLenum datatype;
1952 GLuint comps;
1953
1954 _mesa_uncompressed_format_to_type_and_comps(srcImage->TexFormat, &datatype, &comps);
1955
1956 for (level = texObj->BaseLevel; level < maxLevel; level++) {
1957 /* generate image[level+1] from image[level] */
1958 struct gl_texture_image *srcImage, *dstImage;
1959 GLint srcRowStride, dstRowStride;
1960 GLint srcWidth, srcHeight, srcDepth;
1961 GLint dstWidth, dstHeight, dstDepth;
1962 GLint border;
1963 GLint slice;
1964 GLubyte **srcMaps, **dstMaps;
1965 GLboolean success = GL_TRUE;
1966
1967 /* get src image parameters */
1968 srcImage = _mesa_select_tex_image(texObj, target, level);
1969 assert(srcImage);
1970 srcWidth = srcImage->Width;
1971 srcHeight = srcImage->Height;
1972 srcDepth = srcImage->Depth;
1973 border = srcImage->Border;
1974
1975 /* get dest gl_texture_image */
1976 dstImage = _mesa_select_tex_image(texObj, target, level + 1);
1977 if (!dstImage) {
1978 break;
1979 }
1980 dstWidth = dstImage->Width;
1981 dstHeight = dstImage->Height;
1982 dstDepth = dstImage->Depth;
1983
1984 if (target == GL_TEXTURE_1D_ARRAY) {
1985 srcDepth = srcHeight;
1986 dstDepth = dstHeight;
1987 srcHeight = 1;
1988 dstHeight = 1;
1989 }
1990
1991 /* Map src texture image slices */
1992 srcMaps = calloc(srcDepth, sizeof(GLubyte *));
1993 if (srcMaps) {
1994 for (slice = 0; slice < srcDepth; slice++) {
1995 ctx->Driver.MapTextureImage(ctx, srcImage, slice,
1996 0, 0, srcWidth, srcHeight,
1997 GL_MAP_READ_BIT,
1998 &srcMaps[slice], &srcRowStride);
1999 if (!srcMaps[slice]) {
2000 success = GL_FALSE;
2001 break;
2002 }
2003 }
2004 }
2005 else {
2006 success = GL_FALSE;
2007 }
2008
2009 /* Map dst texture image slices */
2010 dstMaps = calloc(dstDepth, sizeof(GLubyte *));
2011 if (dstMaps) {
2012 for (slice = 0; slice < dstDepth; slice++) {
2013 ctx->Driver.MapTextureImage(ctx, dstImage, slice,
2014 0, 0, dstWidth, dstHeight,
2015 GL_MAP_WRITE_BIT,
2016 &dstMaps[slice], &dstRowStride);
2017 if (!dstMaps[slice]) {
2018 success = GL_FALSE;
2019 break;
2020 }
2021 }
2022 }
2023 else {
2024 success = GL_FALSE;
2025 }
2026
2027 if (success) {
2028 /* generate one mipmap level (for 1D/2D/3D/array/etc texture) */
2029 _mesa_generate_mipmap_level(target, datatype, comps, border,
2030 srcWidth, srcHeight, srcDepth,
2031 (const GLubyte **) srcMaps, srcRowStride,
2032 dstWidth, dstHeight, dstDepth,
2033 dstMaps, dstRowStride);
2034 }
2035
2036 /* Unmap src image slices */
2037 if (srcMaps) {
2038 for (slice = 0; slice < srcDepth; slice++) {
2039 if (srcMaps[slice]) {
2040 ctx->Driver.UnmapTextureImage(ctx, srcImage, slice);
2041 }
2042 }
2043 free(srcMaps);
2044 }
2045
2046 /* Unmap dst image slices */
2047 if (dstMaps) {
2048 for (slice = 0; slice < dstDepth; slice++) {
2049 if (dstMaps[slice]) {
2050 ctx->Driver.UnmapTextureImage(ctx, dstImage, slice);
2051 }
2052 }
2053 free(dstMaps);
2054 }
2055
2056 if (!success) {
2057 _mesa_error(ctx, GL_OUT_OF_MEMORY, "mipmap generation");
2058 break;
2059 }
2060 } /* loop over mipmap levels */
2061 }
2062
2063
2064 static void
2065 generate_mipmap_compressed(struct gl_context *ctx, GLenum target,
2066 struct gl_texture_object *texObj,
2067 struct gl_texture_image *srcImage,
2068 GLuint maxLevel)
2069 {
2070 GLuint level;
2071 mesa_format temp_format;
2072 GLint components;
2073 GLuint temp_src_row_stride, temp_src_img_stride; /* in bytes */
2074 GLubyte *temp_src = NULL, *temp_dst = NULL;
2075 GLenum temp_datatype;
2076 GLenum temp_base_format;
2077 GLubyte **temp_src_slices = NULL, **temp_dst_slices = NULL;
2078
2079 /* only two types of compressed textures at this time */
2080 assert(texObj->Target == GL_TEXTURE_2D ||
2081 texObj->Target == GL_TEXTURE_2D_ARRAY ||
2082 texObj->Target == GL_TEXTURE_CUBE_MAP ||
2083 texObj->Target == GL_TEXTURE_CUBE_MAP_ARRAY);
2084
2085 /*
2086 * Choose a format for the temporary, uncompressed base image.
2087 * Then, get number of components, choose temporary image datatype,
2088 * and get base format.
2089 */
2090 temp_format = _mesa_get_uncompressed_format(srcImage->TexFormat);
2091
2092 components = _mesa_format_num_components(temp_format);
2093
2094 switch (_mesa_get_format_datatype(srcImage->TexFormat)) {
2095 case GL_FLOAT:
2096 temp_datatype = GL_FLOAT;
2097 break;
2098 case GL_SIGNED_NORMALIZED:
2099 /* Revisit this if we get compressed formats with >8 bits per component */
2100 temp_datatype = GL_BYTE;
2101 break;
2102 default:
2103 temp_datatype = GL_UNSIGNED_BYTE;
2104 }
2105
2106 temp_base_format = _mesa_get_format_base_format(temp_format);
2107
2108
2109 /* allocate storage for the temporary, uncompressed image */
2110 temp_src_row_stride = _mesa_format_row_stride(temp_format, srcImage->Width);
2111 temp_src_img_stride = _mesa_format_image_size(temp_format, srcImage->Width,
2112 srcImage->Height, 1);
2113 temp_src = malloc(temp_src_img_stride * srcImage->Depth);
2114
2115 /* Allocate storage for arrays of slice pointers */
2116 temp_src_slices = malloc(srcImage->Depth * sizeof(GLubyte *));
2117 temp_dst_slices = malloc(srcImage->Depth * sizeof(GLubyte *));
2118
2119 if (!temp_src || !temp_src_slices || !temp_dst_slices) {
2120 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generate mipmaps");
2121 goto end;
2122 }
2123
2124 /* decompress base image to the temporary src buffer */
2125 {
2126 /* save pixel packing mode */
2127 struct gl_pixelstore_attrib save = ctx->Pack;
2128 /* use default/tight packing parameters */
2129 ctx->Pack = ctx->DefaultPacking;
2130
2131 /* Get the uncompressed image */
2132 assert(srcImage->Level == texObj->BaseLevel);
2133 ctx->Driver.GetTexSubImage(ctx,
2134 0, 0, 0,
2135 srcImage->Width, srcImage->Height,
2136 srcImage->Depth,
2137 temp_base_format, temp_datatype,
2138 temp_src, srcImage);
2139 /* restore packing mode */
2140 ctx->Pack = save;
2141 }
2142
2143 for (level = texObj->BaseLevel; level < maxLevel; level++) {
2144 /* generate image[level+1] from image[level] */
2145 const struct gl_texture_image *srcImage;
2146 struct gl_texture_image *dstImage;
2147 GLint srcWidth, srcHeight, srcDepth;
2148 GLint dstWidth, dstHeight, dstDepth;
2149 GLint border;
2150 GLuint temp_dst_row_stride, temp_dst_img_stride; /* in bytes */
2151 GLint i;
2152
2153 /* get src image parameters */
2154 srcImage = _mesa_select_tex_image(texObj, target, level);
2155 assert(srcImage);
2156 srcWidth = srcImage->Width;
2157 srcHeight = srcImage->Height;
2158 srcDepth = srcImage->Depth;
2159 border = srcImage->Border;
2160
2161 /* get dest gl_texture_image */
2162 dstImage = _mesa_select_tex_image(texObj, target, level + 1);
2163 if (!dstImage) {
2164 break;
2165 }
2166 dstWidth = dstImage->Width;
2167 dstHeight = dstImage->Height;
2168 dstDepth = dstImage->Depth;
2169
2170 /* Compute dst image strides and alloc memory on first iteration */
2171 temp_dst_row_stride = _mesa_format_row_stride(temp_format, dstWidth);
2172 temp_dst_img_stride = _mesa_format_image_size(temp_format, dstWidth,
2173 dstHeight, 1);
2174 if (!temp_dst) {
2175 temp_dst = malloc(temp_dst_img_stride * dstDepth);
2176 if (!temp_dst) {
2177 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generate mipmaps");
2178 goto end;
2179 }
2180 }
2181
2182 /* for 2D arrays, setup array[depth] of slice pointers */
2183 for (i = 0; i < srcDepth; i++) {
2184 temp_src_slices[i] = temp_src + temp_src_img_stride * i;
2185 }
2186 for (i = 0; i < dstDepth; i++) {
2187 temp_dst_slices[i] = temp_dst + temp_dst_img_stride * i;
2188 }
2189
2190 /* Rescale src image to dest image.
2191 * This will loop over the slices of a 2D array.
2192 */
2193 _mesa_generate_mipmap_level(target, temp_datatype, components, border,
2194 srcWidth, srcHeight, srcDepth,
2195 (const GLubyte **) temp_src_slices,
2196 temp_src_row_stride,
2197 dstWidth, dstHeight, dstDepth,
2198 temp_dst_slices, temp_dst_row_stride);
2199
2200 /* The image space was allocated above so use glTexSubImage now */
2201 ctx->Driver.TexSubImage(ctx, 2, dstImage,
2202 0, 0, 0, dstWidth, dstHeight, dstDepth,
2203 temp_base_format, temp_datatype,
2204 temp_dst, &ctx->DefaultPacking);
2205
2206 /* swap src and dest pointers */
2207 {
2208 GLubyte *temp = temp_src;
2209 temp_src = temp_dst;
2210 temp_dst = temp;
2211 temp_src_row_stride = temp_dst_row_stride;
2212 temp_src_img_stride = temp_dst_img_stride;
2213 }
2214 } /* loop over mipmap levels */
2215
2216 end:
2217 free(temp_src);
2218 free(temp_dst);
2219 free(temp_src_slices);
2220 free(temp_dst_slices);
2221 }
2222
2223 /**
2224 * Automatic mipmap generation.
2225 * This is the fallback/default function for ctx->Driver.GenerateMipmap().
2226 * Generate a complete set of mipmaps from texObj's BaseLevel image.
2227 * Stop at texObj's MaxLevel or when we get to the 1x1 texture.
2228 * For cube maps, target will be one of
2229 * GL_TEXTURE_CUBE_MAP_POSITIVE/NEGATIVE_X/Y/Z; never GL_TEXTURE_CUBE_MAP.
2230 */
2231 void
2232 _mesa_generate_mipmap(struct gl_context *ctx, GLenum target,
2233 struct gl_texture_object *texObj)
2234 {
2235 struct gl_texture_image *srcImage;
2236 GLint maxLevel;
2237
2238 assert(texObj);
2239 srcImage = _mesa_select_tex_image(texObj, target, texObj->BaseLevel);
2240 assert(srcImage);
2241
2242 maxLevel = _mesa_max_texture_levels(ctx, texObj->Target) - 1;
2243 assert(maxLevel >= 0); /* bad target */
2244
2245 maxLevel = MIN2(maxLevel, texObj->MaxLevel);
2246
2247 _mesa_prepare_mipmap_levels(ctx, texObj, texObj->BaseLevel, maxLevel);
2248
2249 if (_mesa_is_format_compressed(srcImage->TexFormat)) {
2250 generate_mipmap_compressed(ctx, target, texObj, srcImage, maxLevel);
2251 } else {
2252 generate_mipmap_uncompressed(ctx, target, texObj, srcImage, maxLevel);
2253 }
2254 }