move _mesa_format_to_type_and_comps() to texformat.c
[mesa.git] / src / mesa / main / mipmap.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 6.5.2
4 *
5 * Copyright (C) 1999-2006 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /**
27 * \file mipmap.c mipmap generation and teximage resizing functions.
28 */
29
30 #include "imports.h"
31 #include "mipmap.h"
32 #include "texcompress.h"
33 #include "texformat.h"
34 #include "teximage.h"
35 #include "image.h"
36
37
38
39 static GLint
40 bytes_per_pixel(GLenum datatype, GLuint comps)
41 {
42 GLint b = _mesa_sizeof_packed_type(datatype);
43 assert(b >= 0);
44 return b * comps;
45 }
46
47
48 /**
49 * Average together two rows of a source image to produce a single new
50 * row in the dest image. It's legal for the two source rows to point
51 * to the same data. The source width must be equal to either the
52 * dest width or two times the dest width.
53 * \param datatype GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT, GL_FLOAT, etc.
54 * \param comps number of components per pixel (1..4)
55 */
56 static void
57 do_row(GLenum datatype, GLuint comps, GLint srcWidth,
58 const GLvoid *srcRowA, const GLvoid *srcRowB,
59 GLint dstWidth, GLvoid *dstRow)
60 {
61 const GLuint k0 = (srcWidth == dstWidth) ? 0 : 1;
62 const GLuint colStride = (srcWidth == dstWidth) ? 1 : 2;
63
64 ASSERT(comps >= 1);
65 ASSERT(comps <= 4);
66
67 /* This assertion is no longer valid with non-power-of-2 textures
68 assert(srcWidth == dstWidth || srcWidth == 2 * dstWidth);
69 */
70
71 if (datatype == GL_UNSIGNED_BYTE && comps == 4) {
72 GLuint i, j, k;
73 const GLubyte(*rowA)[4] = (const GLubyte(*)[4]) srcRowA;
74 const GLubyte(*rowB)[4] = (const GLubyte(*)[4]) srcRowB;
75 GLubyte(*dst)[4] = (GLubyte(*)[4]) dstRow;
76 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
77 i++, j += colStride, k += colStride) {
78 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
79 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
80 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
81 dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
82 }
83 }
84 else if (datatype == GL_UNSIGNED_BYTE && comps == 3) {
85 GLuint i, j, k;
86 const GLubyte(*rowA)[3] = (const GLubyte(*)[3]) srcRowA;
87 const GLubyte(*rowB)[3] = (const GLubyte(*)[3]) srcRowB;
88 GLubyte(*dst)[3] = (GLubyte(*)[3]) dstRow;
89 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
90 i++, j += colStride, k += colStride) {
91 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
92 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
93 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
94 }
95 }
96 else if (datatype == GL_UNSIGNED_BYTE && comps == 2) {
97 GLuint i, j, k;
98 const GLubyte(*rowA)[2] = (const GLubyte(*)[2]) srcRowA;
99 const GLubyte(*rowB)[2] = (const GLubyte(*)[2]) srcRowB;
100 GLubyte(*dst)[2] = (GLubyte(*)[2]) dstRow;
101 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
102 i++, j += colStride, k += colStride) {
103 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) >> 2;
104 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) >> 2;
105 }
106 }
107 else if (datatype == GL_UNSIGNED_BYTE && comps == 1) {
108 GLuint i, j, k;
109 const GLubyte *rowA = (const GLubyte *) srcRowA;
110 const GLubyte *rowB = (const GLubyte *) srcRowB;
111 GLubyte *dst = (GLubyte *) dstRow;
112 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
113 i++, j += colStride, k += colStride) {
114 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) >> 2;
115 }
116 }
117
118 else if (datatype == GL_UNSIGNED_SHORT && comps == 4) {
119 GLuint i, j, k;
120 const GLushort(*rowA)[4] = (const GLushort(*)[4]) srcRowA;
121 const GLushort(*rowB)[4] = (const GLushort(*)[4]) srcRowB;
122 GLushort(*dst)[4] = (GLushort(*)[4]) dstRow;
123 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
124 i++, j += colStride, k += colStride) {
125 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
126 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
127 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
128 dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
129 }
130 }
131 else if (datatype == GL_UNSIGNED_SHORT && comps == 3) {
132 GLuint i, j, k;
133 const GLushort(*rowA)[3] = (const GLushort(*)[3]) srcRowA;
134 const GLushort(*rowB)[3] = (const GLushort(*)[3]) srcRowB;
135 GLushort(*dst)[3] = (GLushort(*)[3]) dstRow;
136 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
137 i++, j += colStride, k += colStride) {
138 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
139 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
140 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
141 }
142 }
143 else if (datatype == GL_UNSIGNED_SHORT && comps == 2) {
144 GLuint i, j, k;
145 const GLushort(*rowA)[2] = (const GLushort(*)[2]) srcRowA;
146 const GLushort(*rowB)[2] = (const GLushort(*)[2]) srcRowB;
147 GLushort(*dst)[2] = (GLushort(*)[2]) dstRow;
148 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
149 i++, j += colStride, k += colStride) {
150 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
151 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
152 }
153 }
154 else if (datatype == GL_UNSIGNED_SHORT && comps == 1) {
155 GLuint i, j, k;
156 const GLushort *rowA = (const GLushort *) srcRowA;
157 const GLushort *rowB = (const GLushort *) srcRowB;
158 GLushort *dst = (GLushort *) dstRow;
159 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
160 i++, j += colStride, k += colStride) {
161 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4;
162 }
163 }
164
165 else if (datatype == GL_FLOAT && comps == 4) {
166 GLuint i, j, k;
167 const GLfloat(*rowA)[4] = (const GLfloat(*)[4]) srcRowA;
168 const GLfloat(*rowB)[4] = (const GLfloat(*)[4]) srcRowB;
169 GLfloat(*dst)[4] = (GLfloat(*)[4]) dstRow;
170 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
171 i++, j += colStride, k += colStride) {
172 dst[i][0] = (rowA[j][0] + rowA[k][0] +
173 rowB[j][0] + rowB[k][0]) * 0.25F;
174 dst[i][1] = (rowA[j][1] + rowA[k][1] +
175 rowB[j][1] + rowB[k][1]) * 0.25F;
176 dst[i][2] = (rowA[j][2] + rowA[k][2] +
177 rowB[j][2] + rowB[k][2]) * 0.25F;
178 dst[i][3] = (rowA[j][3] + rowA[k][3] +
179 rowB[j][3] + rowB[k][3]) * 0.25F;
180 }
181 }
182 else if (datatype == GL_FLOAT && comps == 3) {
183 GLuint i, j, k;
184 const GLfloat(*rowA)[3] = (const GLfloat(*)[3]) srcRowA;
185 const GLfloat(*rowB)[3] = (const GLfloat(*)[3]) srcRowB;
186 GLfloat(*dst)[3] = (GLfloat(*)[3]) dstRow;
187 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
188 i++, j += colStride, k += colStride) {
189 dst[i][0] = (rowA[j][0] + rowA[k][0] +
190 rowB[j][0] + rowB[k][0]) * 0.25F;
191 dst[i][1] = (rowA[j][1] + rowA[k][1] +
192 rowB[j][1] + rowB[k][1]) * 0.25F;
193 dst[i][2] = (rowA[j][2] + rowA[k][2] +
194 rowB[j][2] + rowB[k][2]) * 0.25F;
195 }
196 }
197 else if (datatype == GL_FLOAT && comps == 2) {
198 GLuint i, j, k;
199 const GLfloat(*rowA)[2] = (const GLfloat(*)[2]) srcRowA;
200 const GLfloat(*rowB)[2] = (const GLfloat(*)[2]) srcRowB;
201 GLfloat(*dst)[2] = (GLfloat(*)[2]) dstRow;
202 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
203 i++, j += colStride, k += colStride) {
204 dst[i][0] = (rowA[j][0] + rowA[k][0] +
205 rowB[j][0] + rowB[k][0]) * 0.25F;
206 dst[i][1] = (rowA[j][1] + rowA[k][1] +
207 rowB[j][1] + rowB[k][1]) * 0.25F;
208 }
209 }
210 else if (datatype == GL_FLOAT && comps == 1) {
211 GLuint i, j, k;
212 const GLfloat *rowA = (const GLfloat *) srcRowA;
213 const GLfloat *rowB = (const GLfloat *) srcRowB;
214 GLfloat *dst = (GLfloat *) dstRow;
215 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
216 i++, j += colStride, k += colStride) {
217 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) * 0.25F;
218 }
219 }
220
221 else if (datatype == GL_HALF_FLOAT_ARB && comps == 4) {
222 GLuint i, j, k, comp;
223 const GLhalfARB(*rowA)[4] = (const GLhalfARB(*)[4]) srcRowA;
224 const GLhalfARB(*rowB)[4] = (const GLhalfARB(*)[4]) srcRowB;
225 GLhalfARB(*dst)[4] = (GLhalfARB(*)[4]) dstRow;
226 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
227 i++, j += colStride, k += colStride) {
228 for (comp = 0; comp < 4; comp++) {
229 GLfloat aj, ak, bj, bk;
230 aj = _mesa_half_to_float(rowA[j][comp]);
231 ak = _mesa_half_to_float(rowA[k][comp]);
232 bj = _mesa_half_to_float(rowB[j][comp]);
233 bk = _mesa_half_to_float(rowB[k][comp]);
234 dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
235 }
236 }
237 }
238 else if (datatype == GL_HALF_FLOAT_ARB && comps == 3) {
239 GLuint i, j, k, comp;
240 const GLhalfARB(*rowA)[3] = (const GLhalfARB(*)[3]) srcRowA;
241 const GLhalfARB(*rowB)[3] = (const GLhalfARB(*)[3]) srcRowB;
242 GLhalfARB(*dst)[3] = (GLhalfARB(*)[3]) dstRow;
243 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
244 i++, j += colStride, k += colStride) {
245 for (comp = 0; comp < 3; comp++) {
246 GLfloat aj, ak, bj, bk;
247 aj = _mesa_half_to_float(rowA[j][comp]);
248 ak = _mesa_half_to_float(rowA[k][comp]);
249 bj = _mesa_half_to_float(rowB[j][comp]);
250 bk = _mesa_half_to_float(rowB[k][comp]);
251 dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
252 }
253 }
254 }
255 else if (datatype == GL_HALF_FLOAT_ARB && comps == 2) {
256 GLuint i, j, k, comp;
257 const GLhalfARB(*rowA)[2] = (const GLhalfARB(*)[2]) srcRowA;
258 const GLhalfARB(*rowB)[2] = (const GLhalfARB(*)[2]) srcRowB;
259 GLhalfARB(*dst)[2] = (GLhalfARB(*)[2]) dstRow;
260 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
261 i++, j += colStride, k += colStride) {
262 for (comp = 0; comp < 2; comp++) {
263 GLfloat aj, ak, bj, bk;
264 aj = _mesa_half_to_float(rowA[j][comp]);
265 ak = _mesa_half_to_float(rowA[k][comp]);
266 bj = _mesa_half_to_float(rowB[j][comp]);
267 bk = _mesa_half_to_float(rowB[k][comp]);
268 dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
269 }
270 }
271 }
272 else if (datatype == GL_HALF_FLOAT_ARB && comps == 1) {
273 GLuint i, j, k;
274 const GLhalfARB *rowA = (const GLhalfARB *) srcRowA;
275 const GLhalfARB *rowB = (const GLhalfARB *) srcRowB;
276 GLhalfARB *dst = (GLhalfARB *) dstRow;
277 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
278 i++, j += colStride, k += colStride) {
279 GLfloat aj, ak, bj, bk;
280 aj = _mesa_half_to_float(rowA[j]);
281 ak = _mesa_half_to_float(rowA[k]);
282 bj = _mesa_half_to_float(rowB[j]);
283 bk = _mesa_half_to_float(rowB[k]);
284 dst[i] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
285 }
286 }
287
288 else if (datatype == GL_UNSIGNED_INT && comps == 1) {
289 GLuint i, j, k;
290 const GLuint *rowA = (const GLuint *) srcRowA;
291 const GLuint *rowB = (const GLuint *) srcRowB;
292 GLfloat *dst = (GLfloat *) dstRow;
293 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
294 i++, j += colStride, k += colStride) {
295 dst[i] = rowA[j] / 4 + rowA[k] / 4 + rowB[j] / 4 + rowB[k] / 4;
296 }
297 }
298
299 else if (datatype == GL_UNSIGNED_SHORT_5_6_5 && comps == 3) {
300 GLuint i, j, k;
301 const GLushort *rowA = (const GLushort *) srcRowA;
302 const GLushort *rowB = (const GLushort *) srcRowB;
303 GLushort *dst = (GLushort *) dstRow;
304 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
305 i++, j += colStride, k += colStride) {
306 const GLint rowAr0 = rowA[j] & 0x1f;
307 const GLint rowAr1 = rowA[k] & 0x1f;
308 const GLint rowBr0 = rowB[j] & 0x1f;
309 const GLint rowBr1 = rowB[k] & 0x1f;
310 const GLint rowAg0 = (rowA[j] >> 5) & 0x3f;
311 const GLint rowAg1 = (rowA[k] >> 5) & 0x3f;
312 const GLint rowBg0 = (rowB[j] >> 5) & 0x3f;
313 const GLint rowBg1 = (rowB[k] >> 5) & 0x3f;
314 const GLint rowAb0 = (rowA[j] >> 11) & 0x1f;
315 const GLint rowAb1 = (rowA[k] >> 11) & 0x1f;
316 const GLint rowBb0 = (rowB[j] >> 11) & 0x1f;
317 const GLint rowBb1 = (rowB[k] >> 11) & 0x1f;
318 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
319 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
320 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
321 dst[i] = (blue << 11) | (green << 5) | red;
322 }
323 }
324 else if (datatype == GL_UNSIGNED_SHORT_4_4_4_4 && comps == 4) {
325 GLuint i, j, k;
326 const GLushort *rowA = (const GLushort *) srcRowA;
327 const GLushort *rowB = (const GLushort *) srcRowB;
328 GLushort *dst = (GLushort *) dstRow;
329 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
330 i++, j += colStride, k += colStride) {
331 const GLint rowAr0 = rowA[j] & 0xf;
332 const GLint rowAr1 = rowA[k] & 0xf;
333 const GLint rowBr0 = rowB[j] & 0xf;
334 const GLint rowBr1 = rowB[k] & 0xf;
335 const GLint rowAg0 = (rowA[j] >> 4) & 0xf;
336 const GLint rowAg1 = (rowA[k] >> 4) & 0xf;
337 const GLint rowBg0 = (rowB[j] >> 4) & 0xf;
338 const GLint rowBg1 = (rowB[k] >> 4) & 0xf;
339 const GLint rowAb0 = (rowA[j] >> 8) & 0xf;
340 const GLint rowAb1 = (rowA[k] >> 8) & 0xf;
341 const GLint rowBb0 = (rowB[j] >> 8) & 0xf;
342 const GLint rowBb1 = (rowB[k] >> 8) & 0xf;
343 const GLint rowAa0 = (rowA[j] >> 12) & 0xf;
344 const GLint rowAa1 = (rowA[k] >> 12) & 0xf;
345 const GLint rowBa0 = (rowB[j] >> 12) & 0xf;
346 const GLint rowBa1 = (rowB[k] >> 12) & 0xf;
347 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
348 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
349 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
350 const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
351 dst[i] = (alpha << 12) | (blue << 8) | (green << 4) | red;
352 }
353 }
354 else if (datatype == GL_UNSIGNED_SHORT_1_5_5_5_REV && comps == 4) {
355 GLuint i, j, k;
356 const GLushort *rowA = (const GLushort *) srcRowA;
357 const GLushort *rowB = (const GLushort *) srcRowB;
358 GLushort *dst = (GLushort *) dstRow;
359 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
360 i++, j += colStride, k += colStride) {
361 const GLint rowAr0 = rowA[j] & 0x1f;
362 const GLint rowAr1 = rowA[k] & 0x1f;
363 const GLint rowBr0 = rowB[j] & 0x1f;
364 const GLint rowBr1 = rowB[k] & 0xf;
365 const GLint rowAg0 = (rowA[j] >> 5) & 0x1f;
366 const GLint rowAg1 = (rowA[k] >> 5) & 0x1f;
367 const GLint rowBg0 = (rowB[j] >> 5) & 0x1f;
368 const GLint rowBg1 = (rowB[k] >> 5) & 0x1f;
369 const GLint rowAb0 = (rowA[j] >> 10) & 0x1f;
370 const GLint rowAb1 = (rowA[k] >> 10) & 0x1f;
371 const GLint rowBb0 = (rowB[j] >> 10) & 0x1f;
372 const GLint rowBb1 = (rowB[k] >> 10) & 0x1f;
373 const GLint rowAa0 = (rowA[j] >> 15) & 0x1;
374 const GLint rowAa1 = (rowA[k] >> 15) & 0x1;
375 const GLint rowBa0 = (rowB[j] >> 15) & 0x1;
376 const GLint rowBa1 = (rowB[k] >> 15) & 0x1;
377 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
378 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
379 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
380 const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
381 dst[i] = (alpha << 15) | (blue << 10) | (green << 5) | red;
382 }
383 }
384 else if (datatype == GL_UNSIGNED_BYTE_3_3_2 && comps == 3) {
385 GLuint i, j, k;
386 const GLubyte *rowA = (const GLubyte *) srcRowA;
387 const GLubyte *rowB = (const GLubyte *) srcRowB;
388 GLubyte *dst = (GLubyte *) dstRow;
389 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
390 i++, j += colStride, k += colStride) {
391 const GLint rowAr0 = rowA[j] & 0x3;
392 const GLint rowAr1 = rowA[k] & 0x3;
393 const GLint rowBr0 = rowB[j] & 0x3;
394 const GLint rowBr1 = rowB[k] & 0x3;
395 const GLint rowAg0 = (rowA[j] >> 2) & 0x7;
396 const GLint rowAg1 = (rowA[k] >> 2) & 0x7;
397 const GLint rowBg0 = (rowB[j] >> 2) & 0x7;
398 const GLint rowBg1 = (rowB[k] >> 2) & 0x7;
399 const GLint rowAb0 = (rowA[j] >> 5) & 0x7;
400 const GLint rowAb1 = (rowA[k] >> 5) & 0x7;
401 const GLint rowBb0 = (rowB[j] >> 5) & 0x7;
402 const GLint rowBb1 = (rowB[k] >> 5) & 0x7;
403 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
404 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
405 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
406 dst[i] = (blue << 5) | (green << 2) | red;
407 }
408 }
409 else {
410 _mesa_problem(NULL, "bad format in do_row()");
411 }
412 }
413
414
415 /*
416 * These functions generate a 1/2-size mipmap image from a source image.
417 * Texture borders are handled by copying or averaging the source image's
418 * border texels, depending on the scale-down factor.
419 */
420
421 static void
422 make_1d_mipmap(GLenum datatype, GLuint comps, GLint border,
423 GLint srcWidth, const GLubyte *srcPtr,
424 GLint dstWidth, GLubyte *dstPtr)
425 {
426 const GLint bpt = bytes_per_pixel(datatype, comps);
427 const GLubyte *src;
428 GLubyte *dst;
429
430 /* skip the border pixel, if any */
431 src = srcPtr + border * bpt;
432 dst = dstPtr + border * bpt;
433
434 /* we just duplicate the input row, kind of hack, saves code */
435 do_row(datatype, comps, srcWidth - 2 * border, src, src,
436 dstWidth - 2 * border, dst);
437
438 if (border) {
439 /* copy left-most pixel from source */
440 MEMCPY(dstPtr, srcPtr, bpt);
441 /* copy right-most pixel from source */
442 MEMCPY(dstPtr + (dstWidth - 1) * bpt,
443 srcPtr + (srcWidth - 1) * bpt,
444 bpt);
445 }
446 }
447
448
449 /**
450 * XXX need to use the tex image's row stride!
451 */
452 static void
453 make_2d_mipmap(GLenum datatype, GLuint comps, GLint border,
454 GLint srcWidth, GLint srcHeight, const GLubyte *srcPtr,
455 GLint dstWidth, GLint dstHeight, GLubyte *dstPtr)
456 {
457 const GLint bpt = bytes_per_pixel(datatype, comps);
458 const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */
459 const GLint dstWidthNB = dstWidth - 2 * border;
460 const GLint dstHeightNB = dstHeight - 2 * border;
461 const GLint srcRowStride = bpt * srcWidth;
462 const GLint dstRowStride = bpt * dstWidth;
463 const GLubyte *srcA, *srcB;
464 GLubyte *dst;
465 GLint row;
466
467 /* Compute src and dst pointers, skipping any border */
468 srcA = srcPtr + border * ((srcWidth + 1) * bpt);
469 if (srcHeight > 1)
470 srcB = srcA + srcRowStride;
471 else
472 srcB = srcA;
473 dst = dstPtr + border * ((dstWidth + 1) * bpt);
474
475 for (row = 0; row < dstHeightNB; row++) {
476 do_row(datatype, comps, srcWidthNB, srcA, srcB,
477 dstWidthNB, dst);
478 srcA += 2 * srcRowStride;
479 srcB += 2 * srcRowStride;
480 dst += dstRowStride;
481 }
482
483 /* This is ugly but probably won't be used much */
484 if (border > 0) {
485 /* fill in dest border */
486 /* lower-left border pixel */
487 MEMCPY(dstPtr, srcPtr, bpt);
488 /* lower-right border pixel */
489 MEMCPY(dstPtr + (dstWidth - 1) * bpt,
490 srcPtr + (srcWidth - 1) * bpt, bpt);
491 /* upper-left border pixel */
492 MEMCPY(dstPtr + dstWidth * (dstHeight - 1) * bpt,
493 srcPtr + srcWidth * (srcHeight - 1) * bpt, bpt);
494 /* upper-right border pixel */
495 MEMCPY(dstPtr + (dstWidth * dstHeight - 1) * bpt,
496 srcPtr + (srcWidth * srcHeight - 1) * bpt, bpt);
497 /* lower border */
498 do_row(datatype, comps, srcWidthNB,
499 srcPtr + bpt,
500 srcPtr + bpt,
501 dstWidthNB, dstPtr + bpt);
502 /* upper border */
503 do_row(datatype, comps, srcWidthNB,
504 srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt,
505 srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt,
506 dstWidthNB,
507 dstPtr + (dstWidth * (dstHeight - 1) + 1) * bpt);
508 /* left and right borders */
509 if (srcHeight == dstHeight) {
510 /* copy border pixel from src to dst */
511 for (row = 1; row < srcHeight; row++) {
512 MEMCPY(dstPtr + dstWidth * row * bpt,
513 srcPtr + srcWidth * row * bpt, bpt);
514 MEMCPY(dstPtr + (dstWidth * row + dstWidth - 1) * bpt,
515 srcPtr + (srcWidth * row + srcWidth - 1) * bpt, bpt);
516 }
517 }
518 else {
519 /* average two src pixels each dest pixel */
520 for (row = 0; row < dstHeightNB; row += 2) {
521 do_row(datatype, comps, 1,
522 srcPtr + (srcWidth * (row * 2 + 1)) * bpt,
523 srcPtr + (srcWidth * (row * 2 + 2)) * bpt,
524 1, dstPtr + (dstWidth * row + 1) * bpt);
525 do_row(datatype, comps, 1,
526 srcPtr + (srcWidth * (row * 2 + 1) + srcWidth - 1) * bpt,
527 srcPtr + (srcWidth * (row * 2 + 2) + srcWidth - 1) * bpt,
528 1, dstPtr + (dstWidth * row + 1 + dstWidth - 1) * bpt);
529 }
530 }
531 }
532 }
533
534
535 static void
536 make_3d_mipmap(GLenum datatype, GLuint comps, GLint border,
537 GLint srcWidth, GLint srcHeight, GLint srcDepth,
538 const GLubyte *srcPtr,
539 GLint dstWidth, GLint dstHeight, GLint dstDepth,
540 GLubyte *dstPtr)
541 {
542 const GLint bpt = bytes_per_pixel(datatype, comps);
543 const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */
544 const GLint srcDepthNB = srcDepth - 2 * border;
545 const GLint dstWidthNB = dstWidth - 2 * border;
546 const GLint dstHeightNB = dstHeight - 2 * border;
547 const GLint dstDepthNB = dstDepth - 2 * border;
548 GLvoid *tmpRowA, *tmpRowB;
549 GLint img, row;
550 GLint bytesPerSrcImage, bytesPerDstImage;
551 GLint bytesPerSrcRow, bytesPerDstRow;
552 GLint srcImageOffset, srcRowOffset;
553
554 (void) srcDepthNB; /* silence warnings */
555
556 /* Need two temporary row buffers */
557 tmpRowA = _mesa_malloc(srcWidth * bpt);
558 if (!tmpRowA)
559 return;
560 tmpRowB = _mesa_malloc(srcWidth * bpt);
561 if (!tmpRowB) {
562 _mesa_free(tmpRowA);
563 return;
564 }
565
566 bytesPerSrcImage = srcWidth * srcHeight * bpt;
567 bytesPerDstImage = dstWidth * dstHeight * bpt;
568
569 bytesPerSrcRow = srcWidth * bpt;
570 bytesPerDstRow = dstWidth * bpt;
571
572 /* Offset between adjacent src images to be averaged together */
573 srcImageOffset = (srcDepth == dstDepth) ? 0 : bytesPerSrcImage;
574
575 /* Offset between adjacent src rows to be averaged together */
576 srcRowOffset = (srcHeight == dstHeight) ? 0 : srcWidth * bpt;
577
578 /*
579 * Need to average together up to 8 src pixels for each dest pixel.
580 * Break that down into 3 operations:
581 * 1. take two rows from source image and average them together.
582 * 2. take two rows from next source image and average them together.
583 * 3. take the two averaged rows and average them for the final dst row.
584 */
585
586 /*
587 _mesa_printf("mip3d %d x %d x %d -> %d x %d x %d\n",
588 srcWidth, srcHeight, srcDepth, dstWidth, dstHeight, dstDepth);
589 */
590
591 for (img = 0; img < dstDepthNB; img++) {
592 /* first source image pointer, skipping border */
593 const GLubyte *imgSrcA = srcPtr
594 + (bytesPerSrcImage + bytesPerSrcRow + border) * bpt * border
595 + img * (bytesPerSrcImage + srcImageOffset);
596 /* second source image pointer, skipping border */
597 const GLubyte *imgSrcB = imgSrcA + srcImageOffset;
598 /* address of the dest image, skipping border */
599 GLubyte *imgDst = dstPtr
600 + (bytesPerDstImage + bytesPerDstRow + border) * bpt * border
601 + img * bytesPerDstImage;
602
603 /* setup the four source row pointers and the dest row pointer */
604 const GLubyte *srcImgARowA = imgSrcA;
605 const GLubyte *srcImgARowB = imgSrcA + srcRowOffset;
606 const GLubyte *srcImgBRowA = imgSrcB;
607 const GLubyte *srcImgBRowB = imgSrcB + srcRowOffset;
608 GLubyte *dstImgRow = imgDst;
609
610 for (row = 0; row < dstHeightNB; row++) {
611 /* Average together two rows from first src image */
612 do_row(datatype, comps, srcWidthNB, srcImgARowA, srcImgARowB,
613 srcWidthNB, tmpRowA);
614 /* Average together two rows from second src image */
615 do_row(datatype, comps, srcWidthNB, srcImgBRowA, srcImgBRowB,
616 srcWidthNB, tmpRowB);
617 /* Average together the temp rows to make the final row */
618 do_row(datatype, comps, srcWidthNB, tmpRowA, tmpRowB,
619 dstWidthNB, dstImgRow);
620 /* advance to next rows */
621 srcImgARowA += bytesPerSrcRow + srcRowOffset;
622 srcImgARowB += bytesPerSrcRow + srcRowOffset;
623 srcImgBRowA += bytesPerSrcRow + srcRowOffset;
624 srcImgBRowB += bytesPerSrcRow + srcRowOffset;
625 dstImgRow += bytesPerDstRow;
626 }
627 }
628
629 _mesa_free(tmpRowA);
630 _mesa_free(tmpRowB);
631
632 /* Luckily we can leverage the make_2d_mipmap() function here! */
633 if (border > 0) {
634 /* do front border image */
635 make_2d_mipmap(datatype, comps, 1, srcWidth, srcHeight, srcPtr,
636 dstWidth, dstHeight, dstPtr);
637 /* do back border image */
638 make_2d_mipmap(datatype, comps, 1, srcWidth, srcHeight,
639 srcPtr + bytesPerSrcImage * (srcDepth - 1),
640 dstWidth, dstHeight,
641 dstPtr + bytesPerDstImage * (dstDepth - 1));
642 /* do four remaining border edges that span the image slices */
643 if (srcDepth == dstDepth) {
644 /* just copy border pixels from src to dst */
645 for (img = 0; img < dstDepthNB; img++) {
646 const GLubyte *src;
647 GLubyte *dst;
648
649 /* do border along [img][row=0][col=0] */
650 src = srcPtr + (img + 1) * bytesPerSrcImage;
651 dst = dstPtr + (img + 1) * bytesPerDstImage;
652 MEMCPY(dst, src, bpt);
653
654 /* do border along [img][row=dstHeight-1][col=0] */
655 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
656 + (srcHeight - 1) * bytesPerSrcRow;
657 dst = dstPtr + (img + 1) * bytesPerDstImage
658 + (dstHeight - 1) * bytesPerDstRow;
659 MEMCPY(dst, src, bpt);
660
661 /* do border along [img][row=0][col=dstWidth-1] */
662 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
663 + (srcWidth - 1) * bpt;
664 dst = dstPtr + (img + 1) * bytesPerDstImage
665 + (dstWidth - 1) * bpt;
666 MEMCPY(dst, src, bpt);
667
668 /* do border along [img][row=dstHeight-1][col=dstWidth-1] */
669 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
670 + (bytesPerSrcImage - bpt);
671 dst = dstPtr + (img + 1) * bytesPerDstImage
672 + (bytesPerDstImage - bpt);
673 MEMCPY(dst, src, bpt);
674 }
675 }
676 else {
677 /* average border pixels from adjacent src image pairs */
678 ASSERT(srcDepthNB == 2 * dstDepthNB);
679 for (img = 0; img < dstDepthNB; img++) {
680 const GLubyte *src;
681 GLubyte *dst;
682
683 /* do border along [img][row=0][col=0] */
684 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage;
685 dst = dstPtr + (img + 1) * bytesPerDstImage;
686 do_row(datatype, comps, 1, src, src + srcImageOffset, 1, dst);
687
688 /* do border along [img][row=dstHeight-1][col=0] */
689 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
690 + (srcHeight - 1) * bytesPerSrcRow;
691 dst = dstPtr + (img + 1) * bytesPerDstImage
692 + (dstHeight - 1) * bytesPerDstRow;
693 do_row(datatype, comps, 1, src, src + srcImageOffset, 1, dst);
694
695 /* do border along [img][row=0][col=dstWidth-1] */
696 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
697 + (srcWidth - 1) * bpt;
698 dst = dstPtr + (img + 1) * bytesPerDstImage
699 + (dstWidth - 1) * bpt;
700 do_row(datatype, comps, 1, src, src + srcImageOffset, 1, dst);
701
702 /* do border along [img][row=dstHeight-1][col=dstWidth-1] */
703 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
704 + (bytesPerSrcImage - bpt);
705 dst = dstPtr + (img + 1) * bytesPerDstImage
706 + (bytesPerDstImage - bpt);
707 do_row(datatype, comps, 1, src, src + srcImageOffset, 1, dst);
708 }
709 }
710 }
711 }
712
713
714 static void
715 make_1d_stack_mipmap(GLenum datatype, GLuint comps, GLint border,
716 GLint srcWidth, const GLubyte *srcPtr,
717 GLint dstWidth, GLint dstHeight, GLubyte *dstPtr)
718 {
719 const GLint bpt = bytes_per_pixel(datatype, comps);
720 const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */
721 const GLint dstWidthNB = dstWidth - 2 * border;
722 const GLint dstHeightNB = dstHeight - 2 * border;
723 const GLint srcRowStride = bpt * srcWidth;
724 const GLint dstRowStride = bpt * dstWidth;
725 const GLubyte *src;
726 GLubyte *dst;
727 GLint row;
728
729 /* Compute src and dst pointers, skipping any border */
730 src = srcPtr + border * ((srcWidth + 1) * bpt);
731 dst = dstPtr + border * ((dstWidth + 1) * bpt);
732
733 for (row = 0; row < dstHeightNB; row++) {
734 do_row(datatype, comps, srcWidthNB, src, src,
735 dstWidthNB, dst);
736 src += srcRowStride;
737 dst += dstRowStride;
738 }
739
740 if (border) {
741 /* copy left-most pixel from source */
742 MEMCPY(dstPtr, srcPtr, bpt);
743 /* copy right-most pixel from source */
744 MEMCPY(dstPtr + (dstWidth - 1) * bpt,
745 srcPtr + (srcWidth - 1) * bpt,
746 bpt);
747 }
748 }
749
750
751 /**
752 * \bugs
753 * There is quite a bit of refactoring that could be done with this function
754 * and \c make_2d_mipmap.
755 */
756 static void
757 make_2d_stack_mipmap(GLenum datatype, GLuint comps, GLint border,
758 GLint srcWidth, GLint srcHeight, const GLubyte *srcPtr,
759 GLint dstWidth, GLint dstHeight, GLint dstDepth,
760 GLubyte *dstPtr)
761 {
762 const GLint bpt = bytes_per_pixel(datatype, comps);
763 const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */
764 const GLint dstWidthNB = dstWidth - 2 * border;
765 const GLint dstHeightNB = dstHeight - 2 * border;
766 const GLint dstDepthNB = dstDepth - 2 * border;
767 const GLint srcRowStride = bpt * srcWidth;
768 const GLint dstRowStride = bpt * dstWidth;
769 const GLubyte *srcA, *srcB;
770 GLubyte *dst;
771 GLint layer;
772 GLint row;
773
774 /* Compute src and dst pointers, skipping any border */
775 srcA = srcPtr + border * ((srcWidth + 1) * bpt);
776 if (srcHeight > 1)
777 srcB = srcA + srcRowStride;
778 else
779 srcB = srcA;
780 dst = dstPtr + border * ((dstWidth + 1) * bpt);
781
782 for (layer = 0; layer < dstDepthNB; layer++) {
783 for (row = 0; row < dstHeightNB; row++) {
784 do_row(datatype, comps, srcWidthNB, srcA, srcB,
785 dstWidthNB, dst);
786 srcA += 2 * srcRowStride;
787 srcB += 2 * srcRowStride;
788 dst += dstRowStride;
789 }
790
791 /* This is ugly but probably won't be used much */
792 if (border > 0) {
793 /* fill in dest border */
794 /* lower-left border pixel */
795 MEMCPY(dstPtr, srcPtr, bpt);
796 /* lower-right border pixel */
797 MEMCPY(dstPtr + (dstWidth - 1) * bpt,
798 srcPtr + (srcWidth - 1) * bpt, bpt);
799 /* upper-left border pixel */
800 MEMCPY(dstPtr + dstWidth * (dstHeight - 1) * bpt,
801 srcPtr + srcWidth * (srcHeight - 1) * bpt, bpt);
802 /* upper-right border pixel */
803 MEMCPY(dstPtr + (dstWidth * dstHeight - 1) * bpt,
804 srcPtr + (srcWidth * srcHeight - 1) * bpt, bpt);
805 /* lower border */
806 do_row(datatype, comps, srcWidthNB,
807 srcPtr + bpt,
808 srcPtr + bpt,
809 dstWidthNB, dstPtr + bpt);
810 /* upper border */
811 do_row(datatype, comps, srcWidthNB,
812 srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt,
813 srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt,
814 dstWidthNB,
815 dstPtr + (dstWidth * (dstHeight - 1) + 1) * bpt);
816 /* left and right borders */
817 if (srcHeight == dstHeight) {
818 /* copy border pixel from src to dst */
819 for (row = 1; row < srcHeight; row++) {
820 MEMCPY(dstPtr + dstWidth * row * bpt,
821 srcPtr + srcWidth * row * bpt, bpt);
822 MEMCPY(dstPtr + (dstWidth * row + dstWidth - 1) * bpt,
823 srcPtr + (srcWidth * row + srcWidth - 1) * bpt, bpt);
824 }
825 }
826 else {
827 /* average two src pixels each dest pixel */
828 for (row = 0; row < dstHeightNB; row += 2) {
829 do_row(datatype, comps, 1,
830 srcPtr + (srcWidth * (row * 2 + 1)) * bpt,
831 srcPtr + (srcWidth * (row * 2 + 2)) * bpt,
832 1, dstPtr + (dstWidth * row + 1) * bpt);
833 do_row(datatype, comps, 1,
834 srcPtr + (srcWidth * (row * 2 + 1) + srcWidth - 1) * bpt,
835 srcPtr + (srcWidth * (row * 2 + 2) + srcWidth - 1) * bpt,
836 1, dstPtr + (dstWidth * row + 1 + dstWidth - 1) * bpt);
837 }
838 }
839 }
840 }
841 }
842
843
844 /**
845 * For GL_SGIX_generate_mipmap:
846 * Generate a complete set of mipmaps from texObj's base-level image.
847 * Stop at texObj's MaxLevel or when we get to the 1x1 texture.
848 */
849 void
850 _mesa_generate_mipmap(GLcontext *ctx, GLenum target,
851 struct gl_texture_object *texObj)
852 {
853 const struct gl_texture_image *srcImage;
854 const struct gl_texture_format *convertFormat;
855 const GLubyte *srcData = NULL;
856 GLubyte *dstData = NULL;
857 GLint level, maxLevels;
858 GLenum datatype;
859 GLuint comps;
860
861 ASSERT(texObj);
862 /* XXX choose cube map face here??? */
863 srcImage = texObj->Image[0][texObj->BaseLevel];
864 ASSERT(srcImage);
865
866 maxLevels = _mesa_max_texture_levels(ctx, texObj->Target);
867 ASSERT(maxLevels > 0); /* bad target */
868
869 /* Find convertFormat - the format that do_row() will process */
870 if (srcImage->IsCompressed) {
871 /* setup for compressed textures */
872 GLuint row;
873 GLint components, size;
874 GLchan *dst;
875
876 assert(texObj->Target == GL_TEXTURE_2D);
877
878 if (srcImage->_BaseFormat == GL_RGB) {
879 convertFormat = &_mesa_texformat_rgb;
880 components = 3;
881 }
882 else if (srcImage->_BaseFormat == GL_RGBA) {
883 convertFormat = &_mesa_texformat_rgba;
884 components = 4;
885 }
886 else {
887 _mesa_problem(ctx, "bad srcImage->_BaseFormat in _mesa_generate_mipmaps");
888 return;
889 }
890
891 /* allocate storage for uncompressed GL_RGB or GL_RGBA images */
892 size = _mesa_bytes_per_pixel(srcImage->_BaseFormat, CHAN_TYPE)
893 * srcImage->Width * srcImage->Height * srcImage->Depth + 20;
894 /* 20 extra bytes, just be safe when calling last FetchTexel */
895 srcData = (GLubyte *) _mesa_malloc(size);
896 if (!srcData) {
897 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generate mipmaps");
898 return;
899 }
900 dstData = (GLubyte *) _mesa_malloc(size / 2); /* 1/4 would probably be OK */
901 if (!dstData) {
902 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generate mipmaps");
903 _mesa_free((void *) srcData);
904 return;
905 }
906
907 /* decompress base image here */
908 dst = (GLchan *) srcData;
909 for (row = 0; row < srcImage->Height; row++) {
910 GLuint col;
911 for (col = 0; col < srcImage->Width; col++) {
912 srcImage->FetchTexelc(srcImage, col, row, 0, dst);
913 dst += components;
914 }
915 }
916 }
917 else {
918 /* uncompressed */
919 convertFormat = srcImage->TexFormat;
920 }
921
922 _mesa_format_to_type_and_comps(convertFormat, &datatype, &comps);
923
924 for (level = texObj->BaseLevel; level < texObj->MaxLevel
925 && level < maxLevels - 1; level++) {
926 /* generate image[level+1] from image[level] */
927 const struct gl_texture_image *srcImage;
928 struct gl_texture_image *dstImage;
929 GLint srcWidth, srcHeight, srcDepth;
930 GLint dstWidth, dstHeight, dstDepth;
931 GLint border, bytesPerTexel;
932
933 /* get src image parameters */
934 srcImage = _mesa_select_tex_image(ctx, texObj, target, level);
935 ASSERT(srcImage);
936 srcWidth = srcImage->Width;
937 srcHeight = srcImage->Height;
938 srcDepth = srcImage->Depth;
939 border = srcImage->Border;
940
941 /* compute next (level+1) image size */
942 if (srcWidth - 2 * border > 1) {
943 dstWidth = (srcWidth - 2 * border) / 2 + 2 * border;
944 }
945 else {
946 dstWidth = srcWidth; /* can't go smaller */
947 }
948 if ((srcHeight - 2 * border > 1) &&
949 (texObj->Target != GL_TEXTURE_1D_ARRAY_EXT)) {
950 dstHeight = (srcHeight - 2 * border) / 2 + 2 * border;
951 }
952 else {
953 dstHeight = srcHeight; /* can't go smaller */
954 }
955 if ((srcDepth - 2 * border > 1) &&
956 (texObj->Target != GL_TEXTURE_2D_ARRAY_EXT)) {
957 dstDepth = (srcDepth - 2 * border) / 2 + 2 * border;
958 }
959 else {
960 dstDepth = srcDepth; /* can't go smaller */
961 }
962
963 if (dstWidth == srcWidth &&
964 dstHeight == srcHeight &&
965 dstDepth == srcDepth) {
966 /* all done */
967 if (srcImage->IsCompressed) {
968 _mesa_free((void *) srcData);
969 _mesa_free(dstData);
970 }
971 return;
972 }
973
974 /* get dest gl_texture_image */
975 dstImage = _mesa_get_tex_image(ctx, texObj, target, level + 1);
976 if (!dstImage) {
977 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generating mipmaps");
978 return;
979 }
980
981 if (dstImage->ImageOffsets)
982 _mesa_free(dstImage->ImageOffsets);
983
984 /* Free old image data */
985 if (dstImage->Data)
986 ctx->Driver.FreeTexImageData(ctx, dstImage);
987
988 /* initialize new image */
989 _mesa_init_teximage_fields(ctx, target, dstImage, dstWidth, dstHeight,
990 dstDepth, border, srcImage->InternalFormat);
991 dstImage->DriverData = NULL;
992 dstImage->TexFormat = srcImage->TexFormat;
993 dstImage->FetchTexelc = srcImage->FetchTexelc;
994 dstImage->FetchTexelf = srcImage->FetchTexelf;
995 dstImage->IsCompressed = srcImage->IsCompressed;
996 if (dstImage->IsCompressed) {
997 dstImage->CompressedSize
998 = ctx->Driver.CompressedTextureSize(ctx, dstImage->Width,
999 dstImage->Height,
1000 dstImage->Depth,
1001 dstImage->TexFormat->MesaFormat);
1002 ASSERT(dstImage->CompressedSize > 0);
1003 }
1004
1005 ASSERT(dstImage->TexFormat);
1006 ASSERT(dstImage->FetchTexelc);
1007 ASSERT(dstImage->FetchTexelf);
1008
1009 /* Alloc new teximage data buffer.
1010 * Setup src and dest data pointers.
1011 */
1012 if (dstImage->IsCompressed) {
1013 dstImage->Data = _mesa_alloc_texmemory(dstImage->CompressedSize);
1014 if (!dstImage->Data) {
1015 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generating mipmaps");
1016 return;
1017 }
1018 /* srcData and dstData are already set */
1019 ASSERT(srcData);
1020 ASSERT(dstData);
1021 }
1022 else {
1023 bytesPerTexel = dstImage->TexFormat->TexelBytes;
1024 ASSERT(dstWidth * dstHeight * dstDepth * bytesPerTexel > 0);
1025 dstImage->Data = _mesa_alloc_texmemory(dstWidth * dstHeight
1026 * dstDepth * bytesPerTexel);
1027 if (!dstImage->Data) {
1028 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generating mipmaps");
1029 return;
1030 }
1031 srcData = (const GLubyte *) srcImage->Data;
1032 dstData = (GLubyte *) dstImage->Data;
1033 }
1034
1035 /*
1036 * We use simple 2x2 averaging to compute the next mipmap level.
1037 */
1038 switch (target) {
1039 case GL_TEXTURE_1D:
1040 make_1d_mipmap(datatype, comps, border,
1041 srcWidth, srcData,
1042 dstWidth, dstData);
1043 break;
1044 case GL_TEXTURE_2D:
1045 case GL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB:
1046 case GL_TEXTURE_CUBE_MAP_NEGATIVE_X_ARB:
1047 case GL_TEXTURE_CUBE_MAP_POSITIVE_Y_ARB:
1048 case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB:
1049 case GL_TEXTURE_CUBE_MAP_POSITIVE_Z_ARB:
1050 case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB:
1051 make_2d_mipmap(datatype, comps, border,
1052 srcWidth, srcHeight, srcData,
1053 dstWidth, dstHeight, dstData);
1054 break;
1055 case GL_TEXTURE_3D:
1056 make_3d_mipmap(datatype, comps, border,
1057 srcWidth, srcHeight, srcDepth, srcData,
1058 dstWidth, dstHeight, dstDepth, dstData);
1059 break;
1060 case GL_TEXTURE_1D_ARRAY_EXT:
1061 make_1d_stack_mipmap(datatype, comps, border,
1062 srcWidth, srcData,
1063 dstWidth, dstHeight, dstData);
1064 break;
1065 case GL_TEXTURE_2D_ARRAY_EXT:
1066 make_2d_stack_mipmap(datatype, comps, border,
1067 srcWidth, srcHeight, srcData,
1068 dstWidth, dstHeight, dstDepth, dstData);
1069 break;
1070 case GL_TEXTURE_RECTANGLE_NV:
1071 /* no mipmaps, do nothing */
1072 break;
1073 default:
1074 _mesa_problem(ctx, "bad dimensions in _mesa_generate_mipmaps");
1075 return;
1076 }
1077
1078 if (dstImage->IsCompressed) {
1079 GLubyte *temp;
1080 /* compress image from dstData into dstImage->Data */
1081 const GLenum srcFormat = convertFormat->BaseFormat;
1082 GLint dstRowStride
1083 = _mesa_compressed_row_stride(dstImage->TexFormat->MesaFormat, dstWidth);
1084 ASSERT(srcFormat == GL_RGB || srcFormat == GL_RGBA);
1085 dstImage->TexFormat->StoreImage(ctx, 2, dstImage->_BaseFormat,
1086 dstImage->TexFormat,
1087 dstImage->Data,
1088 0, 0, 0, /* dstX/Y/Zoffset */
1089 dstRowStride, 0, /* strides */
1090 dstWidth, dstHeight, 1, /* size */
1091 srcFormat, CHAN_TYPE,
1092 dstData, /* src data, actually */
1093 &ctx->DefaultPacking);
1094 /* swap src and dest pointers */
1095 temp = (GLubyte *) srcData;
1096 srcData = dstData;
1097 dstData = temp;
1098 }
1099
1100 } /* loop over mipmap levels */
1101 }
1102
1103
1104 /**
1105 * Helper function for drivers which need to rescale texture images to
1106 * certain aspect ratios.
1107 * Nearest filtering only (for broken hardware that can't support
1108 * all aspect ratios). This can be made a lot faster, but I don't
1109 * really care enough...
1110 */
1111 void
1112 _mesa_rescale_teximage2d(GLuint bytesPerPixel,
1113 GLuint srcStrideInPixels,
1114 GLuint dstRowStride,
1115 GLint srcWidth, GLint srcHeight,
1116 GLint dstWidth, GLint dstHeight,
1117 const GLvoid *srcImage, GLvoid *dstImage)
1118 {
1119 GLint row, col;
1120
1121 #define INNER_LOOP( TYPE, HOP, WOP ) \
1122 for ( row = 0 ; row < dstHeight ; row++ ) { \
1123 GLint srcRow = row HOP hScale; \
1124 for ( col = 0 ; col < dstWidth ; col++ ) { \
1125 GLint srcCol = col WOP wScale; \
1126 dst[col] = src[srcRow * srcStrideInPixels + srcCol]; \
1127 } \
1128 dst = (TYPE *) ((GLubyte *) dst + dstRowStride); \
1129 } \
1130
1131 #define RESCALE_IMAGE( TYPE ) \
1132 do { \
1133 const TYPE *src = (const TYPE *)srcImage; \
1134 TYPE *dst = (TYPE *)dstImage; \
1135 \
1136 if ( srcHeight < dstHeight ) { \
1137 const GLint hScale = dstHeight / srcHeight; \
1138 if ( srcWidth < dstWidth ) { \
1139 const GLint wScale = dstWidth / srcWidth; \
1140 INNER_LOOP( TYPE, /, / ); \
1141 } \
1142 else { \
1143 const GLint wScale = srcWidth / dstWidth; \
1144 INNER_LOOP( TYPE, /, * ); \
1145 } \
1146 } \
1147 else { \
1148 const GLint hScale = srcHeight / dstHeight; \
1149 if ( srcWidth < dstWidth ) { \
1150 const GLint wScale = dstWidth / srcWidth; \
1151 INNER_LOOP( TYPE, *, / ); \
1152 } \
1153 else { \
1154 const GLint wScale = srcWidth / dstWidth; \
1155 INNER_LOOP( TYPE, *, * ); \
1156 } \
1157 } \
1158 } while (0)
1159
1160 switch ( bytesPerPixel ) {
1161 case 4:
1162 RESCALE_IMAGE( GLuint );
1163 break;
1164
1165 case 2:
1166 RESCALE_IMAGE( GLushort );
1167 break;
1168
1169 case 1:
1170 RESCALE_IMAGE( GLubyte );
1171 break;
1172 default:
1173 _mesa_problem(NULL,"unexpected bytes/pixel in _mesa_rescale_teximage2d");
1174 }
1175 }
1176
1177
1178 /**
1179 * Upscale an image by replication, not (typical) stretching.
1180 * We use this when the image width or height is less than a
1181 * certain size (4, 8) and we need to upscale an image.
1182 */
1183 void
1184 _mesa_upscale_teximage2d(GLsizei inWidth, GLsizei inHeight,
1185 GLsizei outWidth, GLsizei outHeight,
1186 GLint comps, const GLchan *src, GLint srcRowStride,
1187 GLchan *dest )
1188 {
1189 GLint i, j, k;
1190
1191 ASSERT(outWidth >= inWidth);
1192 ASSERT(outHeight >= inHeight);
1193 #if 0
1194 ASSERT(inWidth == 1 || inWidth == 2 || inHeight == 1 || inHeight == 2);
1195 ASSERT((outWidth & 3) == 0);
1196 ASSERT((outHeight & 3) == 0);
1197 #endif
1198
1199 for (i = 0; i < outHeight; i++) {
1200 const GLint ii = i % inHeight;
1201 for (j = 0; j < outWidth; j++) {
1202 const GLint jj = j % inWidth;
1203 for (k = 0; k < comps; k++) {
1204 dest[(i * outWidth + j) * comps + k]
1205 = src[ii * srcRowStride + jj * comps + k];
1206 }
1207 }
1208 }
1209 }
1210