ad63b178df8c688d78947c93a342704e31380588
[mesa.git] / src / mesa / main / mipmap.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.1
4 *
5 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /**
27 * \file mipmap.c mipmap generation and teximage resizing functions.
28 */
29
30 #include "imports.h"
31 #include "formats.h"
32 #include "mipmap.h"
33 #include "teximage.h"
34 #include "texstore.h"
35 #include "image.h"
36
37
38
39 static GLint
40 bytes_per_pixel(GLenum datatype, GLuint comps)
41 {
42 GLint b = _mesa_sizeof_packed_type(datatype);
43 assert(b >= 0);
44
45 if (_mesa_type_is_packed(datatype))
46 return b;
47 else
48 return b * comps;
49 }
50
51
52 /**
53 * \name Support macros for do_row and do_row_3d
54 *
55 * The macro madness is here for two reasons. First, it compacts the code
56 * slightly. Second, it makes it much easier to adjust the specifics of the
57 * filter to tune the rounding characteristics.
58 */
59 /*@{*/
60 #define DECLARE_ROW_POINTERS(t, e) \
61 const t(*rowA)[e] = (const t(*)[e]) srcRowA; \
62 const t(*rowB)[e] = (const t(*)[e]) srcRowB; \
63 const t(*rowC)[e] = (const t(*)[e]) srcRowC; \
64 const t(*rowD)[e] = (const t(*)[e]) srcRowD; \
65 t(*dst)[e] = (t(*)[e]) dstRow
66
67 #define DECLARE_ROW_POINTERS0(t) \
68 const t *rowA = (const t *) srcRowA; \
69 const t *rowB = (const t *) srcRowB; \
70 const t *rowC = (const t *) srcRowC; \
71 const t *rowD = (const t *) srcRowD; \
72 t *dst = (t *) dstRow
73
74 #define FILTER_SUM_3D(Aj, Ak, Bj, Bk, Cj, Ck, Dj, Dk) \
75 ((unsigned) Aj + (unsigned) Ak \
76 + (unsigned) Bj + (unsigned) Bk \
77 + (unsigned) Cj + (unsigned) Ck \
78 + (unsigned) Dj + (unsigned) Dk \
79 + 4) >> 3
80
81 #define FILTER_3D(e) \
82 do { \
83 dst[i][e] = FILTER_SUM_3D(rowA[j][e], rowA[k][e], \
84 rowB[j][e], rowB[k][e], \
85 rowC[j][e], rowC[k][e], \
86 rowD[j][e], rowD[k][e]); \
87 } while(0)
88
89 #define FILTER_SUM_3D_SIGNED(Aj, Ak, Bj, Bk, Cj, Ck, Dj, Dk) \
90 (Aj + Ak \
91 + Bj + Bk \
92 + Cj + Ck \
93 + Dj + Dk \
94 + 4) / 8
95
96 #define FILTER_3D_SIGNED(e) \
97 do { \
98 dst[i][e] = FILTER_SUM_3D_SIGNED(rowA[j][e], rowA[k][e], \
99 rowB[j][e], rowB[k][e], \
100 rowC[j][e], rowC[k][e], \
101 rowD[j][e], rowD[k][e]); \
102 } while(0)
103
104 #define FILTER_F_3D(e) \
105 do { \
106 dst[i][e] = (rowA[j][e] + rowA[k][e] \
107 + rowB[j][e] + rowB[k][e] \
108 + rowC[j][e] + rowC[k][e] \
109 + rowD[j][e] + rowD[k][e]) * 0.125F; \
110 } while(0)
111
112 #define FILTER_HF_3D(e) \
113 do { \
114 const GLfloat aj = _mesa_half_to_float(rowA[j][e]); \
115 const GLfloat ak = _mesa_half_to_float(rowA[k][e]); \
116 const GLfloat bj = _mesa_half_to_float(rowB[j][e]); \
117 const GLfloat bk = _mesa_half_to_float(rowB[k][e]); \
118 const GLfloat cj = _mesa_half_to_float(rowC[j][e]); \
119 const GLfloat ck = _mesa_half_to_float(rowC[k][e]); \
120 const GLfloat dj = _mesa_half_to_float(rowD[j][e]); \
121 const GLfloat dk = _mesa_half_to_float(rowD[k][e]); \
122 dst[i][e] = _mesa_float_to_half((aj + ak + bj + bk + cj + ck + dj + dk) \
123 * 0.125F); \
124 } while(0)
125 /*@}*/
126
127
128 /**
129 * Average together two rows of a source image to produce a single new
130 * row in the dest image. It's legal for the two source rows to point
131 * to the same data. The source width must be equal to either the
132 * dest width or two times the dest width.
133 * \param datatype GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT, GL_FLOAT, etc.
134 * \param comps number of components per pixel (1..4)
135 */
136 static void
137 do_row(GLenum datatype, GLuint comps, GLint srcWidth,
138 const GLvoid *srcRowA, const GLvoid *srcRowB,
139 GLint dstWidth, GLvoid *dstRow)
140 {
141 const GLuint k0 = (srcWidth == dstWidth) ? 0 : 1;
142 const GLuint colStride = (srcWidth == dstWidth) ? 1 : 2;
143
144 ASSERT(comps >= 1);
145 ASSERT(comps <= 4);
146
147 /* This assertion is no longer valid with non-power-of-2 textures
148 assert(srcWidth == dstWidth || srcWidth == 2 * dstWidth);
149 */
150
151 if (datatype == GL_UNSIGNED_BYTE && comps == 4) {
152 GLuint i, j, k;
153 const GLubyte(*rowA)[4] = (const GLubyte(*)[4]) srcRowA;
154 const GLubyte(*rowB)[4] = (const GLubyte(*)[4]) srcRowB;
155 GLubyte(*dst)[4] = (GLubyte(*)[4]) dstRow;
156 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
157 i++, j += colStride, k += colStride) {
158 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
159 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
160 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
161 dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
162 }
163 }
164 else if (datatype == GL_UNSIGNED_BYTE && comps == 3) {
165 GLuint i, j, k;
166 const GLubyte(*rowA)[3] = (const GLubyte(*)[3]) srcRowA;
167 const GLubyte(*rowB)[3] = (const GLubyte(*)[3]) srcRowB;
168 GLubyte(*dst)[3] = (GLubyte(*)[3]) dstRow;
169 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
170 i++, j += colStride, k += colStride) {
171 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
172 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
173 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
174 }
175 }
176 else if (datatype == GL_UNSIGNED_BYTE && comps == 2) {
177 GLuint i, j, k;
178 const GLubyte(*rowA)[2] = (const GLubyte(*)[2]) srcRowA;
179 const GLubyte(*rowB)[2] = (const GLubyte(*)[2]) srcRowB;
180 GLubyte(*dst)[2] = (GLubyte(*)[2]) dstRow;
181 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
182 i++, j += colStride, k += colStride) {
183 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) >> 2;
184 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) >> 2;
185 }
186 }
187 else if (datatype == GL_UNSIGNED_BYTE && comps == 1) {
188 GLuint i, j, k;
189 const GLubyte *rowA = (const GLubyte *) srcRowA;
190 const GLubyte *rowB = (const GLubyte *) srcRowB;
191 GLubyte *dst = (GLubyte *) dstRow;
192 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
193 i++, j += colStride, k += colStride) {
194 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) >> 2;
195 }
196 }
197
198 else if (datatype == GL_BYTE && comps == 4) {
199 GLuint i, j, k;
200 const GLbyte(*rowA)[4] = (const GLbyte(*)[4]) srcRowA;
201 const GLbyte(*rowB)[4] = (const GLbyte(*)[4]) srcRowB;
202 GLbyte(*dst)[4] = (GLbyte(*)[4]) dstRow;
203 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
204 i++, j += colStride, k += colStride) {
205 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
206 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
207 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
208 dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
209 }
210 }
211 else if (datatype == GL_BYTE && comps == 3) {
212 GLuint i, j, k;
213 const GLbyte(*rowA)[3] = (const GLbyte(*)[3]) srcRowA;
214 const GLbyte(*rowB)[3] = (const GLbyte(*)[3]) srcRowB;
215 GLbyte(*dst)[3] = (GLbyte(*)[3]) dstRow;
216 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
217 i++, j += colStride, k += colStride) {
218 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
219 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
220 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
221 }
222 }
223 else if (datatype == GL_BYTE && comps == 2) {
224 GLuint i, j, k;
225 const GLbyte(*rowA)[2] = (const GLbyte(*)[2]) srcRowA;
226 const GLbyte(*rowB)[2] = (const GLbyte(*)[2]) srcRowB;
227 GLbyte(*dst)[2] = (GLbyte(*)[2]) dstRow;
228 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
229 i++, j += colStride, k += colStride) {
230 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
231 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
232 }
233 }
234 else if (datatype == GL_BYTE && comps == 1) {
235 GLuint i, j, k;
236 const GLbyte *rowA = (const GLbyte *) srcRowA;
237 const GLbyte *rowB = (const GLbyte *) srcRowB;
238 GLbyte *dst = (GLbyte *) dstRow;
239 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
240 i++, j += colStride, k += colStride) {
241 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4;
242 }
243 }
244
245 else if (datatype == GL_UNSIGNED_SHORT && comps == 4) {
246 GLuint i, j, k;
247 const GLushort(*rowA)[4] = (const GLushort(*)[4]) srcRowA;
248 const GLushort(*rowB)[4] = (const GLushort(*)[4]) srcRowB;
249 GLushort(*dst)[4] = (GLushort(*)[4]) dstRow;
250 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
251 i++, j += colStride, k += colStride) {
252 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
253 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
254 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
255 dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
256 }
257 }
258 else if (datatype == GL_UNSIGNED_SHORT && comps == 3) {
259 GLuint i, j, k;
260 const GLushort(*rowA)[3] = (const GLushort(*)[3]) srcRowA;
261 const GLushort(*rowB)[3] = (const GLushort(*)[3]) srcRowB;
262 GLushort(*dst)[3] = (GLushort(*)[3]) dstRow;
263 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
264 i++, j += colStride, k += colStride) {
265 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
266 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
267 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
268 }
269 }
270 else if (datatype == GL_UNSIGNED_SHORT && comps == 2) {
271 GLuint i, j, k;
272 const GLushort(*rowA)[2] = (const GLushort(*)[2]) srcRowA;
273 const GLushort(*rowB)[2] = (const GLushort(*)[2]) srcRowB;
274 GLushort(*dst)[2] = (GLushort(*)[2]) dstRow;
275 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
276 i++, j += colStride, k += colStride) {
277 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
278 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
279 }
280 }
281 else if (datatype == GL_UNSIGNED_SHORT && comps == 1) {
282 GLuint i, j, k;
283 const GLushort *rowA = (const GLushort *) srcRowA;
284 const GLushort *rowB = (const GLushort *) srcRowB;
285 GLushort *dst = (GLushort *) dstRow;
286 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
287 i++, j += colStride, k += colStride) {
288 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4;
289 }
290 }
291
292 else if (datatype == GL_SHORT && comps == 4) {
293 GLuint i, j, k;
294 const GLshort(*rowA)[4] = (const GLshort(*)[4]) srcRowA;
295 const GLshort(*rowB)[4] = (const GLshort(*)[4]) srcRowB;
296 GLshort(*dst)[4] = (GLshort(*)[4]) dstRow;
297 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
298 i++, j += colStride, k += colStride) {
299 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
300 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
301 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
302 dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
303 }
304 }
305 else if (datatype == GL_SHORT && comps == 3) {
306 GLuint i, j, k;
307 const GLshort(*rowA)[3] = (const GLshort(*)[3]) srcRowA;
308 const GLshort(*rowB)[3] = (const GLshort(*)[3]) srcRowB;
309 GLshort(*dst)[3] = (GLshort(*)[3]) dstRow;
310 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
311 i++, j += colStride, k += colStride) {
312 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
313 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
314 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
315 }
316 }
317 else if (datatype == GL_SHORT && comps == 2) {
318 GLuint i, j, k;
319 const GLshort(*rowA)[2] = (const GLshort(*)[2]) srcRowA;
320 const GLshort(*rowB)[2] = (const GLshort(*)[2]) srcRowB;
321 GLshort(*dst)[2] = (GLshort(*)[2]) dstRow;
322 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
323 i++, j += colStride, k += colStride) {
324 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
325 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
326 }
327 }
328 else if (datatype == GL_SHORT && comps == 1) {
329 GLuint i, j, k;
330 const GLshort *rowA = (const GLshort *) srcRowA;
331 const GLshort *rowB = (const GLshort *) srcRowB;
332 GLshort *dst = (GLshort *) dstRow;
333 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
334 i++, j += colStride, k += colStride) {
335 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4;
336 }
337 }
338
339 else if (datatype == GL_FLOAT && comps == 4) {
340 GLuint i, j, k;
341 const GLfloat(*rowA)[4] = (const GLfloat(*)[4]) srcRowA;
342 const GLfloat(*rowB)[4] = (const GLfloat(*)[4]) srcRowB;
343 GLfloat(*dst)[4] = (GLfloat(*)[4]) dstRow;
344 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
345 i++, j += colStride, k += colStride) {
346 dst[i][0] = (rowA[j][0] + rowA[k][0] +
347 rowB[j][0] + rowB[k][0]) * 0.25F;
348 dst[i][1] = (rowA[j][1] + rowA[k][1] +
349 rowB[j][1] + rowB[k][1]) * 0.25F;
350 dst[i][2] = (rowA[j][2] + rowA[k][2] +
351 rowB[j][2] + rowB[k][2]) * 0.25F;
352 dst[i][3] = (rowA[j][3] + rowA[k][3] +
353 rowB[j][3] + rowB[k][3]) * 0.25F;
354 }
355 }
356 else if (datatype == GL_FLOAT && comps == 3) {
357 GLuint i, j, k;
358 const GLfloat(*rowA)[3] = (const GLfloat(*)[3]) srcRowA;
359 const GLfloat(*rowB)[3] = (const GLfloat(*)[3]) srcRowB;
360 GLfloat(*dst)[3] = (GLfloat(*)[3]) dstRow;
361 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
362 i++, j += colStride, k += colStride) {
363 dst[i][0] = (rowA[j][0] + rowA[k][0] +
364 rowB[j][0] + rowB[k][0]) * 0.25F;
365 dst[i][1] = (rowA[j][1] + rowA[k][1] +
366 rowB[j][1] + rowB[k][1]) * 0.25F;
367 dst[i][2] = (rowA[j][2] + rowA[k][2] +
368 rowB[j][2] + rowB[k][2]) * 0.25F;
369 }
370 }
371 else if (datatype == GL_FLOAT && comps == 2) {
372 GLuint i, j, k;
373 const GLfloat(*rowA)[2] = (const GLfloat(*)[2]) srcRowA;
374 const GLfloat(*rowB)[2] = (const GLfloat(*)[2]) srcRowB;
375 GLfloat(*dst)[2] = (GLfloat(*)[2]) dstRow;
376 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
377 i++, j += colStride, k += colStride) {
378 dst[i][0] = (rowA[j][0] + rowA[k][0] +
379 rowB[j][0] + rowB[k][0]) * 0.25F;
380 dst[i][1] = (rowA[j][1] + rowA[k][1] +
381 rowB[j][1] + rowB[k][1]) * 0.25F;
382 }
383 }
384 else if (datatype == GL_FLOAT && comps == 1) {
385 GLuint i, j, k;
386 const GLfloat *rowA = (const GLfloat *) srcRowA;
387 const GLfloat *rowB = (const GLfloat *) srcRowB;
388 GLfloat *dst = (GLfloat *) dstRow;
389 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
390 i++, j += colStride, k += colStride) {
391 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) * 0.25F;
392 }
393 }
394
395 else if (datatype == GL_HALF_FLOAT_ARB && comps == 4) {
396 GLuint i, j, k, comp;
397 const GLhalfARB(*rowA)[4] = (const GLhalfARB(*)[4]) srcRowA;
398 const GLhalfARB(*rowB)[4] = (const GLhalfARB(*)[4]) srcRowB;
399 GLhalfARB(*dst)[4] = (GLhalfARB(*)[4]) dstRow;
400 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
401 i++, j += colStride, k += colStride) {
402 for (comp = 0; comp < 4; comp++) {
403 GLfloat aj, ak, bj, bk;
404 aj = _mesa_half_to_float(rowA[j][comp]);
405 ak = _mesa_half_to_float(rowA[k][comp]);
406 bj = _mesa_half_to_float(rowB[j][comp]);
407 bk = _mesa_half_to_float(rowB[k][comp]);
408 dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
409 }
410 }
411 }
412 else if (datatype == GL_HALF_FLOAT_ARB && comps == 3) {
413 GLuint i, j, k, comp;
414 const GLhalfARB(*rowA)[3] = (const GLhalfARB(*)[3]) srcRowA;
415 const GLhalfARB(*rowB)[3] = (const GLhalfARB(*)[3]) srcRowB;
416 GLhalfARB(*dst)[3] = (GLhalfARB(*)[3]) dstRow;
417 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
418 i++, j += colStride, k += colStride) {
419 for (comp = 0; comp < 3; comp++) {
420 GLfloat aj, ak, bj, bk;
421 aj = _mesa_half_to_float(rowA[j][comp]);
422 ak = _mesa_half_to_float(rowA[k][comp]);
423 bj = _mesa_half_to_float(rowB[j][comp]);
424 bk = _mesa_half_to_float(rowB[k][comp]);
425 dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
426 }
427 }
428 }
429 else if (datatype == GL_HALF_FLOAT_ARB && comps == 2) {
430 GLuint i, j, k, comp;
431 const GLhalfARB(*rowA)[2] = (const GLhalfARB(*)[2]) srcRowA;
432 const GLhalfARB(*rowB)[2] = (const GLhalfARB(*)[2]) srcRowB;
433 GLhalfARB(*dst)[2] = (GLhalfARB(*)[2]) dstRow;
434 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
435 i++, j += colStride, k += colStride) {
436 for (comp = 0; comp < 2; comp++) {
437 GLfloat aj, ak, bj, bk;
438 aj = _mesa_half_to_float(rowA[j][comp]);
439 ak = _mesa_half_to_float(rowA[k][comp]);
440 bj = _mesa_half_to_float(rowB[j][comp]);
441 bk = _mesa_half_to_float(rowB[k][comp]);
442 dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
443 }
444 }
445 }
446 else if (datatype == GL_HALF_FLOAT_ARB && comps == 1) {
447 GLuint i, j, k;
448 const GLhalfARB *rowA = (const GLhalfARB *) srcRowA;
449 const GLhalfARB *rowB = (const GLhalfARB *) srcRowB;
450 GLhalfARB *dst = (GLhalfARB *) dstRow;
451 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
452 i++, j += colStride, k += colStride) {
453 GLfloat aj, ak, bj, bk;
454 aj = _mesa_half_to_float(rowA[j]);
455 ak = _mesa_half_to_float(rowA[k]);
456 bj = _mesa_half_to_float(rowB[j]);
457 bk = _mesa_half_to_float(rowB[k]);
458 dst[i] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
459 }
460 }
461
462 else if (datatype == GL_UNSIGNED_INT && comps == 1) {
463 GLuint i, j, k;
464 const GLuint *rowA = (const GLuint *) srcRowA;
465 const GLuint *rowB = (const GLuint *) srcRowB;
466 GLuint *dst = (GLuint *) dstRow;
467 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
468 i++, j += colStride, k += colStride) {
469 dst[i] = (GLfloat)(rowA[j] / 4 + rowA[k] / 4 + rowB[j] / 4 + rowB[k] / 4);
470 }
471 }
472
473 else if (datatype == GL_UNSIGNED_SHORT_5_6_5 && comps == 3) {
474 GLuint i, j, k;
475 const GLushort *rowA = (const GLushort *) srcRowA;
476 const GLushort *rowB = (const GLushort *) srcRowB;
477 GLushort *dst = (GLushort *) dstRow;
478 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
479 i++, j += colStride, k += colStride) {
480 const GLint rowAr0 = rowA[j] & 0x1f;
481 const GLint rowAr1 = rowA[k] & 0x1f;
482 const GLint rowBr0 = rowB[j] & 0x1f;
483 const GLint rowBr1 = rowB[k] & 0x1f;
484 const GLint rowAg0 = (rowA[j] >> 5) & 0x3f;
485 const GLint rowAg1 = (rowA[k] >> 5) & 0x3f;
486 const GLint rowBg0 = (rowB[j] >> 5) & 0x3f;
487 const GLint rowBg1 = (rowB[k] >> 5) & 0x3f;
488 const GLint rowAb0 = (rowA[j] >> 11) & 0x1f;
489 const GLint rowAb1 = (rowA[k] >> 11) & 0x1f;
490 const GLint rowBb0 = (rowB[j] >> 11) & 0x1f;
491 const GLint rowBb1 = (rowB[k] >> 11) & 0x1f;
492 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
493 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
494 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
495 dst[i] = (blue << 11) | (green << 5) | red;
496 }
497 }
498 else if (datatype == GL_UNSIGNED_SHORT_4_4_4_4 && comps == 4) {
499 GLuint i, j, k;
500 const GLushort *rowA = (const GLushort *) srcRowA;
501 const GLushort *rowB = (const GLushort *) srcRowB;
502 GLushort *dst = (GLushort *) dstRow;
503 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
504 i++, j += colStride, k += colStride) {
505 const GLint rowAr0 = rowA[j] & 0xf;
506 const GLint rowAr1 = rowA[k] & 0xf;
507 const GLint rowBr0 = rowB[j] & 0xf;
508 const GLint rowBr1 = rowB[k] & 0xf;
509 const GLint rowAg0 = (rowA[j] >> 4) & 0xf;
510 const GLint rowAg1 = (rowA[k] >> 4) & 0xf;
511 const GLint rowBg0 = (rowB[j] >> 4) & 0xf;
512 const GLint rowBg1 = (rowB[k] >> 4) & 0xf;
513 const GLint rowAb0 = (rowA[j] >> 8) & 0xf;
514 const GLint rowAb1 = (rowA[k] >> 8) & 0xf;
515 const GLint rowBb0 = (rowB[j] >> 8) & 0xf;
516 const GLint rowBb1 = (rowB[k] >> 8) & 0xf;
517 const GLint rowAa0 = (rowA[j] >> 12) & 0xf;
518 const GLint rowAa1 = (rowA[k] >> 12) & 0xf;
519 const GLint rowBa0 = (rowB[j] >> 12) & 0xf;
520 const GLint rowBa1 = (rowB[k] >> 12) & 0xf;
521 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
522 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
523 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
524 const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
525 dst[i] = (alpha << 12) | (blue << 8) | (green << 4) | red;
526 }
527 }
528 else if (datatype == GL_UNSIGNED_SHORT_1_5_5_5_REV && comps == 4) {
529 GLuint i, j, k;
530 const GLushort *rowA = (const GLushort *) srcRowA;
531 const GLushort *rowB = (const GLushort *) srcRowB;
532 GLushort *dst = (GLushort *) dstRow;
533 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
534 i++, j += colStride, k += colStride) {
535 const GLint rowAr0 = rowA[j] & 0x1f;
536 const GLint rowAr1 = rowA[k] & 0x1f;
537 const GLint rowBr0 = rowB[j] & 0x1f;
538 const GLint rowBr1 = rowB[k] & 0x1f;
539 const GLint rowAg0 = (rowA[j] >> 5) & 0x1f;
540 const GLint rowAg1 = (rowA[k] >> 5) & 0x1f;
541 const GLint rowBg0 = (rowB[j] >> 5) & 0x1f;
542 const GLint rowBg1 = (rowB[k] >> 5) & 0x1f;
543 const GLint rowAb0 = (rowA[j] >> 10) & 0x1f;
544 const GLint rowAb1 = (rowA[k] >> 10) & 0x1f;
545 const GLint rowBb0 = (rowB[j] >> 10) & 0x1f;
546 const GLint rowBb1 = (rowB[k] >> 10) & 0x1f;
547 const GLint rowAa0 = (rowA[j] >> 15) & 0x1;
548 const GLint rowAa1 = (rowA[k] >> 15) & 0x1;
549 const GLint rowBa0 = (rowB[j] >> 15) & 0x1;
550 const GLint rowBa1 = (rowB[k] >> 15) & 0x1;
551 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
552 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
553 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
554 const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
555 dst[i] = (alpha << 15) | (blue << 10) | (green << 5) | red;
556 }
557 }
558 else if (datatype == GL_UNSIGNED_SHORT_5_5_5_1 && comps == 4) {
559 GLuint i, j, k;
560 const GLushort *rowA = (const GLushort *) srcRowA;
561 const GLushort *rowB = (const GLushort *) srcRowB;
562 GLushort *dst = (GLushort *) dstRow;
563 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
564 i++, j += colStride, k += colStride) {
565 const GLint rowAr0 = (rowA[j] >> 11) & 0x1f;
566 const GLint rowAr1 = (rowA[k] >> 11) & 0x1f;
567 const GLint rowBr0 = (rowB[j] >> 11) & 0x1f;
568 const GLint rowBr1 = (rowB[k] >> 11) & 0x1f;
569 const GLint rowAg0 = (rowA[j] >> 6) & 0x1f;
570 const GLint rowAg1 = (rowA[k] >> 6) & 0x1f;
571 const GLint rowBg0 = (rowB[j] >> 6) & 0x1f;
572 const GLint rowBg1 = (rowB[k] >> 6) & 0x1f;
573 const GLint rowAb0 = (rowA[j] >> 1) & 0x1f;
574 const GLint rowAb1 = (rowA[k] >> 1) & 0x1f;
575 const GLint rowBb0 = (rowB[j] >> 1) & 0x1f;
576 const GLint rowBb1 = (rowB[k] >> 1) & 0x1f;
577 const GLint rowAa0 = (rowA[j] & 0x1);
578 const GLint rowAa1 = (rowA[k] & 0x1);
579 const GLint rowBa0 = (rowB[j] & 0x1);
580 const GLint rowBa1 = (rowB[k] & 0x1);
581 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
582 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
583 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
584 const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
585 dst[i] = (red << 11) | (green << 6) | (blue << 1) | alpha;
586 }
587 }
588
589 else if (datatype == GL_UNSIGNED_BYTE_3_3_2 && comps == 3) {
590 GLuint i, j, k;
591 const GLubyte *rowA = (const GLubyte *) srcRowA;
592 const GLubyte *rowB = (const GLubyte *) srcRowB;
593 GLubyte *dst = (GLubyte *) dstRow;
594 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
595 i++, j += colStride, k += colStride) {
596 const GLint rowAr0 = rowA[j] & 0x3;
597 const GLint rowAr1 = rowA[k] & 0x3;
598 const GLint rowBr0 = rowB[j] & 0x3;
599 const GLint rowBr1 = rowB[k] & 0x3;
600 const GLint rowAg0 = (rowA[j] >> 2) & 0x7;
601 const GLint rowAg1 = (rowA[k] >> 2) & 0x7;
602 const GLint rowBg0 = (rowB[j] >> 2) & 0x7;
603 const GLint rowBg1 = (rowB[k] >> 2) & 0x7;
604 const GLint rowAb0 = (rowA[j] >> 5) & 0x7;
605 const GLint rowAb1 = (rowA[k] >> 5) & 0x7;
606 const GLint rowBb0 = (rowB[j] >> 5) & 0x7;
607 const GLint rowBb1 = (rowB[k] >> 5) & 0x7;
608 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
609 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
610 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
611 dst[i] = (blue << 5) | (green << 2) | red;
612 }
613 }
614 else {
615 _mesa_problem(NULL, "bad format in do_row()");
616 }
617 }
618
619
620 /**
621 * Average together four rows of a source image to produce a single new
622 * row in the dest image. It's legal for the two source rows to point
623 * to the same data. The source width must be equal to either the
624 * dest width or two times the dest width.
625 *
626 * \param datatype GL pixel type \c GL_UNSIGNED_BYTE, \c GL_UNSIGNED_SHORT,
627 * \c GL_FLOAT, etc.
628 * \param comps number of components per pixel (1..4)
629 * \param srcWidth Width of a row in the source data
630 * \param srcRowA Pointer to one of the rows of source data
631 * \param srcRowB Pointer to one of the rows of source data
632 * \param srcRowC Pointer to one of the rows of source data
633 * \param srcRowD Pointer to one of the rows of source data
634 * \param dstWidth Width of a row in the destination data
635 * \param srcRowA Pointer to the row of destination data
636 */
637 static void
638 do_row_3D(GLenum datatype, GLuint comps, GLint srcWidth,
639 const GLvoid *srcRowA, const GLvoid *srcRowB,
640 const GLvoid *srcRowC, const GLvoid *srcRowD,
641 GLint dstWidth, GLvoid *dstRow)
642 {
643 const GLuint k0 = (srcWidth == dstWidth) ? 0 : 1;
644 const GLuint colStride = (srcWidth == dstWidth) ? 1 : 2;
645 GLuint i, j, k;
646
647 ASSERT(comps >= 1);
648 ASSERT(comps <= 4);
649
650 if ((datatype == GL_UNSIGNED_BYTE) && (comps == 4)) {
651 DECLARE_ROW_POINTERS(GLubyte, 4);
652
653 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
654 i++, j += colStride, k += colStride) {
655 FILTER_3D(0);
656 FILTER_3D(1);
657 FILTER_3D(2);
658 FILTER_3D(3);
659 }
660 }
661 else if ((datatype == GL_UNSIGNED_BYTE) && (comps == 3)) {
662 DECLARE_ROW_POINTERS(GLubyte, 3);
663
664 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
665 i++, j += colStride, k += colStride) {
666 FILTER_3D(0);
667 FILTER_3D(1);
668 FILTER_3D(2);
669 }
670 }
671 else if ((datatype == GL_UNSIGNED_BYTE) && (comps == 2)) {
672 DECLARE_ROW_POINTERS(GLubyte, 2);
673
674 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
675 i++, j += colStride, k += colStride) {
676 FILTER_3D(0);
677 FILTER_3D(1);
678 }
679 }
680 else if ((datatype == GL_UNSIGNED_BYTE) && (comps == 1)) {
681 DECLARE_ROW_POINTERS(GLubyte, 1);
682
683 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
684 i++, j += colStride, k += colStride) {
685 FILTER_3D(0);
686 }
687 }
688 else if ((datatype == GL_BYTE) && (comps == 4)) {
689 DECLARE_ROW_POINTERS(GLbyte, 4);
690
691 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
692 i++, j += colStride, k += colStride) {
693 FILTER_3D_SIGNED(0);
694 FILTER_3D_SIGNED(1);
695 FILTER_3D_SIGNED(2);
696 FILTER_3D_SIGNED(3);
697 }
698 }
699 else if ((datatype == GL_BYTE) && (comps == 3)) {
700 DECLARE_ROW_POINTERS(GLbyte, 3);
701
702 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
703 i++, j += colStride, k += colStride) {
704 FILTER_3D_SIGNED(0);
705 FILTER_3D_SIGNED(1);
706 FILTER_3D_SIGNED(2);
707 }
708 }
709 else if ((datatype == GL_BYTE) && (comps == 2)) {
710 DECLARE_ROW_POINTERS(GLbyte, 2);
711
712 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
713 i++, j += colStride, k += colStride) {
714 FILTER_3D_SIGNED(0);
715 FILTER_3D_SIGNED(1);
716 }
717 }
718 else if ((datatype == GL_BYTE) && (comps == 1)) {
719 DECLARE_ROW_POINTERS(GLbyte, 1);
720
721 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
722 i++, j += colStride, k += colStride) {
723 FILTER_3D_SIGNED(0);
724 }
725 }
726 else if ((datatype == GL_UNSIGNED_SHORT) && (comps == 4)) {
727 DECLARE_ROW_POINTERS(GLushort, 4);
728
729 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
730 i++, j += colStride, k += colStride) {
731 FILTER_3D(0);
732 FILTER_3D(1);
733 FILTER_3D(2);
734 FILTER_3D(3);
735 }
736 }
737 else if ((datatype == GL_UNSIGNED_SHORT) && (comps == 3)) {
738 DECLARE_ROW_POINTERS(GLushort, 3);
739
740 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
741 i++, j += colStride, k += colStride) {
742 FILTER_3D(0);
743 FILTER_3D(1);
744 FILTER_3D(2);
745 }
746 }
747 else if ((datatype == GL_UNSIGNED_SHORT) && (comps == 2)) {
748 DECLARE_ROW_POINTERS(GLushort, 2);
749
750 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
751 i++, j += colStride, k += colStride) {
752 FILTER_3D(0);
753 FILTER_3D(1);
754 }
755 }
756 else if ((datatype == GL_UNSIGNED_SHORT) && (comps == 1)) {
757 DECLARE_ROW_POINTERS(GLushort, 1);
758
759 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
760 i++, j += colStride, k += colStride) {
761 FILTER_3D(0);
762 }
763 }
764 else if ((datatype == GL_SHORT) && (comps == 4)) {
765 DECLARE_ROW_POINTERS(GLshort, 4);
766
767 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
768 i++, j += colStride, k += colStride) {
769 FILTER_3D(0);
770 FILTER_3D(1);
771 FILTER_3D(2);
772 FILTER_3D(3);
773 }
774 }
775 else if ((datatype == GL_SHORT) && (comps == 3)) {
776 DECLARE_ROW_POINTERS(GLshort, 3);
777
778 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
779 i++, j += colStride, k += colStride) {
780 FILTER_3D(0);
781 FILTER_3D(1);
782 FILTER_3D(2);
783 }
784 }
785 else if ((datatype == GL_SHORT) && (comps == 2)) {
786 DECLARE_ROW_POINTERS(GLshort, 2);
787
788 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
789 i++, j += colStride, k += colStride) {
790 FILTER_3D(0);
791 FILTER_3D(1);
792 }
793 }
794 else if ((datatype == GL_SHORT) && (comps == 1)) {
795 DECLARE_ROW_POINTERS(GLshort, 1);
796
797 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
798 i++, j += colStride, k += colStride) {
799 FILTER_3D(0);
800 }
801 }
802 else if ((datatype == GL_FLOAT) && (comps == 4)) {
803 DECLARE_ROW_POINTERS(GLfloat, 4);
804
805 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
806 i++, j += colStride, k += colStride) {
807 FILTER_F_3D(0);
808 FILTER_F_3D(1);
809 FILTER_F_3D(2);
810 FILTER_F_3D(3);
811 }
812 }
813 else if ((datatype == GL_FLOAT) && (comps == 3)) {
814 DECLARE_ROW_POINTERS(GLfloat, 3);
815
816 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
817 i++, j += colStride, k += colStride) {
818 FILTER_F_3D(0);
819 FILTER_F_3D(1);
820 FILTER_F_3D(2);
821 }
822 }
823 else if ((datatype == GL_FLOAT) && (comps == 2)) {
824 DECLARE_ROW_POINTERS(GLfloat, 2);
825
826 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
827 i++, j += colStride, k += colStride) {
828 FILTER_F_3D(0);
829 FILTER_F_3D(1);
830 }
831 }
832 else if ((datatype == GL_FLOAT) && (comps == 1)) {
833 DECLARE_ROW_POINTERS(GLfloat, 1);
834
835 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
836 i++, j += colStride, k += colStride) {
837 FILTER_F_3D(0);
838 }
839 }
840 else if ((datatype == GL_HALF_FLOAT_ARB) && (comps == 4)) {
841 DECLARE_ROW_POINTERS(GLhalfARB, 4);
842
843 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
844 i++, j += colStride, k += colStride) {
845 FILTER_HF_3D(0);
846 FILTER_HF_3D(1);
847 FILTER_HF_3D(2);
848 FILTER_HF_3D(3);
849 }
850 }
851 else if ((datatype == GL_HALF_FLOAT_ARB) && (comps == 3)) {
852 DECLARE_ROW_POINTERS(GLhalfARB, 4);
853
854 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
855 i++, j += colStride, k += colStride) {
856 FILTER_HF_3D(0);
857 FILTER_HF_3D(1);
858 FILTER_HF_3D(2);
859 }
860 }
861 else if ((datatype == GL_HALF_FLOAT_ARB) && (comps == 2)) {
862 DECLARE_ROW_POINTERS(GLhalfARB, 4);
863
864 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
865 i++, j += colStride, k += colStride) {
866 FILTER_HF_3D(0);
867 FILTER_HF_3D(1);
868 }
869 }
870 else if ((datatype == GL_HALF_FLOAT_ARB) && (comps == 1)) {
871 DECLARE_ROW_POINTERS(GLhalfARB, 4);
872
873 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
874 i++, j += colStride, k += colStride) {
875 FILTER_HF_3D(0);
876 }
877 }
878 else if ((datatype == GL_UNSIGNED_INT) && (comps == 1)) {
879 const GLuint *rowA = (const GLuint *) srcRowA;
880 const GLuint *rowB = (const GLuint *) srcRowB;
881 const GLuint *rowC = (const GLuint *) srcRowC;
882 const GLuint *rowD = (const GLuint *) srcRowD;
883 GLfloat *dst = (GLfloat *) dstRow;
884
885 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
886 i++, j += colStride, k += colStride) {
887 const uint64_t tmp = (((uint64_t) rowA[j] + (uint64_t) rowA[k])
888 + ((uint64_t) rowB[j] + (uint64_t) rowB[k])
889 + ((uint64_t) rowC[j] + (uint64_t) rowC[k])
890 + ((uint64_t) rowD[j] + (uint64_t) rowD[k]));
891 dst[i] = (GLfloat)((double) tmp * 0.125);
892 }
893 }
894 else if ((datatype == GL_UNSIGNED_SHORT_5_6_5) && (comps == 3)) {
895 DECLARE_ROW_POINTERS0(GLushort);
896
897 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
898 i++, j += colStride, k += colStride) {
899 const GLint rowAr0 = rowA[j] & 0x1f;
900 const GLint rowAr1 = rowA[k] & 0x1f;
901 const GLint rowBr0 = rowB[j] & 0x1f;
902 const GLint rowBr1 = rowB[k] & 0x1f;
903 const GLint rowCr0 = rowC[j] & 0x1f;
904 const GLint rowCr1 = rowC[k] & 0x1f;
905 const GLint rowDr0 = rowD[j] & 0x1f;
906 const GLint rowDr1 = rowD[k] & 0x1f;
907 const GLint rowAg0 = (rowA[j] >> 5) & 0x3f;
908 const GLint rowAg1 = (rowA[k] >> 5) & 0x3f;
909 const GLint rowBg0 = (rowB[j] >> 5) & 0x3f;
910 const GLint rowBg1 = (rowB[k] >> 5) & 0x3f;
911 const GLint rowCg0 = (rowC[j] >> 5) & 0x3f;
912 const GLint rowCg1 = (rowC[k] >> 5) & 0x3f;
913 const GLint rowDg0 = (rowD[j] >> 5) & 0x3f;
914 const GLint rowDg1 = (rowD[k] >> 5) & 0x3f;
915 const GLint rowAb0 = (rowA[j] >> 11) & 0x1f;
916 const GLint rowAb1 = (rowA[k] >> 11) & 0x1f;
917 const GLint rowBb0 = (rowB[j] >> 11) & 0x1f;
918 const GLint rowBb1 = (rowB[k] >> 11) & 0x1f;
919 const GLint rowCb0 = (rowC[j] >> 11) & 0x1f;
920 const GLint rowCb1 = (rowC[k] >> 11) & 0x1f;
921 const GLint rowDb0 = (rowD[j] >> 11) & 0x1f;
922 const GLint rowDb1 = (rowD[k] >> 11) & 0x1f;
923 const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
924 rowCr0, rowCr1, rowDr0, rowDr1);
925 const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
926 rowCg0, rowCg1, rowDg0, rowDg1);
927 const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
928 rowCb0, rowCb1, rowDb0, rowDb1);
929 dst[i] = (b << 11) | (g << 5) | r;
930 }
931 }
932 else if ((datatype == GL_UNSIGNED_SHORT_4_4_4_4) && (comps == 4)) {
933 DECLARE_ROW_POINTERS0(GLushort);
934
935 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
936 i++, j += colStride, k += colStride) {
937 const GLint rowAr0 = rowA[j] & 0xf;
938 const GLint rowAr1 = rowA[k] & 0xf;
939 const GLint rowBr0 = rowB[j] & 0xf;
940 const GLint rowBr1 = rowB[k] & 0xf;
941 const GLint rowCr0 = rowC[j] & 0xf;
942 const GLint rowCr1 = rowC[k] & 0xf;
943 const GLint rowDr0 = rowD[j] & 0xf;
944 const GLint rowDr1 = rowD[k] & 0xf;
945 const GLint rowAg0 = (rowA[j] >> 4) & 0xf;
946 const GLint rowAg1 = (rowA[k] >> 4) & 0xf;
947 const GLint rowBg0 = (rowB[j] >> 4) & 0xf;
948 const GLint rowBg1 = (rowB[k] >> 4) & 0xf;
949 const GLint rowCg0 = (rowC[j] >> 4) & 0xf;
950 const GLint rowCg1 = (rowC[k] >> 4) & 0xf;
951 const GLint rowDg0 = (rowD[j] >> 4) & 0xf;
952 const GLint rowDg1 = (rowD[k] >> 4) & 0xf;
953 const GLint rowAb0 = (rowA[j] >> 8) & 0xf;
954 const GLint rowAb1 = (rowA[k] >> 8) & 0xf;
955 const GLint rowBb0 = (rowB[j] >> 8) & 0xf;
956 const GLint rowBb1 = (rowB[k] >> 8) & 0xf;
957 const GLint rowCb0 = (rowC[j] >> 8) & 0xf;
958 const GLint rowCb1 = (rowC[k] >> 8) & 0xf;
959 const GLint rowDb0 = (rowD[j] >> 8) & 0xf;
960 const GLint rowDb1 = (rowD[k] >> 8) & 0xf;
961 const GLint rowAa0 = (rowA[j] >> 12) & 0xf;
962 const GLint rowAa1 = (rowA[k] >> 12) & 0xf;
963 const GLint rowBa0 = (rowB[j] >> 12) & 0xf;
964 const GLint rowBa1 = (rowB[k] >> 12) & 0xf;
965 const GLint rowCa0 = (rowC[j] >> 12) & 0xf;
966 const GLint rowCa1 = (rowC[k] >> 12) & 0xf;
967 const GLint rowDa0 = (rowD[j] >> 12) & 0xf;
968 const GLint rowDa1 = (rowD[k] >> 12) & 0xf;
969 const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
970 rowCr0, rowCr1, rowDr0, rowDr1);
971 const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
972 rowCg0, rowCg1, rowDg0, rowDg1);
973 const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
974 rowCb0, rowCb1, rowDb0, rowDb1);
975 const GLint a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
976 rowCa0, rowCa1, rowDa0, rowDa1);
977
978 dst[i] = (a << 12) | (b << 8) | (g << 4) | r;
979 }
980 }
981 else if ((datatype == GL_UNSIGNED_SHORT_1_5_5_5_REV) && (comps == 4)) {
982 DECLARE_ROW_POINTERS0(GLushort);
983
984 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
985 i++, j += colStride, k += colStride) {
986 const GLint rowAr0 = rowA[j] & 0x1f;
987 const GLint rowAr1 = rowA[k] & 0x1f;
988 const GLint rowBr0 = rowB[j] & 0x1f;
989 const GLint rowBr1 = rowB[k] & 0x1f;
990 const GLint rowCr0 = rowC[j] & 0x1f;
991 const GLint rowCr1 = rowC[k] & 0x1f;
992 const GLint rowDr0 = rowD[j] & 0x1f;
993 const GLint rowDr1 = rowD[k] & 0x1f;
994 const GLint rowAg0 = (rowA[j] >> 5) & 0x1f;
995 const GLint rowAg1 = (rowA[k] >> 5) & 0x1f;
996 const GLint rowBg0 = (rowB[j] >> 5) & 0x1f;
997 const GLint rowBg1 = (rowB[k] >> 5) & 0x1f;
998 const GLint rowCg0 = (rowC[j] >> 5) & 0x1f;
999 const GLint rowCg1 = (rowC[k] >> 5) & 0x1f;
1000 const GLint rowDg0 = (rowD[j] >> 5) & 0x1f;
1001 const GLint rowDg1 = (rowD[k] >> 5) & 0x1f;
1002 const GLint rowAb0 = (rowA[j] >> 10) & 0x1f;
1003 const GLint rowAb1 = (rowA[k] >> 10) & 0x1f;
1004 const GLint rowBb0 = (rowB[j] >> 10) & 0x1f;
1005 const GLint rowBb1 = (rowB[k] >> 10) & 0x1f;
1006 const GLint rowCb0 = (rowC[j] >> 10) & 0x1f;
1007 const GLint rowCb1 = (rowC[k] >> 10) & 0x1f;
1008 const GLint rowDb0 = (rowD[j] >> 10) & 0x1f;
1009 const GLint rowDb1 = (rowD[k] >> 10) & 0x1f;
1010 const GLint rowAa0 = (rowA[j] >> 15) & 0x1;
1011 const GLint rowAa1 = (rowA[k] >> 15) & 0x1;
1012 const GLint rowBa0 = (rowB[j] >> 15) & 0x1;
1013 const GLint rowBa1 = (rowB[k] >> 15) & 0x1;
1014 const GLint rowCa0 = (rowC[j] >> 15) & 0x1;
1015 const GLint rowCa1 = (rowC[k] >> 15) & 0x1;
1016 const GLint rowDa0 = (rowD[j] >> 15) & 0x1;
1017 const GLint rowDa1 = (rowD[k] >> 15) & 0x1;
1018 const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
1019 rowCr0, rowCr1, rowDr0, rowDr1);
1020 const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
1021 rowCg0, rowCg1, rowDg0, rowDg1);
1022 const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
1023 rowCb0, rowCb1, rowDb0, rowDb1);
1024 const GLint a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
1025 rowCa0, rowCa1, rowDa0, rowDa1);
1026
1027 dst[i] = (a << 15) | (b << 10) | (g << 5) | r;
1028 }
1029 }
1030 else if ((datatype == GL_UNSIGNED_SHORT_5_5_5_1) && (comps == 4)) {
1031 DECLARE_ROW_POINTERS0(GLushort);
1032
1033 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1034 i++, j += colStride, k += colStride) {
1035 const GLint rowAr0 = (rowA[j] >> 11) & 0x1f;
1036 const GLint rowAr1 = (rowA[k] >> 11) & 0x1f;
1037 const GLint rowBr0 = (rowB[j] >> 11) & 0x1f;
1038 const GLint rowBr1 = (rowB[k] >> 11) & 0x1f;
1039 const GLint rowCr0 = (rowC[j] >> 11) & 0x1f;
1040 const GLint rowCr1 = (rowC[k] >> 11) & 0x1f;
1041 const GLint rowDr0 = (rowD[j] >> 11) & 0x1f;
1042 const GLint rowDr1 = (rowD[k] >> 11) & 0x1f;
1043 const GLint rowAg0 = (rowA[j] >> 6) & 0x1f;
1044 const GLint rowAg1 = (rowA[k] >> 6) & 0x1f;
1045 const GLint rowBg0 = (rowB[j] >> 6) & 0x1f;
1046 const GLint rowBg1 = (rowB[k] >> 6) & 0x1f;
1047 const GLint rowCg0 = (rowC[j] >> 6) & 0x1f;
1048 const GLint rowCg1 = (rowC[k] >> 6) & 0x1f;
1049 const GLint rowDg0 = (rowD[j] >> 6) & 0x1f;
1050 const GLint rowDg1 = (rowD[k] >> 6) & 0x1f;
1051 const GLint rowAb0 = (rowA[j] >> 1) & 0x1f;
1052 const GLint rowAb1 = (rowA[k] >> 1) & 0x1f;
1053 const GLint rowBb0 = (rowB[j] >> 1) & 0x1f;
1054 const GLint rowBb1 = (rowB[k] >> 1) & 0x1f;
1055 const GLint rowCb0 = (rowC[j] >> 1) & 0x1f;
1056 const GLint rowCb1 = (rowC[k] >> 1) & 0x1f;
1057 const GLint rowDb0 = (rowD[j] >> 1) & 0x1f;
1058 const GLint rowDb1 = (rowD[k] >> 1) & 0x1f;
1059 const GLint rowAa0 = (rowA[j] & 0x1);
1060 const GLint rowAa1 = (rowA[k] & 0x1);
1061 const GLint rowBa0 = (rowB[j] & 0x1);
1062 const GLint rowBa1 = (rowB[k] & 0x1);
1063 const GLint rowCa0 = (rowC[j] & 0x1);
1064 const GLint rowCa1 = (rowC[k] & 0x1);
1065 const GLint rowDa0 = (rowD[j] & 0x1);
1066 const GLint rowDa1 = (rowD[k] & 0x1);
1067 const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
1068 rowCr0, rowCr1, rowDr0, rowDr1);
1069 const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
1070 rowCg0, rowCg1, rowDg0, rowDg1);
1071 const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
1072 rowCb0, rowCb1, rowDb0, rowDb1);
1073 const GLint a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
1074 rowCa0, rowCa1, rowDa0, rowDa1);
1075
1076 dst[i] = (r << 11) | (g << 6) | (b << 1) | a;
1077 }
1078 }
1079 else if ((datatype == GL_UNSIGNED_BYTE_3_3_2) && (comps == 3)) {
1080 DECLARE_ROW_POINTERS0(GLushort);
1081
1082 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1083 i++, j += colStride, k += colStride) {
1084 const GLint rowAr0 = rowA[j] & 0x3;
1085 const GLint rowAr1 = rowA[k] & 0x3;
1086 const GLint rowBr0 = rowB[j] & 0x3;
1087 const GLint rowBr1 = rowB[k] & 0x3;
1088 const GLint rowCr0 = rowC[j] & 0x3;
1089 const GLint rowCr1 = rowC[k] & 0x3;
1090 const GLint rowDr0 = rowD[j] & 0x3;
1091 const GLint rowDr1 = rowD[k] & 0x3;
1092 const GLint rowAg0 = (rowA[j] >> 2) & 0x7;
1093 const GLint rowAg1 = (rowA[k] >> 2) & 0x7;
1094 const GLint rowBg0 = (rowB[j] >> 2) & 0x7;
1095 const GLint rowBg1 = (rowB[k] >> 2) & 0x7;
1096 const GLint rowCg0 = (rowC[j] >> 2) & 0x7;
1097 const GLint rowCg1 = (rowC[k] >> 2) & 0x7;
1098 const GLint rowDg0 = (rowD[j] >> 2) & 0x7;
1099 const GLint rowDg1 = (rowD[k] >> 2) & 0x7;
1100 const GLint rowAb0 = (rowA[j] >> 5) & 0x7;
1101 const GLint rowAb1 = (rowA[k] >> 5) & 0x7;
1102 const GLint rowBb0 = (rowB[j] >> 5) & 0x7;
1103 const GLint rowBb1 = (rowB[k] >> 5) & 0x7;
1104 const GLint rowCb0 = (rowC[j] >> 5) & 0x7;
1105 const GLint rowCb1 = (rowC[k] >> 5) & 0x7;
1106 const GLint rowDb0 = (rowD[j] >> 5) & 0x7;
1107 const GLint rowDb1 = (rowD[k] >> 5) & 0x7;
1108 const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
1109 rowCr0, rowCr1, rowDr0, rowDr1);
1110 const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
1111 rowCg0, rowCg1, rowDg0, rowDg1);
1112 const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
1113 rowCb0, rowCb1, rowDb0, rowDb1);
1114 dst[i] = (b << 5) | (g << 2) | r;
1115 }
1116 }
1117 else {
1118 _mesa_problem(NULL, "bad format in do_row()");
1119 }
1120 }
1121
1122
1123 /*
1124 * These functions generate a 1/2-size mipmap image from a source image.
1125 * Texture borders are handled by copying or averaging the source image's
1126 * border texels, depending on the scale-down factor.
1127 */
1128
1129 static void
1130 make_1d_mipmap(GLenum datatype, GLuint comps, GLint border,
1131 GLint srcWidth, const GLubyte *srcPtr,
1132 GLint dstWidth, GLubyte *dstPtr)
1133 {
1134 const GLint bpt = bytes_per_pixel(datatype, comps);
1135 const GLubyte *src;
1136 GLubyte *dst;
1137
1138 /* skip the border pixel, if any */
1139 src = srcPtr + border * bpt;
1140 dst = dstPtr + border * bpt;
1141
1142 /* we just duplicate the input row, kind of hack, saves code */
1143 do_row(datatype, comps, srcWidth - 2 * border, src, src,
1144 dstWidth - 2 * border, dst);
1145
1146 if (border) {
1147 /* copy left-most pixel from source */
1148 assert(dstPtr);
1149 assert(srcPtr);
1150 memcpy(dstPtr, srcPtr, bpt);
1151 /* copy right-most pixel from source */
1152 memcpy(dstPtr + (dstWidth - 1) * bpt,
1153 srcPtr + (srcWidth - 1) * bpt,
1154 bpt);
1155 }
1156 }
1157
1158
1159 static void
1160 make_2d_mipmap(GLenum datatype, GLuint comps, GLint border,
1161 GLint srcWidth, GLint srcHeight,
1162 const GLubyte *srcPtr, GLint srcRowStride,
1163 GLint dstWidth, GLint dstHeight,
1164 GLubyte *dstPtr, GLint dstRowStride)
1165 {
1166 const GLint bpt = bytes_per_pixel(datatype, comps);
1167 const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */
1168 const GLint dstWidthNB = dstWidth - 2 * border;
1169 const GLint dstHeightNB = dstHeight - 2 * border;
1170 const GLint srcRowBytes = bpt * srcRowStride;
1171 const GLint dstRowBytes = bpt * dstRowStride;
1172 const GLubyte *srcA, *srcB;
1173 GLubyte *dst;
1174 GLint row, srcRowStep;
1175
1176 /* Compute src and dst pointers, skipping any border */
1177 srcA = srcPtr + border * ((srcWidth + 1) * bpt);
1178 if (srcHeight > 1 && srcHeight > dstHeight) {
1179 /* sample from two source rows */
1180 srcB = srcA + srcRowBytes;
1181 srcRowStep = 2;
1182 }
1183 else {
1184 /* sample from one source row */
1185 srcB = srcA;
1186 srcRowStep = 1;
1187 }
1188
1189 dst = dstPtr + border * ((dstWidth + 1) * bpt);
1190
1191 for (row = 0; row < dstHeightNB; row++) {
1192 do_row(datatype, comps, srcWidthNB, srcA, srcB,
1193 dstWidthNB, dst);
1194 srcA += srcRowStep * srcRowBytes;
1195 srcB += srcRowStep * srcRowBytes;
1196 dst += dstRowBytes;
1197 }
1198
1199 /* This is ugly but probably won't be used much */
1200 if (border > 0) {
1201 /* fill in dest border */
1202 /* lower-left border pixel */
1203 assert(dstPtr);
1204 assert(srcPtr);
1205 memcpy(dstPtr, srcPtr, bpt);
1206 /* lower-right border pixel */
1207 memcpy(dstPtr + (dstWidth - 1) * bpt,
1208 srcPtr + (srcWidth - 1) * bpt, bpt);
1209 /* upper-left border pixel */
1210 memcpy(dstPtr + dstWidth * (dstHeight - 1) * bpt,
1211 srcPtr + srcWidth * (srcHeight - 1) * bpt, bpt);
1212 /* upper-right border pixel */
1213 memcpy(dstPtr + (dstWidth * dstHeight - 1) * bpt,
1214 srcPtr + (srcWidth * srcHeight - 1) * bpt, bpt);
1215 /* lower border */
1216 do_row(datatype, comps, srcWidthNB,
1217 srcPtr + bpt,
1218 srcPtr + bpt,
1219 dstWidthNB, dstPtr + bpt);
1220 /* upper border */
1221 do_row(datatype, comps, srcWidthNB,
1222 srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt,
1223 srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt,
1224 dstWidthNB,
1225 dstPtr + (dstWidth * (dstHeight - 1) + 1) * bpt);
1226 /* left and right borders */
1227 if (srcHeight == dstHeight) {
1228 /* copy border pixel from src to dst */
1229 for (row = 1; row < srcHeight; row++) {
1230 memcpy(dstPtr + dstWidth * row * bpt,
1231 srcPtr + srcWidth * row * bpt, bpt);
1232 memcpy(dstPtr + (dstWidth * row + dstWidth - 1) * bpt,
1233 srcPtr + (srcWidth * row + srcWidth - 1) * bpt, bpt);
1234 }
1235 }
1236 else {
1237 /* average two src pixels each dest pixel */
1238 for (row = 0; row < dstHeightNB; row += 2) {
1239 do_row(datatype, comps, 1,
1240 srcPtr + (srcWidth * (row * 2 + 1)) * bpt,
1241 srcPtr + (srcWidth * (row * 2 + 2)) * bpt,
1242 1, dstPtr + (dstWidth * row + 1) * bpt);
1243 do_row(datatype, comps, 1,
1244 srcPtr + (srcWidth * (row * 2 + 1) + srcWidth - 1) * bpt,
1245 srcPtr + (srcWidth * (row * 2 + 2) + srcWidth - 1) * bpt,
1246 1, dstPtr + (dstWidth * row + 1 + dstWidth - 1) * bpt);
1247 }
1248 }
1249 }
1250 }
1251
1252
1253 static void
1254 make_3d_mipmap(GLenum datatype, GLuint comps, GLint border,
1255 GLint srcWidth, GLint srcHeight, GLint srcDepth,
1256 const GLubyte *srcPtr, GLint srcRowStride,
1257 GLint dstWidth, GLint dstHeight, GLint dstDepth,
1258 GLubyte *dstPtr, GLint dstRowStride)
1259 {
1260 const GLint bpt = bytes_per_pixel(datatype, comps);
1261 const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */
1262 const GLint srcDepthNB = srcDepth - 2 * border;
1263 const GLint dstWidthNB = dstWidth - 2 * border;
1264 const GLint dstHeightNB = dstHeight - 2 * border;
1265 const GLint dstDepthNB = dstDepth - 2 * border;
1266 GLint img, row;
1267 GLint bytesPerSrcImage, bytesPerDstImage;
1268 GLint bytesPerSrcRow, bytesPerDstRow;
1269 GLint srcImageOffset, srcRowOffset;
1270
1271 (void) srcDepthNB; /* silence warnings */
1272
1273
1274 bytesPerSrcImage = srcWidth * srcHeight * bpt;
1275 bytesPerDstImage = dstWidth * dstHeight * bpt;
1276
1277 bytesPerSrcRow = srcWidth * bpt;
1278 bytesPerDstRow = dstWidth * bpt;
1279
1280 /* Offset between adjacent src images to be averaged together */
1281 srcImageOffset = (srcDepth == dstDepth) ? 0 : bytesPerSrcImage;
1282
1283 /* Offset between adjacent src rows to be averaged together */
1284 srcRowOffset = (srcHeight == dstHeight) ? 0 : srcWidth * bpt;
1285
1286 /*
1287 * Need to average together up to 8 src pixels for each dest pixel.
1288 * Break that down into 3 operations:
1289 * 1. take two rows from source image and average them together.
1290 * 2. take two rows from next source image and average them together.
1291 * 3. take the two averaged rows and average them for the final dst row.
1292 */
1293
1294 /*
1295 printf("mip3d %d x %d x %d -> %d x %d x %d\n",
1296 srcWidth, srcHeight, srcDepth, dstWidth, dstHeight, dstDepth);
1297 */
1298
1299 for (img = 0; img < dstDepthNB; img++) {
1300 /* first source image pointer, skipping border */
1301 const GLubyte *imgSrcA = srcPtr
1302 + (bytesPerSrcImage + bytesPerSrcRow + border) * bpt * border
1303 + img * (bytesPerSrcImage + srcImageOffset);
1304 /* second source image pointer, skipping border */
1305 const GLubyte *imgSrcB = imgSrcA + srcImageOffset;
1306 /* address of the dest image, skipping border */
1307 GLubyte *imgDst = dstPtr
1308 + (bytesPerDstImage + bytesPerDstRow + border) * bpt * border
1309 + img * bytesPerDstImage;
1310
1311 /* setup the four source row pointers and the dest row pointer */
1312 const GLubyte *srcImgARowA = imgSrcA;
1313 const GLubyte *srcImgARowB = imgSrcA + srcRowOffset;
1314 const GLubyte *srcImgBRowA = imgSrcB;
1315 const GLubyte *srcImgBRowB = imgSrcB + srcRowOffset;
1316 GLubyte *dstImgRow = imgDst;
1317
1318 for (row = 0; row < dstHeightNB; row++) {
1319 do_row_3D(datatype, comps, srcWidthNB,
1320 srcImgARowA, srcImgARowB,
1321 srcImgBRowA, srcImgBRowB,
1322 dstWidthNB, dstImgRow);
1323
1324 /* advance to next rows */
1325 srcImgARowA += bytesPerSrcRow + srcRowOffset;
1326 srcImgARowB += bytesPerSrcRow + srcRowOffset;
1327 srcImgBRowA += bytesPerSrcRow + srcRowOffset;
1328 srcImgBRowB += bytesPerSrcRow + srcRowOffset;
1329 dstImgRow += bytesPerDstRow;
1330 }
1331 }
1332
1333
1334 /* Luckily we can leverage the make_2d_mipmap() function here! */
1335 if (border > 0) {
1336 /* do front border image */
1337 make_2d_mipmap(datatype, comps, 1, srcWidth, srcHeight, srcPtr, srcRowStride,
1338 dstWidth, dstHeight, dstPtr, dstRowStride);
1339 /* do back border image */
1340 make_2d_mipmap(datatype, comps, 1, srcWidth, srcHeight,
1341 srcPtr + bytesPerSrcImage * (srcDepth - 1), srcRowStride,
1342 dstWidth, dstHeight,
1343 dstPtr + bytesPerDstImage * (dstDepth - 1), dstRowStride);
1344 /* do four remaining border edges that span the image slices */
1345 if (srcDepth == dstDepth) {
1346 /* just copy border pixels from src to dst */
1347 for (img = 0; img < dstDepthNB; img++) {
1348 const GLubyte *src;
1349 GLubyte *dst;
1350
1351 /* do border along [img][row=0][col=0] */
1352 src = srcPtr + (img + 1) * bytesPerSrcImage;
1353 dst = dstPtr + (img + 1) * bytesPerDstImage;
1354 memcpy(dst, src, bpt);
1355
1356 /* do border along [img][row=dstHeight-1][col=0] */
1357 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
1358 + (srcHeight - 1) * bytesPerSrcRow;
1359 dst = dstPtr + (img + 1) * bytesPerDstImage
1360 + (dstHeight - 1) * bytesPerDstRow;
1361 memcpy(dst, src, bpt);
1362
1363 /* do border along [img][row=0][col=dstWidth-1] */
1364 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
1365 + (srcWidth - 1) * bpt;
1366 dst = dstPtr + (img + 1) * bytesPerDstImage
1367 + (dstWidth - 1) * bpt;
1368 memcpy(dst, src, bpt);
1369
1370 /* do border along [img][row=dstHeight-1][col=dstWidth-1] */
1371 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
1372 + (bytesPerSrcImage - bpt);
1373 dst = dstPtr + (img + 1) * bytesPerDstImage
1374 + (bytesPerDstImage - bpt);
1375 memcpy(dst, src, bpt);
1376 }
1377 }
1378 else {
1379 /* average border pixels from adjacent src image pairs */
1380 ASSERT(srcDepthNB == 2 * dstDepthNB);
1381 for (img = 0; img < dstDepthNB; img++) {
1382 const GLubyte *src;
1383 GLubyte *dst;
1384
1385 /* do border along [img][row=0][col=0] */
1386 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage;
1387 dst = dstPtr + (img + 1) * bytesPerDstImage;
1388 do_row(datatype, comps, 1, src, src + srcImageOffset, 1, dst);
1389
1390 /* do border along [img][row=dstHeight-1][col=0] */
1391 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
1392 + (srcHeight - 1) * bytesPerSrcRow;
1393 dst = dstPtr + (img + 1) * bytesPerDstImage
1394 + (dstHeight - 1) * bytesPerDstRow;
1395 do_row(datatype, comps, 1, src, src + srcImageOffset, 1, dst);
1396
1397 /* do border along [img][row=0][col=dstWidth-1] */
1398 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
1399 + (srcWidth - 1) * bpt;
1400 dst = dstPtr + (img + 1) * bytesPerDstImage
1401 + (dstWidth - 1) * bpt;
1402 do_row(datatype, comps, 1, src, src + srcImageOffset, 1, dst);
1403
1404 /* do border along [img][row=dstHeight-1][col=dstWidth-1] */
1405 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
1406 + (bytesPerSrcImage - bpt);
1407 dst = dstPtr + (img + 1) * bytesPerDstImage
1408 + (bytesPerDstImage - bpt);
1409 do_row(datatype, comps, 1, src, src + srcImageOffset, 1, dst);
1410 }
1411 }
1412 }
1413 }
1414
1415
1416 static void
1417 make_1d_stack_mipmap(GLenum datatype, GLuint comps, GLint border,
1418 GLint srcWidth, const GLubyte *srcPtr, GLuint srcRowStride,
1419 GLint dstWidth, GLint dstHeight,
1420 GLubyte *dstPtr, GLuint dstRowStride )
1421 {
1422 const GLint bpt = bytes_per_pixel(datatype, comps);
1423 const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */
1424 const GLint dstWidthNB = dstWidth - 2 * border;
1425 const GLint dstHeightNB = dstHeight - 2 * border;
1426 const GLint srcRowBytes = bpt * srcRowStride;
1427 const GLint dstRowBytes = bpt * dstRowStride;
1428 const GLubyte *src;
1429 GLubyte *dst;
1430 GLint row;
1431
1432 /* Compute src and dst pointers, skipping any border */
1433 src = srcPtr + border * ((srcWidth + 1) * bpt);
1434 dst = dstPtr + border * ((dstWidth + 1) * bpt);
1435
1436 for (row = 0; row < dstHeightNB; row++) {
1437 do_row(datatype, comps, srcWidthNB, src, src,
1438 dstWidthNB, dst);
1439 src += srcRowBytes;
1440 dst += dstRowBytes;
1441 }
1442
1443 if (border) {
1444 /* copy left-most pixel from source */
1445 assert(dstPtr);
1446 assert(srcPtr);
1447 memcpy(dstPtr, srcPtr, bpt);
1448 /* copy right-most pixel from source */
1449 memcpy(dstPtr + (dstWidth - 1) * bpt,
1450 srcPtr + (srcWidth - 1) * bpt,
1451 bpt);
1452 }
1453 }
1454
1455
1456 /**
1457 * \bug
1458 * There is quite a bit of refactoring that could be done with this function
1459 * and \c make_2d_mipmap.
1460 */
1461 static void
1462 make_2d_stack_mipmap(GLenum datatype, GLuint comps, GLint border,
1463 GLint srcWidth, GLint srcHeight,
1464 const GLubyte *srcPtr, GLint srcRowStride,
1465 GLint dstWidth, GLint dstHeight, GLint dstDepth,
1466 GLubyte *dstPtr, GLint dstRowStride)
1467 {
1468 const GLint bpt = bytes_per_pixel(datatype, comps);
1469 const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */
1470 const GLint dstWidthNB = dstWidth - 2 * border;
1471 const GLint dstHeightNB = dstHeight - 2 * border;
1472 const GLint dstDepthNB = dstDepth - 2 * border;
1473 const GLint srcRowBytes = bpt * srcRowStride;
1474 const GLint dstRowBytes = bpt * dstRowStride;
1475 const GLubyte *srcA, *srcB;
1476 GLubyte *dst;
1477 GLint layer;
1478 GLint row;
1479
1480 /* Compute src and dst pointers, skipping any border */
1481 srcA = srcPtr + border * ((srcWidth + 1) * bpt);
1482 if (srcHeight > 1)
1483 srcB = srcA + srcRowBytes;
1484 else
1485 srcB = srcA;
1486 dst = dstPtr + border * ((dstWidth + 1) * bpt);
1487
1488 for (layer = 0; layer < dstDepthNB; layer++) {
1489 for (row = 0; row < dstHeightNB; row++) {
1490 do_row(datatype, comps, srcWidthNB, srcA, srcB,
1491 dstWidthNB, dst);
1492 srcA += 2 * srcRowBytes;
1493 srcB += 2 * srcRowBytes;
1494 dst += dstRowBytes;
1495 }
1496
1497 /* This is ugly but probably won't be used much */
1498 if (border > 0) {
1499 /* fill in dest border */
1500 /* lower-left border pixel */
1501 assert(dstPtr);
1502 assert(srcPtr);
1503 memcpy(dstPtr, srcPtr, bpt);
1504 /* lower-right border pixel */
1505 memcpy(dstPtr + (dstWidth - 1) * bpt,
1506 srcPtr + (srcWidth - 1) * bpt, bpt);
1507 /* upper-left border pixel */
1508 memcpy(dstPtr + dstWidth * (dstHeight - 1) * bpt,
1509 srcPtr + srcWidth * (srcHeight - 1) * bpt, bpt);
1510 /* upper-right border pixel */
1511 memcpy(dstPtr + (dstWidth * dstHeight - 1) * bpt,
1512 srcPtr + (srcWidth * srcHeight - 1) * bpt, bpt);
1513 /* lower border */
1514 do_row(datatype, comps, srcWidthNB,
1515 srcPtr + bpt,
1516 srcPtr + bpt,
1517 dstWidthNB, dstPtr + bpt);
1518 /* upper border */
1519 do_row(datatype, comps, srcWidthNB,
1520 srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt,
1521 srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt,
1522 dstWidthNB,
1523 dstPtr + (dstWidth * (dstHeight - 1) + 1) * bpt);
1524 /* left and right borders */
1525 if (srcHeight == dstHeight) {
1526 /* copy border pixel from src to dst */
1527 for (row = 1; row < srcHeight; row++) {
1528 memcpy(dstPtr + dstWidth * row * bpt,
1529 srcPtr + srcWidth * row * bpt, bpt);
1530 memcpy(dstPtr + (dstWidth * row + dstWidth - 1) * bpt,
1531 srcPtr + (srcWidth * row + srcWidth - 1) * bpt, bpt);
1532 }
1533 }
1534 else {
1535 /* average two src pixels each dest pixel */
1536 for (row = 0; row < dstHeightNB; row += 2) {
1537 do_row(datatype, comps, 1,
1538 srcPtr + (srcWidth * (row * 2 + 1)) * bpt,
1539 srcPtr + (srcWidth * (row * 2 + 2)) * bpt,
1540 1, dstPtr + (dstWidth * row + 1) * bpt);
1541 do_row(datatype, comps, 1,
1542 srcPtr + (srcWidth * (row * 2 + 1) + srcWidth - 1) * bpt,
1543 srcPtr + (srcWidth * (row * 2 + 2) + srcWidth - 1) * bpt,
1544 1, dstPtr + (dstWidth * row + 1 + dstWidth - 1) * bpt);
1545 }
1546 }
1547 }
1548 }
1549 }
1550
1551
1552 /**
1553 * Down-sample a texture image to produce the next lower mipmap level.
1554 * \param comps components per texel (1, 2, 3 or 4)
1555 * \param srcRowStride stride between source rows, in texels
1556 * \param dstRowStride stride between destination rows, in texels
1557 */
1558 void
1559 _mesa_generate_mipmap_level(GLenum target,
1560 GLenum datatype, GLuint comps,
1561 GLint border,
1562 GLint srcWidth, GLint srcHeight, GLint srcDepth,
1563 const GLubyte *srcData,
1564 GLint srcRowStride,
1565 GLint dstWidth, GLint dstHeight, GLint dstDepth,
1566 GLubyte *dstData,
1567 GLint dstRowStride)
1568 {
1569 /*
1570 * We use simple 2x2 averaging to compute the next mipmap level.
1571 */
1572 switch (target) {
1573 case GL_TEXTURE_1D:
1574 make_1d_mipmap(datatype, comps, border,
1575 srcWidth, srcData,
1576 dstWidth, dstData);
1577 break;
1578 case GL_TEXTURE_2D:
1579 case GL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB:
1580 case GL_TEXTURE_CUBE_MAP_NEGATIVE_X_ARB:
1581 case GL_TEXTURE_CUBE_MAP_POSITIVE_Y_ARB:
1582 case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB:
1583 case GL_TEXTURE_CUBE_MAP_POSITIVE_Z_ARB:
1584 case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB:
1585 make_2d_mipmap(datatype, comps, border,
1586 srcWidth, srcHeight, srcData, srcRowStride,
1587 dstWidth, dstHeight, dstData, dstRowStride);
1588 break;
1589 case GL_TEXTURE_3D:
1590 make_3d_mipmap(datatype, comps, border,
1591 srcWidth, srcHeight, srcDepth,
1592 srcData, srcRowStride,
1593 dstWidth, dstHeight, dstDepth,
1594 dstData, dstRowStride);
1595 break;
1596 case GL_TEXTURE_1D_ARRAY_EXT:
1597 make_1d_stack_mipmap(datatype, comps, border,
1598 srcWidth, srcData, srcRowStride,
1599 dstWidth, dstHeight,
1600 dstData, dstRowStride);
1601 break;
1602 case GL_TEXTURE_2D_ARRAY_EXT:
1603 make_2d_stack_mipmap(datatype, comps, border,
1604 srcWidth, srcHeight,
1605 srcData, srcRowStride,
1606 dstWidth, dstHeight,
1607 dstDepth, dstData, dstRowStride);
1608 break;
1609 case GL_TEXTURE_RECTANGLE_NV:
1610 /* no mipmaps, do nothing */
1611 break;
1612 default:
1613 _mesa_problem(NULL, "bad dimensions in _mesa_generate_mipmaps");
1614 return;
1615 }
1616 }
1617
1618
1619 /**
1620 * compute next (level+1) image size
1621 * \return GL_FALSE if no smaller size can be generated (eg. src is 1x1x1 size)
1622 */
1623 static GLboolean
1624 next_mipmap_level_size(GLenum target, GLint border,
1625 GLint srcWidth, GLint srcHeight, GLint srcDepth,
1626 GLint *dstWidth, GLint *dstHeight, GLint *dstDepth)
1627 {
1628 if (srcWidth - 2 * border > 1) {
1629 *dstWidth = (srcWidth - 2 * border) / 2 + 2 * border;
1630 }
1631 else {
1632 *dstWidth = srcWidth; /* can't go smaller */
1633 }
1634
1635 if ((srcHeight - 2 * border > 1) &&
1636 (target != GL_TEXTURE_1D_ARRAY_EXT)) {
1637 *dstHeight = (srcHeight - 2 * border) / 2 + 2 * border;
1638 }
1639 else {
1640 *dstHeight = srcHeight; /* can't go smaller */
1641 }
1642
1643 if ((srcDepth - 2 * border > 1) &&
1644 (target != GL_TEXTURE_2D_ARRAY_EXT)) {
1645 *dstDepth = (srcDepth - 2 * border) / 2 + 2 * border;
1646 }
1647 else {
1648 *dstDepth = srcDepth; /* can't go smaller */
1649 }
1650
1651 if (*dstWidth == srcWidth &&
1652 *dstHeight == srcHeight &&
1653 *dstDepth == srcDepth) {
1654 return GL_FALSE;
1655 }
1656 else {
1657 return GL_TRUE;
1658 }
1659 }
1660
1661
1662
1663
1664 /**
1665 * Automatic mipmap generation.
1666 * This is the fallback/default function for ctx->Driver.GenerateMipmap().
1667 * Generate a complete set of mipmaps from texObj's BaseLevel image.
1668 * Stop at texObj's MaxLevel or when we get to the 1x1 texture.
1669 * For cube maps, target will be one of
1670 * GL_TEXTURE_CUBE_MAP_POSITIVE/NEGATIVE_X/Y/Z; never GL_TEXTURE_CUBE_MAP.
1671 */
1672 void
1673 _mesa_generate_mipmap(struct gl_context *ctx, GLenum target,
1674 struct gl_texture_object *texObj)
1675 {
1676 const struct gl_texture_image *srcImage;
1677 gl_format convertFormat;
1678 const GLubyte *srcData = NULL;
1679 GLubyte *dstData = NULL;
1680 GLint level, maxLevels;
1681 GLenum datatype;
1682 GLuint comps;
1683
1684 ASSERT(texObj);
1685 srcImage = _mesa_select_tex_image(ctx, texObj, target, texObj->BaseLevel);
1686 ASSERT(srcImage);
1687
1688 maxLevels = _mesa_max_texture_levels(ctx, texObj->Target);
1689 ASSERT(maxLevels > 0); /* bad target */
1690
1691 /* Find convertFormat - the format that do_row() will process */
1692
1693 if (_mesa_is_format_compressed(srcImage->TexFormat)) {
1694 /* setup for compressed textures - need to allocate temporary
1695 * image buffers to hold uncompressed images.
1696 */
1697 GLuint row;
1698 GLint components, size;
1699 GLchan *dst;
1700
1701 assert(texObj->Target == GL_TEXTURE_2D ||
1702 texObj->Target == GL_TEXTURE_CUBE_MAP_ARB);
1703
1704 if (srcImage->_BaseFormat == GL_RGB) {
1705 convertFormat = MESA_FORMAT_RGB888;
1706 components = 3;
1707 }
1708 else if (srcImage->_BaseFormat == GL_RGBA) {
1709 convertFormat = MESA_FORMAT_RGBA8888;
1710 components = 4;
1711 }
1712 else {
1713 _mesa_problem(ctx, "bad srcImage->_BaseFormat in _mesa_generate_mipmaps");
1714 return;
1715 }
1716
1717 /* allocate storage for uncompressed GL_RGB or GL_RGBA images */
1718 size = _mesa_bytes_per_pixel(srcImage->_BaseFormat, CHAN_TYPE)
1719 * srcImage->Width * srcImage->Height * srcImage->Depth + 20;
1720 /* 20 extra bytes, just be safe when calling last FetchTexel */
1721 srcData = (GLubyte *) malloc(size);
1722 if (!srcData) {
1723 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generate mipmaps");
1724 return;
1725 }
1726 dstData = (GLubyte *) malloc(size / 2); /* 1/4 would probably be OK */
1727 if (!dstData) {
1728 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generate mipmaps");
1729 free((void *) srcData);
1730 return;
1731 }
1732
1733 /* decompress base image here */
1734 dst = (GLchan *) srcData;
1735 for (row = 0; row < srcImage->Height; row++) {
1736 GLuint col;
1737 for (col = 0; col < srcImage->Width; col++) {
1738 srcImage->FetchTexelc(srcImage, col, row, 0, dst);
1739 dst += components;
1740 }
1741 }
1742 }
1743 else {
1744 /* uncompressed */
1745 convertFormat = srcImage->TexFormat;
1746 }
1747
1748 _mesa_format_to_type_and_comps(convertFormat, &datatype, &comps);
1749
1750 for (level = texObj->BaseLevel; level < texObj->MaxLevel
1751 && level < maxLevels - 1; level++) {
1752 /* generate image[level+1] from image[level] */
1753 const struct gl_texture_image *srcImage;
1754 struct gl_texture_image *dstImage;
1755 GLint srcWidth, srcHeight, srcDepth;
1756 GLint dstWidth, dstHeight, dstDepth;
1757 GLint border;
1758 GLboolean nextLevel;
1759
1760 /* get src image parameters */
1761 srcImage = _mesa_select_tex_image(ctx, texObj, target, level);
1762 ASSERT(srcImage);
1763 srcWidth = srcImage->Width;
1764 srcHeight = srcImage->Height;
1765 srcDepth = srcImage->Depth;
1766 border = srcImage->Border;
1767
1768 nextLevel = next_mipmap_level_size(target, border,
1769 srcWidth, srcHeight, srcDepth,
1770 &dstWidth, &dstHeight, &dstDepth);
1771 if (!nextLevel) {
1772 /* all done */
1773 if (_mesa_is_format_compressed(srcImage->TexFormat)) {
1774 free((void *) srcData);
1775 free(dstData);
1776 }
1777 return;
1778 }
1779
1780 /* get dest gl_texture_image */
1781 dstImage = _mesa_get_tex_image(ctx, texObj, target, level + 1);
1782 if (!dstImage) {
1783 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generating mipmaps");
1784 return;
1785 }
1786
1787 /* Free old image data */
1788 if (dstImage->Data)
1789 ctx->Driver.FreeTexImageData(ctx, dstImage);
1790
1791 /* initialize new image */
1792 _mesa_init_teximage_fields(ctx, target, dstImage, dstWidth, dstHeight,
1793 dstDepth, border, srcImage->InternalFormat,
1794 srcImage->TexFormat);
1795 dstImage->DriverData = NULL;
1796 dstImage->FetchTexelc = srcImage->FetchTexelc;
1797 dstImage->FetchTexelf = srcImage->FetchTexelf;
1798
1799 /* Alloc new teximage data buffer */
1800 {
1801 GLuint size = _mesa_format_image_size(dstImage->TexFormat,
1802 dstWidth, dstHeight, dstDepth);
1803 dstImage->Data = _mesa_alloc_texmemory(size);
1804 if (!dstImage->Data) {
1805 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generating mipmaps");
1806 return;
1807 }
1808 }
1809
1810 /* Setup src and dest data pointers */
1811 if (_mesa_is_format_compressed(dstImage->TexFormat)) {
1812 /* srcData and dstData are already set */
1813 ASSERT(srcData);
1814 ASSERT(dstData);
1815 }
1816 else {
1817 srcData = (const GLubyte *) srcImage->Data;
1818 dstData = (GLubyte *) dstImage->Data;
1819 }
1820
1821 ASSERT(dstImage->TexFormat);
1822 ASSERT(dstImage->FetchTexelc);
1823 ASSERT(dstImage->FetchTexelf);
1824
1825 _mesa_generate_mipmap_level(target, datatype, comps, border,
1826 srcWidth, srcHeight, srcDepth,
1827 srcData, srcImage->RowStride,
1828 dstWidth, dstHeight, dstDepth,
1829 dstData, dstImage->RowStride);
1830
1831
1832 if (_mesa_is_format_compressed(dstImage->TexFormat)) {
1833 GLubyte *temp;
1834 /* compress image from dstData into dstImage->Data */
1835 const GLenum srcFormat = _mesa_get_format_base_format(convertFormat);
1836 GLint dstRowStride
1837 = _mesa_format_row_stride(dstImage->TexFormat, dstWidth);
1838 ASSERT(srcFormat == GL_RGB || srcFormat == GL_RGBA);
1839
1840 _mesa_texstore(ctx, 2, dstImage->_BaseFormat,
1841 dstImage->TexFormat,
1842 dstImage->Data,
1843 0, 0, 0, /* dstX/Y/Zoffset */
1844 dstRowStride, 0, /* strides */
1845 dstWidth, dstHeight, 1, /* size */
1846 srcFormat, CHAN_TYPE,
1847 dstData, /* src data, actually */
1848 &ctx->DefaultPacking);
1849
1850 /* swap src and dest pointers */
1851 temp = (GLubyte *) srcData;
1852 srcData = dstData;
1853 dstData = temp;
1854 }
1855
1856 } /* loop over mipmap levels */
1857 }
1858
1859
1860 /**
1861 * Helper function for drivers which need to rescale texture images to
1862 * certain aspect ratios.
1863 * Nearest filtering only (for broken hardware that can't support
1864 * all aspect ratios). This can be made a lot faster, but I don't
1865 * really care enough...
1866 */
1867 void
1868 _mesa_rescale_teximage2d(GLuint bytesPerPixel,
1869 GLuint srcStrideInPixels,
1870 GLuint dstRowStride,
1871 GLint srcWidth, GLint srcHeight,
1872 GLint dstWidth, GLint dstHeight,
1873 const GLvoid *srcImage, GLvoid *dstImage)
1874 {
1875 GLint row, col;
1876
1877 #define INNER_LOOP( TYPE, HOP, WOP ) \
1878 for ( row = 0 ; row < dstHeight ; row++ ) { \
1879 GLint srcRow = row HOP hScale; \
1880 for ( col = 0 ; col < dstWidth ; col++ ) { \
1881 GLint srcCol = col WOP wScale; \
1882 dst[col] = src[srcRow * srcStrideInPixels + srcCol]; \
1883 } \
1884 dst = (TYPE *) ((GLubyte *) dst + dstRowStride); \
1885 } \
1886
1887 #define RESCALE_IMAGE( TYPE ) \
1888 do { \
1889 const TYPE *src = (const TYPE *)srcImage; \
1890 TYPE *dst = (TYPE *)dstImage; \
1891 \
1892 if ( srcHeight < dstHeight ) { \
1893 const GLint hScale = dstHeight / srcHeight; \
1894 if ( srcWidth < dstWidth ) { \
1895 const GLint wScale = dstWidth / srcWidth; \
1896 INNER_LOOP( TYPE, /, / ); \
1897 } \
1898 else { \
1899 const GLint wScale = srcWidth / dstWidth; \
1900 INNER_LOOP( TYPE, /, * ); \
1901 } \
1902 } \
1903 else { \
1904 const GLint hScale = srcHeight / dstHeight; \
1905 if ( srcWidth < dstWidth ) { \
1906 const GLint wScale = dstWidth / srcWidth; \
1907 INNER_LOOP( TYPE, *, / ); \
1908 } \
1909 else { \
1910 const GLint wScale = srcWidth / dstWidth; \
1911 INNER_LOOP( TYPE, *, * ); \
1912 } \
1913 } \
1914 } while (0)
1915
1916 switch ( bytesPerPixel ) {
1917 case 4:
1918 RESCALE_IMAGE( GLuint );
1919 break;
1920
1921 case 2:
1922 RESCALE_IMAGE( GLushort );
1923 break;
1924
1925 case 1:
1926 RESCALE_IMAGE( GLubyte );
1927 break;
1928 default:
1929 _mesa_problem(NULL,"unexpected bytes/pixel in _mesa_rescale_teximage2d");
1930 }
1931 }
1932
1933
1934 /**
1935 * Upscale an image by replication, not (typical) stretching.
1936 * We use this when the image width or height is less than a
1937 * certain size (4, 8) and we need to upscale an image.
1938 */
1939 void
1940 _mesa_upscale_teximage2d(GLsizei inWidth, GLsizei inHeight,
1941 GLsizei outWidth, GLsizei outHeight,
1942 GLint comps, const GLchan *src, GLint srcRowStride,
1943 GLchan *dest )
1944 {
1945 GLint i, j, k;
1946
1947 ASSERT(outWidth >= inWidth);
1948 ASSERT(outHeight >= inHeight);
1949 #if 0
1950 ASSERT(inWidth == 1 || inWidth == 2 || inHeight == 1 || inHeight == 2);
1951 ASSERT((outWidth & 3) == 0);
1952 ASSERT((outHeight & 3) == 0);
1953 #endif
1954
1955 for (i = 0; i < outHeight; i++) {
1956 const GLint ii = i % inHeight;
1957 for (j = 0; j < outWidth; j++) {
1958 const GLint jj = j % inWidth;
1959 for (k = 0; k < comps; k++) {
1960 dest[(i * outWidth + j) * comps + k]
1961 = src[ii * srcRowStride + jj * comps + k];
1962 }
1963 }
1964 }
1965 }
1966