Merge commit 'origin/master' into gallium-0.2
[mesa.git] / src / mesa / main / mipmap.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.1
4 *
5 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /**
27 * \file mipmap.c mipmap generation and teximage resizing functions.
28 */
29
30 #include "imports.h"
31 #include "mipmap.h"
32 #include "texcompress.h"
33 #include "texformat.h"
34 #include "teximage.h"
35 #include "image.h"
36
37
38
39 static GLint
40 bytes_per_pixel(GLenum datatype, GLuint comps)
41 {
42 GLint b = _mesa_sizeof_packed_type(datatype);
43 assert(b >= 0);
44 return b * comps;
45 }
46
47
48 /**
49 * Average together two rows of a source image to produce a single new
50 * row in the dest image. It's legal for the two source rows to point
51 * to the same data. The source width must be equal to either the
52 * dest width or two times the dest width.
53 * \param datatype GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT, GL_FLOAT, etc.
54 * \param comps number of components per pixel (1..4)
55 */
56 static void
57 do_row(GLenum datatype, GLuint comps, GLint srcWidth,
58 const GLvoid *srcRowA, const GLvoid *srcRowB,
59 GLint dstWidth, GLvoid *dstRow)
60 {
61 const GLuint k0 = (srcWidth == dstWidth) ? 0 : 1;
62 const GLuint colStride = (srcWidth == dstWidth) ? 1 : 2;
63
64 ASSERT(comps >= 1);
65 ASSERT(comps <= 4);
66
67 /* This assertion is no longer valid with non-power-of-2 textures
68 assert(srcWidth == dstWidth || srcWidth == 2 * dstWidth);
69 */
70
71 if (datatype == GL_UNSIGNED_BYTE && comps == 4) {
72 GLuint i, j, k;
73 const GLubyte(*rowA)[4] = (const GLubyte(*)[4]) srcRowA;
74 const GLubyte(*rowB)[4] = (const GLubyte(*)[4]) srcRowB;
75 GLubyte(*dst)[4] = (GLubyte(*)[4]) dstRow;
76 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
77 i++, j += colStride, k += colStride) {
78 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
79 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
80 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
81 dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
82 }
83 }
84 else if (datatype == GL_UNSIGNED_BYTE && comps == 3) {
85 GLuint i, j, k;
86 const GLubyte(*rowA)[3] = (const GLubyte(*)[3]) srcRowA;
87 const GLubyte(*rowB)[3] = (const GLubyte(*)[3]) srcRowB;
88 GLubyte(*dst)[3] = (GLubyte(*)[3]) dstRow;
89 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
90 i++, j += colStride, k += colStride) {
91 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
92 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
93 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
94 }
95 }
96 else if (datatype == GL_UNSIGNED_BYTE && comps == 2) {
97 GLuint i, j, k;
98 const GLubyte(*rowA)[2] = (const GLubyte(*)[2]) srcRowA;
99 const GLubyte(*rowB)[2] = (const GLubyte(*)[2]) srcRowB;
100 GLubyte(*dst)[2] = (GLubyte(*)[2]) dstRow;
101 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
102 i++, j += colStride, k += colStride) {
103 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) >> 2;
104 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) >> 2;
105 }
106 }
107 else if (datatype == GL_UNSIGNED_BYTE && comps == 1) {
108 GLuint i, j, k;
109 const GLubyte *rowA = (const GLubyte *) srcRowA;
110 const GLubyte *rowB = (const GLubyte *) srcRowB;
111 GLubyte *dst = (GLubyte *) dstRow;
112 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
113 i++, j += colStride, k += colStride) {
114 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) >> 2;
115 }
116 }
117
118 else if (datatype == GL_UNSIGNED_SHORT && comps == 4) {
119 GLuint i, j, k;
120 const GLushort(*rowA)[4] = (const GLushort(*)[4]) srcRowA;
121 const GLushort(*rowB)[4] = (const GLushort(*)[4]) srcRowB;
122 GLushort(*dst)[4] = (GLushort(*)[4]) dstRow;
123 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
124 i++, j += colStride, k += colStride) {
125 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
126 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
127 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
128 dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
129 }
130 }
131 else if (datatype == GL_UNSIGNED_SHORT && comps == 3) {
132 GLuint i, j, k;
133 const GLushort(*rowA)[3] = (const GLushort(*)[3]) srcRowA;
134 const GLushort(*rowB)[3] = (const GLushort(*)[3]) srcRowB;
135 GLushort(*dst)[3] = (GLushort(*)[3]) dstRow;
136 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
137 i++, j += colStride, k += colStride) {
138 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
139 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
140 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
141 }
142 }
143 else if (datatype == GL_UNSIGNED_SHORT && comps == 2) {
144 GLuint i, j, k;
145 const GLushort(*rowA)[2] = (const GLushort(*)[2]) srcRowA;
146 const GLushort(*rowB)[2] = (const GLushort(*)[2]) srcRowB;
147 GLushort(*dst)[2] = (GLushort(*)[2]) dstRow;
148 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
149 i++, j += colStride, k += colStride) {
150 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
151 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
152 }
153 }
154 else if (datatype == GL_UNSIGNED_SHORT && comps == 1) {
155 GLuint i, j, k;
156 const GLushort *rowA = (const GLushort *) srcRowA;
157 const GLushort *rowB = (const GLushort *) srcRowB;
158 GLushort *dst = (GLushort *) dstRow;
159 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
160 i++, j += colStride, k += colStride) {
161 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4;
162 }
163 }
164
165 else if (datatype == GL_FLOAT && comps == 4) {
166 GLuint i, j, k;
167 const GLfloat(*rowA)[4] = (const GLfloat(*)[4]) srcRowA;
168 const GLfloat(*rowB)[4] = (const GLfloat(*)[4]) srcRowB;
169 GLfloat(*dst)[4] = (GLfloat(*)[4]) dstRow;
170 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
171 i++, j += colStride, k += colStride) {
172 dst[i][0] = (rowA[j][0] + rowA[k][0] +
173 rowB[j][0] + rowB[k][0]) * 0.25F;
174 dst[i][1] = (rowA[j][1] + rowA[k][1] +
175 rowB[j][1] + rowB[k][1]) * 0.25F;
176 dst[i][2] = (rowA[j][2] + rowA[k][2] +
177 rowB[j][2] + rowB[k][2]) * 0.25F;
178 dst[i][3] = (rowA[j][3] + rowA[k][3] +
179 rowB[j][3] + rowB[k][3]) * 0.25F;
180 }
181 }
182 else if (datatype == GL_FLOAT && comps == 3) {
183 GLuint i, j, k;
184 const GLfloat(*rowA)[3] = (const GLfloat(*)[3]) srcRowA;
185 const GLfloat(*rowB)[3] = (const GLfloat(*)[3]) srcRowB;
186 GLfloat(*dst)[3] = (GLfloat(*)[3]) dstRow;
187 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
188 i++, j += colStride, k += colStride) {
189 dst[i][0] = (rowA[j][0] + rowA[k][0] +
190 rowB[j][0] + rowB[k][0]) * 0.25F;
191 dst[i][1] = (rowA[j][1] + rowA[k][1] +
192 rowB[j][1] + rowB[k][1]) * 0.25F;
193 dst[i][2] = (rowA[j][2] + rowA[k][2] +
194 rowB[j][2] + rowB[k][2]) * 0.25F;
195 }
196 }
197 else if (datatype == GL_FLOAT && comps == 2) {
198 GLuint i, j, k;
199 const GLfloat(*rowA)[2] = (const GLfloat(*)[2]) srcRowA;
200 const GLfloat(*rowB)[2] = (const GLfloat(*)[2]) srcRowB;
201 GLfloat(*dst)[2] = (GLfloat(*)[2]) dstRow;
202 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
203 i++, j += colStride, k += colStride) {
204 dst[i][0] = (rowA[j][0] + rowA[k][0] +
205 rowB[j][0] + rowB[k][0]) * 0.25F;
206 dst[i][1] = (rowA[j][1] + rowA[k][1] +
207 rowB[j][1] + rowB[k][1]) * 0.25F;
208 }
209 }
210 else if (datatype == GL_FLOAT && comps == 1) {
211 GLuint i, j, k;
212 const GLfloat *rowA = (const GLfloat *) srcRowA;
213 const GLfloat *rowB = (const GLfloat *) srcRowB;
214 GLfloat *dst = (GLfloat *) dstRow;
215 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
216 i++, j += colStride, k += colStride) {
217 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) * 0.25F;
218 }
219 }
220
221 else if (datatype == GL_HALF_FLOAT_ARB && comps == 4) {
222 GLuint i, j, k, comp;
223 const GLhalfARB(*rowA)[4] = (const GLhalfARB(*)[4]) srcRowA;
224 const GLhalfARB(*rowB)[4] = (const GLhalfARB(*)[4]) srcRowB;
225 GLhalfARB(*dst)[4] = (GLhalfARB(*)[4]) dstRow;
226 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
227 i++, j += colStride, k += colStride) {
228 for (comp = 0; comp < 4; comp++) {
229 GLfloat aj, ak, bj, bk;
230 aj = _mesa_half_to_float(rowA[j][comp]);
231 ak = _mesa_half_to_float(rowA[k][comp]);
232 bj = _mesa_half_to_float(rowB[j][comp]);
233 bk = _mesa_half_to_float(rowB[k][comp]);
234 dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
235 }
236 }
237 }
238 else if (datatype == GL_HALF_FLOAT_ARB && comps == 3) {
239 GLuint i, j, k, comp;
240 const GLhalfARB(*rowA)[3] = (const GLhalfARB(*)[3]) srcRowA;
241 const GLhalfARB(*rowB)[3] = (const GLhalfARB(*)[3]) srcRowB;
242 GLhalfARB(*dst)[3] = (GLhalfARB(*)[3]) dstRow;
243 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
244 i++, j += colStride, k += colStride) {
245 for (comp = 0; comp < 3; comp++) {
246 GLfloat aj, ak, bj, bk;
247 aj = _mesa_half_to_float(rowA[j][comp]);
248 ak = _mesa_half_to_float(rowA[k][comp]);
249 bj = _mesa_half_to_float(rowB[j][comp]);
250 bk = _mesa_half_to_float(rowB[k][comp]);
251 dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
252 }
253 }
254 }
255 else if (datatype == GL_HALF_FLOAT_ARB && comps == 2) {
256 GLuint i, j, k, comp;
257 const GLhalfARB(*rowA)[2] = (const GLhalfARB(*)[2]) srcRowA;
258 const GLhalfARB(*rowB)[2] = (const GLhalfARB(*)[2]) srcRowB;
259 GLhalfARB(*dst)[2] = (GLhalfARB(*)[2]) dstRow;
260 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
261 i++, j += colStride, k += colStride) {
262 for (comp = 0; comp < 2; comp++) {
263 GLfloat aj, ak, bj, bk;
264 aj = _mesa_half_to_float(rowA[j][comp]);
265 ak = _mesa_half_to_float(rowA[k][comp]);
266 bj = _mesa_half_to_float(rowB[j][comp]);
267 bk = _mesa_half_to_float(rowB[k][comp]);
268 dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
269 }
270 }
271 }
272 else if (datatype == GL_HALF_FLOAT_ARB && comps == 1) {
273 GLuint i, j, k;
274 const GLhalfARB *rowA = (const GLhalfARB *) srcRowA;
275 const GLhalfARB *rowB = (const GLhalfARB *) srcRowB;
276 GLhalfARB *dst = (GLhalfARB *) dstRow;
277 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
278 i++, j += colStride, k += colStride) {
279 GLfloat aj, ak, bj, bk;
280 aj = _mesa_half_to_float(rowA[j]);
281 ak = _mesa_half_to_float(rowA[k]);
282 bj = _mesa_half_to_float(rowB[j]);
283 bk = _mesa_half_to_float(rowB[k]);
284 dst[i] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
285 }
286 }
287
288 else if (datatype == GL_UNSIGNED_INT && comps == 1) {
289 GLuint i, j, k;
290 const GLuint *rowA = (const GLuint *) srcRowA;
291 const GLuint *rowB = (const GLuint *) srcRowB;
292 GLfloat *dst = (GLfloat *) dstRow;
293 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
294 i++, j += colStride, k += colStride) {
295 dst[i] = (GLfloat)(rowA[j] / 4 + rowA[k] / 4 + rowB[j] / 4 + rowB[k] / 4);
296 }
297 }
298
299 else if (datatype == GL_UNSIGNED_SHORT_5_6_5 && comps == 3) {
300 GLuint i, j, k;
301 const GLushort *rowA = (const GLushort *) srcRowA;
302 const GLushort *rowB = (const GLushort *) srcRowB;
303 GLushort *dst = (GLushort *) dstRow;
304 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
305 i++, j += colStride, k += colStride) {
306 const GLint rowAr0 = rowA[j] & 0x1f;
307 const GLint rowAr1 = rowA[k] & 0x1f;
308 const GLint rowBr0 = rowB[j] & 0x1f;
309 const GLint rowBr1 = rowB[k] & 0x1f;
310 const GLint rowAg0 = (rowA[j] >> 5) & 0x3f;
311 const GLint rowAg1 = (rowA[k] >> 5) & 0x3f;
312 const GLint rowBg0 = (rowB[j] >> 5) & 0x3f;
313 const GLint rowBg1 = (rowB[k] >> 5) & 0x3f;
314 const GLint rowAb0 = (rowA[j] >> 11) & 0x1f;
315 const GLint rowAb1 = (rowA[k] >> 11) & 0x1f;
316 const GLint rowBb0 = (rowB[j] >> 11) & 0x1f;
317 const GLint rowBb1 = (rowB[k] >> 11) & 0x1f;
318 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
319 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
320 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
321 dst[i] = (blue << 11) | (green << 5) | red;
322 }
323 }
324 else if (datatype == GL_UNSIGNED_SHORT_4_4_4_4 && comps == 4) {
325 GLuint i, j, k;
326 const GLushort *rowA = (const GLushort *) srcRowA;
327 const GLushort *rowB = (const GLushort *) srcRowB;
328 GLushort *dst = (GLushort *) dstRow;
329 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
330 i++, j += colStride, k += colStride) {
331 const GLint rowAr0 = rowA[j] & 0xf;
332 const GLint rowAr1 = rowA[k] & 0xf;
333 const GLint rowBr0 = rowB[j] & 0xf;
334 const GLint rowBr1 = rowB[k] & 0xf;
335 const GLint rowAg0 = (rowA[j] >> 4) & 0xf;
336 const GLint rowAg1 = (rowA[k] >> 4) & 0xf;
337 const GLint rowBg0 = (rowB[j] >> 4) & 0xf;
338 const GLint rowBg1 = (rowB[k] >> 4) & 0xf;
339 const GLint rowAb0 = (rowA[j] >> 8) & 0xf;
340 const GLint rowAb1 = (rowA[k] >> 8) & 0xf;
341 const GLint rowBb0 = (rowB[j] >> 8) & 0xf;
342 const GLint rowBb1 = (rowB[k] >> 8) & 0xf;
343 const GLint rowAa0 = (rowA[j] >> 12) & 0xf;
344 const GLint rowAa1 = (rowA[k] >> 12) & 0xf;
345 const GLint rowBa0 = (rowB[j] >> 12) & 0xf;
346 const GLint rowBa1 = (rowB[k] >> 12) & 0xf;
347 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
348 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
349 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
350 const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
351 dst[i] = (alpha << 12) | (blue << 8) | (green << 4) | red;
352 }
353 }
354 else if (datatype == GL_UNSIGNED_SHORT_1_5_5_5_REV && comps == 4) {
355 GLuint i, j, k;
356 const GLushort *rowA = (const GLushort *) srcRowA;
357 const GLushort *rowB = (const GLushort *) srcRowB;
358 GLushort *dst = (GLushort *) dstRow;
359 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
360 i++, j += colStride, k += colStride) {
361 const GLint rowAr0 = rowA[j] & 0x1f;
362 const GLint rowAr1 = rowA[k] & 0x1f;
363 const GLint rowBr0 = rowB[j] & 0x1f;
364 const GLint rowBr1 = rowB[k] & 0xf;
365 const GLint rowAg0 = (rowA[j] >> 5) & 0x1f;
366 const GLint rowAg1 = (rowA[k] >> 5) & 0x1f;
367 const GLint rowBg0 = (rowB[j] >> 5) & 0x1f;
368 const GLint rowBg1 = (rowB[k] >> 5) & 0x1f;
369 const GLint rowAb0 = (rowA[j] >> 10) & 0x1f;
370 const GLint rowAb1 = (rowA[k] >> 10) & 0x1f;
371 const GLint rowBb0 = (rowB[j] >> 10) & 0x1f;
372 const GLint rowBb1 = (rowB[k] >> 10) & 0x1f;
373 const GLint rowAa0 = (rowA[j] >> 15) & 0x1;
374 const GLint rowAa1 = (rowA[k] >> 15) & 0x1;
375 const GLint rowBa0 = (rowB[j] >> 15) & 0x1;
376 const GLint rowBa1 = (rowB[k] >> 15) & 0x1;
377 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
378 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
379 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
380 const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
381 dst[i] = (alpha << 15) | (blue << 10) | (green << 5) | red;
382 }
383 }
384 else if (datatype == GL_UNSIGNED_BYTE_3_3_2 && comps == 3) {
385 GLuint i, j, k;
386 const GLubyte *rowA = (const GLubyte *) srcRowA;
387 const GLubyte *rowB = (const GLubyte *) srcRowB;
388 GLubyte *dst = (GLubyte *) dstRow;
389 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
390 i++, j += colStride, k += colStride) {
391 const GLint rowAr0 = rowA[j] & 0x3;
392 const GLint rowAr1 = rowA[k] & 0x3;
393 const GLint rowBr0 = rowB[j] & 0x3;
394 const GLint rowBr1 = rowB[k] & 0x3;
395 const GLint rowAg0 = (rowA[j] >> 2) & 0x7;
396 const GLint rowAg1 = (rowA[k] >> 2) & 0x7;
397 const GLint rowBg0 = (rowB[j] >> 2) & 0x7;
398 const GLint rowBg1 = (rowB[k] >> 2) & 0x7;
399 const GLint rowAb0 = (rowA[j] >> 5) & 0x7;
400 const GLint rowAb1 = (rowA[k] >> 5) & 0x7;
401 const GLint rowBb0 = (rowB[j] >> 5) & 0x7;
402 const GLint rowBb1 = (rowB[k] >> 5) & 0x7;
403 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
404 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
405 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
406 dst[i] = (blue << 5) | (green << 2) | red;
407 }
408 }
409 else {
410 _mesa_problem(NULL, "bad format in do_row()");
411 }
412 }
413
414
415 /*
416 * These functions generate a 1/2-size mipmap image from a source image.
417 * Texture borders are handled by copying or averaging the source image's
418 * border texels, depending on the scale-down factor.
419 */
420
421 static void
422 make_1d_mipmap(GLenum datatype, GLuint comps, GLint border,
423 GLint srcWidth, const GLubyte *srcPtr,
424 GLint dstWidth, GLubyte *dstPtr)
425 {
426 const GLint bpt = bytes_per_pixel(datatype, comps);
427 const GLubyte *src;
428 GLubyte *dst;
429
430 /* skip the border pixel, if any */
431 src = srcPtr + border * bpt;
432 dst = dstPtr + border * bpt;
433
434 /* we just duplicate the input row, kind of hack, saves code */
435 do_row(datatype, comps, srcWidth - 2 * border, src, src,
436 dstWidth - 2 * border, dst);
437
438 if (border) {
439 /* copy left-most pixel from source */
440 MEMCPY(dstPtr, srcPtr, bpt);
441 /* copy right-most pixel from source */
442 MEMCPY(dstPtr + (dstWidth - 1) * bpt,
443 srcPtr + (srcWidth - 1) * bpt,
444 bpt);
445 }
446 }
447
448
449 /**
450 * Strides are in bytes. If zero, it'll be computed as width * bpp.
451 */
452 static void
453 make_2d_mipmap(GLenum datatype, GLuint comps, GLint border,
454 GLint srcWidth, GLint srcHeight,
455 GLint srcRowBytes, const GLubyte *srcPtr,
456 GLint dstWidth, GLint dstHeight,
457 GLint dstRowBytes, GLubyte *dstPtr)
458 {
459 const GLint bpt = bytes_per_pixel(datatype, comps);
460 const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */
461 const GLint dstWidthNB = dstWidth - 2 * border;
462 const GLint dstHeightNB = dstHeight - 2 * border;
463 const GLubyte *srcA, *srcB;
464 GLubyte *dst;
465 GLint row;
466
467 if (!srcRowBytes)
468 srcRowBytes = bpt * srcWidth;
469
470 if (!dstRowBytes)
471 dstRowBytes = bpt * dstWidth;
472
473 /* Compute src and dst pointers, skipping any border */
474 srcA = srcPtr + border * ((srcWidth + 1) * bpt);
475 if (srcHeight > 1)
476 srcB = srcA + srcRowBytes;
477 else
478 srcB = srcA;
479 dst = dstPtr + border * ((dstWidth + 1) * bpt);
480
481 for (row = 0; row < dstHeightNB; row++) {
482 do_row(datatype, comps, srcWidthNB, srcA, srcB,
483 dstWidthNB, dst);
484 srcA += 2 * srcRowBytes;
485 srcB += 2 * srcRowBytes;
486 dst += dstRowBytes;
487 }
488
489 /* This is ugly but probably won't be used much */
490 if (border > 0) {
491 /* fill in dest border */
492 /* lower-left border pixel */
493 MEMCPY(dstPtr, srcPtr, bpt);
494 /* lower-right border pixel */
495 MEMCPY(dstPtr + (dstWidth - 1) * bpt,
496 srcPtr + (srcWidth - 1) * bpt, bpt);
497 /* upper-left border pixel */
498 MEMCPY(dstPtr + dstWidth * (dstHeight - 1) * bpt,
499 srcPtr + srcWidth * (srcHeight - 1) * bpt, bpt);
500 /* upper-right border pixel */
501 MEMCPY(dstPtr + (dstWidth * dstHeight - 1) * bpt,
502 srcPtr + (srcWidth * srcHeight - 1) * bpt, bpt);
503 /* lower border */
504 do_row(datatype, comps, srcWidthNB,
505 srcPtr + bpt,
506 srcPtr + bpt,
507 dstWidthNB, dstPtr + bpt);
508 /* upper border */
509 do_row(datatype, comps, srcWidthNB,
510 srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt,
511 srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt,
512 dstWidthNB,
513 dstPtr + (dstWidth * (dstHeight - 1) + 1) * bpt);
514 /* left and right borders */
515 if (srcHeight == dstHeight) {
516 /* copy border pixel from src to dst */
517 for (row = 1; row < srcHeight; row++) {
518 MEMCPY(dstPtr + dstWidth * row * bpt,
519 srcPtr + srcWidth * row * bpt, bpt);
520 MEMCPY(dstPtr + (dstWidth * row + dstWidth - 1) * bpt,
521 srcPtr + (srcWidth * row + srcWidth - 1) * bpt, bpt);
522 }
523 }
524 else {
525 /* average two src pixels each dest pixel */
526 for (row = 0; row < dstHeightNB; row += 2) {
527 do_row(datatype, comps, 1,
528 srcPtr + (srcWidth * (row * 2 + 1)) * bpt,
529 srcPtr + (srcWidth * (row * 2 + 2)) * bpt,
530 1, dstPtr + (dstWidth * row + 1) * bpt);
531 do_row(datatype, comps, 1,
532 srcPtr + (srcWidth * (row * 2 + 1) + srcWidth - 1) * bpt,
533 srcPtr + (srcWidth * (row * 2 + 2) + srcWidth - 1) * bpt,
534 1, dstPtr + (dstWidth * row + 1 + dstWidth - 1) * bpt);
535 }
536 }
537 }
538 }
539
540
541 static void
542 make_3d_mipmap(GLenum datatype, GLuint comps, GLint border,
543 GLint srcWidth, GLint srcHeight, GLint srcDepth,
544 GLint srcRowBytes,
545 const GLubyte *srcPtr,
546 GLint dstWidth, GLint dstHeight, GLint dstDepth,
547 GLint dstRowBytes,
548 GLubyte *dstPtr)
549 {
550 const GLint bpt = bytes_per_pixel(datatype, comps);
551 const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */
552 const GLint srcDepthNB = srcDepth - 2 * border;
553 const GLint dstWidthNB = dstWidth - 2 * border;
554 const GLint dstHeightNB = dstHeight - 2 * border;
555 const GLint dstDepthNB = dstDepth - 2 * border;
556 GLvoid *tmpRowA, *tmpRowB;
557 GLint img, row;
558 GLint bytesPerSrcImage, bytesPerDstImage;
559 GLint srcImageOffset, srcRowOffset;
560
561 (void) srcDepthNB; /* silence warnings */
562
563 /* Need two temporary row buffers */
564 tmpRowA = _mesa_malloc(srcWidth * bpt);
565 if (!tmpRowA)
566 return;
567 tmpRowB = _mesa_malloc(srcWidth * bpt);
568 if (!tmpRowB) {
569 _mesa_free(tmpRowA);
570 return;
571 }
572
573 bytesPerSrcImage = srcWidth * srcHeight * bpt;
574 bytesPerDstImage = dstWidth * dstHeight * bpt;
575
576 if (!srcRowBytes)
577 srcRowBytes = srcWidth * bpt;
578 if (!dstRowBytes)
579 dstRowBytes = dstWidth * bpt;
580
581 /* Offset between adjacent src images to be averaged together */
582 srcImageOffset = (srcDepth == dstDepth) ? 0 : bytesPerSrcImage;
583
584 /* Offset between adjacent src rows to be averaged together */
585 srcRowOffset = (srcHeight == dstHeight) ? 0 : srcWidth * bpt;
586
587 /*
588 * Need to average together up to 8 src pixels for each dest pixel.
589 * Break that down into 3 operations:
590 * 1. take two rows from source image and average them together.
591 * 2. take two rows from next source image and average them together.
592 * 3. take the two averaged rows and average them for the final dst row.
593 */
594
595 /*
596 _mesa_printf("mip3d %d x %d x %d -> %d x %d x %d\n",
597 srcWidth, srcHeight, srcDepth, dstWidth, dstHeight, dstDepth);
598 */
599
600 for (img = 0; img < dstDepthNB; img++) {
601 /* first source image pointer, skipping border */
602 const GLubyte *imgSrcA = srcPtr
603 + (bytesPerSrcImage + srcRowBytes + border) * bpt * border
604 + img * (bytesPerSrcImage + srcImageOffset);
605 /* second source image pointer, skipping border */
606 const GLubyte *imgSrcB = imgSrcA + srcImageOffset;
607 /* address of the dest image, skipping border */
608 GLubyte *imgDst = dstPtr
609 + (bytesPerDstImage + dstRowBytes + border) * bpt * border
610 + img * bytesPerDstImage;
611
612 /* setup the four source row pointers and the dest row pointer */
613 const GLubyte *srcImgARowA = imgSrcA;
614 const GLubyte *srcImgARowB = imgSrcA + srcRowOffset;
615 const GLubyte *srcImgBRowA = imgSrcB;
616 const GLubyte *srcImgBRowB = imgSrcB + srcRowOffset;
617 GLubyte *dstImgRow = imgDst;
618
619 for (row = 0; row < dstHeightNB; row++) {
620 /* Average together two rows from first src image */
621 do_row(datatype, comps, srcWidthNB, srcImgARowA, srcImgARowB,
622 srcWidthNB, tmpRowA);
623 /* Average together two rows from second src image */
624 do_row(datatype, comps, srcWidthNB, srcImgBRowA, srcImgBRowB,
625 srcWidthNB, tmpRowB);
626 /* Average together the temp rows to make the final row */
627 do_row(datatype, comps, srcWidthNB, tmpRowA, tmpRowB,
628 dstWidthNB, dstImgRow);
629 /* advance to next rows */
630 srcImgARowA += srcRowBytes + srcRowOffset;
631 srcImgARowB += srcRowBytes + srcRowOffset;
632 srcImgBRowA += srcRowBytes + srcRowOffset;
633 srcImgBRowB += srcRowBytes + srcRowOffset;
634 dstImgRow += dstRowBytes;
635 }
636 }
637
638 _mesa_free(tmpRowA);
639 _mesa_free(tmpRowB);
640
641 /* Luckily we can leverage the make_2d_mipmap() function here! */
642 if (border > 0) {
643 /* do front border image */
644 make_2d_mipmap(datatype, comps, 1, srcWidth, srcHeight, 0, srcPtr,
645 dstWidth, dstHeight, 0, dstPtr);
646 /* do back border image */
647 make_2d_mipmap(datatype, comps, 1, srcWidth, srcHeight,
648 0,
649 srcPtr + bytesPerSrcImage * (srcDepth - 1),
650 dstWidth, dstHeight,
651 0,
652 dstPtr + bytesPerDstImage * (dstDepth - 1));
653 /* do four remaining border edges that span the image slices */
654 if (srcDepth == dstDepth) {
655 /* just copy border pixels from src to dst */
656 for (img = 0; img < dstDepthNB; img++) {
657 const GLubyte *src;
658 GLubyte *dst;
659
660 /* do border along [img][row=0][col=0] */
661 src = srcPtr + (img + 1) * bytesPerSrcImage;
662 dst = dstPtr + (img + 1) * bytesPerDstImage;
663 MEMCPY(dst, src, bpt);
664
665 /* do border along [img][row=dstHeight-1][col=0] */
666 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
667 + (srcHeight - 1) * srcRowBytes;
668 dst = dstPtr + (img + 1) * bytesPerDstImage
669 + (dstHeight - 1) * dstRowBytes;
670 MEMCPY(dst, src, bpt);
671
672 /* do border along [img][row=0][col=dstWidth-1] */
673 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
674 + (srcWidth - 1) * bpt;
675 dst = dstPtr + (img + 1) * bytesPerDstImage
676 + (dstWidth - 1) * bpt;
677 MEMCPY(dst, src, bpt);
678
679 /* do border along [img][row=dstHeight-1][col=dstWidth-1] */
680 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
681 + (bytesPerSrcImage - bpt);
682 dst = dstPtr + (img + 1) * bytesPerDstImage
683 + (bytesPerDstImage - bpt);
684 MEMCPY(dst, src, bpt);
685 }
686 }
687 else {
688 /* average border pixels from adjacent src image pairs */
689 ASSERT(srcDepthNB == 2 * dstDepthNB);
690 for (img = 0; img < dstDepthNB; img++) {
691 const GLubyte *src;
692 GLubyte *dst;
693
694 /* do border along [img][row=0][col=0] */
695 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage;
696 dst = dstPtr + (img + 1) * bytesPerDstImage;
697 do_row(datatype, comps, 1, src, src + srcImageOffset, 1, dst);
698
699 /* do border along [img][row=dstHeight-1][col=0] */
700 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
701 + (srcHeight - 1) * srcRowBytes;
702 dst = dstPtr + (img + 1) * bytesPerDstImage
703 + (dstHeight - 1) * dstRowBytes;
704 do_row(datatype, comps, 1, src, src + srcImageOffset, 1, dst);
705
706 /* do border along [img][row=0][col=dstWidth-1] */
707 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
708 + (srcWidth - 1) * bpt;
709 dst = dstPtr + (img + 1) * bytesPerDstImage
710 + (dstWidth - 1) * bpt;
711 do_row(datatype, comps, 1, src, src + srcImageOffset, 1, dst);
712
713 /* do border along [img][row=dstHeight-1][col=dstWidth-1] */
714 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
715 + (bytesPerSrcImage - bpt);
716 dst = dstPtr + (img + 1) * bytesPerDstImage
717 + (bytesPerDstImage - bpt);
718 do_row(datatype, comps, 1, src, src + srcImageOffset, 1, dst);
719 }
720 }
721 }
722 }
723
724
725 static void
726 make_1d_stack_mipmap(GLenum datatype, GLuint comps, GLint border,
727 GLint srcWidth, const GLubyte *srcPtr,
728 GLint dstWidth, GLint dstHeight, GLubyte *dstPtr)
729 {
730 const GLint bpt = bytes_per_pixel(datatype, comps);
731 const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */
732 const GLint dstWidthNB = dstWidth - 2 * border;
733 const GLint dstHeightNB = dstHeight - 2 * border;
734 const GLint srcRowBytes = bpt * srcRowBytes;
735 const GLint dstRowBytes = bpt * dstRowBytes;
736 const GLubyte *src;
737 GLubyte *dst;
738 GLint row;
739
740 /* Compute src and dst pointers, skipping any border */
741 src = srcPtr + border * ((srcWidth + 1) * bpt);
742 dst = dstPtr + border * ((dstWidth + 1) * bpt);
743
744 for (row = 0; row < dstHeightNB; row++) {
745 do_row(datatype, comps, srcWidthNB, src, src,
746 dstWidthNB, dst);
747 src += srcRowBytes;
748 dst += dstRowBytes;
749 }
750
751 if (border) {
752 /* copy left-most pixel from source */
753 MEMCPY(dstPtr, srcPtr, bpt);
754 /* copy right-most pixel from source */
755 MEMCPY(dstPtr + (dstWidth - 1) * bpt,
756 srcPtr + (srcWidth - 1) * bpt,
757 bpt);
758 }
759 }
760
761
762 /**
763 * \bugs
764 * There is quite a bit of refactoring that could be done with this function
765 * and \c make_2d_mipmap.
766 */
767 static void
768 make_2d_stack_mipmap(GLenum datatype, GLuint comps, GLint border,
769 GLint srcWidth, GLint srcHeight,
770 GLint srcRowBytes,
771 const GLubyte *srcPtr,
772 GLint dstWidth, GLint dstHeight, GLint dstDepth,
773 GLint dstRowBytes,
774 GLubyte *dstPtr)
775 {
776 const GLint bpt = bytes_per_pixel(datatype, comps);
777 const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */
778 const GLint dstWidthNB = dstWidth - 2 * border;
779 const GLint dstHeightNB = dstHeight - 2 * border;
780 const GLint dstDepthNB = dstDepth - 2 * border;
781 const GLubyte *srcA, *srcB;
782 GLubyte *dst;
783 GLint layer;
784 GLint row;
785
786 if (!srcRowBytes)
787 srcRowBytes = bpt * srcWidth;
788
789 if (!dstRowBytes)
790 dstRowBytes = bpt * dstWidth;
791
792 /* Compute src and dst pointers, skipping any border */
793 srcA = srcPtr + border * ((srcWidth + 1) * bpt);
794 if (srcHeight > 1)
795 srcB = srcA + srcRowBytes;
796 else
797 srcB = srcA;
798 dst = dstPtr + border * ((dstWidth + 1) * bpt);
799
800 for (layer = 0; layer < dstDepthNB; layer++) {
801 for (row = 0; row < dstHeightNB; row++) {
802 do_row(datatype, comps, srcWidthNB, srcA, srcB,
803 dstWidthNB, dst);
804 srcA += 2 * srcRowBytes;
805 srcB += 2 * srcRowBytes;
806 dst += dstRowBytes;
807 }
808
809 /* This is ugly but probably won't be used much */
810 if (border > 0) {
811 /* fill in dest border */
812 /* lower-left border pixel */
813 MEMCPY(dstPtr, srcPtr, bpt);
814 /* lower-right border pixel */
815 MEMCPY(dstPtr + (dstWidth - 1) * bpt,
816 srcPtr + (srcWidth - 1) * bpt, bpt);
817 /* upper-left border pixel */
818 MEMCPY(dstPtr + dstWidth * (dstHeight - 1) * bpt,
819 srcPtr + srcWidth * (srcHeight - 1) * bpt, bpt);
820 /* upper-right border pixel */
821 MEMCPY(dstPtr + (dstWidth * dstHeight - 1) * bpt,
822 srcPtr + (srcWidth * srcHeight - 1) * bpt, bpt);
823 /* lower border */
824 do_row(datatype, comps, srcWidthNB,
825 srcPtr + bpt,
826 srcPtr + bpt,
827 dstWidthNB, dstPtr + bpt);
828 /* upper border */
829 do_row(datatype, comps, srcWidthNB,
830 srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt,
831 srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt,
832 dstWidthNB,
833 dstPtr + (dstWidth * (dstHeight - 1) + 1) * bpt);
834 /* left and right borders */
835 if (srcHeight == dstHeight) {
836 /* copy border pixel from src to dst */
837 for (row = 1; row < srcHeight; row++) {
838 MEMCPY(dstPtr + dstWidth * row * bpt,
839 srcPtr + srcWidth * row * bpt, bpt);
840 MEMCPY(dstPtr + (dstWidth * row + dstWidth - 1) * bpt,
841 srcPtr + (srcWidth * row + srcWidth - 1) * bpt, bpt);
842 }
843 }
844 else {
845 /* average two src pixels each dest pixel */
846 for (row = 0; row < dstHeightNB; row += 2) {
847 do_row(datatype, comps, 1,
848 srcPtr + (srcWidth * (row * 2 + 1)) * bpt,
849 srcPtr + (srcWidth * (row * 2 + 2)) * bpt,
850 1, dstPtr + (dstWidth * row + 1) * bpt);
851 do_row(datatype, comps, 1,
852 srcPtr + (srcWidth * (row * 2 + 1) + srcWidth - 1) * bpt,
853 srcPtr + (srcWidth * (row * 2 + 2) + srcWidth - 1) * bpt,
854 1, dstPtr + (dstWidth * row + 1 + dstWidth - 1) * bpt);
855 }
856 }
857 }
858 }
859 }
860
861
862 /**
863 * Down-sample a texture image to produce the next lower mipmap level.
864 */
865 void
866 _mesa_generate_mipmap_level(GLenum target,
867 GLenum datatype, GLuint comps,
868 GLint border,
869 GLint srcWidth, GLint srcHeight, GLint srcDepth,
870 GLint srcRowBytes,
871 const GLubyte *srcData,
872 GLint dstWidth, GLint dstHeight, GLint dstDepth,
873 GLint dstRowBytes,
874 GLubyte *dstData)
875 {
876 switch (target) {
877 case GL_TEXTURE_1D:
878 make_1d_mipmap(datatype, comps, border,
879 srcWidth, srcData,
880 dstWidth, dstData);
881 break;
882 case GL_TEXTURE_2D:
883 case GL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB:
884 case GL_TEXTURE_CUBE_MAP_NEGATIVE_X_ARB:
885 case GL_TEXTURE_CUBE_MAP_POSITIVE_Y_ARB:
886 case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB:
887 case GL_TEXTURE_CUBE_MAP_POSITIVE_Z_ARB:
888 case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB:
889 make_2d_mipmap(datatype, comps, border,
890 srcWidth, srcHeight, srcRowBytes, srcData,
891 dstWidth, dstHeight, dstRowBytes, dstData);
892 break;
893 case GL_TEXTURE_3D:
894 make_3d_mipmap(datatype, comps, border,
895 srcWidth, srcHeight, srcDepth, srcRowBytes, srcData,
896 dstWidth, dstHeight, dstDepth, dstRowBytes, dstData);
897 break;
898 case GL_TEXTURE_1D_ARRAY_EXT:
899 make_1d_stack_mipmap(datatype, comps, border,
900 srcWidth, srcData,
901 dstWidth, dstHeight, dstData);
902 break;
903 case GL_TEXTURE_2D_ARRAY_EXT:
904 make_2d_stack_mipmap(datatype, comps, border,
905 srcWidth, srcHeight, srcRowBytes, srcData,
906 dstWidth, dstHeight, dstDepth, dstRowBytes, dstData);
907 break;
908 case GL_TEXTURE_RECTANGLE_NV:
909 /* no mipmaps, do nothing */
910 break;
911 default:
912 _mesa_problem(NULL, "bad target in _mesa_generate_mipmap_level");
913 }
914 }
915
916
917 /**
918 * compute next (level+1) image size
919 * \return GL_FALSE if no smaller size can be generated (eg. src is 1x1x1 size)
920 */
921 static GLboolean
922 next_mipmap_level_size(GLenum target, GLint border,
923 GLint srcWidth, GLint srcHeight, GLint srcDepth,
924 GLint *dstWidth, GLint *dstHeight, GLint *dstDepth)
925 {
926 if (srcWidth - 2 * border > 1) {
927 *dstWidth = (srcWidth - 2 * border) / 2 + 2 * border;
928 }
929 else {
930 *dstWidth = srcWidth; /* can't go smaller */
931 }
932
933 if ((srcHeight - 2 * border > 1) &&
934 (target != GL_TEXTURE_1D_ARRAY_EXT)) {
935 *dstHeight = (srcHeight - 2 * border) / 2 + 2 * border;
936 }
937 else {
938 *dstHeight = srcHeight; /* can't go smaller */
939 }
940
941 if ((srcDepth - 2 * border > 1) &&
942 (target != GL_TEXTURE_2D_ARRAY_EXT)) {
943 *dstDepth = (srcDepth - 2 * border) / 2 + 2 * border;
944 }
945 else {
946 *dstDepth = srcDepth; /* can't go smaller */
947 }
948
949 if (*dstWidth == srcWidth &&
950 *dstHeight == srcHeight &&
951 *dstDepth == srcDepth) {
952 return GL_FALSE;
953 }
954 else {
955 return GL_TRUE;
956 }
957 }
958
959
960
961
962 /**
963 * For GL_SGIX_generate_mipmap:
964 * Generate a complete set of mipmaps from texObj's base-level image.
965 * Stop at texObj's MaxLevel or when we get to the 1x1 texture.
966 */
967 void
968 _mesa_generate_mipmap(GLcontext *ctx, GLenum target,
969 struct gl_texture_object *texObj)
970 {
971 const struct gl_texture_image *srcImage;
972 const struct gl_texture_format *convertFormat;
973 const GLubyte *srcData = NULL;
974 GLubyte *dstData = NULL;
975 GLint level, maxLevels;
976 GLenum datatype;
977 GLuint comps;
978
979 ASSERT(texObj);
980 /* XXX choose cube map face here??? */
981 srcImage = texObj->Image[0][texObj->BaseLevel];
982 ASSERT(srcImage);
983
984 maxLevels = _mesa_max_texture_levels(ctx, texObj->Target);
985 ASSERT(maxLevels > 0); /* bad target */
986
987 /* Find convertFormat - the format that do_row() will process */
988 if (srcImage->IsCompressed) {
989 /* setup for compressed textures */
990 GLuint row;
991 GLint components, size;
992 GLchan *dst;
993
994 assert(texObj->Target == GL_TEXTURE_2D ||
995 texObj->Target == GL_TEXTURE_CUBE_MAP_ARB);
996
997 if (srcImage->_BaseFormat == GL_RGB) {
998 convertFormat = &_mesa_texformat_rgb;
999 components = 3;
1000 }
1001 else if (srcImage->_BaseFormat == GL_RGBA) {
1002 convertFormat = &_mesa_texformat_rgba;
1003 components = 4;
1004 }
1005 else {
1006 _mesa_problem(ctx, "bad srcImage->_BaseFormat in _mesa_generate_mipmaps");
1007 return;
1008 }
1009
1010 /* allocate storage for uncompressed GL_RGB or GL_RGBA images */
1011 size = _mesa_bytes_per_pixel(srcImage->_BaseFormat, CHAN_TYPE)
1012 * srcImage->Width * srcImage->Height * srcImage->Depth + 20;
1013 /* 20 extra bytes, just be safe when calling last FetchTexel */
1014 srcData = (GLubyte *) _mesa_malloc(size);
1015 if (!srcData) {
1016 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generate mipmaps");
1017 return;
1018 }
1019 dstData = (GLubyte *) _mesa_malloc(size / 2); /* 1/4 would probably be OK */
1020 if (!dstData) {
1021 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generate mipmaps");
1022 _mesa_free((void *) srcData);
1023 return;
1024 }
1025
1026 /* decompress base image here */
1027 dst = (GLchan *) srcData;
1028 for (row = 0; row < srcImage->Height; row++) {
1029 GLuint col;
1030 for (col = 0; col < srcImage->Width; col++) {
1031 srcImage->FetchTexelc(srcImage, col, row, 0, dst);
1032 dst += components;
1033 }
1034 }
1035 }
1036 else {
1037 /* uncompressed */
1038 convertFormat = srcImage->TexFormat;
1039 }
1040
1041 _mesa_format_to_type_and_comps(convertFormat, &datatype, &comps);
1042
1043 for (level = texObj->BaseLevel; level < texObj->MaxLevel
1044 && level < maxLevels - 1; level++) {
1045 /* generate image[level+1] from image[level] */
1046 const struct gl_texture_image *srcImage;
1047 struct gl_texture_image *dstImage;
1048 GLint srcWidth, srcHeight, srcDepth;
1049 GLint dstWidth, dstHeight, dstDepth;
1050 GLint border, bytesPerTexel;
1051 GLboolean nextLevel;
1052
1053 /* get src image parameters */
1054 srcImage = _mesa_select_tex_image(ctx, texObj, target, level);
1055 ASSERT(srcImage);
1056 srcWidth = srcImage->Width;
1057 srcHeight = srcImage->Height;
1058 srcDepth = srcImage->Depth;
1059 border = srcImage->Border;
1060
1061 nextLevel = next_mipmap_level_size(target, border,
1062 srcWidth, srcHeight, srcDepth,
1063 &dstWidth, &dstHeight, &dstDepth);
1064 if (!nextLevel) {
1065 /* all done */
1066 if (srcImage->IsCompressed) {
1067 _mesa_free((void *) srcData);
1068 _mesa_free(dstData);
1069 }
1070 return;
1071 }
1072
1073 /* get dest gl_texture_image */
1074 dstImage = _mesa_get_tex_image(ctx, texObj, target, level + 1);
1075 if (!dstImage) {
1076 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generating mipmaps");
1077 return;
1078 }
1079
1080 if (dstImage->ImageOffsets)
1081 _mesa_free(dstImage->ImageOffsets);
1082
1083 /* Free old image data */
1084 if (dstImage->Data)
1085 ctx->Driver.FreeTexImageData(ctx, dstImage);
1086
1087 /* initialize new image */
1088 _mesa_init_teximage_fields(ctx, target, dstImage, dstWidth, dstHeight,
1089 dstDepth, border, srcImage->InternalFormat);
1090 dstImage->DriverData = NULL;
1091 dstImage->TexFormat = srcImage->TexFormat;
1092 dstImage->FetchTexelc = srcImage->FetchTexelc;
1093 dstImage->FetchTexelf = srcImage->FetchTexelf;
1094 dstImage->IsCompressed = srcImage->IsCompressed;
1095 if (dstImage->IsCompressed) {
1096 dstImage->CompressedSize
1097 = ctx->Driver.CompressedTextureSize(ctx, dstImage->Width,
1098 dstImage->Height,
1099 dstImage->Depth,
1100 dstImage->TexFormat->MesaFormat);
1101 ASSERT(dstImage->CompressedSize > 0);
1102 }
1103
1104 ASSERT(dstImage->TexFormat);
1105 ASSERT(dstImage->FetchTexelc);
1106 ASSERT(dstImage->FetchTexelf);
1107
1108 /* Alloc new teximage data buffer.
1109 * Setup src and dest data pointers.
1110 */
1111 if (dstImage->IsCompressed) {
1112 dstImage->Data = _mesa_alloc_texmemory(dstImage->CompressedSize);
1113 if (!dstImage->Data) {
1114 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generating mipmaps");
1115 return;
1116 }
1117 /* srcData and dstData are already set */
1118 ASSERT(srcData);
1119 ASSERT(dstData);
1120 }
1121 else {
1122 bytesPerTexel = dstImage->TexFormat->TexelBytes;
1123 ASSERT(dstWidth * dstHeight * dstDepth * bytesPerTexel > 0);
1124 dstImage->Data = _mesa_alloc_texmemory(dstWidth * dstHeight
1125 * dstDepth * bytesPerTexel);
1126 if (!dstImage->Data) {
1127 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generating mipmaps");
1128 return;
1129 }
1130 srcData = (const GLubyte *) srcImage->Data;
1131 dstData = (GLubyte *) dstImage->Data;
1132 }
1133
1134 /* Note, 0 indicates default row strides */
1135 _mesa_generate_mipmap_level(target, datatype, comps, border,
1136 srcWidth, srcHeight, srcDepth, 0, srcData,
1137 dstWidth, dstHeight, dstDepth, 0, dstData);
1138
1139 if (dstImage->IsCompressed) {
1140 GLubyte *temp;
1141 /* compress image from dstData into dstImage->Data */
1142 const GLenum srcFormat = convertFormat->BaseFormat;
1143 GLint dstRowBytes
1144 = _mesa_compressed_row_stride(dstImage->TexFormat->MesaFormat, dstWidth);
1145 ASSERT(srcFormat == GL_RGB || srcFormat == GL_RGBA);
1146 dstImage->TexFormat->StoreImage(ctx, 2, dstImage->_BaseFormat,
1147 dstImage->TexFormat,
1148 dstImage->Data,
1149 0, 0, 0, /* dstX/Y/Zoffset */
1150 dstRowBytes, 0, /* strides */
1151 dstWidth, dstHeight, 1, /* size */
1152 srcFormat, CHAN_TYPE,
1153 dstData, /* src data, actually */
1154 &ctx->DefaultPacking);
1155 /* swap src and dest pointers */
1156 temp = (GLubyte *) srcData;
1157 srcData = dstData;
1158 dstData = temp;
1159 }
1160
1161 } /* loop over mipmap levels */
1162 }
1163
1164
1165 /**
1166 * Helper function for drivers which need to rescale texture images to
1167 * certain aspect ratios.
1168 * Nearest filtering only (for broken hardware that can't support
1169 * all aspect ratios). This can be made a lot faster, but I don't
1170 * really care enough...
1171 */
1172 void
1173 _mesa_rescale_teximage2d(GLuint bytesPerPixel,
1174 GLuint srcStrideInPixels,
1175 GLuint dstRowBytes,
1176 GLint srcWidth, GLint srcHeight,
1177 GLint dstWidth, GLint dstHeight,
1178 const GLvoid *srcImage, GLvoid *dstImage)
1179 {
1180 GLint row, col;
1181
1182 #define INNER_LOOP( TYPE, HOP, WOP ) \
1183 for ( row = 0 ; row < dstHeight ; row++ ) { \
1184 GLint srcRow = row HOP hScale; \
1185 for ( col = 0 ; col < dstWidth ; col++ ) { \
1186 GLint srcCol = col WOP wScale; \
1187 dst[col] = src[srcRow * srcStrideInPixels + srcCol]; \
1188 } \
1189 dst = (TYPE *) ((GLubyte *) dst + dstRowBytes); \
1190 } \
1191
1192 #define RESCALE_IMAGE( TYPE ) \
1193 do { \
1194 const TYPE *src = (const TYPE *)srcImage; \
1195 TYPE *dst = (TYPE *)dstImage; \
1196 \
1197 if ( srcHeight < dstHeight ) { \
1198 const GLint hScale = dstHeight / srcHeight; \
1199 if ( srcWidth < dstWidth ) { \
1200 const GLint wScale = dstWidth / srcWidth; \
1201 INNER_LOOP( TYPE, /, / ); \
1202 } \
1203 else { \
1204 const GLint wScale = srcWidth / dstWidth; \
1205 INNER_LOOP( TYPE, /, * ); \
1206 } \
1207 } \
1208 else { \
1209 const GLint hScale = srcHeight / dstHeight; \
1210 if ( srcWidth < dstWidth ) { \
1211 const GLint wScale = dstWidth / srcWidth; \
1212 INNER_LOOP( TYPE, *, / ); \
1213 } \
1214 else { \
1215 const GLint wScale = srcWidth / dstWidth; \
1216 INNER_LOOP( TYPE, *, * ); \
1217 } \
1218 } \
1219 } while (0)
1220
1221 switch ( bytesPerPixel ) {
1222 case 4:
1223 RESCALE_IMAGE( GLuint );
1224 break;
1225
1226 case 2:
1227 RESCALE_IMAGE( GLushort );
1228 break;
1229
1230 case 1:
1231 RESCALE_IMAGE( GLubyte );
1232 break;
1233 default:
1234 _mesa_problem(NULL,"unexpected bytes/pixel in _mesa_rescale_teximage2d");
1235 }
1236 }
1237
1238
1239 /**
1240 * Upscale an image by replication, not (typical) stretching.
1241 * We use this when the image width or height is less than a
1242 * certain size (4, 8) and we need to upscale an image.
1243 */
1244 void
1245 _mesa_upscale_teximage2d(GLsizei inWidth, GLsizei inHeight,
1246 GLsizei outWidth, GLsizei outHeight,
1247 GLint comps, const GLchan *src, GLint srcRowBytes,
1248 GLchan *dest )
1249 {
1250 GLint i, j, k;
1251
1252 ASSERT(outWidth >= inWidth);
1253 ASSERT(outHeight >= inHeight);
1254 #if 0
1255 ASSERT(inWidth == 1 || inWidth == 2 || inHeight == 1 || inHeight == 2);
1256 ASSERT((outWidth & 3) == 0);
1257 ASSERT((outHeight & 3) == 0);
1258 #endif
1259
1260 for (i = 0; i < outHeight; i++) {
1261 const GLint ii = i % inHeight;
1262 for (j = 0; j < outWidth; j++) {
1263 const GLint jj = j % inWidth;
1264 for (k = 0; k < comps; k++) {
1265 dest[(i * outWidth + j) * comps + k]
1266 = src[ii * srcRowBytes + jj * comps + k];
1267 }
1268 }
1269 }
1270 }
1271