mesa: Add assert to check input to memcpy is not null.
[mesa.git] / src / mesa / main / mipmap.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.1
4 *
5 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /**
27 * \file mipmap.c mipmap generation and teximage resizing functions.
28 */
29
30 #include "imports.h"
31 #include "formats.h"
32 #include "mipmap.h"
33 #include "teximage.h"
34 #include "texstore.h"
35 #include "image.h"
36
37
38
39 static GLint
40 bytes_per_pixel(GLenum datatype, GLuint comps)
41 {
42 GLint b = _mesa_sizeof_packed_type(datatype);
43 assert(b >= 0);
44
45 if (_mesa_type_is_packed(datatype))
46 return b;
47 else
48 return b * comps;
49 }
50
51
52 /**
53 * \name Support macros for do_row and do_row_3d
54 *
55 * The macro madness is here for two reasons. First, it compacts the code
56 * slightly. Second, it makes it much easier to adjust the specifics of the
57 * filter to tune the rounding characteristics.
58 */
59 /*@{*/
60 #define DECLARE_ROW_POINTERS(t, e) \
61 const t(*rowA)[e] = (const t(*)[e]) srcRowA; \
62 const t(*rowB)[e] = (const t(*)[e]) srcRowB; \
63 const t(*rowC)[e] = (const t(*)[e]) srcRowC; \
64 const t(*rowD)[e] = (const t(*)[e]) srcRowD; \
65 t(*dst)[e] = (t(*)[e]) dstRow
66
67 #define DECLARE_ROW_POINTERS0(t) \
68 const t *rowA = (const t *) srcRowA; \
69 const t *rowB = (const t *) srcRowB; \
70 const t *rowC = (const t *) srcRowC; \
71 const t *rowD = (const t *) srcRowD; \
72 t *dst = (t *) dstRow
73
74 #define FILTER_SUM_3D(Aj, Ak, Bj, Bk, Cj, Ck, Dj, Dk) \
75 ((unsigned) Aj + (unsigned) Ak \
76 + (unsigned) Bj + (unsigned) Bk \
77 + (unsigned) Cj + (unsigned) Ck \
78 + (unsigned) Dj + (unsigned) Dk \
79 + 4) >> 3
80
81 #define FILTER_3D(e) \
82 do { \
83 dst[i][e] = FILTER_SUM_3D(rowA[j][e], rowA[k][e], \
84 rowB[j][e], rowB[k][e], \
85 rowC[j][e], rowC[k][e], \
86 rowD[j][e], rowD[k][e]); \
87 } while(0)
88
89 #define FILTER_SUM_3D_SIGNED(Aj, Ak, Bj, Bk, Cj, Ck, Dj, Dk) \
90 (Aj + Ak \
91 + Bj + Bk \
92 + Cj + Ck \
93 + Dj + Dk \
94 + 4) / 8
95
96 #define FILTER_3D_SIGNED(e) \
97 do { \
98 dst[i][e] = FILTER_SUM_3D_SIGNED(rowA[j][e], rowA[k][e], \
99 rowB[j][e], rowB[k][e], \
100 rowC[j][e], rowC[k][e], \
101 rowD[j][e], rowD[k][e]); \
102 } while(0)
103
104 #define FILTER_F_3D(e) \
105 do { \
106 dst[i][e] = (rowA[j][e] + rowA[k][e] \
107 + rowB[j][e] + rowB[k][e] \
108 + rowC[j][e] + rowC[k][e] \
109 + rowD[j][e] + rowD[k][e]) * 0.125F; \
110 } while(0)
111
112 #define FILTER_HF_3D(e) \
113 do { \
114 const GLfloat aj = _mesa_half_to_float(rowA[j][e]); \
115 const GLfloat ak = _mesa_half_to_float(rowA[k][e]); \
116 const GLfloat bj = _mesa_half_to_float(rowB[j][e]); \
117 const GLfloat bk = _mesa_half_to_float(rowB[k][e]); \
118 const GLfloat cj = _mesa_half_to_float(rowC[j][e]); \
119 const GLfloat ck = _mesa_half_to_float(rowC[k][e]); \
120 const GLfloat dj = _mesa_half_to_float(rowD[j][e]); \
121 const GLfloat dk = _mesa_half_to_float(rowD[k][e]); \
122 dst[i][e] = _mesa_float_to_half((aj + ak + bj + bk + cj + ck + dj + dk) \
123 * 0.125F); \
124 } while(0)
125 /*@}*/
126
127
128 /**
129 * Average together two rows of a source image to produce a single new
130 * row in the dest image. It's legal for the two source rows to point
131 * to the same data. The source width must be equal to either the
132 * dest width or two times the dest width.
133 * \param datatype GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT, GL_FLOAT, etc.
134 * \param comps number of components per pixel (1..4)
135 */
136 static void
137 do_row(GLenum datatype, GLuint comps, GLint srcWidth,
138 const GLvoid *srcRowA, const GLvoid *srcRowB,
139 GLint dstWidth, GLvoid *dstRow)
140 {
141 const GLuint k0 = (srcWidth == dstWidth) ? 0 : 1;
142 const GLuint colStride = (srcWidth == dstWidth) ? 1 : 2;
143
144 ASSERT(comps >= 1);
145 ASSERT(comps <= 4);
146
147 /* This assertion is no longer valid with non-power-of-2 textures
148 assert(srcWidth == dstWidth || srcWidth == 2 * dstWidth);
149 */
150
151 if (datatype == GL_UNSIGNED_BYTE && comps == 4) {
152 GLuint i, j, k;
153 const GLubyte(*rowA)[4] = (const GLubyte(*)[4]) srcRowA;
154 const GLubyte(*rowB)[4] = (const GLubyte(*)[4]) srcRowB;
155 GLubyte(*dst)[4] = (GLubyte(*)[4]) dstRow;
156 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
157 i++, j += colStride, k += colStride) {
158 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
159 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
160 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
161 dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
162 }
163 }
164 else if (datatype == GL_UNSIGNED_BYTE && comps == 3) {
165 GLuint i, j, k;
166 const GLubyte(*rowA)[3] = (const GLubyte(*)[3]) srcRowA;
167 const GLubyte(*rowB)[3] = (const GLubyte(*)[3]) srcRowB;
168 GLubyte(*dst)[3] = (GLubyte(*)[3]) dstRow;
169 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
170 i++, j += colStride, k += colStride) {
171 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
172 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
173 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
174 }
175 }
176 else if (datatype == GL_UNSIGNED_BYTE && comps == 2) {
177 GLuint i, j, k;
178 const GLubyte(*rowA)[2] = (const GLubyte(*)[2]) srcRowA;
179 const GLubyte(*rowB)[2] = (const GLubyte(*)[2]) srcRowB;
180 GLubyte(*dst)[2] = (GLubyte(*)[2]) dstRow;
181 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
182 i++, j += colStride, k += colStride) {
183 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) >> 2;
184 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) >> 2;
185 }
186 }
187 else if (datatype == GL_UNSIGNED_BYTE && comps == 1) {
188 GLuint i, j, k;
189 const GLubyte *rowA = (const GLubyte *) srcRowA;
190 const GLubyte *rowB = (const GLubyte *) srcRowB;
191 GLubyte *dst = (GLubyte *) dstRow;
192 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
193 i++, j += colStride, k += colStride) {
194 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) >> 2;
195 }
196 }
197
198 else if (datatype == GL_BYTE && comps == 4) {
199 GLuint i, j, k;
200 const GLbyte(*rowA)[4] = (const GLbyte(*)[4]) srcRowA;
201 const GLbyte(*rowB)[4] = (const GLbyte(*)[4]) srcRowB;
202 GLbyte(*dst)[4] = (GLbyte(*)[4]) dstRow;
203 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
204 i++, j += colStride, k += colStride) {
205 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
206 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
207 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
208 dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
209 }
210 }
211 else if (datatype == GL_BYTE && comps == 3) {
212 GLuint i, j, k;
213 const GLbyte(*rowA)[3] = (const GLbyte(*)[3]) srcRowA;
214 const GLbyte(*rowB)[3] = (const GLbyte(*)[3]) srcRowB;
215 GLbyte(*dst)[3] = (GLbyte(*)[3]) dstRow;
216 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
217 i++, j += colStride, k += colStride) {
218 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
219 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
220 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
221 }
222 }
223 else if (datatype == GL_BYTE && comps == 2) {
224 GLuint i, j, k;
225 const GLbyte(*rowA)[2] = (const GLbyte(*)[2]) srcRowA;
226 const GLbyte(*rowB)[2] = (const GLbyte(*)[2]) srcRowB;
227 GLbyte(*dst)[2] = (GLbyte(*)[2]) dstRow;
228 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
229 i++, j += colStride, k += colStride) {
230 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
231 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
232 }
233 }
234 else if (datatype == GL_BYTE && comps == 1) {
235 GLuint i, j, k;
236 const GLbyte *rowA = (const GLbyte *) srcRowA;
237 const GLbyte *rowB = (const GLbyte *) srcRowB;
238 GLbyte *dst = (GLbyte *) dstRow;
239 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
240 i++, j += colStride, k += colStride) {
241 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4;
242 }
243 }
244
245 else if (datatype == GL_UNSIGNED_SHORT && comps == 4) {
246 GLuint i, j, k;
247 const GLushort(*rowA)[4] = (const GLushort(*)[4]) srcRowA;
248 const GLushort(*rowB)[4] = (const GLushort(*)[4]) srcRowB;
249 GLushort(*dst)[4] = (GLushort(*)[4]) dstRow;
250 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
251 i++, j += colStride, k += colStride) {
252 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
253 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
254 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
255 dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
256 }
257 }
258 else if (datatype == GL_UNSIGNED_SHORT && comps == 3) {
259 GLuint i, j, k;
260 const GLushort(*rowA)[3] = (const GLushort(*)[3]) srcRowA;
261 const GLushort(*rowB)[3] = (const GLushort(*)[3]) srcRowB;
262 GLushort(*dst)[3] = (GLushort(*)[3]) dstRow;
263 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
264 i++, j += colStride, k += colStride) {
265 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
266 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
267 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
268 }
269 }
270 else if (datatype == GL_UNSIGNED_SHORT && comps == 2) {
271 GLuint i, j, k;
272 const GLushort(*rowA)[2] = (const GLushort(*)[2]) srcRowA;
273 const GLushort(*rowB)[2] = (const GLushort(*)[2]) srcRowB;
274 GLushort(*dst)[2] = (GLushort(*)[2]) dstRow;
275 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
276 i++, j += colStride, k += colStride) {
277 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
278 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
279 }
280 }
281 else if (datatype == GL_UNSIGNED_SHORT && comps == 1) {
282 GLuint i, j, k;
283 const GLushort *rowA = (const GLushort *) srcRowA;
284 const GLushort *rowB = (const GLushort *) srcRowB;
285 GLushort *dst = (GLushort *) dstRow;
286 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
287 i++, j += colStride, k += colStride) {
288 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4;
289 }
290 }
291 else if (datatype == GL_FLOAT && comps == 4) {
292 GLuint i, j, k;
293 const GLfloat(*rowA)[4] = (const GLfloat(*)[4]) srcRowA;
294 const GLfloat(*rowB)[4] = (const GLfloat(*)[4]) srcRowB;
295 GLfloat(*dst)[4] = (GLfloat(*)[4]) dstRow;
296 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
297 i++, j += colStride, k += colStride) {
298 dst[i][0] = (rowA[j][0] + rowA[k][0] +
299 rowB[j][0] + rowB[k][0]) * 0.25F;
300 dst[i][1] = (rowA[j][1] + rowA[k][1] +
301 rowB[j][1] + rowB[k][1]) * 0.25F;
302 dst[i][2] = (rowA[j][2] + rowA[k][2] +
303 rowB[j][2] + rowB[k][2]) * 0.25F;
304 dst[i][3] = (rowA[j][3] + rowA[k][3] +
305 rowB[j][3] + rowB[k][3]) * 0.25F;
306 }
307 }
308 else if (datatype == GL_FLOAT && comps == 3) {
309 GLuint i, j, k;
310 const GLfloat(*rowA)[3] = (const GLfloat(*)[3]) srcRowA;
311 const GLfloat(*rowB)[3] = (const GLfloat(*)[3]) srcRowB;
312 GLfloat(*dst)[3] = (GLfloat(*)[3]) dstRow;
313 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
314 i++, j += colStride, k += colStride) {
315 dst[i][0] = (rowA[j][0] + rowA[k][0] +
316 rowB[j][0] + rowB[k][0]) * 0.25F;
317 dst[i][1] = (rowA[j][1] + rowA[k][1] +
318 rowB[j][1] + rowB[k][1]) * 0.25F;
319 dst[i][2] = (rowA[j][2] + rowA[k][2] +
320 rowB[j][2] + rowB[k][2]) * 0.25F;
321 }
322 }
323 else if (datatype == GL_FLOAT && comps == 2) {
324 GLuint i, j, k;
325 const GLfloat(*rowA)[2] = (const GLfloat(*)[2]) srcRowA;
326 const GLfloat(*rowB)[2] = (const GLfloat(*)[2]) srcRowB;
327 GLfloat(*dst)[2] = (GLfloat(*)[2]) dstRow;
328 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
329 i++, j += colStride, k += colStride) {
330 dst[i][0] = (rowA[j][0] + rowA[k][0] +
331 rowB[j][0] + rowB[k][0]) * 0.25F;
332 dst[i][1] = (rowA[j][1] + rowA[k][1] +
333 rowB[j][1] + rowB[k][1]) * 0.25F;
334 }
335 }
336 else if (datatype == GL_FLOAT && comps == 1) {
337 GLuint i, j, k;
338 const GLfloat *rowA = (const GLfloat *) srcRowA;
339 const GLfloat *rowB = (const GLfloat *) srcRowB;
340 GLfloat *dst = (GLfloat *) dstRow;
341 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
342 i++, j += colStride, k += colStride) {
343 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) * 0.25F;
344 }
345 }
346
347 else if (datatype == GL_HALF_FLOAT_ARB && comps == 4) {
348 GLuint i, j, k, comp;
349 const GLhalfARB(*rowA)[4] = (const GLhalfARB(*)[4]) srcRowA;
350 const GLhalfARB(*rowB)[4] = (const GLhalfARB(*)[4]) srcRowB;
351 GLhalfARB(*dst)[4] = (GLhalfARB(*)[4]) dstRow;
352 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
353 i++, j += colStride, k += colStride) {
354 for (comp = 0; comp < 4; comp++) {
355 GLfloat aj, ak, bj, bk;
356 aj = _mesa_half_to_float(rowA[j][comp]);
357 ak = _mesa_half_to_float(rowA[k][comp]);
358 bj = _mesa_half_to_float(rowB[j][comp]);
359 bk = _mesa_half_to_float(rowB[k][comp]);
360 dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
361 }
362 }
363 }
364 else if (datatype == GL_HALF_FLOAT_ARB && comps == 3) {
365 GLuint i, j, k, comp;
366 const GLhalfARB(*rowA)[3] = (const GLhalfARB(*)[3]) srcRowA;
367 const GLhalfARB(*rowB)[3] = (const GLhalfARB(*)[3]) srcRowB;
368 GLhalfARB(*dst)[3] = (GLhalfARB(*)[3]) dstRow;
369 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
370 i++, j += colStride, k += colStride) {
371 for (comp = 0; comp < 3; comp++) {
372 GLfloat aj, ak, bj, bk;
373 aj = _mesa_half_to_float(rowA[j][comp]);
374 ak = _mesa_half_to_float(rowA[k][comp]);
375 bj = _mesa_half_to_float(rowB[j][comp]);
376 bk = _mesa_half_to_float(rowB[k][comp]);
377 dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
378 }
379 }
380 }
381 else if (datatype == GL_HALF_FLOAT_ARB && comps == 2) {
382 GLuint i, j, k, comp;
383 const GLhalfARB(*rowA)[2] = (const GLhalfARB(*)[2]) srcRowA;
384 const GLhalfARB(*rowB)[2] = (const GLhalfARB(*)[2]) srcRowB;
385 GLhalfARB(*dst)[2] = (GLhalfARB(*)[2]) dstRow;
386 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
387 i++, j += colStride, k += colStride) {
388 for (comp = 0; comp < 2; comp++) {
389 GLfloat aj, ak, bj, bk;
390 aj = _mesa_half_to_float(rowA[j][comp]);
391 ak = _mesa_half_to_float(rowA[k][comp]);
392 bj = _mesa_half_to_float(rowB[j][comp]);
393 bk = _mesa_half_to_float(rowB[k][comp]);
394 dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
395 }
396 }
397 }
398 else if (datatype == GL_HALF_FLOAT_ARB && comps == 1) {
399 GLuint i, j, k;
400 const GLhalfARB *rowA = (const GLhalfARB *) srcRowA;
401 const GLhalfARB *rowB = (const GLhalfARB *) srcRowB;
402 GLhalfARB *dst = (GLhalfARB *) dstRow;
403 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
404 i++, j += colStride, k += colStride) {
405 GLfloat aj, ak, bj, bk;
406 aj = _mesa_half_to_float(rowA[j]);
407 ak = _mesa_half_to_float(rowA[k]);
408 bj = _mesa_half_to_float(rowB[j]);
409 bk = _mesa_half_to_float(rowB[k]);
410 dst[i] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
411 }
412 }
413
414 else if (datatype == GL_UNSIGNED_INT && comps == 1) {
415 GLuint i, j, k;
416 const GLuint *rowA = (const GLuint *) srcRowA;
417 const GLuint *rowB = (const GLuint *) srcRowB;
418 GLfloat *dst = (GLfloat *) dstRow;
419 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
420 i++, j += colStride, k += colStride) {
421 dst[i] = (GLfloat)(rowA[j] / 4 + rowA[k] / 4 + rowB[j] / 4 + rowB[k] / 4);
422 }
423 }
424
425 else if (datatype == GL_UNSIGNED_SHORT_5_6_5 && comps == 3) {
426 GLuint i, j, k;
427 const GLushort *rowA = (const GLushort *) srcRowA;
428 const GLushort *rowB = (const GLushort *) srcRowB;
429 GLushort *dst = (GLushort *) dstRow;
430 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
431 i++, j += colStride, k += colStride) {
432 const GLint rowAr0 = rowA[j] & 0x1f;
433 const GLint rowAr1 = rowA[k] & 0x1f;
434 const GLint rowBr0 = rowB[j] & 0x1f;
435 const GLint rowBr1 = rowB[k] & 0x1f;
436 const GLint rowAg0 = (rowA[j] >> 5) & 0x3f;
437 const GLint rowAg1 = (rowA[k] >> 5) & 0x3f;
438 const GLint rowBg0 = (rowB[j] >> 5) & 0x3f;
439 const GLint rowBg1 = (rowB[k] >> 5) & 0x3f;
440 const GLint rowAb0 = (rowA[j] >> 11) & 0x1f;
441 const GLint rowAb1 = (rowA[k] >> 11) & 0x1f;
442 const GLint rowBb0 = (rowB[j] >> 11) & 0x1f;
443 const GLint rowBb1 = (rowB[k] >> 11) & 0x1f;
444 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
445 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
446 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
447 dst[i] = (blue << 11) | (green << 5) | red;
448 }
449 }
450 else if (datatype == GL_UNSIGNED_SHORT_4_4_4_4 && comps == 4) {
451 GLuint i, j, k;
452 const GLushort *rowA = (const GLushort *) srcRowA;
453 const GLushort *rowB = (const GLushort *) srcRowB;
454 GLushort *dst = (GLushort *) dstRow;
455 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
456 i++, j += colStride, k += colStride) {
457 const GLint rowAr0 = rowA[j] & 0xf;
458 const GLint rowAr1 = rowA[k] & 0xf;
459 const GLint rowBr0 = rowB[j] & 0xf;
460 const GLint rowBr1 = rowB[k] & 0xf;
461 const GLint rowAg0 = (rowA[j] >> 4) & 0xf;
462 const GLint rowAg1 = (rowA[k] >> 4) & 0xf;
463 const GLint rowBg0 = (rowB[j] >> 4) & 0xf;
464 const GLint rowBg1 = (rowB[k] >> 4) & 0xf;
465 const GLint rowAb0 = (rowA[j] >> 8) & 0xf;
466 const GLint rowAb1 = (rowA[k] >> 8) & 0xf;
467 const GLint rowBb0 = (rowB[j] >> 8) & 0xf;
468 const GLint rowBb1 = (rowB[k] >> 8) & 0xf;
469 const GLint rowAa0 = (rowA[j] >> 12) & 0xf;
470 const GLint rowAa1 = (rowA[k] >> 12) & 0xf;
471 const GLint rowBa0 = (rowB[j] >> 12) & 0xf;
472 const GLint rowBa1 = (rowB[k] >> 12) & 0xf;
473 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
474 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
475 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
476 const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
477 dst[i] = (alpha << 12) | (blue << 8) | (green << 4) | red;
478 }
479 }
480 else if (datatype == GL_UNSIGNED_SHORT_1_5_5_5_REV && comps == 4) {
481 GLuint i, j, k;
482 const GLushort *rowA = (const GLushort *) srcRowA;
483 const GLushort *rowB = (const GLushort *) srcRowB;
484 GLushort *dst = (GLushort *) dstRow;
485 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
486 i++, j += colStride, k += colStride) {
487 const GLint rowAr0 = rowA[j] & 0x1f;
488 const GLint rowAr1 = rowA[k] & 0x1f;
489 const GLint rowBr0 = rowB[j] & 0x1f;
490 const GLint rowBr1 = rowB[k] & 0x1f;
491 const GLint rowAg0 = (rowA[j] >> 5) & 0x1f;
492 const GLint rowAg1 = (rowA[k] >> 5) & 0x1f;
493 const GLint rowBg0 = (rowB[j] >> 5) & 0x1f;
494 const GLint rowBg1 = (rowB[k] >> 5) & 0x1f;
495 const GLint rowAb0 = (rowA[j] >> 10) & 0x1f;
496 const GLint rowAb1 = (rowA[k] >> 10) & 0x1f;
497 const GLint rowBb0 = (rowB[j] >> 10) & 0x1f;
498 const GLint rowBb1 = (rowB[k] >> 10) & 0x1f;
499 const GLint rowAa0 = (rowA[j] >> 15) & 0x1;
500 const GLint rowAa1 = (rowA[k] >> 15) & 0x1;
501 const GLint rowBa0 = (rowB[j] >> 15) & 0x1;
502 const GLint rowBa1 = (rowB[k] >> 15) & 0x1;
503 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
504 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
505 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
506 const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
507 dst[i] = (alpha << 15) | (blue << 10) | (green << 5) | red;
508 }
509 }
510 else if (datatype == GL_UNSIGNED_BYTE_3_3_2 && comps == 3) {
511 GLuint i, j, k;
512 const GLubyte *rowA = (const GLubyte *) srcRowA;
513 const GLubyte *rowB = (const GLubyte *) srcRowB;
514 GLubyte *dst = (GLubyte *) dstRow;
515 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
516 i++, j += colStride, k += colStride) {
517 const GLint rowAr0 = rowA[j] & 0x3;
518 const GLint rowAr1 = rowA[k] & 0x3;
519 const GLint rowBr0 = rowB[j] & 0x3;
520 const GLint rowBr1 = rowB[k] & 0x3;
521 const GLint rowAg0 = (rowA[j] >> 2) & 0x7;
522 const GLint rowAg1 = (rowA[k] >> 2) & 0x7;
523 const GLint rowBg0 = (rowB[j] >> 2) & 0x7;
524 const GLint rowBg1 = (rowB[k] >> 2) & 0x7;
525 const GLint rowAb0 = (rowA[j] >> 5) & 0x7;
526 const GLint rowAb1 = (rowA[k] >> 5) & 0x7;
527 const GLint rowBb0 = (rowB[j] >> 5) & 0x7;
528 const GLint rowBb1 = (rowB[k] >> 5) & 0x7;
529 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
530 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
531 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
532 dst[i] = (blue << 5) | (green << 2) | red;
533 }
534 }
535 else {
536 _mesa_problem(NULL, "bad format in do_row()");
537 }
538 }
539
540
541 /**
542 * Average together four rows of a source image to produce a single new
543 * row in the dest image. It's legal for the two source rows to point
544 * to the same data. The source width must be equal to either the
545 * dest width or two times the dest width.
546 *
547 * \param datatype GL pixel type \c GL_UNSIGNED_BYTE, \c GL_UNSIGNED_SHORT,
548 * \c GL_FLOAT, etc.
549 * \param comps number of components per pixel (1..4)
550 * \param srcWidth Width of a row in the source data
551 * \param srcRowA Pointer to one of the rows of source data
552 * \param srcRowB Pointer to one of the rows of source data
553 * \param srcRowC Pointer to one of the rows of source data
554 * \param srcRowD Pointer to one of the rows of source data
555 * \param dstWidth Width of a row in the destination data
556 * \param srcRowA Pointer to the row of destination data
557 */
558 static void
559 do_row_3D(GLenum datatype, GLuint comps, GLint srcWidth,
560 const GLvoid *srcRowA, const GLvoid *srcRowB,
561 const GLvoid *srcRowC, const GLvoid *srcRowD,
562 GLint dstWidth, GLvoid *dstRow)
563 {
564 const GLuint k0 = (srcWidth == dstWidth) ? 0 : 1;
565 const GLuint colStride = (srcWidth == dstWidth) ? 1 : 2;
566 GLuint i, j, k;
567
568 ASSERT(comps >= 1);
569 ASSERT(comps <= 4);
570
571 if ((datatype == GL_UNSIGNED_BYTE) && (comps == 4)) {
572 DECLARE_ROW_POINTERS(GLubyte, 4);
573
574 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
575 i++, j += colStride, k += colStride) {
576 FILTER_3D(0);
577 FILTER_3D(1);
578 FILTER_3D(2);
579 FILTER_3D(3);
580 }
581 }
582 else if ((datatype == GL_UNSIGNED_BYTE) && (comps == 3)) {
583 DECLARE_ROW_POINTERS(GLubyte, 3);
584
585 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
586 i++, j += colStride, k += colStride) {
587 FILTER_3D(0);
588 FILTER_3D(1);
589 FILTER_3D(2);
590 }
591 }
592 else if ((datatype == GL_UNSIGNED_BYTE) && (comps == 2)) {
593 DECLARE_ROW_POINTERS(GLubyte, 2);
594
595 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
596 i++, j += colStride, k += colStride) {
597 FILTER_3D(0);
598 FILTER_3D(1);
599 }
600 }
601 else if ((datatype == GL_UNSIGNED_BYTE) && (comps == 1)) {
602 DECLARE_ROW_POINTERS(GLubyte, 1);
603
604 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
605 i++, j += colStride, k += colStride) {
606 FILTER_3D(0);
607 }
608 }
609 if ((datatype == GL_BYTE) && (comps == 4)) {
610 DECLARE_ROW_POINTERS(GLbyte, 4);
611
612 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
613 i++, j += colStride, k += colStride) {
614 FILTER_3D_SIGNED(0);
615 FILTER_3D_SIGNED(1);
616 FILTER_3D_SIGNED(2);
617 FILTER_3D_SIGNED(3);
618 }
619 }
620 else if ((datatype == GL_BYTE) && (comps == 3)) {
621 DECLARE_ROW_POINTERS(GLbyte, 3);
622
623 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
624 i++, j += colStride, k += colStride) {
625 FILTER_3D_SIGNED(0);
626 FILTER_3D_SIGNED(1);
627 FILTER_3D_SIGNED(2);
628 }
629 }
630 else if ((datatype == GL_BYTE) && (comps == 2)) {
631 DECLARE_ROW_POINTERS(GLbyte, 2);
632
633 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
634 i++, j += colStride, k += colStride) {
635 FILTER_3D_SIGNED(0);
636 FILTER_3D_SIGNED(1);
637 }
638 }
639 else if ((datatype == GL_BYTE) && (comps == 1)) {
640 DECLARE_ROW_POINTERS(GLbyte, 1);
641
642 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
643 i++, j += colStride, k += colStride) {
644 FILTER_3D_SIGNED(0);
645 }
646 }
647 else if ((datatype == GL_UNSIGNED_SHORT) && (comps == 4)) {
648 DECLARE_ROW_POINTERS(GLushort, 4);
649
650 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
651 i++, j += colStride, k += colStride) {
652 FILTER_3D(0);
653 FILTER_3D(1);
654 FILTER_3D(2);
655 FILTER_3D(3);
656 }
657 }
658 else if ((datatype == GL_UNSIGNED_SHORT) && (comps == 3)) {
659 DECLARE_ROW_POINTERS(GLushort, 3);
660
661 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
662 i++, j += colStride, k += colStride) {
663 FILTER_3D(0);
664 FILTER_3D(1);
665 FILTER_3D(2);
666 }
667 }
668 else if ((datatype == GL_UNSIGNED_SHORT) && (comps == 2)) {
669 DECLARE_ROW_POINTERS(GLushort, 2);
670
671 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
672 i++, j += colStride, k += colStride) {
673 FILTER_3D(0);
674 FILTER_3D(1);
675 }
676 }
677 else if ((datatype == GL_UNSIGNED_SHORT) && (comps == 1)) {
678 DECLARE_ROW_POINTERS(GLushort, 1);
679
680 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
681 i++, j += colStride, k += colStride) {
682 FILTER_3D(0);
683 }
684 }
685 else if ((datatype == GL_FLOAT) && (comps == 4)) {
686 DECLARE_ROW_POINTERS(GLfloat, 4);
687
688 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
689 i++, j += colStride, k += colStride) {
690 FILTER_F_3D(0);
691 FILTER_F_3D(1);
692 FILTER_F_3D(2);
693 FILTER_F_3D(3);
694 }
695 }
696 else if ((datatype == GL_FLOAT) && (comps == 3)) {
697 DECLARE_ROW_POINTERS(GLfloat, 3);
698
699 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
700 i++, j += colStride, k += colStride) {
701 FILTER_F_3D(0);
702 FILTER_F_3D(1);
703 FILTER_F_3D(2);
704 }
705 }
706 else if ((datatype == GL_FLOAT) && (comps == 2)) {
707 DECLARE_ROW_POINTERS(GLfloat, 2);
708
709 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
710 i++, j += colStride, k += colStride) {
711 FILTER_F_3D(0);
712 FILTER_F_3D(1);
713 }
714 }
715 else if ((datatype == GL_FLOAT) && (comps == 1)) {
716 DECLARE_ROW_POINTERS(GLfloat, 1);
717
718 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
719 i++, j += colStride, k += colStride) {
720 FILTER_F_3D(0);
721 }
722 }
723 else if ((datatype == GL_HALF_FLOAT_ARB) && (comps == 4)) {
724 DECLARE_ROW_POINTERS(GLhalfARB, 4);
725
726 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
727 i++, j += colStride, k += colStride) {
728 FILTER_HF_3D(0);
729 FILTER_HF_3D(1);
730 FILTER_HF_3D(2);
731 FILTER_HF_3D(3);
732 }
733 }
734 else if ((datatype == GL_HALF_FLOAT_ARB) && (comps == 3)) {
735 DECLARE_ROW_POINTERS(GLhalfARB, 4);
736
737 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
738 i++, j += colStride, k += colStride) {
739 FILTER_HF_3D(0);
740 FILTER_HF_3D(1);
741 FILTER_HF_3D(2);
742 }
743 }
744 else if ((datatype == GL_HALF_FLOAT_ARB) && (comps == 2)) {
745 DECLARE_ROW_POINTERS(GLhalfARB, 4);
746
747 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
748 i++, j += colStride, k += colStride) {
749 FILTER_HF_3D(0);
750 FILTER_HF_3D(1);
751 }
752 }
753 else if ((datatype == GL_HALF_FLOAT_ARB) && (comps == 1)) {
754 DECLARE_ROW_POINTERS(GLhalfARB, 4);
755
756 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
757 i++, j += colStride, k += colStride) {
758 FILTER_HF_3D(0);
759 }
760 }
761 else if ((datatype == GL_UNSIGNED_INT) && (comps == 1)) {
762 const GLuint *rowA = (const GLuint *) srcRowA;
763 const GLuint *rowB = (const GLuint *) srcRowB;
764 const GLuint *rowC = (const GLuint *) srcRowC;
765 const GLuint *rowD = (const GLuint *) srcRowD;
766 GLfloat *dst = (GLfloat *) dstRow;
767
768 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
769 i++, j += colStride, k += colStride) {
770 const uint64_t tmp = (((uint64_t) rowA[j] + (uint64_t) rowA[k])
771 + ((uint64_t) rowB[j] + (uint64_t) rowB[k])
772 + ((uint64_t) rowC[j] + (uint64_t) rowC[k])
773 + ((uint64_t) rowD[j] + (uint64_t) rowD[k]));
774 dst[i] = (GLfloat)((double) tmp * 0.125);
775 }
776 }
777 else if ((datatype == GL_UNSIGNED_SHORT_5_6_5) && (comps == 3)) {
778 DECLARE_ROW_POINTERS0(GLushort);
779
780 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
781 i++, j += colStride, k += colStride) {
782 const GLint rowAr0 = rowA[j] & 0x1f;
783 const GLint rowAr1 = rowA[k] & 0x1f;
784 const GLint rowBr0 = rowB[j] & 0x1f;
785 const GLint rowBr1 = rowB[k] & 0x1f;
786 const GLint rowCr0 = rowC[j] & 0x1f;
787 const GLint rowCr1 = rowC[k] & 0x1f;
788 const GLint rowDr0 = rowD[j] & 0x1f;
789 const GLint rowDr1 = rowD[k] & 0x1f;
790 const GLint rowAg0 = (rowA[j] >> 5) & 0x3f;
791 const GLint rowAg1 = (rowA[k] >> 5) & 0x3f;
792 const GLint rowBg0 = (rowB[j] >> 5) & 0x3f;
793 const GLint rowBg1 = (rowB[k] >> 5) & 0x3f;
794 const GLint rowCg0 = (rowC[j] >> 5) & 0x3f;
795 const GLint rowCg1 = (rowC[k] >> 5) & 0x3f;
796 const GLint rowDg0 = (rowD[j] >> 5) & 0x3f;
797 const GLint rowDg1 = (rowD[k] >> 5) & 0x3f;
798 const GLint rowAb0 = (rowA[j] >> 11) & 0x1f;
799 const GLint rowAb1 = (rowA[k] >> 11) & 0x1f;
800 const GLint rowBb0 = (rowB[j] >> 11) & 0x1f;
801 const GLint rowBb1 = (rowB[k] >> 11) & 0x1f;
802 const GLint rowCb0 = (rowC[j] >> 11) & 0x1f;
803 const GLint rowCb1 = (rowC[k] >> 11) & 0x1f;
804 const GLint rowDb0 = (rowD[j] >> 11) & 0x1f;
805 const GLint rowDb1 = (rowD[k] >> 11) & 0x1f;
806 const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
807 rowCr0, rowCr1, rowDr0, rowDr1);
808 const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
809 rowCg0, rowCg1, rowDg0, rowDg1);
810 const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
811 rowCb0, rowCb1, rowDb0, rowDb1);
812 dst[i] = (b << 11) | (g << 5) | r;
813 }
814 }
815 else if ((datatype == GL_UNSIGNED_SHORT_4_4_4_4) && (comps == 4)) {
816 DECLARE_ROW_POINTERS0(GLushort);
817
818 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
819 i++, j += colStride, k += colStride) {
820 const GLint rowAr0 = rowA[j] & 0xf;
821 const GLint rowAr1 = rowA[k] & 0xf;
822 const GLint rowBr0 = rowB[j] & 0xf;
823 const GLint rowBr1 = rowB[k] & 0xf;
824 const GLint rowCr0 = rowC[j] & 0xf;
825 const GLint rowCr1 = rowC[k] & 0xf;
826 const GLint rowDr0 = rowD[j] & 0xf;
827 const GLint rowDr1 = rowD[k] & 0xf;
828 const GLint rowAg0 = (rowA[j] >> 4) & 0xf;
829 const GLint rowAg1 = (rowA[k] >> 4) & 0xf;
830 const GLint rowBg0 = (rowB[j] >> 4) & 0xf;
831 const GLint rowBg1 = (rowB[k] >> 4) & 0xf;
832 const GLint rowCg0 = (rowC[j] >> 4) & 0xf;
833 const GLint rowCg1 = (rowC[k] >> 4) & 0xf;
834 const GLint rowDg0 = (rowD[j] >> 4) & 0xf;
835 const GLint rowDg1 = (rowD[k] >> 4) & 0xf;
836 const GLint rowAb0 = (rowA[j] >> 8) & 0xf;
837 const GLint rowAb1 = (rowA[k] >> 8) & 0xf;
838 const GLint rowBb0 = (rowB[j] >> 8) & 0xf;
839 const GLint rowBb1 = (rowB[k] >> 8) & 0xf;
840 const GLint rowCb0 = (rowC[j] >> 8) & 0xf;
841 const GLint rowCb1 = (rowC[k] >> 8) & 0xf;
842 const GLint rowDb0 = (rowD[j] >> 8) & 0xf;
843 const GLint rowDb1 = (rowD[k] >> 8) & 0xf;
844 const GLint rowAa0 = (rowA[j] >> 12) & 0xf;
845 const GLint rowAa1 = (rowA[k] >> 12) & 0xf;
846 const GLint rowBa0 = (rowB[j] >> 12) & 0xf;
847 const GLint rowBa1 = (rowB[k] >> 12) & 0xf;
848 const GLint rowCa0 = (rowC[j] >> 12) & 0xf;
849 const GLint rowCa1 = (rowC[k] >> 12) & 0xf;
850 const GLint rowDa0 = (rowD[j] >> 12) & 0xf;
851 const GLint rowDa1 = (rowD[k] >> 12) & 0xf;
852 const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
853 rowCr0, rowCr1, rowDr0, rowDr1);
854 const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
855 rowCg0, rowCg1, rowDg0, rowDg1);
856 const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
857 rowCb0, rowCb1, rowDb0, rowDb1);
858 const GLint a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
859 rowCa0, rowCa1, rowDa0, rowDa1);
860
861 dst[i] = (a << 12) | (b << 8) | (g << 4) | r;
862 }
863 }
864 else if ((datatype == GL_UNSIGNED_SHORT_1_5_5_5_REV) && (comps == 4)) {
865 DECLARE_ROW_POINTERS0(GLushort);
866
867 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
868 i++, j += colStride, k += colStride) {
869 const GLint rowAr0 = rowA[j] & 0x1f;
870 const GLint rowAr1 = rowA[k] & 0x1f;
871 const GLint rowBr0 = rowB[j] & 0x1f;
872 const GLint rowBr1 = rowB[k] & 0x1f;
873 const GLint rowCr0 = rowC[j] & 0x1f;
874 const GLint rowCr1 = rowC[k] & 0x1f;
875 const GLint rowDr0 = rowD[j] & 0x1f;
876 const GLint rowDr1 = rowD[k] & 0x1f;
877 const GLint rowAg0 = (rowA[j] >> 5) & 0x1f;
878 const GLint rowAg1 = (rowA[k] >> 5) & 0x1f;
879 const GLint rowBg0 = (rowB[j] >> 5) & 0x1f;
880 const GLint rowBg1 = (rowB[k] >> 5) & 0x1f;
881 const GLint rowCg0 = (rowC[j] >> 5) & 0x1f;
882 const GLint rowCg1 = (rowC[k] >> 5) & 0x1f;
883 const GLint rowDg0 = (rowD[j] >> 5) & 0x1f;
884 const GLint rowDg1 = (rowD[k] >> 5) & 0x1f;
885 const GLint rowAb0 = (rowA[j] >> 10) & 0x1f;
886 const GLint rowAb1 = (rowA[k] >> 10) & 0x1f;
887 const GLint rowBb0 = (rowB[j] >> 10) & 0x1f;
888 const GLint rowBb1 = (rowB[k] >> 10) & 0x1f;
889 const GLint rowCb0 = (rowC[j] >> 10) & 0x1f;
890 const GLint rowCb1 = (rowC[k] >> 10) & 0x1f;
891 const GLint rowDb0 = (rowD[j] >> 10) & 0x1f;
892 const GLint rowDb1 = (rowD[k] >> 10) & 0x1f;
893 const GLint rowAa0 = (rowA[j] >> 15) & 0x1;
894 const GLint rowAa1 = (rowA[k] >> 15) & 0x1;
895 const GLint rowBa0 = (rowB[j] >> 15) & 0x1;
896 const GLint rowBa1 = (rowB[k] >> 15) & 0x1;
897 const GLint rowCa0 = (rowC[j] >> 15) & 0x1;
898 const GLint rowCa1 = (rowC[k] >> 15) & 0x1;
899 const GLint rowDa0 = (rowD[j] >> 15) & 0x1;
900 const GLint rowDa1 = (rowD[k] >> 15) & 0x1;
901 const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
902 rowCr0, rowCr1, rowDr0, rowDr1);
903 const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
904 rowCg0, rowCg1, rowDg0, rowDg1);
905 const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
906 rowCb0, rowCb1, rowDb0, rowDb1);
907 const GLint a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
908 rowCa0, rowCa1, rowDa0, rowDa1);
909
910 dst[i] = (a << 15) | (b << 10) | (g << 5) | r;
911 }
912 }
913 else if ((datatype == GL_UNSIGNED_BYTE_3_3_2) && (comps == 3)) {
914 DECLARE_ROW_POINTERS0(GLushort);
915
916 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
917 i++, j += colStride, k += colStride) {
918 const GLint rowAr0 = rowA[j] & 0x3;
919 const GLint rowAr1 = rowA[k] & 0x3;
920 const GLint rowBr0 = rowB[j] & 0x3;
921 const GLint rowBr1 = rowB[k] & 0x3;
922 const GLint rowCr0 = rowC[j] & 0x3;
923 const GLint rowCr1 = rowC[k] & 0x3;
924 const GLint rowDr0 = rowD[j] & 0x3;
925 const GLint rowDr1 = rowD[k] & 0x3;
926 const GLint rowAg0 = (rowA[j] >> 2) & 0x7;
927 const GLint rowAg1 = (rowA[k] >> 2) & 0x7;
928 const GLint rowBg0 = (rowB[j] >> 2) & 0x7;
929 const GLint rowBg1 = (rowB[k] >> 2) & 0x7;
930 const GLint rowCg0 = (rowC[j] >> 2) & 0x7;
931 const GLint rowCg1 = (rowC[k] >> 2) & 0x7;
932 const GLint rowDg0 = (rowD[j] >> 2) & 0x7;
933 const GLint rowDg1 = (rowD[k] >> 2) & 0x7;
934 const GLint rowAb0 = (rowA[j] >> 5) & 0x7;
935 const GLint rowAb1 = (rowA[k] >> 5) & 0x7;
936 const GLint rowBb0 = (rowB[j] >> 5) & 0x7;
937 const GLint rowBb1 = (rowB[k] >> 5) & 0x7;
938 const GLint rowCb0 = (rowC[j] >> 5) & 0x7;
939 const GLint rowCb1 = (rowC[k] >> 5) & 0x7;
940 const GLint rowDb0 = (rowD[j] >> 5) & 0x7;
941 const GLint rowDb1 = (rowD[k] >> 5) & 0x7;
942 const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
943 rowCr0, rowCr1, rowDr0, rowDr1);
944 const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
945 rowCg0, rowCg1, rowDg0, rowDg1);
946 const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
947 rowCb0, rowCb1, rowDb0, rowDb1);
948 dst[i] = (b << 5) | (g << 2) | r;
949 }
950 }
951 else {
952 _mesa_problem(NULL, "bad format in do_row()");
953 }
954 }
955
956
957 /*
958 * These functions generate a 1/2-size mipmap image from a source image.
959 * Texture borders are handled by copying or averaging the source image's
960 * border texels, depending on the scale-down factor.
961 */
962
963 static void
964 make_1d_mipmap(GLenum datatype, GLuint comps, GLint border,
965 GLint srcWidth, const GLubyte *srcPtr,
966 GLint dstWidth, GLubyte *dstPtr)
967 {
968 const GLint bpt = bytes_per_pixel(datatype, comps);
969 const GLubyte *src;
970 GLubyte *dst;
971
972 /* skip the border pixel, if any */
973 src = srcPtr + border * bpt;
974 dst = dstPtr + border * bpt;
975
976 /* we just duplicate the input row, kind of hack, saves code */
977 do_row(datatype, comps, srcWidth - 2 * border, src, src,
978 dstWidth - 2 * border, dst);
979
980 if (border) {
981 /* copy left-most pixel from source */
982 assert(srcPtr);
983 memcpy(dstPtr, srcPtr, bpt);
984 /* copy right-most pixel from source */
985 memcpy(dstPtr + (dstWidth - 1) * bpt,
986 srcPtr + (srcWidth - 1) * bpt,
987 bpt);
988 }
989 }
990
991
992 static void
993 make_2d_mipmap(GLenum datatype, GLuint comps, GLint border,
994 GLint srcWidth, GLint srcHeight,
995 const GLubyte *srcPtr, GLint srcRowStride,
996 GLint dstWidth, GLint dstHeight,
997 GLubyte *dstPtr, GLint dstRowStride)
998 {
999 const GLint bpt = bytes_per_pixel(datatype, comps);
1000 const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */
1001 const GLint dstWidthNB = dstWidth - 2 * border;
1002 const GLint dstHeightNB = dstHeight - 2 * border;
1003 const GLint srcRowBytes = bpt * srcRowStride;
1004 const GLint dstRowBytes = bpt * dstRowStride;
1005 const GLubyte *srcA, *srcB;
1006 GLubyte *dst;
1007 GLint row;
1008
1009 /* Compute src and dst pointers, skipping any border */
1010 srcA = srcPtr + border * ((srcWidth + 1) * bpt);
1011 if (srcHeight > 1)
1012 srcB = srcA + srcRowBytes;
1013 else
1014 srcB = srcA;
1015 dst = dstPtr + border * ((dstWidth + 1) * bpt);
1016
1017 for (row = 0; row < dstHeightNB; row++) {
1018 do_row(datatype, comps, srcWidthNB, srcA, srcB,
1019 dstWidthNB, dst);
1020 srcA += 2 * srcRowBytes;
1021 srcB += 2 * srcRowBytes;
1022 dst += dstRowBytes;
1023 }
1024
1025 /* This is ugly but probably won't be used much */
1026 if (border > 0) {
1027 /* fill in dest border */
1028 /* lower-left border pixel */
1029 memcpy(dstPtr, srcPtr, bpt);
1030 /* lower-right border pixel */
1031 memcpy(dstPtr + (dstWidth - 1) * bpt,
1032 srcPtr + (srcWidth - 1) * bpt, bpt);
1033 /* upper-left border pixel */
1034 memcpy(dstPtr + dstWidth * (dstHeight - 1) * bpt,
1035 srcPtr + srcWidth * (srcHeight - 1) * bpt, bpt);
1036 /* upper-right border pixel */
1037 memcpy(dstPtr + (dstWidth * dstHeight - 1) * bpt,
1038 srcPtr + (srcWidth * srcHeight - 1) * bpt, bpt);
1039 /* lower border */
1040 do_row(datatype, comps, srcWidthNB,
1041 srcPtr + bpt,
1042 srcPtr + bpt,
1043 dstWidthNB, dstPtr + bpt);
1044 /* upper border */
1045 do_row(datatype, comps, srcWidthNB,
1046 srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt,
1047 srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt,
1048 dstWidthNB,
1049 dstPtr + (dstWidth * (dstHeight - 1) + 1) * bpt);
1050 /* left and right borders */
1051 if (srcHeight == dstHeight) {
1052 /* copy border pixel from src to dst */
1053 for (row = 1; row < srcHeight; row++) {
1054 memcpy(dstPtr + dstWidth * row * bpt,
1055 srcPtr + srcWidth * row * bpt, bpt);
1056 memcpy(dstPtr + (dstWidth * row + dstWidth - 1) * bpt,
1057 srcPtr + (srcWidth * row + srcWidth - 1) * bpt, bpt);
1058 }
1059 }
1060 else {
1061 /* average two src pixels each dest pixel */
1062 for (row = 0; row < dstHeightNB; row += 2) {
1063 do_row(datatype, comps, 1,
1064 srcPtr + (srcWidth * (row * 2 + 1)) * bpt,
1065 srcPtr + (srcWidth * (row * 2 + 2)) * bpt,
1066 1, dstPtr + (dstWidth * row + 1) * bpt);
1067 do_row(datatype, comps, 1,
1068 srcPtr + (srcWidth * (row * 2 + 1) + srcWidth - 1) * bpt,
1069 srcPtr + (srcWidth * (row * 2 + 2) + srcWidth - 1) * bpt,
1070 1, dstPtr + (dstWidth * row + 1 + dstWidth - 1) * bpt);
1071 }
1072 }
1073 }
1074 }
1075
1076
1077 static void
1078 make_3d_mipmap(GLenum datatype, GLuint comps, GLint border,
1079 GLint srcWidth, GLint srcHeight, GLint srcDepth,
1080 const GLubyte *srcPtr, GLint srcRowStride,
1081 GLint dstWidth, GLint dstHeight, GLint dstDepth,
1082 GLubyte *dstPtr, GLint dstRowStride)
1083 {
1084 const GLint bpt = bytes_per_pixel(datatype, comps);
1085 const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */
1086 const GLint srcDepthNB = srcDepth - 2 * border;
1087 const GLint dstWidthNB = dstWidth - 2 * border;
1088 const GLint dstHeightNB = dstHeight - 2 * border;
1089 const GLint dstDepthNB = dstDepth - 2 * border;
1090 GLint img, row;
1091 GLint bytesPerSrcImage, bytesPerDstImage;
1092 GLint bytesPerSrcRow, bytesPerDstRow;
1093 GLint srcImageOffset, srcRowOffset;
1094
1095 (void) srcDepthNB; /* silence warnings */
1096
1097
1098 bytesPerSrcImage = srcWidth * srcHeight * bpt;
1099 bytesPerDstImage = dstWidth * dstHeight * bpt;
1100
1101 bytesPerSrcRow = srcWidth * bpt;
1102 bytesPerDstRow = dstWidth * bpt;
1103
1104 /* Offset between adjacent src images to be averaged together */
1105 srcImageOffset = (srcDepth == dstDepth) ? 0 : bytesPerSrcImage;
1106
1107 /* Offset between adjacent src rows to be averaged together */
1108 srcRowOffset = (srcHeight == dstHeight) ? 0 : srcWidth * bpt;
1109
1110 /*
1111 * Need to average together up to 8 src pixels for each dest pixel.
1112 * Break that down into 3 operations:
1113 * 1. take two rows from source image and average them together.
1114 * 2. take two rows from next source image and average them together.
1115 * 3. take the two averaged rows and average them for the final dst row.
1116 */
1117
1118 /*
1119 printf("mip3d %d x %d x %d -> %d x %d x %d\n",
1120 srcWidth, srcHeight, srcDepth, dstWidth, dstHeight, dstDepth);
1121 */
1122
1123 for (img = 0; img < dstDepthNB; img++) {
1124 /* first source image pointer, skipping border */
1125 const GLubyte *imgSrcA = srcPtr
1126 + (bytesPerSrcImage + bytesPerSrcRow + border) * bpt * border
1127 + img * (bytesPerSrcImage + srcImageOffset);
1128 /* second source image pointer, skipping border */
1129 const GLubyte *imgSrcB = imgSrcA + srcImageOffset;
1130 /* address of the dest image, skipping border */
1131 GLubyte *imgDst = dstPtr
1132 + (bytesPerDstImage + bytesPerDstRow + border) * bpt * border
1133 + img * bytesPerDstImage;
1134
1135 /* setup the four source row pointers and the dest row pointer */
1136 const GLubyte *srcImgARowA = imgSrcA;
1137 const GLubyte *srcImgARowB = imgSrcA + srcRowOffset;
1138 const GLubyte *srcImgBRowA = imgSrcB;
1139 const GLubyte *srcImgBRowB = imgSrcB + srcRowOffset;
1140 GLubyte *dstImgRow = imgDst;
1141
1142 for (row = 0; row < dstHeightNB; row++) {
1143 do_row_3D(datatype, comps, srcWidthNB,
1144 srcImgARowA, srcImgARowB,
1145 srcImgBRowA, srcImgBRowB,
1146 dstWidthNB, dstImgRow);
1147
1148 /* advance to next rows */
1149 srcImgARowA += bytesPerSrcRow + srcRowOffset;
1150 srcImgARowB += bytesPerSrcRow + srcRowOffset;
1151 srcImgBRowA += bytesPerSrcRow + srcRowOffset;
1152 srcImgBRowB += bytesPerSrcRow + srcRowOffset;
1153 dstImgRow += bytesPerDstRow;
1154 }
1155 }
1156
1157
1158 /* Luckily we can leverage the make_2d_mipmap() function here! */
1159 if (border > 0) {
1160 /* do front border image */
1161 make_2d_mipmap(datatype, comps, 1, srcWidth, srcHeight, srcPtr, srcRowStride,
1162 dstWidth, dstHeight, dstPtr, dstRowStride);
1163 /* do back border image */
1164 make_2d_mipmap(datatype, comps, 1, srcWidth, srcHeight,
1165 srcPtr + bytesPerSrcImage * (srcDepth - 1), srcRowStride,
1166 dstWidth, dstHeight,
1167 dstPtr + bytesPerDstImage * (dstDepth - 1), dstRowStride);
1168 /* do four remaining border edges that span the image slices */
1169 if (srcDepth == dstDepth) {
1170 /* just copy border pixels from src to dst */
1171 for (img = 0; img < dstDepthNB; img++) {
1172 const GLubyte *src;
1173 GLubyte *dst;
1174
1175 /* do border along [img][row=0][col=0] */
1176 src = srcPtr + (img + 1) * bytesPerSrcImage;
1177 dst = dstPtr + (img + 1) * bytesPerDstImage;
1178 memcpy(dst, src, bpt);
1179
1180 /* do border along [img][row=dstHeight-1][col=0] */
1181 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
1182 + (srcHeight - 1) * bytesPerSrcRow;
1183 dst = dstPtr + (img + 1) * bytesPerDstImage
1184 + (dstHeight - 1) * bytesPerDstRow;
1185 memcpy(dst, src, bpt);
1186
1187 /* do border along [img][row=0][col=dstWidth-1] */
1188 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
1189 + (srcWidth - 1) * bpt;
1190 dst = dstPtr + (img + 1) * bytesPerDstImage
1191 + (dstWidth - 1) * bpt;
1192 memcpy(dst, src, bpt);
1193
1194 /* do border along [img][row=dstHeight-1][col=dstWidth-1] */
1195 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
1196 + (bytesPerSrcImage - bpt);
1197 dst = dstPtr + (img + 1) * bytesPerDstImage
1198 + (bytesPerDstImage - bpt);
1199 memcpy(dst, src, bpt);
1200 }
1201 }
1202 else {
1203 /* average border pixels from adjacent src image pairs */
1204 ASSERT(srcDepthNB == 2 * dstDepthNB);
1205 for (img = 0; img < dstDepthNB; img++) {
1206 const GLubyte *src;
1207 GLubyte *dst;
1208
1209 /* do border along [img][row=0][col=0] */
1210 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage;
1211 dst = dstPtr + (img + 1) * bytesPerDstImage;
1212 do_row(datatype, comps, 1, src, src + srcImageOffset, 1, dst);
1213
1214 /* do border along [img][row=dstHeight-1][col=0] */
1215 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
1216 + (srcHeight - 1) * bytesPerSrcRow;
1217 dst = dstPtr + (img + 1) * bytesPerDstImage
1218 + (dstHeight - 1) * bytesPerDstRow;
1219 do_row(datatype, comps, 1, src, src + srcImageOffset, 1, dst);
1220
1221 /* do border along [img][row=0][col=dstWidth-1] */
1222 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
1223 + (srcWidth - 1) * bpt;
1224 dst = dstPtr + (img + 1) * bytesPerDstImage
1225 + (dstWidth - 1) * bpt;
1226 do_row(datatype, comps, 1, src, src + srcImageOffset, 1, dst);
1227
1228 /* do border along [img][row=dstHeight-1][col=dstWidth-1] */
1229 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
1230 + (bytesPerSrcImage - bpt);
1231 dst = dstPtr + (img + 1) * bytesPerDstImage
1232 + (bytesPerDstImage - bpt);
1233 do_row(datatype, comps, 1, src, src + srcImageOffset, 1, dst);
1234 }
1235 }
1236 }
1237 }
1238
1239
1240 static void
1241 make_1d_stack_mipmap(GLenum datatype, GLuint comps, GLint border,
1242 GLint srcWidth, const GLubyte *srcPtr, GLuint srcRowStride,
1243 GLint dstWidth, GLint dstHeight,
1244 GLubyte *dstPtr, GLuint dstRowStride )
1245 {
1246 const GLint bpt = bytes_per_pixel(datatype, comps);
1247 const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */
1248 const GLint dstWidthNB = dstWidth - 2 * border;
1249 const GLint dstHeightNB = dstHeight - 2 * border;
1250 const GLint srcRowBytes = bpt * srcRowStride;
1251 const GLint dstRowBytes = bpt * dstRowStride;
1252 const GLubyte *src;
1253 GLubyte *dst;
1254 GLint row;
1255
1256 /* Compute src and dst pointers, skipping any border */
1257 src = srcPtr + border * ((srcWidth + 1) * bpt);
1258 dst = dstPtr + border * ((dstWidth + 1) * bpt);
1259
1260 for (row = 0; row < dstHeightNB; row++) {
1261 do_row(datatype, comps, srcWidthNB, src, src,
1262 dstWidthNB, dst);
1263 src += srcRowBytes;
1264 dst += dstRowBytes;
1265 }
1266
1267 if (border) {
1268 /* copy left-most pixel from source */
1269 memcpy(dstPtr, srcPtr, bpt);
1270 /* copy right-most pixel from source */
1271 memcpy(dstPtr + (dstWidth - 1) * bpt,
1272 srcPtr + (srcWidth - 1) * bpt,
1273 bpt);
1274 }
1275 }
1276
1277
1278 /**
1279 * \bug
1280 * There is quite a bit of refactoring that could be done with this function
1281 * and \c make_2d_mipmap.
1282 */
1283 static void
1284 make_2d_stack_mipmap(GLenum datatype, GLuint comps, GLint border,
1285 GLint srcWidth, GLint srcHeight,
1286 const GLubyte *srcPtr, GLint srcRowStride,
1287 GLint dstWidth, GLint dstHeight, GLint dstDepth,
1288 GLubyte *dstPtr, GLint dstRowStride)
1289 {
1290 const GLint bpt = bytes_per_pixel(datatype, comps);
1291 const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */
1292 const GLint dstWidthNB = dstWidth - 2 * border;
1293 const GLint dstHeightNB = dstHeight - 2 * border;
1294 const GLint dstDepthNB = dstDepth - 2 * border;
1295 const GLint srcRowBytes = bpt * srcRowStride;
1296 const GLint dstRowBytes = bpt * dstRowStride;
1297 const GLubyte *srcA, *srcB;
1298 GLubyte *dst;
1299 GLint layer;
1300 GLint row;
1301
1302 /* Compute src and dst pointers, skipping any border */
1303 srcA = srcPtr + border * ((srcWidth + 1) * bpt);
1304 if (srcHeight > 1)
1305 srcB = srcA + srcRowBytes;
1306 else
1307 srcB = srcA;
1308 dst = dstPtr + border * ((dstWidth + 1) * bpt);
1309
1310 for (layer = 0; layer < dstDepthNB; layer++) {
1311 for (row = 0; row < dstHeightNB; row++) {
1312 do_row(datatype, comps, srcWidthNB, srcA, srcB,
1313 dstWidthNB, dst);
1314 srcA += 2 * srcRowBytes;
1315 srcB += 2 * srcRowBytes;
1316 dst += dstRowBytes;
1317 }
1318
1319 /* This is ugly but probably won't be used much */
1320 if (border > 0) {
1321 /* fill in dest border */
1322 /* lower-left border pixel */
1323 memcpy(dstPtr, srcPtr, bpt);
1324 /* lower-right border pixel */
1325 memcpy(dstPtr + (dstWidth - 1) * bpt,
1326 srcPtr + (srcWidth - 1) * bpt, bpt);
1327 /* upper-left border pixel */
1328 memcpy(dstPtr + dstWidth * (dstHeight - 1) * bpt,
1329 srcPtr + srcWidth * (srcHeight - 1) * bpt, bpt);
1330 /* upper-right border pixel */
1331 memcpy(dstPtr + (dstWidth * dstHeight - 1) * bpt,
1332 srcPtr + (srcWidth * srcHeight - 1) * bpt, bpt);
1333 /* lower border */
1334 do_row(datatype, comps, srcWidthNB,
1335 srcPtr + bpt,
1336 srcPtr + bpt,
1337 dstWidthNB, dstPtr + bpt);
1338 /* upper border */
1339 do_row(datatype, comps, srcWidthNB,
1340 srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt,
1341 srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt,
1342 dstWidthNB,
1343 dstPtr + (dstWidth * (dstHeight - 1) + 1) * bpt);
1344 /* left and right borders */
1345 if (srcHeight == dstHeight) {
1346 /* copy border pixel from src to dst */
1347 for (row = 1; row < srcHeight; row++) {
1348 memcpy(dstPtr + dstWidth * row * bpt,
1349 srcPtr + srcWidth * row * bpt, bpt);
1350 memcpy(dstPtr + (dstWidth * row + dstWidth - 1) * bpt,
1351 srcPtr + (srcWidth * row + srcWidth - 1) * bpt, bpt);
1352 }
1353 }
1354 else {
1355 /* average two src pixels each dest pixel */
1356 for (row = 0; row < dstHeightNB; row += 2) {
1357 do_row(datatype, comps, 1,
1358 srcPtr + (srcWidth * (row * 2 + 1)) * bpt,
1359 srcPtr + (srcWidth * (row * 2 + 2)) * bpt,
1360 1, dstPtr + (dstWidth * row + 1) * bpt);
1361 do_row(datatype, comps, 1,
1362 srcPtr + (srcWidth * (row * 2 + 1) + srcWidth - 1) * bpt,
1363 srcPtr + (srcWidth * (row * 2 + 2) + srcWidth - 1) * bpt,
1364 1, dstPtr + (dstWidth * row + 1 + dstWidth - 1) * bpt);
1365 }
1366 }
1367 }
1368 }
1369 }
1370
1371
1372 /**
1373 * Down-sample a texture image to produce the next lower mipmap level.
1374 * \param comps components per texel (1, 2, 3 or 4)
1375 * \param srcRowStride stride between source rows, in texels
1376 * \param dstRowStride stride between destination rows, in texels
1377 */
1378 void
1379 _mesa_generate_mipmap_level(GLenum target,
1380 GLenum datatype, GLuint comps,
1381 GLint border,
1382 GLint srcWidth, GLint srcHeight, GLint srcDepth,
1383 const GLubyte *srcData,
1384 GLint srcRowStride,
1385 GLint dstWidth, GLint dstHeight, GLint dstDepth,
1386 GLubyte *dstData,
1387 GLint dstRowStride)
1388 {
1389 /*
1390 * We use simple 2x2 averaging to compute the next mipmap level.
1391 */
1392 switch (target) {
1393 case GL_TEXTURE_1D:
1394 make_1d_mipmap(datatype, comps, border,
1395 srcWidth, srcData,
1396 dstWidth, dstData);
1397 break;
1398 case GL_TEXTURE_2D:
1399 case GL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB:
1400 case GL_TEXTURE_CUBE_MAP_NEGATIVE_X_ARB:
1401 case GL_TEXTURE_CUBE_MAP_POSITIVE_Y_ARB:
1402 case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB:
1403 case GL_TEXTURE_CUBE_MAP_POSITIVE_Z_ARB:
1404 case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB:
1405 make_2d_mipmap(datatype, comps, border,
1406 srcWidth, srcHeight, srcData, srcRowStride,
1407 dstWidth, dstHeight, dstData, dstRowStride);
1408 break;
1409 case GL_TEXTURE_3D:
1410 make_3d_mipmap(datatype, comps, border,
1411 srcWidth, srcHeight, srcDepth,
1412 srcData, srcRowStride,
1413 dstWidth, dstHeight, dstDepth,
1414 dstData, dstRowStride);
1415 break;
1416 case GL_TEXTURE_1D_ARRAY_EXT:
1417 make_1d_stack_mipmap(datatype, comps, border,
1418 srcWidth, srcData, srcRowStride,
1419 dstWidth, dstHeight,
1420 dstData, dstRowStride);
1421 break;
1422 case GL_TEXTURE_2D_ARRAY_EXT:
1423 make_2d_stack_mipmap(datatype, comps, border,
1424 srcWidth, srcHeight,
1425 srcData, srcRowStride,
1426 dstWidth, dstHeight,
1427 dstDepth, dstData, dstRowStride);
1428 break;
1429 case GL_TEXTURE_RECTANGLE_NV:
1430 /* no mipmaps, do nothing */
1431 break;
1432 default:
1433 _mesa_problem(NULL, "bad dimensions in _mesa_generate_mipmaps");
1434 return;
1435 }
1436 }
1437
1438
1439 /**
1440 * compute next (level+1) image size
1441 * \return GL_FALSE if no smaller size can be generated (eg. src is 1x1x1 size)
1442 */
1443 static GLboolean
1444 next_mipmap_level_size(GLenum target, GLint border,
1445 GLint srcWidth, GLint srcHeight, GLint srcDepth,
1446 GLint *dstWidth, GLint *dstHeight, GLint *dstDepth)
1447 {
1448 if (srcWidth - 2 * border > 1) {
1449 *dstWidth = (srcWidth - 2 * border) / 2 + 2 * border;
1450 }
1451 else {
1452 *dstWidth = srcWidth; /* can't go smaller */
1453 }
1454
1455 if ((srcHeight - 2 * border > 1) &&
1456 (target != GL_TEXTURE_1D_ARRAY_EXT)) {
1457 *dstHeight = (srcHeight - 2 * border) / 2 + 2 * border;
1458 }
1459 else {
1460 *dstHeight = srcHeight; /* can't go smaller */
1461 }
1462
1463 if ((srcDepth - 2 * border > 1) &&
1464 (target != GL_TEXTURE_2D_ARRAY_EXT)) {
1465 *dstDepth = (srcDepth - 2 * border) / 2 + 2 * border;
1466 }
1467 else {
1468 *dstDepth = srcDepth; /* can't go smaller */
1469 }
1470
1471 if (*dstWidth == srcWidth &&
1472 *dstHeight == srcHeight &&
1473 *dstDepth == srcDepth) {
1474 return GL_FALSE;
1475 }
1476 else {
1477 return GL_TRUE;
1478 }
1479 }
1480
1481
1482
1483
1484 /**
1485 * Automatic mipmap generation.
1486 * This is the fallback/default function for ctx->Driver.GenerateMipmap().
1487 * Generate a complete set of mipmaps from texObj's BaseLevel image.
1488 * Stop at texObj's MaxLevel or when we get to the 1x1 texture.
1489 * For cube maps, target will be one of
1490 * GL_TEXTURE_CUBE_MAP_POSITIVE/NEGATIVE_X/Y/Z; never GL_TEXTURE_CUBE_MAP.
1491 */
1492 void
1493 _mesa_generate_mipmap(GLcontext *ctx, GLenum target,
1494 struct gl_texture_object *texObj)
1495 {
1496 const struct gl_texture_image *srcImage;
1497 gl_format convertFormat;
1498 const GLubyte *srcData = NULL;
1499 GLubyte *dstData = NULL;
1500 GLint level, maxLevels;
1501 GLenum datatype;
1502 GLuint comps;
1503
1504 ASSERT(texObj);
1505 srcImage = _mesa_select_tex_image(ctx, texObj, target, texObj->BaseLevel);
1506 ASSERT(srcImage);
1507
1508 maxLevels = _mesa_max_texture_levels(ctx, texObj->Target);
1509 ASSERT(maxLevels > 0); /* bad target */
1510
1511 /* Find convertFormat - the format that do_row() will process */
1512
1513 if (_mesa_is_format_compressed(srcImage->TexFormat)) {
1514 /* setup for compressed textures - need to allocate temporary
1515 * image buffers to hold uncompressed images.
1516 */
1517 GLuint row;
1518 GLint components, size;
1519 GLchan *dst;
1520
1521 assert(texObj->Target == GL_TEXTURE_2D ||
1522 texObj->Target == GL_TEXTURE_CUBE_MAP_ARB);
1523
1524 if (srcImage->_BaseFormat == GL_RGB) {
1525 convertFormat = MESA_FORMAT_RGB888;
1526 components = 3;
1527 }
1528 else if (srcImage->_BaseFormat == GL_RGBA) {
1529 convertFormat = MESA_FORMAT_RGBA8888;
1530 components = 4;
1531 }
1532 else {
1533 _mesa_problem(ctx, "bad srcImage->_BaseFormat in _mesa_generate_mipmaps");
1534 return;
1535 }
1536
1537 /* allocate storage for uncompressed GL_RGB or GL_RGBA images */
1538 size = _mesa_bytes_per_pixel(srcImage->_BaseFormat, CHAN_TYPE)
1539 * srcImage->Width * srcImage->Height * srcImage->Depth + 20;
1540 /* 20 extra bytes, just be safe when calling last FetchTexel */
1541 srcData = (GLubyte *) malloc(size);
1542 if (!srcData) {
1543 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generate mipmaps");
1544 return;
1545 }
1546 dstData = (GLubyte *) malloc(size / 2); /* 1/4 would probably be OK */
1547 if (!dstData) {
1548 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generate mipmaps");
1549 free((void *) srcData);
1550 return;
1551 }
1552
1553 /* decompress base image here */
1554 dst = (GLchan *) srcData;
1555 for (row = 0; row < srcImage->Height; row++) {
1556 GLuint col;
1557 for (col = 0; col < srcImage->Width; col++) {
1558 srcImage->FetchTexelc(srcImage, col, row, 0, dst);
1559 dst += components;
1560 }
1561 }
1562 }
1563 else {
1564 /* uncompressed */
1565 convertFormat = srcImage->TexFormat;
1566 }
1567
1568 _mesa_format_to_type_and_comps(convertFormat, &datatype, &comps);
1569
1570 for (level = texObj->BaseLevel; level < texObj->MaxLevel
1571 && level < maxLevels - 1; level++) {
1572 /* generate image[level+1] from image[level] */
1573 const struct gl_texture_image *srcImage;
1574 struct gl_texture_image *dstImage;
1575 GLint srcWidth, srcHeight, srcDepth;
1576 GLint dstWidth, dstHeight, dstDepth;
1577 GLint border, bytesPerTexel;
1578 GLboolean nextLevel;
1579
1580 /* get src image parameters */
1581 srcImage = _mesa_select_tex_image(ctx, texObj, target, level);
1582 ASSERT(srcImage);
1583 srcWidth = srcImage->Width;
1584 srcHeight = srcImage->Height;
1585 srcDepth = srcImage->Depth;
1586 border = srcImage->Border;
1587
1588 nextLevel = next_mipmap_level_size(target, border,
1589 srcWidth, srcHeight, srcDepth,
1590 &dstWidth, &dstHeight, &dstDepth);
1591 if (!nextLevel) {
1592 /* all done */
1593 if (_mesa_is_format_compressed(srcImage->TexFormat)) {
1594 free((void *) srcData);
1595 free(dstData);
1596 }
1597 return;
1598 }
1599
1600 /* get dest gl_texture_image */
1601 dstImage = _mesa_get_tex_image(ctx, texObj, target, level + 1);
1602 if (!dstImage) {
1603 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generating mipmaps");
1604 return;
1605 }
1606
1607 /* Free old image data */
1608 if (dstImage->Data)
1609 ctx->Driver.FreeTexImageData(ctx, dstImage);
1610
1611 /* initialize new image */
1612 _mesa_init_teximage_fields(ctx, target, dstImage, dstWidth, dstHeight,
1613 dstDepth, border, srcImage->InternalFormat);
1614 dstImage->DriverData = NULL;
1615 dstImage->TexFormat = srcImage->TexFormat;
1616 dstImage->FetchTexelc = srcImage->FetchTexelc;
1617 dstImage->FetchTexelf = srcImage->FetchTexelf;
1618
1619 /* Alloc new teximage data buffer.
1620 * Setup src and dest data pointers.
1621 */
1622 if (_mesa_is_format_compressed(dstImage->TexFormat)) {
1623 GLuint dstCompressedSize =
1624 _mesa_format_image_size(dstImage->TexFormat, dstImage->Width,
1625 dstImage->Height, dstImage->Depth);
1626 ASSERT(dstCompressedSize > 0);
1627
1628 dstImage->Data = _mesa_alloc_texmemory(dstCompressedSize);
1629 if (!dstImage->Data) {
1630 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generating mipmaps");
1631 return;
1632 }
1633 /* srcData and dstData are already set */
1634 ASSERT(srcData);
1635 ASSERT(dstData);
1636 }
1637 else {
1638 bytesPerTexel = _mesa_get_format_bytes(dstImage->TexFormat);
1639 ASSERT(dstWidth * dstHeight * dstDepth * bytesPerTexel > 0);
1640 dstImage->Data = _mesa_alloc_texmemory(dstWidth * dstHeight
1641 * dstDepth * bytesPerTexel);
1642 if (!dstImage->Data) {
1643 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generating mipmaps");
1644 return;
1645 }
1646 srcData = (const GLubyte *) srcImage->Data;
1647 dstData = (GLubyte *) dstImage->Data;
1648 }
1649
1650 ASSERT(dstImage->TexFormat);
1651 ASSERT(dstImage->FetchTexelc);
1652 ASSERT(dstImage->FetchTexelf);
1653
1654 _mesa_generate_mipmap_level(target, datatype, comps, border,
1655 srcWidth, srcHeight, srcDepth,
1656 srcData, srcImage->RowStride,
1657 dstWidth, dstHeight, dstDepth,
1658 dstData, dstImage->RowStride);
1659
1660
1661 if (_mesa_is_format_compressed(dstImage->TexFormat)) {
1662 GLubyte *temp;
1663 /* compress image from dstData into dstImage->Data */
1664 const GLenum srcFormat = _mesa_get_format_base_format(convertFormat);
1665 GLint dstRowStride
1666 = _mesa_format_row_stride(dstImage->TexFormat, dstWidth);
1667 ASSERT(srcFormat == GL_RGB || srcFormat == GL_RGBA);
1668
1669 _mesa_texstore(ctx, 2, dstImage->_BaseFormat,
1670 dstImage->TexFormat,
1671 dstImage->Data,
1672 0, 0, 0, /* dstX/Y/Zoffset */
1673 dstRowStride, 0, /* strides */
1674 dstWidth, dstHeight, 1, /* size */
1675 srcFormat, CHAN_TYPE,
1676 dstData, /* src data, actually */
1677 &ctx->DefaultPacking);
1678
1679 /* swap src and dest pointers */
1680 temp = (GLubyte *) srcData;
1681 srcData = dstData;
1682 dstData = temp;
1683 }
1684
1685 } /* loop over mipmap levels */
1686 }
1687
1688
1689 /**
1690 * Helper function for drivers which need to rescale texture images to
1691 * certain aspect ratios.
1692 * Nearest filtering only (for broken hardware that can't support
1693 * all aspect ratios). This can be made a lot faster, but I don't
1694 * really care enough...
1695 */
1696 void
1697 _mesa_rescale_teximage2d(GLuint bytesPerPixel,
1698 GLuint srcStrideInPixels,
1699 GLuint dstRowStride,
1700 GLint srcWidth, GLint srcHeight,
1701 GLint dstWidth, GLint dstHeight,
1702 const GLvoid *srcImage, GLvoid *dstImage)
1703 {
1704 GLint row, col;
1705
1706 #define INNER_LOOP( TYPE, HOP, WOP ) \
1707 for ( row = 0 ; row < dstHeight ; row++ ) { \
1708 GLint srcRow = row HOP hScale; \
1709 for ( col = 0 ; col < dstWidth ; col++ ) { \
1710 GLint srcCol = col WOP wScale; \
1711 dst[col] = src[srcRow * srcStrideInPixels + srcCol]; \
1712 } \
1713 dst = (TYPE *) ((GLubyte *) dst + dstRowStride); \
1714 } \
1715
1716 #define RESCALE_IMAGE( TYPE ) \
1717 do { \
1718 const TYPE *src = (const TYPE *)srcImage; \
1719 TYPE *dst = (TYPE *)dstImage; \
1720 \
1721 if ( srcHeight < dstHeight ) { \
1722 const GLint hScale = dstHeight / srcHeight; \
1723 if ( srcWidth < dstWidth ) { \
1724 const GLint wScale = dstWidth / srcWidth; \
1725 INNER_LOOP( TYPE, /, / ); \
1726 } \
1727 else { \
1728 const GLint wScale = srcWidth / dstWidth; \
1729 INNER_LOOP( TYPE, /, * ); \
1730 } \
1731 } \
1732 else { \
1733 const GLint hScale = srcHeight / dstHeight; \
1734 if ( srcWidth < dstWidth ) { \
1735 const GLint wScale = dstWidth / srcWidth; \
1736 INNER_LOOP( TYPE, *, / ); \
1737 } \
1738 else { \
1739 const GLint wScale = srcWidth / dstWidth; \
1740 INNER_LOOP( TYPE, *, * ); \
1741 } \
1742 } \
1743 } while (0)
1744
1745 switch ( bytesPerPixel ) {
1746 case 4:
1747 RESCALE_IMAGE( GLuint );
1748 break;
1749
1750 case 2:
1751 RESCALE_IMAGE( GLushort );
1752 break;
1753
1754 case 1:
1755 RESCALE_IMAGE( GLubyte );
1756 break;
1757 default:
1758 _mesa_problem(NULL,"unexpected bytes/pixel in _mesa_rescale_teximage2d");
1759 }
1760 }
1761
1762
1763 /**
1764 * Upscale an image by replication, not (typical) stretching.
1765 * We use this when the image width or height is less than a
1766 * certain size (4, 8) and we need to upscale an image.
1767 */
1768 void
1769 _mesa_upscale_teximage2d(GLsizei inWidth, GLsizei inHeight,
1770 GLsizei outWidth, GLsizei outHeight,
1771 GLint comps, const GLchan *src, GLint srcRowStride,
1772 GLchan *dest )
1773 {
1774 GLint i, j, k;
1775
1776 ASSERT(outWidth >= inWidth);
1777 ASSERT(outHeight >= inHeight);
1778 #if 0
1779 ASSERT(inWidth == 1 || inWidth == 2 || inHeight == 1 || inHeight == 2);
1780 ASSERT((outWidth & 3) == 0);
1781 ASSERT((outHeight & 3) == 0);
1782 #endif
1783
1784 for (i = 0; i < outHeight; i++) {
1785 const GLint ii = i % inHeight;
1786 for (j = 0; j < outWidth; j++) {
1787 const GLint jj = j % inWidth;
1788 for (k = 0; k < comps; k++) {
1789 dest[(i * outWidth + j) * comps + k]
1790 = src[ii * srcRowStride + jj * comps + k];
1791 }
1792 }
1793 }
1794 }
1795