mesa: remove unused clamp_float_to_uint() and clamp_half_to_uint()
[mesa.git] / src / mesa / main / pack.c
1 /*
2 * Mesa 3-D graphics library
3 *
4 * Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
5 * Copyright (C) 2009-2010 VMware, Inc. All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THEA AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /**
27 * \file pack.c
28 * Image and pixel span packing and unpacking.
29 */
30
31
32 /*
33 * XXX: MSVC takes forever to compile this module for x86_64 unless we disable
34 * this global optimization.
35 *
36 * See also:
37 * - http://msdn.microsoft.com/en-us/library/1yk3ydd7.aspx
38 * - http://msdn.microsoft.com/en-us/library/chh3fb0k.aspx
39 */
40 #if defined(_MSC_VER) && defined(_M_X64)
41 # pragma optimize( "g", off )
42 #endif
43
44
45 #include "glheader.h"
46 #include "enums.h"
47 #include "image.h"
48 #include "imports.h"
49 #include "macros.h"
50 #include "mtypes.h"
51 #include "pack.h"
52 #include "pixeltransfer.h"
53 #include "imports.h"
54 #include "glformats.h"
55 #include "format_utils.h"
56 #include "format_pack.h"
57
58
59 /**
60 * Flip the 8 bits in each byte of the given array.
61 *
62 * \param p array.
63 * \param n number of bytes.
64 *
65 * \todo try this trick to flip bytes someday:
66 * \code
67 * v = ((v & 0x55555555) << 1) | ((v >> 1) & 0x55555555);
68 * v = ((v & 0x33333333) << 2) | ((v >> 2) & 0x33333333);
69 * v = ((v & 0x0f0f0f0f) << 4) | ((v >> 4) & 0x0f0f0f0f);
70 * \endcode
71 */
72 static void
73 flip_bytes( GLubyte *p, GLuint n )
74 {
75 GLuint i, a, b;
76 for (i = 0; i < n; i++) {
77 b = (GLuint) p[i]; /* words are often faster than bytes */
78 a = ((b & 0x01) << 7) |
79 ((b & 0x02) << 5) |
80 ((b & 0x04) << 3) |
81 ((b & 0x08) << 1) |
82 ((b & 0x10) >> 1) |
83 ((b & 0x20) >> 3) |
84 ((b & 0x40) >> 5) |
85 ((b & 0x80) >> 7);
86 p[i] = (GLubyte) a;
87 }
88 }
89
90
91
92 /*
93 * Unpack a 32x32 pixel polygon stipple from user memory using the
94 * current pixel unpack settings.
95 */
96 void
97 _mesa_unpack_polygon_stipple( const GLubyte *pattern, GLuint dest[32],
98 const struct gl_pixelstore_attrib *unpacking )
99 {
100 GLubyte *ptrn = (GLubyte *) _mesa_unpack_image(2, 32, 32, 1, GL_COLOR_INDEX,
101 GL_BITMAP, pattern, unpacking);
102 if (ptrn) {
103 /* Convert pattern from GLubytes to GLuints and handle big/little
104 * endian differences
105 */
106 GLubyte *p = ptrn;
107 GLint i;
108 for (i = 0; i < 32; i++) {
109 dest[i] = (p[0] << 24)
110 | (p[1] << 16)
111 | (p[2] << 8)
112 | (p[3] );
113 p += 4;
114 }
115 free(ptrn);
116 }
117 }
118
119
120 /*
121 * Pack polygon stipple into user memory given current pixel packing
122 * settings.
123 */
124 void
125 _mesa_pack_polygon_stipple( const GLuint pattern[32], GLubyte *dest,
126 const struct gl_pixelstore_attrib *packing )
127 {
128 /* Convert pattern from GLuints to GLubytes to handle big/little
129 * endian differences.
130 */
131 GLubyte ptrn[32*4];
132 GLint i;
133 for (i = 0; i < 32; i++) {
134 ptrn[i * 4 + 0] = (GLubyte) ((pattern[i] >> 24) & 0xff);
135 ptrn[i * 4 + 1] = (GLubyte) ((pattern[i] >> 16) & 0xff);
136 ptrn[i * 4 + 2] = (GLubyte) ((pattern[i] >> 8 ) & 0xff);
137 ptrn[i * 4 + 3] = (GLubyte) ((pattern[i] ) & 0xff);
138 }
139
140 _mesa_pack_bitmap(32, 32, ptrn, dest, packing);
141 }
142
143
144 /*
145 * Pack bitmap data.
146 */
147 void
148 _mesa_pack_bitmap( GLint width, GLint height, const GLubyte *source,
149 GLubyte *dest, const struct gl_pixelstore_attrib *packing )
150 {
151 GLint row, width_in_bytes;
152 const GLubyte *src;
153
154 if (!source)
155 return;
156
157 width_in_bytes = DIV_ROUND_UP( width, 8 );
158 src = source;
159 for (row = 0; row < height; row++) {
160 GLubyte *dst = (GLubyte *) _mesa_image_address2d(packing, dest,
161 width, height, GL_COLOR_INDEX, GL_BITMAP, row, 0);
162 if (!dst)
163 return;
164
165 if ((packing->SkipPixels & 7) == 0) {
166 memcpy( dst, src, width_in_bytes );
167 if (packing->LsbFirst) {
168 flip_bytes( dst, width_in_bytes );
169 }
170 }
171 else {
172 /* handling SkipPixels is a bit tricky (no pun intended!) */
173 GLint i;
174 if (packing->LsbFirst) {
175 GLubyte srcMask = 128;
176 GLubyte dstMask = 1 << (packing->SkipPixels & 0x7);
177 const GLubyte *s = src;
178 GLubyte *d = dst;
179 *d = 0;
180 for (i = 0; i < width; i++) {
181 if (*s & srcMask) {
182 *d |= dstMask;
183 }
184 if (srcMask == 1) {
185 srcMask = 128;
186 s++;
187 }
188 else {
189 srcMask = srcMask >> 1;
190 }
191 if (dstMask == 128) {
192 dstMask = 1;
193 d++;
194 *d = 0;
195 }
196 else {
197 dstMask = dstMask << 1;
198 }
199 }
200 }
201 else {
202 GLubyte srcMask = 128;
203 GLubyte dstMask = 128 >> (packing->SkipPixels & 0x7);
204 const GLubyte *s = src;
205 GLubyte *d = dst;
206 *d = 0;
207 for (i = 0; i < width; i++) {
208 if (*s & srcMask) {
209 *d |= dstMask;
210 }
211 if (srcMask == 1) {
212 srcMask = 128;
213 s++;
214 }
215 else {
216 srcMask = srcMask >> 1;
217 }
218 if (dstMask == 1) {
219 dstMask = 128;
220 d++;
221 *d = 0;
222 }
223 else {
224 dstMask = dstMask >> 1;
225 }
226 }
227 }
228 }
229 src += width_in_bytes;
230 }
231 }
232
233
234 #define SWAP2BYTE(VALUE) \
235 { \
236 GLubyte *bytes = (GLubyte *) &(VALUE); \
237 GLubyte tmp = bytes[0]; \
238 bytes[0] = bytes[1]; \
239 bytes[1] = tmp; \
240 }
241
242 #define SWAP4BYTE(VALUE) \
243 { \
244 GLubyte *bytes = (GLubyte *) &(VALUE); \
245 GLubyte tmp = bytes[0]; \
246 bytes[0] = bytes[3]; \
247 bytes[3] = tmp; \
248 tmp = bytes[1]; \
249 bytes[1] = bytes[2]; \
250 bytes[2] = tmp; \
251 }
252
253
254 static void
255 extract_uint_indexes(GLuint n, GLuint indexes[],
256 GLenum srcFormat, GLenum srcType, const GLvoid *src,
257 const struct gl_pixelstore_attrib *unpack )
258 {
259 assert(srcFormat == GL_COLOR_INDEX || srcFormat == GL_STENCIL_INDEX);
260
261 assert(srcType == GL_BITMAP ||
262 srcType == GL_UNSIGNED_BYTE ||
263 srcType == GL_BYTE ||
264 srcType == GL_UNSIGNED_SHORT ||
265 srcType == GL_SHORT ||
266 srcType == GL_UNSIGNED_INT ||
267 srcType == GL_INT ||
268 srcType == GL_UNSIGNED_INT_24_8_EXT ||
269 srcType == GL_HALF_FLOAT_ARB ||
270 srcType == GL_HALF_FLOAT_OES ||
271 srcType == GL_FLOAT ||
272 srcType == GL_FLOAT_32_UNSIGNED_INT_24_8_REV);
273
274 switch (srcType) {
275 case GL_BITMAP:
276 {
277 GLubyte *ubsrc = (GLubyte *) src;
278 if (unpack->LsbFirst) {
279 GLubyte mask = 1 << (unpack->SkipPixels & 0x7);
280 GLuint i;
281 for (i = 0; i < n; i++) {
282 indexes[i] = (*ubsrc & mask) ? 1 : 0;
283 if (mask == 128) {
284 mask = 1;
285 ubsrc++;
286 }
287 else {
288 mask = mask << 1;
289 }
290 }
291 }
292 else {
293 GLubyte mask = 128 >> (unpack->SkipPixels & 0x7);
294 GLuint i;
295 for (i = 0; i < n; i++) {
296 indexes[i] = (*ubsrc & mask) ? 1 : 0;
297 if (mask == 1) {
298 mask = 128;
299 ubsrc++;
300 }
301 else {
302 mask = mask >> 1;
303 }
304 }
305 }
306 }
307 break;
308 case GL_UNSIGNED_BYTE:
309 {
310 GLuint i;
311 const GLubyte *s = (const GLubyte *) src;
312 for (i = 0; i < n; i++)
313 indexes[i] = s[i];
314 }
315 break;
316 case GL_BYTE:
317 {
318 GLuint i;
319 const GLbyte *s = (const GLbyte *) src;
320 for (i = 0; i < n; i++)
321 indexes[i] = s[i];
322 }
323 break;
324 case GL_UNSIGNED_SHORT:
325 {
326 GLuint i;
327 const GLushort *s = (const GLushort *) src;
328 if (unpack->SwapBytes) {
329 for (i = 0; i < n; i++) {
330 GLushort value = s[i];
331 SWAP2BYTE(value);
332 indexes[i] = value;
333 }
334 }
335 else {
336 for (i = 0; i < n; i++)
337 indexes[i] = s[i];
338 }
339 }
340 break;
341 case GL_SHORT:
342 {
343 GLuint i;
344 const GLshort *s = (const GLshort *) src;
345 if (unpack->SwapBytes) {
346 for (i = 0; i < n; i++) {
347 GLshort value = s[i];
348 SWAP2BYTE(value);
349 indexes[i] = value;
350 }
351 }
352 else {
353 for (i = 0; i < n; i++)
354 indexes[i] = s[i];
355 }
356 }
357 break;
358 case GL_UNSIGNED_INT:
359 {
360 GLuint i;
361 const GLuint *s = (const GLuint *) src;
362 if (unpack->SwapBytes) {
363 for (i = 0; i < n; i++) {
364 GLuint value = s[i];
365 SWAP4BYTE(value);
366 indexes[i] = value;
367 }
368 }
369 else {
370 for (i = 0; i < n; i++)
371 indexes[i] = s[i];
372 }
373 }
374 break;
375 case GL_INT:
376 {
377 GLuint i;
378 const GLint *s = (const GLint *) src;
379 if (unpack->SwapBytes) {
380 for (i = 0; i < n; i++) {
381 GLint value = s[i];
382 SWAP4BYTE(value);
383 indexes[i] = value;
384 }
385 }
386 else {
387 for (i = 0; i < n; i++)
388 indexes[i] = s[i];
389 }
390 }
391 break;
392 case GL_FLOAT:
393 {
394 GLuint i;
395 const GLfloat *s = (const GLfloat *) src;
396 if (unpack->SwapBytes) {
397 for (i = 0; i < n; i++) {
398 GLfloat value = s[i];
399 SWAP4BYTE(value);
400 indexes[i] = (GLuint) value;
401 }
402 }
403 else {
404 for (i = 0; i < n; i++)
405 indexes[i] = (GLuint) s[i];
406 }
407 }
408 break;
409 case GL_HALF_FLOAT_ARB:
410 case GL_HALF_FLOAT_OES:
411 {
412 GLuint i;
413 const GLhalfARB *s = (const GLhalfARB *) src;
414 if (unpack->SwapBytes) {
415 for (i = 0; i < n; i++) {
416 GLhalfARB value = s[i];
417 SWAP2BYTE(value);
418 indexes[i] = (GLuint) _mesa_half_to_float(value);
419 }
420 }
421 else {
422 for (i = 0; i < n; i++)
423 indexes[i] = (GLuint) _mesa_half_to_float(s[i]);
424 }
425 }
426 break;
427 case GL_UNSIGNED_INT_24_8_EXT:
428 {
429 GLuint i;
430 const GLuint *s = (const GLuint *) src;
431 if (unpack->SwapBytes) {
432 for (i = 0; i < n; i++) {
433 GLuint value = s[i];
434 SWAP4BYTE(value);
435 indexes[i] = value & 0xff; /* lower 8 bits */
436 }
437 }
438 else {
439 for (i = 0; i < n; i++)
440 indexes[i] = s[i] & 0xff; /* lower 8 bits */
441 }
442 }
443 break;
444 case GL_FLOAT_32_UNSIGNED_INT_24_8_REV:
445 {
446 GLuint i;
447 const GLuint *s = (const GLuint *) src;
448 if (unpack->SwapBytes) {
449 for (i = 0; i < n; i++) {
450 GLuint value = s[i*2+1];
451 SWAP4BYTE(value);
452 indexes[i] = value & 0xff; /* lower 8 bits */
453 }
454 }
455 else {
456 for (i = 0; i < n; i++)
457 indexes[i] = s[i*2+1] & 0xff; /* lower 8 bits */
458 }
459 }
460 break;
461
462 default:
463 _mesa_problem(NULL, "bad srcType in extract_uint_indexes");
464 return;
465 }
466 }
467
468
469 /*
470 * Unpack a row of stencil data from a client buffer according to
471 * the pixel unpacking parameters.
472 * This is (or will be) used by glDrawPixels
473 *
474 * Args: ctx - the context
475 * n - number of pixels
476 * dstType - destination data type
477 * dest - destination array
478 * srcType - source pixel type
479 * source - source data pointer
480 * srcPacking - pixel unpacking parameters
481 * transferOps - apply offset/bias/lookup ops?
482 */
483 void
484 _mesa_unpack_stencil_span( struct gl_context *ctx, GLuint n,
485 GLenum dstType, GLvoid *dest,
486 GLenum srcType, const GLvoid *source,
487 const struct gl_pixelstore_attrib *srcPacking,
488 GLbitfield transferOps )
489 {
490 assert(srcType == GL_BITMAP ||
491 srcType == GL_UNSIGNED_BYTE ||
492 srcType == GL_BYTE ||
493 srcType == GL_UNSIGNED_SHORT ||
494 srcType == GL_SHORT ||
495 srcType == GL_UNSIGNED_INT ||
496 srcType == GL_INT ||
497 srcType == GL_UNSIGNED_INT_24_8_EXT ||
498 srcType == GL_HALF_FLOAT_ARB ||
499 srcType == GL_HALF_FLOAT_OES ||
500 srcType == GL_FLOAT ||
501 srcType == GL_FLOAT_32_UNSIGNED_INT_24_8_REV);
502
503 assert(dstType == GL_UNSIGNED_BYTE ||
504 dstType == GL_UNSIGNED_SHORT ||
505 dstType == GL_UNSIGNED_INT ||
506 dstType == GL_FLOAT_32_UNSIGNED_INT_24_8_REV);
507
508 /* only shift and offset apply to stencil */
509 transferOps &= IMAGE_SHIFT_OFFSET_BIT;
510
511 /*
512 * Try simple cases first
513 */
514 if (transferOps == 0 &&
515 !ctx->Pixel.MapStencilFlag &&
516 srcType == GL_UNSIGNED_BYTE &&
517 dstType == GL_UNSIGNED_BYTE) {
518 memcpy(dest, source, n * sizeof(GLubyte));
519 }
520 else if (transferOps == 0 &&
521 !ctx->Pixel.MapStencilFlag &&
522 srcType == GL_UNSIGNED_INT &&
523 dstType == GL_UNSIGNED_INT &&
524 !srcPacking->SwapBytes) {
525 memcpy(dest, source, n * sizeof(GLuint));
526 }
527 else {
528 /*
529 * general solution
530 */
531 GLuint *indexes = malloc(n * sizeof(GLuint));
532
533 if (!indexes) {
534 _mesa_error(ctx, GL_OUT_OF_MEMORY, "stencil unpacking");
535 return;
536 }
537
538 extract_uint_indexes(n, indexes, GL_STENCIL_INDEX, srcType, source,
539 srcPacking);
540
541 if (transferOps & IMAGE_SHIFT_OFFSET_BIT) {
542 /* shift and offset indexes */
543 _mesa_shift_and_offset_ci(ctx, n, indexes);
544 }
545
546 if (ctx->Pixel.MapStencilFlag) {
547 /* Apply stencil lookup table */
548 const GLuint mask = ctx->PixelMaps.StoS.Size - 1;
549 GLuint i;
550 for (i = 0; i < n; i++) {
551 indexes[i] = (GLuint)ctx->PixelMaps.StoS.Map[ indexes[i] & mask ];
552 }
553 }
554
555 /* convert to dest type */
556 switch (dstType) {
557 case GL_UNSIGNED_BYTE:
558 {
559 GLubyte *dst = (GLubyte *) dest;
560 GLuint i;
561 for (i = 0; i < n; i++) {
562 dst[i] = (GLubyte) (indexes[i] & 0xff);
563 }
564 }
565 break;
566 case GL_UNSIGNED_SHORT:
567 {
568 GLuint *dst = (GLuint *) dest;
569 GLuint i;
570 for (i = 0; i < n; i++) {
571 dst[i] = (GLushort) (indexes[i] & 0xffff);
572 }
573 }
574 break;
575 case GL_UNSIGNED_INT:
576 memcpy(dest, indexes, n * sizeof(GLuint));
577 break;
578 case GL_FLOAT_32_UNSIGNED_INT_24_8_REV:
579 {
580 GLuint *dst = (GLuint *) dest;
581 GLuint i;
582 for (i = 0; i < n; i++) {
583 dst[i*2+1] = indexes[i] & 0xff; /* lower 8 bits */
584 }
585 }
586 break;
587 default:
588 _mesa_problem(ctx, "bad dstType in _mesa_unpack_stencil_span");
589 }
590
591 free(indexes);
592 }
593 }
594
595
596 void
597 _mesa_pack_stencil_span( struct gl_context *ctx, GLuint n,
598 GLenum dstType, GLvoid *dest, const GLubyte *source,
599 const struct gl_pixelstore_attrib *dstPacking )
600 {
601 GLubyte *stencil = malloc(n * sizeof(GLubyte));
602
603 if (!stencil) {
604 _mesa_error(ctx, GL_OUT_OF_MEMORY, "stencil packing");
605 return;
606 }
607
608 if (ctx->Pixel.IndexShift || ctx->Pixel.IndexOffset ||
609 ctx->Pixel.MapStencilFlag) {
610 /* make a copy of input */
611 memcpy(stencil, source, n * sizeof(GLubyte));
612 _mesa_apply_stencil_transfer_ops(ctx, n, stencil);
613 source = stencil;
614 }
615
616 switch (dstType) {
617 case GL_UNSIGNED_BYTE:
618 memcpy(dest, source, n);
619 break;
620 case GL_BYTE:
621 {
622 GLbyte *dst = (GLbyte *) dest;
623 GLuint i;
624 for (i=0;i<n;i++) {
625 dst[i] = (GLbyte) (source[i] & 0x7f);
626 }
627 }
628 break;
629 case GL_UNSIGNED_SHORT:
630 {
631 GLushort *dst = (GLushort *) dest;
632 GLuint i;
633 for (i=0;i<n;i++) {
634 dst[i] = (GLushort) source[i];
635 }
636 if (dstPacking->SwapBytes) {
637 _mesa_swap2( (GLushort *) dst, n );
638 }
639 }
640 break;
641 case GL_SHORT:
642 {
643 GLshort *dst = (GLshort *) dest;
644 GLuint i;
645 for (i=0;i<n;i++) {
646 dst[i] = (GLshort) source[i];
647 }
648 if (dstPacking->SwapBytes) {
649 _mesa_swap2( (GLushort *) dst, n );
650 }
651 }
652 break;
653 case GL_UNSIGNED_INT:
654 {
655 GLuint *dst = (GLuint *) dest;
656 GLuint i;
657 for (i=0;i<n;i++) {
658 dst[i] = (GLuint) source[i];
659 }
660 if (dstPacking->SwapBytes) {
661 _mesa_swap4( (GLuint *) dst, n );
662 }
663 }
664 break;
665 case GL_INT:
666 {
667 GLint *dst = (GLint *) dest;
668 GLuint i;
669 for (i=0;i<n;i++) {
670 dst[i] = (GLint) source[i];
671 }
672 if (dstPacking->SwapBytes) {
673 _mesa_swap4( (GLuint *) dst, n );
674 }
675 }
676 break;
677 case GL_FLOAT:
678 {
679 GLfloat *dst = (GLfloat *) dest;
680 GLuint i;
681 for (i=0;i<n;i++) {
682 dst[i] = (GLfloat) source[i];
683 }
684 if (dstPacking->SwapBytes) {
685 _mesa_swap4( (GLuint *) dst, n );
686 }
687 }
688 break;
689 case GL_HALF_FLOAT_ARB:
690 case GL_HALF_FLOAT_OES:
691 {
692 GLhalfARB *dst = (GLhalfARB *) dest;
693 GLuint i;
694 for (i=0;i<n;i++) {
695 dst[i] = _mesa_float_to_half( (float) source[i] );
696 }
697 if (dstPacking->SwapBytes) {
698 _mesa_swap2( (GLushort *) dst, n );
699 }
700 }
701 break;
702 case GL_BITMAP:
703 if (dstPacking->LsbFirst) {
704 GLubyte *dst = (GLubyte *) dest;
705 GLint shift = 0;
706 GLuint i;
707 for (i = 0; i < n; i++) {
708 if (shift == 0)
709 *dst = 0;
710 *dst |= ((source[i] != 0) << shift);
711 shift++;
712 if (shift == 8) {
713 shift = 0;
714 dst++;
715 }
716 }
717 }
718 else {
719 GLubyte *dst = (GLubyte *) dest;
720 GLint shift = 7;
721 GLuint i;
722 for (i = 0; i < n; i++) {
723 if (shift == 7)
724 *dst = 0;
725 *dst |= ((source[i] != 0) << shift);
726 shift--;
727 if (shift < 0) {
728 shift = 7;
729 dst++;
730 }
731 }
732 }
733 break;
734 default:
735 _mesa_problem(ctx, "bad type in _mesa_pack_index_span");
736 }
737
738 free(stencil);
739 }
740
741 #define DEPTH_VALUES(GLTYPE, GLTYPE2FLOAT) \
742 do { \
743 GLuint i; \
744 const GLTYPE *src = (const GLTYPE *)source; \
745 for (i = 0; i < n; i++) { \
746 GLTYPE value = src[i]; \
747 if (srcPacking->SwapBytes) { \
748 if (sizeof(GLTYPE) == 2) { \
749 SWAP2BYTE(value); \
750 } else if (sizeof(GLTYPE) == 4) { \
751 SWAP4BYTE(value); \
752 } \
753 } \
754 depthValues[i] = GLTYPE2FLOAT(value); \
755 } \
756 } while (0)
757
758
759 /**
760 * Unpack a row of depth/z values from memory, returning GLushort, GLuint
761 * or GLfloat values.
762 * The glPixelTransfer (scale/bias) params will be applied.
763 *
764 * \param dstType one of GL_UNSIGNED_SHORT, GL_UNSIGNED_INT, GL_FLOAT
765 * \param depthMax max value for returned GLushort or GLuint values
766 * (ignored for GLfloat).
767 */
768 void
769 _mesa_unpack_depth_span( struct gl_context *ctx, GLuint n,
770 GLenum dstType, GLvoid *dest, GLuint depthMax,
771 GLenum srcType, const GLvoid *source,
772 const struct gl_pixelstore_attrib *srcPacking )
773 {
774 GLfloat *depthTemp = NULL, *depthValues;
775 GLboolean needClamp = GL_FALSE;
776
777 /* Look for special cases first.
778 * Not only are these faster, they're less prone to numeric conversion
779 * problems. Otherwise, converting from an int type to a float then
780 * back to an int type can introduce errors that will show up as
781 * artifacts in things like depth peeling which uses glCopyTexImage.
782 */
783 if (ctx->Pixel.DepthScale == 1.0F && ctx->Pixel.DepthBias == 0.0F) {
784 if (srcType == GL_UNSIGNED_INT && dstType == GL_UNSIGNED_SHORT) {
785 const GLuint *src = (const GLuint *) source;
786 GLushort *dst = (GLushort *) dest;
787 GLuint i;
788 for (i = 0; i < n; i++) {
789 dst[i] = src[i] >> 16;
790 }
791 return;
792 }
793 if (srcType == GL_UNSIGNED_SHORT
794 && dstType == GL_UNSIGNED_INT
795 && depthMax == 0xffffffff) {
796 const GLushort *src = (const GLushort *) source;
797 GLuint *dst = (GLuint *) dest;
798 GLuint i;
799 for (i = 0; i < n; i++) {
800 dst[i] = src[i] | (src[i] << 16);
801 }
802 return;
803 }
804 if (srcType == GL_UNSIGNED_INT_24_8
805 && dstType == GL_UNSIGNED_INT
806 && depthMax == 0xffffff) {
807 const GLuint *src = (const GLuint *) source;
808 GLuint *dst = (GLuint *) dest;
809 GLuint i;
810 for (i = 0; i < n; i++) {
811 dst[i] = src[i] >> 8;
812 }
813 return;
814 }
815 /* XXX may want to add additional cases here someday */
816 }
817
818 /* general case path follows */
819
820 if (dstType == GL_FLOAT) {
821 depthValues = (GLfloat *) dest;
822 }
823 else {
824 depthTemp = malloc(n * sizeof(GLfloat));
825 if (!depthTemp) {
826 _mesa_error(ctx, GL_OUT_OF_MEMORY, "pixel unpacking");
827 return;
828 }
829
830 depthValues = depthTemp;
831 }
832
833 /* Convert incoming values to GLfloat. Some conversions will require
834 * clamping, below.
835 */
836 switch (srcType) {
837 case GL_BYTE:
838 DEPTH_VALUES(GLbyte, BYTE_TO_FLOATZ);
839 needClamp = GL_TRUE;
840 break;
841 case GL_UNSIGNED_BYTE:
842 DEPTH_VALUES(GLubyte, UBYTE_TO_FLOAT);
843 break;
844 case GL_SHORT:
845 DEPTH_VALUES(GLshort, SHORT_TO_FLOATZ);
846 needClamp = GL_TRUE;
847 break;
848 case GL_UNSIGNED_SHORT:
849 DEPTH_VALUES(GLushort, USHORT_TO_FLOAT);
850 break;
851 case GL_INT:
852 DEPTH_VALUES(GLint, INT_TO_FLOAT);
853 needClamp = GL_TRUE;
854 break;
855 case GL_UNSIGNED_INT:
856 DEPTH_VALUES(GLuint, UINT_TO_FLOAT);
857 break;
858 case GL_UNSIGNED_INT_24_8_EXT: /* GL_EXT_packed_depth_stencil */
859 if (dstType == GL_UNSIGNED_INT_24_8_EXT &&
860 depthMax == 0xffffff &&
861 ctx->Pixel.DepthScale == 1.0F &&
862 ctx->Pixel.DepthBias == 0.0F) {
863 const GLuint *src = (const GLuint *) source;
864 GLuint *zValues = (GLuint *) dest;
865 GLuint i;
866 for (i = 0; i < n; i++) {
867 GLuint value = src[i];
868 if (srcPacking->SwapBytes) {
869 SWAP4BYTE(value);
870 }
871 zValues[i] = value & 0xffffff00;
872 }
873 free(depthTemp);
874 return;
875 }
876 else {
877 const GLuint *src = (const GLuint *) source;
878 const GLfloat scale = 1.0f / 0xffffff;
879 GLuint i;
880 for (i = 0; i < n; i++) {
881 GLuint value = src[i];
882 if (srcPacking->SwapBytes) {
883 SWAP4BYTE(value);
884 }
885 depthValues[i] = (value >> 8) * scale;
886 }
887 }
888 break;
889 case GL_FLOAT_32_UNSIGNED_INT_24_8_REV:
890 {
891 GLuint i;
892 const GLfloat *src = (const GLfloat *)source;
893 for (i = 0; i < n; i++) {
894 GLfloat value = src[i * 2];
895 if (srcPacking->SwapBytes) {
896 SWAP4BYTE(value);
897 }
898 depthValues[i] = value;
899 }
900 needClamp = GL_TRUE;
901 }
902 break;
903 case GL_FLOAT:
904 DEPTH_VALUES(GLfloat, 1*);
905 needClamp = GL_TRUE;
906 break;
907 case GL_HALF_FLOAT_ARB:
908 case GL_HALF_FLOAT_OES:
909 {
910 GLuint i;
911 const GLhalfARB *src = (const GLhalfARB *) source;
912 for (i = 0; i < n; i++) {
913 GLhalfARB value = src[i];
914 if (srcPacking->SwapBytes) {
915 SWAP2BYTE(value);
916 }
917 depthValues[i] = _mesa_half_to_float(value);
918 }
919 needClamp = GL_TRUE;
920 }
921 break;
922 default:
923 _mesa_problem(NULL, "bad type in _mesa_unpack_depth_span()");
924 free(depthTemp);
925 return;
926 }
927
928 /* apply depth scale and bias */
929 {
930 const GLfloat scale = ctx->Pixel.DepthScale;
931 const GLfloat bias = ctx->Pixel.DepthBias;
932 if (scale != 1.0F || bias != 0.0F) {
933 GLuint i;
934 for (i = 0; i < n; i++) {
935 depthValues[i] = depthValues[i] * scale + bias;
936 }
937 needClamp = GL_TRUE;
938 }
939 }
940
941 /* clamp to [0, 1] */
942 if (needClamp) {
943 GLuint i;
944 for (i = 0; i < n; i++) {
945 depthValues[i] = CLAMP(depthValues[i], 0.0F, 1.0F);
946 }
947 }
948
949 /*
950 * Convert values to dstType
951 */
952 if (dstType == GL_UNSIGNED_INT) {
953 GLuint *zValues = (GLuint *) dest;
954 GLuint i;
955 if (depthMax <= 0xffffff) {
956 /* no overflow worries */
957 for (i = 0; i < n; i++) {
958 zValues[i] = (GLuint) (depthValues[i] * (GLfloat) depthMax);
959 }
960 }
961 else {
962 /* need to use double precision to prevent overflow problems */
963 for (i = 0; i < n; i++) {
964 GLdouble z = depthValues[i] * (GLdouble) depthMax;
965 if (z >= (GLdouble) 0xffffffff)
966 zValues[i] = 0xffffffff;
967 else
968 zValues[i] = (GLuint) z;
969 }
970 }
971 }
972 else if (dstType == GL_UNSIGNED_SHORT) {
973 GLushort *zValues = (GLushort *) dest;
974 GLuint i;
975 assert(depthMax <= 0xffff);
976 for (i = 0; i < n; i++) {
977 zValues[i] = (GLushort) (depthValues[i] * (GLfloat) depthMax);
978 }
979 }
980 else if (dstType == GL_FLOAT) {
981 /* Nothing to do. depthValues is pointing to dest. */
982 }
983 else if (dstType == GL_FLOAT_32_UNSIGNED_INT_24_8_REV) {
984 GLfloat *zValues = (GLfloat*) dest;
985 GLuint i;
986 for (i = 0; i < n; i++) {
987 zValues[i*2] = depthValues[i];
988 }
989 }
990 else {
991 assert(0);
992 }
993
994 free(depthTemp);
995 }
996
997
998 /*
999 * Pack an array of depth values. The values are floats in [0,1].
1000 */
1001 void
1002 _mesa_pack_depth_span( struct gl_context *ctx, GLuint n, GLvoid *dest,
1003 GLenum dstType, const GLfloat *depthSpan,
1004 const struct gl_pixelstore_attrib *dstPacking )
1005 {
1006 GLfloat *depthCopy = malloc(n * sizeof(GLfloat));
1007 if (!depthCopy) {
1008 _mesa_error(ctx, GL_OUT_OF_MEMORY, "pixel packing");
1009 return;
1010 }
1011
1012 if (ctx->Pixel.DepthScale != 1.0F || ctx->Pixel.DepthBias != 0.0F) {
1013 memcpy(depthCopy, depthSpan, n * sizeof(GLfloat));
1014 _mesa_scale_and_bias_depth(ctx, n, depthCopy);
1015 depthSpan = depthCopy;
1016 }
1017
1018 switch (dstType) {
1019 case GL_UNSIGNED_BYTE:
1020 {
1021 GLubyte *dst = (GLubyte *) dest;
1022 GLuint i;
1023 for (i = 0; i < n; i++) {
1024 dst[i] = FLOAT_TO_UBYTE( depthSpan[i] );
1025 }
1026 }
1027 break;
1028 case GL_BYTE:
1029 {
1030 GLbyte *dst = (GLbyte *) dest;
1031 GLuint i;
1032 for (i = 0; i < n; i++) {
1033 dst[i] = FLOAT_TO_BYTE( depthSpan[i] );
1034 }
1035 }
1036 break;
1037 case GL_UNSIGNED_SHORT:
1038 {
1039 GLushort *dst = (GLushort *) dest;
1040 GLuint i;
1041 for (i = 0; i < n; i++) {
1042 CLAMPED_FLOAT_TO_USHORT(dst[i], depthSpan[i]);
1043 }
1044 if (dstPacking->SwapBytes) {
1045 _mesa_swap2( (GLushort *) dst, n );
1046 }
1047 }
1048 break;
1049 case GL_SHORT:
1050 {
1051 GLshort *dst = (GLshort *) dest;
1052 GLuint i;
1053 for (i = 0; i < n; i++) {
1054 dst[i] = FLOAT_TO_SHORT( depthSpan[i] );
1055 }
1056 if (dstPacking->SwapBytes) {
1057 _mesa_swap2( (GLushort *) dst, n );
1058 }
1059 }
1060 break;
1061 case GL_UNSIGNED_INT_24_8:
1062 {
1063 const GLdouble scale = (GLdouble) 0xffffff;
1064 GLuint *dst = (GLuint *) dest;
1065 GLuint i;
1066 for (i = 0; i < n; i++) {
1067 GLuint z = (GLuint) (depthSpan[i] * scale);
1068 assert(z <= 0xffffff);
1069 dst[i] = (z << 8);
1070 }
1071 if (dstPacking->SwapBytes) {
1072 _mesa_swap4( (GLuint *) dst, n );
1073 }
1074 break;
1075 }
1076 case GL_UNSIGNED_INT:
1077 {
1078 GLuint *dst = (GLuint *) dest;
1079 GLuint i;
1080 for (i = 0; i < n; i++) {
1081 dst[i] = FLOAT_TO_UINT( depthSpan[i] );
1082 }
1083 if (dstPacking->SwapBytes) {
1084 _mesa_swap4( (GLuint *) dst, n );
1085 }
1086 }
1087 break;
1088 case GL_INT:
1089 {
1090 GLint *dst = (GLint *) dest;
1091 GLuint i;
1092 for (i = 0; i < n; i++) {
1093 dst[i] = FLOAT_TO_INT( depthSpan[i] );
1094 }
1095 if (dstPacking->SwapBytes) {
1096 _mesa_swap4( (GLuint *) dst, n );
1097 }
1098 }
1099 break;
1100 case GL_FLOAT:
1101 {
1102 GLfloat *dst = (GLfloat *) dest;
1103 GLuint i;
1104 for (i = 0; i < n; i++) {
1105 dst[i] = depthSpan[i];
1106 }
1107 if (dstPacking->SwapBytes) {
1108 _mesa_swap4( (GLuint *) dst, n );
1109 }
1110 }
1111 break;
1112 case GL_HALF_FLOAT_ARB:
1113 case GL_HALF_FLOAT_OES:
1114 {
1115 GLhalfARB *dst = (GLhalfARB *) dest;
1116 GLuint i;
1117 for (i = 0; i < n; i++) {
1118 dst[i] = _mesa_float_to_half(depthSpan[i]);
1119 }
1120 if (dstPacking->SwapBytes) {
1121 _mesa_swap2( (GLushort *) dst, n );
1122 }
1123 }
1124 break;
1125 default:
1126 _mesa_problem(ctx, "bad type in _mesa_pack_depth_span (%s)",
1127 _mesa_enum_to_string(dstType));
1128 }
1129
1130 free(depthCopy);
1131 }
1132
1133
1134
1135 /**
1136 * Pack depth and stencil values as GL_DEPTH_STENCIL (GL_UNSIGNED_INT_24_8 etc)
1137 */
1138 void
1139 _mesa_pack_depth_stencil_span(struct gl_context *ctx,GLuint n,
1140 GLenum dstType, GLuint *dest,
1141 const GLfloat *depthVals,
1142 const GLubyte *stencilVals,
1143 const struct gl_pixelstore_attrib *dstPacking)
1144 {
1145 GLfloat *depthCopy = malloc(n * sizeof(GLfloat));
1146 GLubyte *stencilCopy = malloc(n * sizeof(GLubyte));
1147 GLuint i;
1148
1149 if (!depthCopy || !stencilCopy) {
1150 _mesa_error(ctx, GL_OUT_OF_MEMORY, "pixel packing");
1151 free(depthCopy);
1152 free(stencilCopy);
1153 return;
1154 }
1155
1156 if (ctx->Pixel.DepthScale != 1.0F || ctx->Pixel.DepthBias != 0.0F) {
1157 memcpy(depthCopy, depthVals, n * sizeof(GLfloat));
1158 _mesa_scale_and_bias_depth(ctx, n, depthCopy);
1159 depthVals = depthCopy;
1160 }
1161
1162 if (ctx->Pixel.IndexShift ||
1163 ctx->Pixel.IndexOffset ||
1164 ctx->Pixel.MapStencilFlag) {
1165 memcpy(stencilCopy, stencilVals, n * sizeof(GLubyte));
1166 _mesa_apply_stencil_transfer_ops(ctx, n, stencilCopy);
1167 stencilVals = stencilCopy;
1168 }
1169
1170 switch (dstType) {
1171 case GL_UNSIGNED_INT_24_8:
1172 for (i = 0; i < n; i++) {
1173 GLuint z = (GLuint) (depthVals[i] * 0xffffff);
1174 dest[i] = (z << 8) | (stencilVals[i] & 0xff);
1175 }
1176 break;
1177 case GL_FLOAT_32_UNSIGNED_INT_24_8_REV:
1178 for (i = 0; i < n; i++) {
1179 ((GLfloat*)dest)[i*2] = depthVals[i];
1180 dest[i*2+1] = stencilVals[i] & 0xff;
1181 }
1182 break;
1183 }
1184
1185 if (dstPacking->SwapBytes) {
1186 _mesa_swap4(dest, n);
1187 }
1188
1189 free(depthCopy);
1190 free(stencilCopy);
1191 }
1192
1193
1194
1195 /**
1196 * Unpack image data. Apply byte swapping, byte flipping (bitmap).
1197 * Return all image data in a contiguous block. This is used when we
1198 * compile glDrawPixels, glTexImage, etc into a display list. We
1199 * need a copy of the data in a standard format.
1200 */
1201 void *
1202 _mesa_unpack_image( GLuint dimensions,
1203 GLsizei width, GLsizei height, GLsizei depth,
1204 GLenum format, GLenum type, const GLvoid *pixels,
1205 const struct gl_pixelstore_attrib *unpack )
1206 {
1207 GLint bytesPerRow, compsPerRow;
1208 GLboolean flipBytes, swap2, swap4;
1209
1210 if (!pixels)
1211 return NULL; /* not necessarily an error */
1212
1213 if (width <= 0 || height <= 0 || depth <= 0)
1214 return NULL; /* generate error later */
1215
1216 if (type == GL_BITMAP) {
1217 bytesPerRow = (width + 7) >> 3;
1218 flipBytes = unpack->LsbFirst;
1219 swap2 = swap4 = GL_FALSE;
1220 compsPerRow = 0;
1221 }
1222 else {
1223 const GLint bytesPerPixel = _mesa_bytes_per_pixel(format, type);
1224 GLint components = _mesa_components_in_format(format);
1225 GLint bytesPerComp;
1226
1227 if (_mesa_type_is_packed(type))
1228 components = 1;
1229
1230 if (bytesPerPixel <= 0 || components <= 0)
1231 return NULL; /* bad format or type. generate error later */
1232 bytesPerRow = bytesPerPixel * width;
1233 bytesPerComp = bytesPerPixel / components;
1234 flipBytes = GL_FALSE;
1235 swap2 = (bytesPerComp == 2) && unpack->SwapBytes;
1236 swap4 = (bytesPerComp == 4) && unpack->SwapBytes;
1237 compsPerRow = components * width;
1238 assert(compsPerRow >= width);
1239 }
1240
1241 {
1242 GLubyte *destBuffer
1243 = malloc(bytesPerRow * height * depth);
1244 GLubyte *dst;
1245 GLint img, row;
1246 if (!destBuffer)
1247 return NULL; /* generate GL_OUT_OF_MEMORY later */
1248
1249 dst = destBuffer;
1250 for (img = 0; img < depth; img++) {
1251 for (row = 0; row < height; row++) {
1252 const GLvoid *src = _mesa_image_address(dimensions, unpack, pixels,
1253 width, height, format, type, img, row, 0);
1254
1255 if ((type == GL_BITMAP) && (unpack->SkipPixels & 0x7)) {
1256 GLint i;
1257 flipBytes = GL_FALSE;
1258 if (unpack->LsbFirst) {
1259 GLubyte srcMask = 1 << (unpack->SkipPixels & 0x7);
1260 GLubyte dstMask = 128;
1261 const GLubyte *s = src;
1262 GLubyte *d = dst;
1263 *d = 0;
1264 for (i = 0; i < width; i++) {
1265 if (*s & srcMask) {
1266 *d |= dstMask;
1267 }
1268 if (srcMask == 128) {
1269 srcMask = 1;
1270 s++;
1271 }
1272 else {
1273 srcMask = srcMask << 1;
1274 }
1275 if (dstMask == 1) {
1276 dstMask = 128;
1277 d++;
1278 *d = 0;
1279 }
1280 else {
1281 dstMask = dstMask >> 1;
1282 }
1283 }
1284 }
1285 else {
1286 GLubyte srcMask = 128 >> (unpack->SkipPixels & 0x7);
1287 GLubyte dstMask = 128;
1288 const GLubyte *s = src;
1289 GLubyte *d = dst;
1290 *d = 0;
1291 for (i = 0; i < width; i++) {
1292 if (*s & srcMask) {
1293 *d |= dstMask;
1294 }
1295 if (srcMask == 1) {
1296 srcMask = 128;
1297 s++;
1298 }
1299 else {
1300 srcMask = srcMask >> 1;
1301 }
1302 if (dstMask == 1) {
1303 dstMask = 128;
1304 d++;
1305 *d = 0;
1306 }
1307 else {
1308 dstMask = dstMask >> 1;
1309 }
1310 }
1311 }
1312 }
1313 else {
1314 memcpy(dst, src, bytesPerRow);
1315 }
1316
1317 /* byte flipping/swapping */
1318 if (flipBytes) {
1319 flip_bytes((GLubyte *) dst, bytesPerRow);
1320 }
1321 else if (swap2) {
1322 _mesa_swap2((GLushort*) dst, compsPerRow);
1323 }
1324 else if (swap4) {
1325 _mesa_swap4((GLuint*) dst, compsPerRow);
1326 }
1327 dst += bytesPerRow;
1328 }
1329 }
1330 return destBuffer;
1331 }
1332 }
1333
1334 void
1335 _mesa_pack_luminance_from_rgba_float(GLuint n, GLfloat rgba[][4],
1336 GLvoid *dstAddr, GLenum dst_format,
1337 GLbitfield transferOps)
1338 {
1339 int i;
1340 GLfloat *dst = (GLfloat *) dstAddr;
1341
1342 switch (dst_format) {
1343 case GL_LUMINANCE:
1344 if (transferOps & IMAGE_CLAMP_BIT) {
1345 for (i = 0; i < n; i++) {
1346 GLfloat sum = rgba[i][RCOMP] + rgba[i][GCOMP] + rgba[i][BCOMP];
1347 dst[i] = CLAMP(sum, 0.0F, 1.0F);
1348 }
1349 } else {
1350 for (i = 0; i < n; i++) {
1351 dst[i] = rgba[i][RCOMP] + rgba[i][GCOMP] + rgba[i][BCOMP];
1352 }
1353 }
1354 return;
1355 case GL_LUMINANCE_ALPHA:
1356 if (transferOps & IMAGE_CLAMP_BIT) {
1357 for (i = 0; i < n; i++) {
1358 GLfloat sum = rgba[i][RCOMP] + rgba[i][GCOMP] + rgba[i][BCOMP];
1359 dst[2*i] = CLAMP(sum, 0.0F, 1.0F);
1360 dst[2*i+1] = rgba[i][ACOMP];
1361 }
1362 } else {
1363 for (i = 0; i < n; i++) {
1364 dst[2*i] = rgba[i][RCOMP] + rgba[i][GCOMP] + rgba[i][BCOMP];
1365 dst[2*i+1] = rgba[i][ACOMP];
1366 }
1367 }
1368 return;
1369 default:
1370 assert(!"Unsupported format");
1371 }
1372 }
1373
1374 static int32_t
1375 clamp_sint64_to_sint32(int64_t src)
1376 {
1377 return CLAMP(src, INT32_MIN, INT32_MAX);
1378 }
1379
1380 static int32_t
1381 clamp_sint64_to_uint32(int64_t src)
1382 {
1383 return CLAMP(src, 0, UINT32_MAX);
1384 }
1385
1386 static int32_t
1387 clamp_uint64_to_uint32(uint64_t src)
1388 {
1389 return MIN2(src, UINT32_MAX);
1390 }
1391
1392 static int32_t
1393 clamp_uint64_to_sint32(uint64_t src)
1394 {
1395 return MIN2(src, INT32_MAX);
1396 }
1397
1398 static int32_t
1399 convert_integer_luminance64(int64_t src64, int bits,
1400 bool dst_is_signed, bool src_is_signed)
1401 {
1402 int32_t src32;
1403
1404 /* Clamp Luminance value from 64-bit to 32-bit. Consider if we need
1405 * any signed<->unsigned conversion too.
1406 */
1407 if (src_is_signed && dst_is_signed)
1408 src32 = clamp_sint64_to_sint32(src64);
1409 else if (src_is_signed && !dst_is_signed)
1410 src32 = clamp_sint64_to_uint32(src64);
1411 else if (!src_is_signed && dst_is_signed)
1412 src32 = clamp_uint64_to_sint32(src64);
1413 else
1414 src32 = clamp_uint64_to_uint32(src64);
1415
1416 /* If the dst type is < 32-bit, we need an extra clamp */
1417 if (bits == 32) {
1418 return src32;
1419 } else {
1420 if (dst_is_signed)
1421 return _mesa_signed_to_signed(src32, bits);
1422 else
1423 return _mesa_unsigned_to_unsigned(src32, bits);
1424 }
1425 }
1426
1427 static int32_t
1428 convert_integer(int32_t src, int bits, bool dst_is_signed, bool src_is_signed)
1429 {
1430 if (src_is_signed && dst_is_signed)
1431 return _mesa_signed_to_signed(src, bits);
1432 else if (src_is_signed && !dst_is_signed)
1433 return _mesa_signed_to_unsigned(src, bits);
1434 else if (!src_is_signed && dst_is_signed)
1435 return _mesa_unsigned_to_signed(src, bits);
1436 else
1437 return _mesa_unsigned_to_unsigned(src, bits);
1438 }
1439
1440 void
1441 _mesa_pack_luminance_from_rgba_integer(GLuint n,
1442 GLuint rgba[][4], bool rgba_is_signed,
1443 GLvoid *dstAddr,
1444 GLenum dst_format,
1445 GLenum dst_type)
1446 {
1447 int i;
1448 int64_t lum64;
1449 int32_t lum32, alpha;
1450 bool dst_is_signed;
1451 int dst_bits;
1452
1453 assert(dst_format == GL_LUMINANCE_INTEGER_EXT ||
1454 dst_format == GL_LUMINANCE_ALPHA_INTEGER_EXT);
1455
1456 /* We first compute luminance values as a 64-bit addition of the
1457 * 32-bit R,G,B components, then we clamp the result to the dst type size.
1458 *
1459 * Notice that this operation involves casting the 32-bit R,G,B components
1460 * to 64-bit before the addition. Since rgba is defined as a GLuint array
1461 * we need to be careful when rgba packs signed data and make sure
1462 * that we cast to a 32-bit signed integer values before casting them to
1463 * 64-bit signed integers.
1464 */
1465 dst_is_signed = (dst_type == GL_BYTE || dst_type == GL_SHORT ||
1466 dst_type == GL_INT);
1467
1468 dst_bits = _mesa_sizeof_type(dst_type) * 8;
1469 assert(dst_bits > 0);
1470
1471 switch (dst_format) {
1472 case GL_LUMINANCE_INTEGER_EXT:
1473 for (i = 0; i < n; i++) {
1474 if (!rgba_is_signed) {
1475 lum64 = (uint64_t) rgba[i][RCOMP] +
1476 (uint64_t) rgba[i][GCOMP] +
1477 (uint64_t) rgba[i][BCOMP];
1478 } else {
1479 lum64 = (int64_t) ((int32_t) rgba[i][RCOMP]) +
1480 (int64_t) ((int32_t) rgba[i][GCOMP]) +
1481 (int64_t) ((int32_t) rgba[i][BCOMP]);
1482 }
1483 lum32 = convert_integer_luminance64(lum64, dst_bits,
1484 dst_is_signed, rgba_is_signed);
1485 switch (dst_type) {
1486 case GL_BYTE:
1487 case GL_UNSIGNED_BYTE: {
1488 GLbyte *dst = (GLbyte *) dstAddr;
1489 dst[i] = lum32;
1490 break;
1491 }
1492 case GL_SHORT:
1493 case GL_UNSIGNED_SHORT: {
1494 GLshort *dst = (GLshort *) dstAddr;
1495 dst[i] = lum32;
1496 break;
1497 }
1498 case GL_INT:
1499 case GL_UNSIGNED_INT: {
1500 GLint *dst = (GLint *) dstAddr;
1501 dst[i] = lum32;
1502 break;
1503 }
1504 }
1505 }
1506 return;
1507 case GL_LUMINANCE_ALPHA_INTEGER_EXT:
1508 for (i = 0; i < n; i++) {
1509 if (!rgba_is_signed) {
1510 lum64 = (uint64_t) rgba[i][RCOMP] +
1511 (uint64_t) rgba[i][GCOMP] +
1512 (uint64_t) rgba[i][BCOMP];
1513 } else {
1514 lum64 = (int64_t) ((int32_t) rgba[i][RCOMP]) +
1515 (int64_t) ((int32_t) rgba[i][GCOMP]) +
1516 (int64_t) ((int32_t) rgba[i][BCOMP]);
1517 }
1518 lum32 = convert_integer_luminance64(lum64, dst_bits,
1519 dst_is_signed, rgba_is_signed);
1520 alpha = convert_integer(rgba[i][ACOMP], dst_bits,
1521 dst_is_signed, rgba_is_signed);
1522 switch (dst_type) {
1523 case GL_BYTE:
1524 case GL_UNSIGNED_BYTE: {
1525 GLbyte *dst = (GLbyte *) dstAddr;
1526 dst[2*i] = lum32;
1527 dst[2*i+1] = alpha;
1528 break;
1529 }
1530 case GL_SHORT:
1531 case GL_UNSIGNED_SHORT: {
1532 GLshort *dst = (GLshort *) dstAddr;
1533 dst[i] = lum32;
1534 dst[2*i+1] = alpha;
1535 break;
1536 }
1537 case GL_INT:
1538 case GL_UNSIGNED_INT: {
1539 GLint *dst = (GLint *) dstAddr;
1540 dst[i] = lum32;
1541 dst[2*i+1] = alpha;
1542 break;
1543 }
1544 }
1545 }
1546 return;
1547 }
1548 }
1549
1550 GLfloat *
1551 _mesa_unpack_color_index_to_rgba_float(struct gl_context *ctx, GLuint dims,
1552 const void *src, GLenum srcFormat, GLenum srcType,
1553 int srcWidth, int srcHeight, int srcDepth,
1554 const struct gl_pixelstore_attrib *srcPacking,
1555 GLbitfield transferOps)
1556 {
1557 int count, img;
1558 GLuint *indexes;
1559 GLfloat *rgba, *dstPtr;
1560
1561 count = srcWidth * srcHeight;
1562 indexes = malloc(count * sizeof(GLuint));
1563 if (!indexes) {
1564 _mesa_error(ctx, GL_OUT_OF_MEMORY, "pixel unpacking");
1565 return NULL;
1566 }
1567
1568 rgba = malloc(4 * count * srcDepth * sizeof(GLfloat));
1569 if (!rgba) {
1570 free(indexes);
1571 _mesa_error(ctx, GL_OUT_OF_MEMORY, "pixel unpacking");
1572 return NULL;
1573 }
1574
1575 /* Convert indexes to RGBA float */
1576 dstPtr = rgba;
1577 for (img = 0; img < srcDepth; img++) {
1578 const GLubyte *srcPtr =
1579 (const GLubyte *) _mesa_image_address(dims, srcPacking, src,
1580 srcWidth, srcHeight,
1581 srcFormat, srcType,
1582 img, 0, 0);
1583
1584 extract_uint_indexes(count, indexes, srcFormat, srcType, srcPtr, srcPacking);
1585
1586 if (transferOps & IMAGE_SHIFT_OFFSET_BIT)
1587 _mesa_shift_and_offset_ci(ctx, count, indexes);
1588
1589 _mesa_map_ci_to_rgba(ctx, count, indexes, (float (*)[4])dstPtr);
1590
1591 /* Don't do RGBA scale/bias or RGBA->RGBA mapping if starting
1592 * with color indexes.
1593 */
1594 transferOps &= ~(IMAGE_SCALE_BIAS_BIT | IMAGE_MAP_COLOR_BIT);
1595 _mesa_apply_rgba_transfer_ops(ctx, transferOps, count, (float (*)[4])dstPtr);
1596
1597 dstPtr += srcHeight * srcWidth * 4;
1598 }
1599
1600 free(indexes);
1601
1602 return rgba;
1603 }
1604
1605 GLubyte *
1606 _mesa_unpack_color_index_to_rgba_ubyte(struct gl_context *ctx, GLuint dims,
1607 const void *src, GLenum srcFormat, GLenum srcType,
1608 int srcWidth, int srcHeight, int srcDepth,
1609 const struct gl_pixelstore_attrib *srcPacking,
1610 GLbitfield transferOps)
1611 {
1612 GLfloat *rgba;
1613 GLubyte *dst;
1614 int count, i;
1615
1616 transferOps |= IMAGE_CLAMP_BIT;
1617 rgba = _mesa_unpack_color_index_to_rgba_float(ctx, dims,
1618 src, srcFormat, srcType,
1619 srcWidth, srcHeight, srcDepth,
1620 srcPacking, transferOps);
1621
1622 count = srcWidth * srcHeight * srcDepth;
1623 dst = malloc(count * 4 * sizeof(GLubyte));
1624 for (i = 0; i < count; i++) {
1625 CLAMPED_FLOAT_TO_UBYTE(dst[i * 4 + 0], rgba[i * 4 + 0]);
1626 CLAMPED_FLOAT_TO_UBYTE(dst[i * 4 + 1], rgba[i * 4 + 1]);
1627 CLAMPED_FLOAT_TO_UBYTE(dst[i * 4 + 2], rgba[i * 4 + 2]);
1628 CLAMPED_FLOAT_TO_UBYTE(dst[i * 4 + 3], rgba[i * 4 + 3]);
1629 }
1630
1631 free(rgba);
1632
1633 return dst;
1634 }