mesa: add a dummy definition for fpclassify() if needed
[mesa.git] / src / mesa / main / querymatrix.c
1 /**************************************************************************
2 *
3 * Copyright 2008 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 **************************************************************************/
7
8
9 /**
10 * Code to implement GL_OES_query_matrix. See the spec at:
11 * http://www.khronos.org/registry/gles/extensions/OES/OES_query_matrix.txt
12 */
13
14
15 #include <stdlib.h>
16 #include <math.h>
17 #include "GLES/gl.h"
18 #include "GLES/glext.h"
19
20
21 /**
22 * This is from the GL_OES_query_matrix extension specification:
23 *
24 * GLbitfield glQueryMatrixxOES( GLfixed mantissa[16],
25 * GLint exponent[16] )
26 * mantissa[16] contains the contents of the current matrix in GLfixed
27 * format. exponent[16] contains the unbiased exponents applied to the
28 * matrix components, so that the internal representation of component i
29 * is close to mantissa[i] * 2^exponent[i]. The function returns a status
30 * word which is zero if all the components are valid. If
31 * status & (1<<i) != 0, the component i is invalid (e.g., NaN, Inf).
32 * The implementations are not required to keep track of overflows. In
33 * that case, the invalid bits are never set.
34 */
35
36 #define INT_TO_FIXED(x) ((GLfixed) ((x) << 16))
37 #define FLOAT_TO_FIXED(x) ((GLfixed) ((x) * 65536.0))
38
39 #if defined(WIN32) || defined(_WIN32_WCE)
40 /* Oddly, the fpclassify() function doesn't exist in such a form
41 * on Windows. This is an implementation using slightly different
42 * lower-level Windows functions.
43 */
44 #include <float.h>
45
46 enum {FP_NAN, FP_INFINITE, FP_ZERO, FP_SUBNORMAL, FP_NORMAL}
47 fpclassify(double x)
48 {
49 switch(_fpclass(x)) {
50 case _FPCLASS_SNAN: /* signaling NaN */
51 case _FPCLASS_QNAN: /* quiet NaN */
52 return FP_NAN;
53 case _FPCLASS_NINF: /* negative infinity */
54 case _FPCLASS_PINF: /* positive infinity */
55 return FP_INFINITE;
56 case _FPCLASS_NN: /* negative normal */
57 case _FPCLASS_PN: /* positive normal */
58 return FP_NORMAL;
59 case _FPCLASS_ND: /* negative denormalized */
60 case _FPCLASS_PD: /* positive denormalized */
61 return FP_SUBNORMAL;
62 case _FPCLASS_NZ: /* negative zero */
63 case _FPCLASS_PZ: /* positive zero */
64 return FP_ZERO;
65 default:
66 /* Should never get here; but if we do, this will guarantee
67 * that the pattern is not treated like a number.
68 */
69 return FP_NAN;
70 }
71 }
72
73 #elif !defined(_XOPEN_SOURCE) || _XOPEN_SOURCE < 600
74
75 enum {FP_NAN, FP_INFINITE, FP_ZERO, FP_SUBNORMAL, FP_NORMAL}
76 fpclassify(double x)
77 {
78 /* XXX do something better someday */
79 return FP_NORMAL;
80 }
81
82 #endif
83
84 extern GLbitfield GL_APIENTRY _es_QueryMatrixxOES(GLfixed mantissa[16], GLint exponent[16]);
85
86 /* The Mesa functions we'll need */
87 extern void GL_APIENTRY _mesa_GetIntegerv(GLenum pname, GLint *params);
88 extern void GL_APIENTRY _mesa_GetFloatv(GLenum pname, GLfloat *params);
89
90 GLbitfield GL_APIENTRY _es_QueryMatrixxOES(GLfixed mantissa[16], GLint exponent[16])
91 {
92 GLfloat matrix[16];
93 GLint tmp;
94 GLenum currentMode = GL_FALSE;
95 GLenum desiredMatrix = GL_FALSE;
96 /* The bitfield returns 1 for each component that is invalid (i.e.
97 * NaN or Inf). In case of error, everything is invalid.
98 */
99 GLbitfield rv;
100 register unsigned int i;
101 unsigned int bit;
102
103 /* This data structure defines the mapping between the current matrix
104 * mode and the desired matrix identifier.
105 */
106 static struct {
107 GLenum currentMode;
108 GLenum desiredMatrix;
109 } modes[] = {
110 {GL_MODELVIEW, GL_MODELVIEW_MATRIX},
111 {GL_PROJECTION, GL_PROJECTION_MATRIX},
112 {GL_TEXTURE, GL_TEXTURE_MATRIX},
113 #if 0
114 /* this doesn't exist in GLES */
115 {GL_COLOR, GL_COLOR_MATRIX},
116 #endif
117 };
118
119 /* Call Mesa to get the current matrix in floating-point form. First,
120 * we have to figure out what the current matrix mode is.
121 */
122 _mesa_GetIntegerv(GL_MATRIX_MODE, &tmp);
123 currentMode = (GLenum) tmp;
124
125 /* The mode is either GL_FALSE, if for some reason we failed to query
126 * the mode, or a given mode from the above table. Search for the
127 * returned mode to get the desired matrix; if we don't find it,
128 * we can return immediately, as _mesa_GetInteger() will have
129 * logged the necessary error already.
130 */
131 for (i = 0; i < sizeof(modes)/sizeof(modes[0]); i++) {
132 if (modes[i].currentMode == currentMode) {
133 desiredMatrix = modes[i].desiredMatrix;
134 break;
135 }
136 }
137 if (desiredMatrix == GL_FALSE) {
138 /* Early error means all values are invalid. */
139 return 0xffff;
140 }
141
142 /* Now pull the matrix itself. */
143 _mesa_GetFloatv(desiredMatrix, matrix);
144
145 rv = 0;
146 for (i = 0, bit = 1; i < 16; i++, bit<<=1) {
147 float normalizedFraction;
148 int exp;
149
150 switch (fpclassify(matrix[i])) {
151 /* A "subnormal" or denormalized number is too small to be
152 * represented in normal format; but despite that it's a
153 * valid floating point number. FP_ZERO and FP_NORMAL
154 * are both valid as well. We should be fine treating
155 * these three cases as legitimate floating-point numbers.
156 */
157 case FP_SUBNORMAL:
158 case FP_NORMAL:
159 case FP_ZERO:
160 normalizedFraction = (GLfloat)frexp(matrix[i], &exp);
161 mantissa[i] = FLOAT_TO_FIXED(normalizedFraction);
162 exponent[i] = (GLint) exp;
163 break;
164
165 /* If the entry is not-a-number or an infinity, then the
166 * matrix component is invalid. The invalid flag for
167 * the component is already set; might as well set the
168 * other return values to known values. We'll set
169 * distinct values so that a savvy end user could determine
170 * whether the matrix component was a NaN or an infinity,
171 * but this is more useful for debugging than anything else
172 * since the standard doesn't specify any such magic
173 * values to return.
174 */
175 case FP_NAN:
176 mantissa[i] = INT_TO_FIXED(0);
177 exponent[i] = (GLint) 0;
178 rv |= bit;
179 break;
180
181 case FP_INFINITE:
182 /* Return +/- 1 based on whether it's a positive or
183 * negative infinity.
184 */
185 if (matrix[i] > 0) {
186 mantissa[i] = INT_TO_FIXED(1);
187 }
188 else {
189 mantissa[i] = -INT_TO_FIXED(1);
190 }
191 exponent[i] = (GLint) 0;
192 rv |= bit;
193 break;
194
195 /* We should never get here; but here's a catching case
196 * in case fpclassify() is returnings something unexpected.
197 */
198 default:
199 mantissa[i] = INT_TO_FIXED(2);
200 exponent[i] = (GLint) 0;
201 rv |= bit;
202 break;
203 }
204
205 } /* for each component */
206
207 /* All done */
208 return rv;
209 }