Another round of fixing attribute interpolation for glDraw/CopyPixels.
[mesa.git] / src / mesa / main / rastpos.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 6.5.3
4 *
5 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /**
27 * \file rastpos.c
28 * Raster position operations.
29 */
30
31 #include "glheader.h"
32 #include "colormac.h"
33 #include "context.h"
34 #include "feedback.h"
35 #include "light.h"
36 #include "macros.h"
37 #include "rastpos.h"
38 #include "state.h"
39 #include "simple_list.h"
40 #include "mtypes.h"
41
42 #include "math/m_matrix.h"
43
44
45 /**
46 * Clip a point against the view volume.
47 *
48 * \param v vertex vector describing the point to clip.
49 *
50 * \return zero if outside view volume, or one if inside.
51 */
52 static GLuint
53 viewclip_point( const GLfloat v[] )
54 {
55 if ( v[0] > v[3] || v[0] < -v[3]
56 || v[1] > v[3] || v[1] < -v[3]
57 || v[2] > v[3] || v[2] < -v[3] ) {
58 return 0;
59 }
60 else {
61 return 1;
62 }
63 }
64
65
66 /**
67 * Clip a point against the far/near Z clipping planes.
68 *
69 * \param v vertex vector describing the point to clip.
70 *
71 * \return zero if outside view volume, or one if inside.
72 */
73 static GLuint
74 viewclip_point_z( const GLfloat v[] )
75 {
76 if (v[2] > v[3] || v[2] < -v[3] ) {
77 return 0;
78 }
79 else {
80 return 1;
81 }
82 }
83
84
85 /**
86 * Clip a point against the user clipping planes.
87 *
88 * \param ctx GL context.
89 * \param v vertex vector describing the point to clip.
90 *
91 * \return zero if the point was clipped, or one otherwise.
92 */
93 static GLuint
94 userclip_point( GLcontext *ctx, const GLfloat v[] )
95 {
96 GLuint p;
97
98 for (p = 0; p < ctx->Const.MaxClipPlanes; p++) {
99 if (ctx->Transform.ClipPlanesEnabled & (1 << p)) {
100 GLfloat dot = v[0] * ctx->Transform._ClipUserPlane[p][0]
101 + v[1] * ctx->Transform._ClipUserPlane[p][1]
102 + v[2] * ctx->Transform._ClipUserPlane[p][2]
103 + v[3] * ctx->Transform._ClipUserPlane[p][3];
104 if (dot < 0.0F) {
105 return 0;
106 }
107 }
108 }
109
110 return 1;
111 }
112
113
114 /**
115 * Compute lighting for the raster position. Both RGB and CI modes computed.
116 * \param ctx the context
117 * \param vertex vertex location
118 * \param normal normal vector
119 * \param Rcolor returned color
120 * \param Rspec returned specular color (if separate specular enabled)
121 * \param Rindex returned color index
122 */
123 static void
124 shade_rastpos(GLcontext *ctx,
125 const GLfloat vertex[4],
126 const GLfloat normal[3],
127 GLfloat Rcolor[4],
128 GLfloat Rspec[4],
129 GLfloat *Rindex)
130 {
131 /*const*/ GLfloat (*base)[3] = ctx->Light._BaseColor;
132 const struct gl_light *light;
133 GLfloat diffuseColor[4], specularColor[4]; /* for RGB mode only */
134 GLfloat diffuseCI = 0.0, specularCI = 0.0; /* for CI mode only */
135
136 _mesa_validate_all_lighting_tables( ctx );
137
138 COPY_3V(diffuseColor, base[0]);
139 diffuseColor[3] = CLAMP(
140 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE][3], 0.0F, 1.0F );
141 ASSIGN_4V(specularColor, 0.0, 0.0, 0.0, 1.0);
142
143 foreach (light, &ctx->Light.EnabledList) {
144 GLfloat attenuation = 1.0;
145 GLfloat VP[3]; /* vector from vertex to light pos */
146 GLfloat n_dot_VP;
147 GLfloat diffuseContrib[3], specularContrib[3];
148
149 if (!(light->_Flags & LIGHT_POSITIONAL)) {
150 /* light at infinity */
151 COPY_3V(VP, light->_VP_inf_norm);
152 attenuation = light->_VP_inf_spot_attenuation;
153 }
154 else {
155 /* local/positional light */
156 GLfloat d;
157
158 /* VP = vector from vertex pos to light[i].pos */
159 SUB_3V(VP, light->_Position, vertex);
160 /* d = length(VP) */
161 d = (GLfloat) LEN_3FV( VP );
162 if (d > 1.0e-6) {
163 /* normalize VP */
164 GLfloat invd = 1.0F / d;
165 SELF_SCALE_SCALAR_3V(VP, invd);
166 }
167
168 /* atti */
169 attenuation = 1.0F / (light->ConstantAttenuation + d *
170 (light->LinearAttenuation + d *
171 light->QuadraticAttenuation));
172
173 if (light->_Flags & LIGHT_SPOT) {
174 GLfloat PV_dot_dir = - DOT3(VP, light->_NormDirection);
175
176 if (PV_dot_dir<light->_CosCutoff) {
177 continue;
178 }
179 else {
180 double x = PV_dot_dir * (EXP_TABLE_SIZE-1);
181 int k = (int) x;
182 GLfloat spot = (GLfloat) (light->_SpotExpTable[k][0]
183 + (x-k)*light->_SpotExpTable[k][1]);
184 attenuation *= spot;
185 }
186 }
187 }
188
189 if (attenuation < 1e-3)
190 continue;
191
192 n_dot_VP = DOT3( normal, VP );
193
194 if (n_dot_VP < 0.0F) {
195 ACC_SCALE_SCALAR_3V(diffuseColor, attenuation, light->_MatAmbient[0]);
196 continue;
197 }
198
199 /* Ambient + diffuse */
200 COPY_3V(diffuseContrib, light->_MatAmbient[0]);
201 ACC_SCALE_SCALAR_3V(diffuseContrib, n_dot_VP, light->_MatDiffuse[0]);
202 diffuseCI += n_dot_VP * light->_dli * attenuation;
203
204 /* Specular */
205 {
206 const GLfloat *h;
207 GLfloat n_dot_h;
208
209 ASSIGN_3V(specularContrib, 0.0, 0.0, 0.0);
210
211 if (ctx->Light.Model.LocalViewer) {
212 GLfloat v[3];
213 COPY_3V(v, vertex);
214 NORMALIZE_3FV(v);
215 SUB_3V(VP, VP, v);
216 NORMALIZE_3FV(VP);
217 h = VP;
218 }
219 else if (light->_Flags & LIGHT_POSITIONAL) {
220 ACC_3V(VP, ctx->_EyeZDir);
221 NORMALIZE_3FV(VP);
222 h = VP;
223 }
224 else {
225 h = light->_h_inf_norm;
226 }
227
228 n_dot_h = DOT3(normal, h);
229
230 if (n_dot_h > 0.0F) {
231 GLfloat spec_coef;
232 GET_SHINE_TAB_ENTRY( ctx->_ShineTable[0], n_dot_h, spec_coef );
233
234 if (spec_coef > 1.0e-10) {
235 if (ctx->Light.Model.ColorControl==GL_SEPARATE_SPECULAR_COLOR) {
236 ACC_SCALE_SCALAR_3V( specularContrib, spec_coef,
237 light->_MatSpecular[0]);
238 }
239 else {
240 ACC_SCALE_SCALAR_3V( diffuseContrib, spec_coef,
241 light->_MatSpecular[0]);
242 }
243 /*assert(light->_sli > 0.0);*/
244 specularCI += spec_coef * light->_sli * attenuation;
245 }
246 }
247 }
248
249 ACC_SCALE_SCALAR_3V( diffuseColor, attenuation, diffuseContrib );
250 ACC_SCALE_SCALAR_3V( specularColor, attenuation, specularContrib );
251 }
252
253 if (ctx->Visual.rgbMode) {
254 Rcolor[0] = CLAMP(diffuseColor[0], 0.0F, 1.0F);
255 Rcolor[1] = CLAMP(diffuseColor[1], 0.0F, 1.0F);
256 Rcolor[2] = CLAMP(diffuseColor[2], 0.0F, 1.0F);
257 Rcolor[3] = CLAMP(diffuseColor[3], 0.0F, 1.0F);
258 Rspec[0] = CLAMP(specularColor[0], 0.0F, 1.0F);
259 Rspec[1] = CLAMP(specularColor[1], 0.0F, 1.0F);
260 Rspec[2] = CLAMP(specularColor[2], 0.0F, 1.0F);
261 Rspec[3] = CLAMP(specularColor[3], 0.0F, 1.0F);
262 }
263 else {
264 GLfloat *ind = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_INDEXES];
265 GLfloat d_a = ind[MAT_INDEX_DIFFUSE] - ind[MAT_INDEX_AMBIENT];
266 GLfloat s_a = ind[MAT_INDEX_SPECULAR] - ind[MAT_INDEX_AMBIENT];
267 GLfloat i = (ind[MAT_INDEX_AMBIENT]
268 + diffuseCI * (1.0F-specularCI) * d_a
269 + specularCI * s_a);
270 if (i > ind[MAT_INDEX_SPECULAR]) {
271 i = ind[MAT_INDEX_SPECULAR];
272 }
273 *Rindex = i;
274 }
275 }
276
277
278 /**
279 * Do texgen needed for glRasterPos.
280 * \param ctx rendering context
281 * \param vObj object-space vertex coordinate
282 * \param vEye eye-space vertex coordinate
283 * \param normal vertex normal
284 * \param unit texture unit number
285 * \param texcoord incoming texcoord and resulting texcoord
286 */
287 static void
288 compute_texgen(GLcontext *ctx, const GLfloat vObj[4], const GLfloat vEye[4],
289 const GLfloat normal[3], GLuint unit, GLfloat texcoord[4])
290 {
291 const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];
292
293 /* always compute sphere map terms, just in case */
294 GLfloat u[3], two_nu, rx, ry, rz, m, mInv;
295 COPY_3V(u, vEye);
296 NORMALIZE_3FV(u);
297 two_nu = 2.0F * DOT3(normal, u);
298 rx = u[0] - normal[0] * two_nu;
299 ry = u[1] - normal[1] * two_nu;
300 rz = u[2] - normal[2] * two_nu;
301 m = rx * rx + ry * ry + (rz + 1.0F) * (rz + 1.0F);
302 if (m > 0.0F)
303 mInv = 0.5F * _mesa_inv_sqrtf(m);
304 else
305 mInv = 0.0F;
306
307 if (texUnit->TexGenEnabled & S_BIT) {
308 switch (texUnit->GenModeS) {
309 case GL_OBJECT_LINEAR:
310 texcoord[0] = DOT4(vObj, texUnit->ObjectPlaneS);
311 break;
312 case GL_EYE_LINEAR:
313 texcoord[0] = DOT4(vEye, texUnit->EyePlaneS);
314 break;
315 case GL_SPHERE_MAP:
316 texcoord[0] = rx * mInv + 0.5F;
317 break;
318 case GL_REFLECTION_MAP:
319 texcoord[0] = rx;
320 break;
321 case GL_NORMAL_MAP:
322 texcoord[0] = normal[0];
323 break;
324 default:
325 _mesa_problem(ctx, "Bad S texgen in compute_texgen()");
326 return;
327 }
328 }
329
330 if (texUnit->TexGenEnabled & T_BIT) {
331 switch (texUnit->GenModeT) {
332 case GL_OBJECT_LINEAR:
333 texcoord[1] = DOT4(vObj, texUnit->ObjectPlaneT);
334 break;
335 case GL_EYE_LINEAR:
336 texcoord[1] = DOT4(vEye, texUnit->EyePlaneT);
337 break;
338 case GL_SPHERE_MAP:
339 texcoord[1] = ry * mInv + 0.5F;
340 break;
341 case GL_REFLECTION_MAP:
342 texcoord[1] = ry;
343 break;
344 case GL_NORMAL_MAP:
345 texcoord[1] = normal[1];
346 break;
347 default:
348 _mesa_problem(ctx, "Bad T texgen in compute_texgen()");
349 return;
350 }
351 }
352
353 if (texUnit->TexGenEnabled & R_BIT) {
354 switch (texUnit->GenModeR) {
355 case GL_OBJECT_LINEAR:
356 texcoord[2] = DOT4(vObj, texUnit->ObjectPlaneR);
357 break;
358 case GL_EYE_LINEAR:
359 texcoord[2] = DOT4(vEye, texUnit->EyePlaneR);
360 break;
361 case GL_REFLECTION_MAP:
362 texcoord[2] = rz;
363 break;
364 case GL_NORMAL_MAP:
365 texcoord[2] = normal[2];
366 break;
367 default:
368 _mesa_problem(ctx, "Bad R texgen in compute_texgen()");
369 return;
370 }
371 }
372
373 if (texUnit->TexGenEnabled & Q_BIT) {
374 switch (texUnit->GenModeQ) {
375 case GL_OBJECT_LINEAR:
376 texcoord[3] = DOT4(vObj, texUnit->ObjectPlaneQ);
377 break;
378 case GL_EYE_LINEAR:
379 texcoord[3] = DOT4(vEye, texUnit->EyePlaneQ);
380 break;
381 default:
382 _mesa_problem(ctx, "Bad Q texgen in compute_texgen()");
383 return;
384 }
385 }
386 }
387
388
389
390 /**
391 * Set the raster position for pixel operations.
392 *
393 * All glRasterPos command call this function to update the current
394 * raster position.
395 *
396 * \param ctx GL context.
397 * \param x x coordinate for the raster position.
398 * \param y y coordinate for the raster position.
399 * \param z z coordinate for the raster position.
400 * \param w w coordinate for the raster position.
401 *
402 * \sa Called by _mesa_RasterPos4f().
403 *
404 * Flushes the vertices, transforms and clips the vertex coordinates, and
405 * finally sets the current raster position and associated data in
406 * __GLcontextRec::Current. When in selection mode calls
407 * _mesa_update_hitflag() with the current raster position.
408 */
409 static void
410 raster_pos4f(GLcontext *ctx, GLfloat x, GLfloat y, GLfloat z, GLfloat w)
411 {
412 ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx);
413 FLUSH_CURRENT(ctx, 0);
414
415 if (ctx->NewState)
416 _mesa_update_state( ctx );
417
418 if (ctx->VertexProgram._Enabled) {
419 /* XXX implement this */
420 _mesa_problem(ctx, "Vertex programs not implemented for glRasterPos");
421 return;
422 }
423 else {
424 GLfloat obj[4], eye[4], clip[4], ndc[3], d;
425 GLfloat *norm, eyenorm[3];
426 GLfloat *objnorm = ctx->Current.Attrib[VERT_ATTRIB_NORMAL];
427
428 ASSIGN_4V( obj, x, y, z, w );
429 /* apply modelview matrix: eye = MV * obj */
430 TRANSFORM_POINT( eye, ctx->ModelviewMatrixStack.Top->m, obj );
431 /* apply projection matrix: clip = Proj * eye */
432 TRANSFORM_POINT( clip, ctx->ProjectionMatrixStack.Top->m, eye );
433
434 /* clip to view volume */
435 if (ctx->Transform.RasterPositionUnclipped) {
436 /* GL_IBM_rasterpos_clip: only clip against Z */
437 if (viewclip_point_z(clip) == 0) {
438 ctx->Current.RasterPosValid = GL_FALSE;
439 return;
440 }
441 }
442 else if (viewclip_point(clip) == 0) {
443 /* Normal OpenGL behaviour */
444 ctx->Current.RasterPosValid = GL_FALSE;
445 return;
446 }
447
448 /* clip to user clipping planes */
449 if (ctx->Transform.ClipPlanesEnabled && !userclip_point(ctx, clip)) {
450 ctx->Current.RasterPosValid = GL_FALSE;
451 return;
452 }
453
454 /* ndc = clip / W */
455 d = (clip[3] == 0.0F) ? 1.0F : 1.0F / clip[3];
456 ndc[0] = clip[0] * d;
457 ndc[1] = clip[1] * d;
458 ndc[2] = clip[2] * d;
459 /* wincoord = viewport_mapping(ndc) */
460 ctx->Current.RasterPos[0] = (ndc[0] * ctx->Viewport._WindowMap.m[MAT_SX]
461 + ctx->Viewport._WindowMap.m[MAT_TX]);
462 ctx->Current.RasterPos[1] = (ndc[1] * ctx->Viewport._WindowMap.m[MAT_SY]
463 + ctx->Viewport._WindowMap.m[MAT_TY]);
464 ctx->Current.RasterPos[2] = (ndc[2] * ctx->Viewport._WindowMap.m[MAT_SZ]
465 + ctx->Viewport._WindowMap.m[MAT_TZ])
466 / ctx->DrawBuffer->_DepthMaxF;
467 ctx->Current.RasterPos[3] = clip[3];
468
469 /* compute raster distance */
470 if (ctx->Fog.FogCoordinateSource == GL_FOG_COORDINATE_EXT)
471 ctx->Current.RasterDistance = ctx->Current.Attrib[VERT_ATTRIB_FOG][0];
472 else
473 ctx->Current.RasterDistance =
474 SQRTF( eye[0]*eye[0] + eye[1]*eye[1] + eye[2]*eye[2] );
475
476 /* compute transformed normal vector (for lighting or texgen) */
477 if (ctx->_NeedEyeCoords) {
478 const GLfloat *inv = ctx->ModelviewMatrixStack.Top->inv;
479 TRANSFORM_NORMAL( eyenorm, objnorm, inv );
480 norm = eyenorm;
481 }
482 else {
483 norm = objnorm;
484 }
485
486 /* update raster color */
487 if (ctx->Light.Enabled) {
488 /* lighting */
489 shade_rastpos( ctx, obj, norm,
490 ctx->Current.RasterColor,
491 ctx->Current.RasterSecondaryColor,
492 &ctx->Current.RasterIndex );
493 }
494 else {
495 /* use current color or index */
496 if (ctx->Visual.rgbMode) {
497 COPY_4FV(ctx->Current.RasterColor,
498 ctx->Current.Attrib[VERT_ATTRIB_COLOR0]);
499 COPY_4FV(ctx->Current.RasterSecondaryColor,
500 ctx->Current.Attrib[VERT_ATTRIB_COLOR1]);
501 }
502 else {
503 ctx->Current.RasterIndex
504 = ctx->Current.Attrib[VERT_ATTRIB_COLOR_INDEX][0];
505 }
506 }
507
508 /* texture coords */
509 {
510 GLuint u;
511 for (u = 0; u < ctx->Const.MaxTextureCoordUnits; u++) {
512 GLfloat tc[4];
513 COPY_4V(tc, ctx->Current.Attrib[VERT_ATTRIB_TEX0 + u]);
514 if (ctx->Texture.Unit[u].TexGenEnabled) {
515 compute_texgen(ctx, obj, eye, norm, u, tc);
516 }
517 TRANSFORM_POINT(ctx->Current.RasterTexCoords[u],
518 ctx->TextureMatrixStack[u].Top->m, tc);
519 }
520 }
521
522 ctx->Current.RasterPosValid = GL_TRUE;
523 }
524
525 if (ctx->RenderMode == GL_SELECT) {
526 _mesa_update_hitflag( ctx, ctx->Current.RasterPos[2] );
527 }
528 }
529
530
531 /** Calls _mesa_RasterPos4f() */
532 void GLAPIENTRY
533 _mesa_RasterPos2d(GLdouble x, GLdouble y)
534 {
535 _mesa_RasterPos4f((GLfloat) x, (GLfloat) y, 0.0F, 1.0F);
536 }
537
538 /** Calls _mesa_RasterPos4f() */
539 void GLAPIENTRY
540 _mesa_RasterPos2f(GLfloat x, GLfloat y)
541 {
542 _mesa_RasterPos4f(x, y, 0.0F, 1.0F);
543 }
544
545 /** Calls _mesa_RasterPos4f() */
546 void GLAPIENTRY
547 _mesa_RasterPos2i(GLint x, GLint y)
548 {
549 _mesa_RasterPos4f((GLfloat) x, (GLfloat) y, 0.0F, 1.0F);
550 }
551
552 /** Calls _mesa_RasterPos4f() */
553 void GLAPIENTRY
554 _mesa_RasterPos2s(GLshort x, GLshort y)
555 {
556 _mesa_RasterPos4f(x, y, 0.0F, 1.0F);
557 }
558
559 /** Calls _mesa_RasterPos4f() */
560 void GLAPIENTRY
561 _mesa_RasterPos3d(GLdouble x, GLdouble y, GLdouble z)
562 {
563 _mesa_RasterPos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F);
564 }
565
566 /** Calls _mesa_RasterPos4f() */
567 void GLAPIENTRY
568 _mesa_RasterPos3f(GLfloat x, GLfloat y, GLfloat z)
569 {
570 _mesa_RasterPos4f(x, y, z, 1.0F);
571 }
572
573 /** Calls _mesa_RasterPos4f() */
574 void GLAPIENTRY
575 _mesa_RasterPos3i(GLint x, GLint y, GLint z)
576 {
577 _mesa_RasterPos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F);
578 }
579
580 /** Calls _mesa_RasterPos4f() */
581 void GLAPIENTRY
582 _mesa_RasterPos3s(GLshort x, GLshort y, GLshort z)
583 {
584 _mesa_RasterPos4f(x, y, z, 1.0F);
585 }
586
587 /** Calls _mesa_RasterPos4f() */
588 void GLAPIENTRY
589 _mesa_RasterPos4d(GLdouble x, GLdouble y, GLdouble z, GLdouble w)
590 {
591 _mesa_RasterPos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
592 }
593
594 /** Calls raster_pos4f() */
595 void GLAPIENTRY
596 _mesa_RasterPos4f(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
597 {
598 GET_CURRENT_CONTEXT(ctx);
599 raster_pos4f(ctx, x, y, z, w);
600 }
601
602 /** Calls _mesa_RasterPos4f() */
603 void GLAPIENTRY
604 _mesa_RasterPos4i(GLint x, GLint y, GLint z, GLint w)
605 {
606 _mesa_RasterPos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
607 }
608
609 /** Calls _mesa_RasterPos4f() */
610 void GLAPIENTRY
611 _mesa_RasterPos4s(GLshort x, GLshort y, GLshort z, GLshort w)
612 {
613 _mesa_RasterPos4f(x, y, z, w);
614 }
615
616 /** Calls _mesa_RasterPos4f() */
617 void GLAPIENTRY
618 _mesa_RasterPos2dv(const GLdouble *v)
619 {
620 _mesa_RasterPos4f((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F);
621 }
622
623 /** Calls _mesa_RasterPos4f() */
624 void GLAPIENTRY
625 _mesa_RasterPos2fv(const GLfloat *v)
626 {
627 _mesa_RasterPos4f(v[0], v[1], 0.0F, 1.0F);
628 }
629
630 /** Calls _mesa_RasterPos4f() */
631 void GLAPIENTRY
632 _mesa_RasterPos2iv(const GLint *v)
633 {
634 _mesa_RasterPos4f((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F);
635 }
636
637 /** Calls _mesa_RasterPos4f() */
638 void GLAPIENTRY
639 _mesa_RasterPos2sv(const GLshort *v)
640 {
641 _mesa_RasterPos4f(v[0], v[1], 0.0F, 1.0F);
642 }
643
644 /** Calls _mesa_RasterPos4f() */
645 void GLAPIENTRY
646 _mesa_RasterPos3dv(const GLdouble *v)
647 {
648 _mesa_RasterPos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F);
649 }
650
651 /** Calls _mesa_RasterPos4f() */
652 void GLAPIENTRY
653 _mesa_RasterPos3fv(const GLfloat *v)
654 {
655 _mesa_RasterPos4f(v[0], v[1], v[2], 1.0F);
656 }
657
658 /** Calls _mesa_RasterPos4f() */
659 void GLAPIENTRY
660 _mesa_RasterPos3iv(const GLint *v)
661 {
662 _mesa_RasterPos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F);
663 }
664
665 /** Calls _mesa_RasterPos4f() */
666 void GLAPIENTRY
667 _mesa_RasterPos3sv(const GLshort *v)
668 {
669 _mesa_RasterPos4f(v[0], v[1], v[2], 1.0F);
670 }
671
672 /** Calls _mesa_RasterPos4f() */
673 void GLAPIENTRY
674 _mesa_RasterPos4dv(const GLdouble *v)
675 {
676 _mesa_RasterPos4f((GLfloat) v[0], (GLfloat) v[1],
677 (GLfloat) v[2], (GLfloat) v[3]);
678 }
679
680 /** Calls _mesa_RasterPos4f() */
681 void GLAPIENTRY
682 _mesa_RasterPos4fv(const GLfloat *v)
683 {
684 _mesa_RasterPos4f(v[0], v[1], v[2], v[3]);
685 }
686
687 /** Calls _mesa_RasterPos4f() */
688 void GLAPIENTRY
689 _mesa_RasterPos4iv(const GLint *v)
690 {
691 _mesa_RasterPos4f((GLfloat) v[0], (GLfloat) v[1],
692 (GLfloat) v[2], (GLfloat) v[3]);
693 }
694
695 /** Calls _mesa_RasterPos4f() */
696 void GLAPIENTRY
697 _mesa_RasterPos4sv(const GLshort *v)
698 {
699 _mesa_RasterPos4f(v[0], v[1], v[2], v[3]);
700 }
701
702
703 /**********************************************************************/
704 /*** GL_ARB_window_pos / GL_MESA_window_pos ***/
705 /**********************************************************************/
706
707 #if FEATURE_windowpos
708 /**
709 * All glWindowPosMESA and glWindowPosARB commands call this function to
710 * update the current raster position.
711 */
712 static void
713 window_pos3f(GLfloat x, GLfloat y, GLfloat z)
714 {
715 GET_CURRENT_CONTEXT(ctx);
716 GLfloat z2;
717
718 ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx);
719 FLUSH_CURRENT(ctx, 0);
720
721 z2 = CLAMP(z, 0.0F, 1.0F) * (ctx->Viewport.Far - ctx->Viewport.Near)
722 + ctx->Viewport.Near;
723
724 /* set raster position */
725 ctx->Current.RasterPos[0] = x;
726 ctx->Current.RasterPos[1] = y;
727 ctx->Current.RasterPos[2] = z2;
728 ctx->Current.RasterPos[3] = 1.0F;
729
730 ctx->Current.RasterPosValid = GL_TRUE;
731
732 if (ctx->Fog.FogCoordinateSource == GL_FOG_COORDINATE_EXT)
733 ctx->Current.RasterDistance = ctx->Current.Attrib[VERT_ATTRIB_FOG][0];
734 else
735 ctx->Current.RasterDistance = 0.0;
736
737 /* raster color = current color or index */
738 if (ctx->Visual.rgbMode) {
739 ctx->Current.RasterColor[0]
740 = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR0][0], 0.0F, 1.0F);
741 ctx->Current.RasterColor[1]
742 = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR0][1], 0.0F, 1.0F);
743 ctx->Current.RasterColor[2]
744 = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR0][2], 0.0F, 1.0F);
745 ctx->Current.RasterColor[3]
746 = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR0][3], 0.0F, 1.0F);
747 ctx->Current.RasterSecondaryColor[0]
748 = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR1][0], 0.0F, 1.0F);
749 ctx->Current.RasterSecondaryColor[1]
750 = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR1][1], 0.0F, 1.0F);
751 ctx->Current.RasterSecondaryColor[2]
752 = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR1][2], 0.0F, 1.0F);
753 ctx->Current.RasterSecondaryColor[3]
754 = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR1][3], 0.0F, 1.0F);
755 }
756 else {
757 ctx->Current.RasterIndex
758 = ctx->Current.Attrib[VERT_ATTRIB_COLOR_INDEX][0];
759 }
760
761 /* raster texcoord = current texcoord */
762 {
763 GLuint texSet;
764 for (texSet = 0; texSet < ctx->Const.MaxTextureCoordUnits; texSet++) {
765 COPY_4FV( ctx->Current.RasterTexCoords[texSet],
766 ctx->Current.Attrib[VERT_ATTRIB_TEX0 + texSet] );
767 }
768 }
769
770 if (ctx->RenderMode==GL_SELECT) {
771 _mesa_update_hitflag( ctx, ctx->Current.RasterPos[2] );
772 }
773 }
774
775
776 /* This is just to support the GL_MESA_window_pos version */
777 static void
778 window_pos4f(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
779 {
780 GET_CURRENT_CONTEXT(ctx);
781 window_pos3f(x, y, z);
782 ctx->Current.RasterPos[3] = w;
783 }
784
785
786 void GLAPIENTRY
787 _mesa_WindowPos2dMESA(GLdouble x, GLdouble y)
788 {
789 window_pos4f((GLfloat) x, (GLfloat) y, 0.0F, 1.0F);
790 }
791
792 void GLAPIENTRY
793 _mesa_WindowPos2fMESA(GLfloat x, GLfloat y)
794 {
795 window_pos4f(x, y, 0.0F, 1.0F);
796 }
797
798 void GLAPIENTRY
799 _mesa_WindowPos2iMESA(GLint x, GLint y)
800 {
801 window_pos4f((GLfloat) x, (GLfloat) y, 0.0F, 1.0F);
802 }
803
804 void GLAPIENTRY
805 _mesa_WindowPos2sMESA(GLshort x, GLshort y)
806 {
807 window_pos4f(x, y, 0.0F, 1.0F);
808 }
809
810 void GLAPIENTRY
811 _mesa_WindowPos3dMESA(GLdouble x, GLdouble y, GLdouble z)
812 {
813 window_pos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F);
814 }
815
816 void GLAPIENTRY
817 _mesa_WindowPos3fMESA(GLfloat x, GLfloat y, GLfloat z)
818 {
819 window_pos4f(x, y, z, 1.0F);
820 }
821
822 void GLAPIENTRY
823 _mesa_WindowPos3iMESA(GLint x, GLint y, GLint z)
824 {
825 window_pos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F);
826 }
827
828 void GLAPIENTRY
829 _mesa_WindowPos3sMESA(GLshort x, GLshort y, GLshort z)
830 {
831 window_pos4f(x, y, z, 1.0F);
832 }
833
834 void GLAPIENTRY
835 _mesa_WindowPos4dMESA(GLdouble x, GLdouble y, GLdouble z, GLdouble w)
836 {
837 window_pos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
838 }
839
840 void GLAPIENTRY
841 _mesa_WindowPos4fMESA(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
842 {
843 window_pos4f(x, y, z, w);
844 }
845
846 void GLAPIENTRY
847 _mesa_WindowPos4iMESA(GLint x, GLint y, GLint z, GLint w)
848 {
849 window_pos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
850 }
851
852 void GLAPIENTRY
853 _mesa_WindowPos4sMESA(GLshort x, GLshort y, GLshort z, GLshort w)
854 {
855 window_pos4f(x, y, z, w);
856 }
857
858 void GLAPIENTRY
859 _mesa_WindowPos2dvMESA(const GLdouble *v)
860 {
861 window_pos4f((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F);
862 }
863
864 void GLAPIENTRY
865 _mesa_WindowPos2fvMESA(const GLfloat *v)
866 {
867 window_pos4f(v[0], v[1], 0.0F, 1.0F);
868 }
869
870 void GLAPIENTRY
871 _mesa_WindowPos2ivMESA(const GLint *v)
872 {
873 window_pos4f((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F);
874 }
875
876 void GLAPIENTRY
877 _mesa_WindowPos2svMESA(const GLshort *v)
878 {
879 window_pos4f(v[0], v[1], 0.0F, 1.0F);
880 }
881
882 void GLAPIENTRY
883 _mesa_WindowPos3dvMESA(const GLdouble *v)
884 {
885 window_pos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F);
886 }
887
888 void GLAPIENTRY
889 _mesa_WindowPos3fvMESA(const GLfloat *v)
890 {
891 window_pos4f(v[0], v[1], v[2], 1.0);
892 }
893
894 void GLAPIENTRY
895 _mesa_WindowPos3ivMESA(const GLint *v)
896 {
897 window_pos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F);
898 }
899
900 void GLAPIENTRY
901 _mesa_WindowPos3svMESA(const GLshort *v)
902 {
903 window_pos4f(v[0], v[1], v[2], 1.0F);
904 }
905
906 void GLAPIENTRY
907 _mesa_WindowPos4dvMESA(const GLdouble *v)
908 {
909 window_pos4f((GLfloat) v[0], (GLfloat) v[1],
910 (GLfloat) v[2], (GLfloat) v[3]);
911 }
912
913 void GLAPIENTRY
914 _mesa_WindowPos4fvMESA(const GLfloat *v)
915 {
916 window_pos4f(v[0], v[1], v[2], v[3]);
917 }
918
919 void GLAPIENTRY
920 _mesa_WindowPos4ivMESA(const GLint *v)
921 {
922 window_pos4f((GLfloat) v[0], (GLfloat) v[1],
923 (GLfloat) v[2], (GLfloat) v[3]);
924 }
925
926 void GLAPIENTRY
927 _mesa_WindowPos4svMESA(const GLshort *v)
928 {
929 window_pos4f(v[0], v[1], v[2], v[3]);
930 }
931
932 #endif
933
934 #if 0
935
936 /*
937 * OpenGL implementation of glWindowPos*MESA()
938 */
939 void glWindowPos4fMESA( GLfloat x, GLfloat y, GLfloat z, GLfloat w )
940 {
941 GLfloat fx, fy;
942
943 /* Push current matrix mode and viewport attributes */
944 glPushAttrib( GL_TRANSFORM_BIT | GL_VIEWPORT_BIT );
945
946 /* Setup projection parameters */
947 glMatrixMode( GL_PROJECTION );
948 glPushMatrix();
949 glLoadIdentity();
950 glMatrixMode( GL_MODELVIEW );
951 glPushMatrix();
952 glLoadIdentity();
953
954 glDepthRange( z, z );
955 glViewport( (int) x - 1, (int) y - 1, 2, 2 );
956
957 /* set the raster (window) position */
958 fx = x - (int) x;
959 fy = y - (int) y;
960 glRasterPos4f( fx, fy, 0.0, w );
961
962 /* restore matrices, viewport and matrix mode */
963 glPopMatrix();
964 glMatrixMode( GL_PROJECTION );
965 glPopMatrix();
966
967 glPopAttrib();
968 }
969
970 #endif
971
972
973 /**********************************************************************/
974 /** \name Initialization */
975 /**********************************************************************/
976 /*@{*/
977
978 /**
979 * Initialize the context current raster position information.
980 *
981 * \param ctx GL context.
982 *
983 * Initialize the current raster position information in
984 * __GLcontextRec::Current, and adds the extension entry points to the
985 * dispatcher.
986 */
987 void _mesa_init_rastpos( GLcontext * ctx )
988 {
989 int i;
990
991 ASSIGN_4V( ctx->Current.RasterPos, 0.0, 0.0, 0.0, 1.0 );
992 ctx->Current.RasterDistance = 0.0;
993 ASSIGN_4V( ctx->Current.RasterColor, 1.0, 1.0, 1.0, 1.0 );
994 ASSIGN_4V( ctx->Current.RasterSecondaryColor, 0.0, 0.0, 0.0, 1.0 );
995 ctx->Current.RasterIndex = 1.0;
996 for (i=0; i<MAX_TEXTURE_UNITS; i++)
997 ASSIGN_4V( ctx->Current.RasterTexCoords[i], 0.0, 0.0, 0.0, 1.0 );
998 ctx->Current.RasterPosValid = GL_TRUE;
999 }
1000
1001 /*@}*/