mesa: replace VP/FP/ATIfs _Enabled flags with helper functions
[mesa.git] / src / mesa / main / rastpos.c
1 /*
2 * Mesa 3-D graphics library
3 *
4 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included
14 * in all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
17 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /**
27 * \file rastpos.c
28 * Raster position operations.
29 */
30
31 #include "glheader.h"
32 #include "context.h"
33 #include "feedback.h"
34 #include "macros.h"
35 #include "mtypes.h"
36 #include "rastpos.h"
37 #include "state.h"
38 #include "main/dispatch.h"
39 #include "main/viewport.h"
40 #include "util/bitscan.h"
41
42
43
44 /**
45 * Clip a point against the view volume.
46 *
47 * \param v vertex vector describing the point to clip.
48 *
49 * \return zero if outside view volume, or one if inside.
50 */
51 static GLuint
52 viewclip_point_xy( const GLfloat v[] )
53 {
54 if ( v[0] > v[3] || v[0] < -v[3]
55 || v[1] > v[3] || v[1] < -v[3] ) {
56 return 0;
57 }
58 else {
59 return 1;
60 }
61 }
62
63
64 /**
65 * Clip a point against the far/near Z clipping planes.
66 *
67 * \param v vertex vector describing the point to clip.
68 *
69 * \return zero if outside view volume, or one if inside.
70 */
71 static GLuint
72 viewclip_point_z( const GLfloat v[] )
73 {
74 if (v[2] > v[3] || v[2] < -v[3] ) {
75 return 0;
76 }
77 else {
78 return 1;
79 }
80 }
81
82
83 /**
84 * Clip a point against the user clipping planes.
85 *
86 * \param ctx GL context.
87 * \param v vertex vector describing the point to clip.
88 *
89 * \return zero if the point was clipped, or one otherwise.
90 */
91 static GLuint
92 userclip_point( struct gl_context *ctx, const GLfloat v[] )
93 {
94 GLbitfield mask = ctx->Transform.ClipPlanesEnabled;
95 while (mask) {
96 const int p = u_bit_scan(&mask);
97 GLfloat dot = v[0] * ctx->Transform._ClipUserPlane[p][0]
98 + v[1] * ctx->Transform._ClipUserPlane[p][1]
99 + v[2] * ctx->Transform._ClipUserPlane[p][2]
100 + v[3] * ctx->Transform._ClipUserPlane[p][3];
101
102 if (dot < 0.0F) {
103 return 0;
104 }
105 }
106
107 return 1;
108 }
109
110
111 /**
112 * Compute lighting for the raster position. RGB modes computed.
113 * \param ctx the context
114 * \param vertex vertex location
115 * \param normal normal vector
116 * \param Rcolor returned color
117 * \param Rspec returned specular color (if separate specular enabled)
118 */
119 static void
120 shade_rastpos(struct gl_context *ctx,
121 const GLfloat vertex[4],
122 const GLfloat normal[3],
123 GLfloat Rcolor[4],
124 GLfloat Rspec[4])
125 {
126 /*const*/ GLfloat (*base)[3] = ctx->Light._BaseColor;
127 GLbitfield mask;
128 GLfloat diffuseColor[4], specularColor[4]; /* for RGB mode only */
129
130 COPY_3V(diffuseColor, base[0]);
131 diffuseColor[3] = CLAMP(
132 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE][3], 0.0F, 1.0F );
133 ASSIGN_4V(specularColor, 0.0, 0.0, 0.0, 1.0);
134
135 mask = ctx->Light._EnabledLights;
136 while (mask) {
137 const int i = u_bit_scan(&mask);
138 struct gl_light *light = &ctx->Light.Light[i];
139 GLfloat attenuation = 1.0;
140 GLfloat VP[3]; /* vector from vertex to light pos */
141 GLfloat n_dot_VP;
142 GLfloat diffuseContrib[3], specularContrib[3];
143
144 if (!(light->_Flags & LIGHT_POSITIONAL)) {
145 /* light at infinity */
146 COPY_3V(VP, light->_VP_inf_norm);
147 attenuation = light->_VP_inf_spot_attenuation;
148 }
149 else {
150 /* local/positional light */
151 GLfloat d;
152
153 /* VP = vector from vertex pos to light[i].pos */
154 SUB_3V(VP, light->_Position, vertex);
155 /* d = length(VP) */
156 d = (GLfloat) LEN_3FV( VP );
157 if (d > 1.0e-6F) {
158 /* normalize VP */
159 GLfloat invd = 1.0F / d;
160 SELF_SCALE_SCALAR_3V(VP, invd);
161 }
162
163 /* atti */
164 attenuation = 1.0F / (light->ConstantAttenuation + d *
165 (light->LinearAttenuation + d *
166 light->QuadraticAttenuation));
167
168 if (light->_Flags & LIGHT_SPOT) {
169 GLfloat PV_dot_dir = - DOT3(VP, light->_NormSpotDirection);
170
171 if (PV_dot_dir<light->_CosCutoff) {
172 continue;
173 }
174 else {
175 GLfloat spot = powf(PV_dot_dir, light->SpotExponent);
176 attenuation *= spot;
177 }
178 }
179 }
180
181 if (attenuation < 1e-3F)
182 continue;
183
184 n_dot_VP = DOT3( normal, VP );
185
186 if (n_dot_VP < 0.0F) {
187 ACC_SCALE_SCALAR_3V(diffuseColor, attenuation, light->_MatAmbient[0]);
188 continue;
189 }
190
191 /* Ambient + diffuse */
192 COPY_3V(diffuseContrib, light->_MatAmbient[0]);
193 ACC_SCALE_SCALAR_3V(diffuseContrib, n_dot_VP, light->_MatDiffuse[0]);
194
195 /* Specular */
196 {
197 const GLfloat *h;
198 GLfloat n_dot_h;
199
200 ASSIGN_3V(specularContrib, 0.0, 0.0, 0.0);
201
202 if (ctx->Light.Model.LocalViewer) {
203 GLfloat v[3];
204 COPY_3V(v, vertex);
205 NORMALIZE_3FV(v);
206 SUB_3V(VP, VP, v);
207 NORMALIZE_3FV(VP);
208 h = VP;
209 }
210 else if (light->_Flags & LIGHT_POSITIONAL) {
211 ACC_3V(VP, ctx->_EyeZDir);
212 NORMALIZE_3FV(VP);
213 h = VP;
214 }
215 else {
216 h = light->_h_inf_norm;
217 }
218
219 n_dot_h = DOT3(normal, h);
220
221 if (n_dot_h > 0.0F) {
222 GLfloat shine;
223 GLfloat spec_coef;
224
225 shine = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SHININESS][0];
226 spec_coef = powf(n_dot_h, shine);
227
228 if (spec_coef > 1.0e-10F) {
229 if (ctx->Light.Model.ColorControl==GL_SEPARATE_SPECULAR_COLOR) {
230 ACC_SCALE_SCALAR_3V( specularContrib, spec_coef,
231 light->_MatSpecular[0]);
232 }
233 else {
234 ACC_SCALE_SCALAR_3V( diffuseContrib, spec_coef,
235 light->_MatSpecular[0]);
236 }
237 }
238 }
239 }
240
241 ACC_SCALE_SCALAR_3V( diffuseColor, attenuation, diffuseContrib );
242 ACC_SCALE_SCALAR_3V( specularColor, attenuation, specularContrib );
243 }
244
245 Rcolor[0] = CLAMP(diffuseColor[0], 0.0F, 1.0F);
246 Rcolor[1] = CLAMP(diffuseColor[1], 0.0F, 1.0F);
247 Rcolor[2] = CLAMP(diffuseColor[2], 0.0F, 1.0F);
248 Rcolor[3] = CLAMP(diffuseColor[3], 0.0F, 1.0F);
249 Rspec[0] = CLAMP(specularColor[0], 0.0F, 1.0F);
250 Rspec[1] = CLAMP(specularColor[1], 0.0F, 1.0F);
251 Rspec[2] = CLAMP(specularColor[2], 0.0F, 1.0F);
252 Rspec[3] = CLAMP(specularColor[3], 0.0F, 1.0F);
253 }
254
255
256 /**
257 * Do texgen needed for glRasterPos.
258 * \param ctx rendering context
259 * \param vObj object-space vertex coordinate
260 * \param vEye eye-space vertex coordinate
261 * \param normal vertex normal
262 * \param unit texture unit number
263 * \param texcoord incoming texcoord and resulting texcoord
264 */
265 static void
266 compute_texgen(struct gl_context *ctx, const GLfloat vObj[4], const GLfloat vEye[4],
267 const GLfloat normal[3], GLuint unit, GLfloat texcoord[4])
268 {
269 const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];
270
271 /* always compute sphere map terms, just in case */
272 GLfloat u[3], two_nu, rx, ry, rz, m, mInv;
273 COPY_3V(u, vEye);
274 NORMALIZE_3FV(u);
275 two_nu = 2.0F * DOT3(normal, u);
276 rx = u[0] - normal[0] * two_nu;
277 ry = u[1] - normal[1] * two_nu;
278 rz = u[2] - normal[2] * two_nu;
279 m = rx * rx + ry * ry + (rz + 1.0F) * (rz + 1.0F);
280 if (m > 0.0F)
281 mInv = 0.5F * (1.0f / sqrtf(m));
282 else
283 mInv = 0.0F;
284
285 if (texUnit->TexGenEnabled & S_BIT) {
286 switch (texUnit->GenS.Mode) {
287 case GL_OBJECT_LINEAR:
288 texcoord[0] = DOT4(vObj, texUnit->GenS.ObjectPlane);
289 break;
290 case GL_EYE_LINEAR:
291 texcoord[0] = DOT4(vEye, texUnit->GenS.EyePlane);
292 break;
293 case GL_SPHERE_MAP:
294 texcoord[0] = rx * mInv + 0.5F;
295 break;
296 case GL_REFLECTION_MAP:
297 texcoord[0] = rx;
298 break;
299 case GL_NORMAL_MAP:
300 texcoord[0] = normal[0];
301 break;
302 default:
303 _mesa_problem(ctx, "Bad S texgen in compute_texgen()");
304 return;
305 }
306 }
307
308 if (texUnit->TexGenEnabled & T_BIT) {
309 switch (texUnit->GenT.Mode) {
310 case GL_OBJECT_LINEAR:
311 texcoord[1] = DOT4(vObj, texUnit->GenT.ObjectPlane);
312 break;
313 case GL_EYE_LINEAR:
314 texcoord[1] = DOT4(vEye, texUnit->GenT.EyePlane);
315 break;
316 case GL_SPHERE_MAP:
317 texcoord[1] = ry * mInv + 0.5F;
318 break;
319 case GL_REFLECTION_MAP:
320 texcoord[1] = ry;
321 break;
322 case GL_NORMAL_MAP:
323 texcoord[1] = normal[1];
324 break;
325 default:
326 _mesa_problem(ctx, "Bad T texgen in compute_texgen()");
327 return;
328 }
329 }
330
331 if (texUnit->TexGenEnabled & R_BIT) {
332 switch (texUnit->GenR.Mode) {
333 case GL_OBJECT_LINEAR:
334 texcoord[2] = DOT4(vObj, texUnit->GenR.ObjectPlane);
335 break;
336 case GL_EYE_LINEAR:
337 texcoord[2] = DOT4(vEye, texUnit->GenR.EyePlane);
338 break;
339 case GL_REFLECTION_MAP:
340 texcoord[2] = rz;
341 break;
342 case GL_NORMAL_MAP:
343 texcoord[2] = normal[2];
344 break;
345 default:
346 _mesa_problem(ctx, "Bad R texgen in compute_texgen()");
347 return;
348 }
349 }
350
351 if (texUnit->TexGenEnabled & Q_BIT) {
352 switch (texUnit->GenQ.Mode) {
353 case GL_OBJECT_LINEAR:
354 texcoord[3] = DOT4(vObj, texUnit->GenQ.ObjectPlane);
355 break;
356 case GL_EYE_LINEAR:
357 texcoord[3] = DOT4(vEye, texUnit->GenQ.EyePlane);
358 break;
359 default:
360 _mesa_problem(ctx, "Bad Q texgen in compute_texgen()");
361 return;
362 }
363 }
364 }
365
366
367 /**
368 * glRasterPos transformation. Typically called via ctx->Driver.RasterPos().
369 *
370 * \param vObj vertex position in object space
371 */
372 void
373 _mesa_RasterPos(struct gl_context *ctx, const GLfloat vObj[4])
374 {
375 if (_mesa_arb_vertex_program_enabled(ctx)) {
376 /* XXX implement this */
377 _mesa_problem(ctx, "Vertex programs not implemented for glRasterPos");
378 return;
379 }
380 else {
381 GLfloat eye[4], clip[4], ndc[3], d;
382 GLfloat *norm, eyenorm[3];
383 GLfloat *objnorm = ctx->Current.Attrib[VERT_ATTRIB_NORMAL];
384 float scale[3], translate[3];
385
386 /* apply modelview matrix: eye = MV * obj */
387 TRANSFORM_POINT( eye, ctx->ModelviewMatrixStack.Top->m, vObj );
388 /* apply projection matrix: clip = Proj * eye */
389 TRANSFORM_POINT( clip, ctx->ProjectionMatrixStack.Top->m, eye );
390
391 /* clip to view volume. */
392 if (!ctx->Transform.DepthClamp) {
393 if (viewclip_point_z(clip) == 0) {
394 ctx->Current.RasterPosValid = GL_FALSE;
395 return;
396 }
397 }
398 if (!ctx->Transform.RasterPositionUnclipped) {
399 if (viewclip_point_xy(clip) == 0) {
400 ctx->Current.RasterPosValid = GL_FALSE;
401 return;
402 }
403 }
404
405 /* clip to user clipping planes */
406 if (ctx->Transform.ClipPlanesEnabled && !userclip_point(ctx, clip)) {
407 ctx->Current.RasterPosValid = GL_FALSE;
408 return;
409 }
410
411 /* ndc = clip / W */
412 d = (clip[3] == 0.0F) ? 1.0F : 1.0F / clip[3];
413 ndc[0] = clip[0] * d;
414 ndc[1] = clip[1] * d;
415 ndc[2] = clip[2] * d;
416 /* wincoord = viewport_mapping(ndc) */
417 _mesa_get_viewport_xform(ctx, 0, scale, translate);
418 ctx->Current.RasterPos[0] = ndc[0] * scale[0] + translate[0];
419 ctx->Current.RasterPos[1] = ndc[1] * scale[1] + translate[1];
420 ctx->Current.RasterPos[2] = ndc[2] * scale[2] + translate[2];
421 ctx->Current.RasterPos[3] = clip[3];
422
423 if (ctx->Transform.DepthClamp) {
424 ctx->Current.RasterPos[3] = CLAMP(ctx->Current.RasterPos[3],
425 ctx->ViewportArray[0].Near,
426 ctx->ViewportArray[0].Far);
427 }
428
429 /* compute raster distance */
430 if (ctx->Fog.FogCoordinateSource == GL_FOG_COORDINATE_EXT)
431 ctx->Current.RasterDistance = ctx->Current.Attrib[VERT_ATTRIB_FOG][0];
432 else
433 ctx->Current.RasterDistance =
434 sqrtf( eye[0]*eye[0] + eye[1]*eye[1] + eye[2]*eye[2] );
435
436 /* compute transformed normal vector (for lighting or texgen) */
437 if (ctx->_NeedEyeCoords) {
438 const GLfloat *inv = ctx->ModelviewMatrixStack.Top->inv;
439 TRANSFORM_NORMAL( eyenorm, objnorm, inv );
440 norm = eyenorm;
441 }
442 else {
443 norm = objnorm;
444 }
445
446 /* update raster color */
447 if (ctx->Light.Enabled) {
448 /* lighting */
449 shade_rastpos( ctx, vObj, norm,
450 ctx->Current.RasterColor,
451 ctx->Current.RasterSecondaryColor );
452 }
453 else {
454 /* use current color */
455 COPY_4FV(ctx->Current.RasterColor,
456 ctx->Current.Attrib[VERT_ATTRIB_COLOR0]);
457 COPY_4FV(ctx->Current.RasterSecondaryColor,
458 ctx->Current.Attrib[VERT_ATTRIB_COLOR1]);
459 }
460
461 /* texture coords */
462 {
463 GLuint u;
464 for (u = 0; u < ctx->Const.MaxTextureCoordUnits; u++) {
465 GLfloat tc[4];
466 COPY_4V(tc, ctx->Current.Attrib[VERT_ATTRIB_TEX0 + u]);
467 if (ctx->Texture.Unit[u].TexGenEnabled) {
468 compute_texgen(ctx, vObj, eye, norm, u, tc);
469 }
470 TRANSFORM_POINT(ctx->Current.RasterTexCoords[u],
471 ctx->TextureMatrixStack[u].Top->m, tc);
472 }
473 }
474
475 ctx->Current.RasterPosValid = GL_TRUE;
476 }
477
478 if (ctx->RenderMode == GL_SELECT) {
479 _mesa_update_hitflag( ctx, ctx->Current.RasterPos[2] );
480 }
481 }
482
483
484 /**
485 * Helper function for all the RasterPos functions.
486 */
487 static void
488 rasterpos(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
489 {
490 GET_CURRENT_CONTEXT(ctx);
491 GLfloat p[4];
492
493 p[0] = x;
494 p[1] = y;
495 p[2] = z;
496 p[3] = w;
497
498 FLUSH_VERTICES(ctx, 0);
499 FLUSH_CURRENT(ctx, 0);
500
501 if (ctx->NewState)
502 _mesa_update_state( ctx );
503
504 ctx->Driver.RasterPos(ctx, p);
505 }
506
507
508 void GLAPIENTRY
509 _mesa_RasterPos2d(GLdouble x, GLdouble y)
510 {
511 rasterpos((GLfloat)x, (GLfloat)y, (GLfloat)0.0, (GLfloat)1.0);
512 }
513
514 void GLAPIENTRY
515 _mesa_RasterPos2f(GLfloat x, GLfloat y)
516 {
517 rasterpos(x, y, 0.0F, 1.0F);
518 }
519
520 void GLAPIENTRY
521 _mesa_RasterPos2i(GLint x, GLint y)
522 {
523 rasterpos((GLfloat) x, (GLfloat) y, 0.0F, 1.0F);
524 }
525
526 void GLAPIENTRY
527 _mesa_RasterPos2s(GLshort x, GLshort y)
528 {
529 rasterpos(x, y, 0.0F, 1.0F);
530 }
531
532 void GLAPIENTRY
533 _mesa_RasterPos3d(GLdouble x, GLdouble y, GLdouble z)
534 {
535 rasterpos((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F);
536 }
537
538 void GLAPIENTRY
539 _mesa_RasterPos3f(GLfloat x, GLfloat y, GLfloat z)
540 {
541 rasterpos(x, y, z, 1.0F);
542 }
543
544 void GLAPIENTRY
545 _mesa_RasterPos3i(GLint x, GLint y, GLint z)
546 {
547 rasterpos((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F);
548 }
549
550 void GLAPIENTRY
551 _mesa_RasterPos3s(GLshort x, GLshort y, GLshort z)
552 {
553 rasterpos(x, y, z, 1.0F);
554 }
555
556 void GLAPIENTRY
557 _mesa_RasterPos4d(GLdouble x, GLdouble y, GLdouble z, GLdouble w)
558 {
559 rasterpos((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
560 }
561
562 void GLAPIENTRY
563 _mesa_RasterPos4f(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
564 {
565 rasterpos(x, y, z, w);
566 }
567
568 void GLAPIENTRY
569 _mesa_RasterPos4i(GLint x, GLint y, GLint z, GLint w)
570 {
571 rasterpos((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
572 }
573
574 void GLAPIENTRY
575 _mesa_RasterPos4s(GLshort x, GLshort y, GLshort z, GLshort w)
576 {
577 rasterpos(x, y, z, w);
578 }
579
580 void GLAPIENTRY
581 _mesa_RasterPos2dv(const GLdouble *v)
582 {
583 rasterpos((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F);
584 }
585
586 void GLAPIENTRY
587 _mesa_RasterPos2fv(const GLfloat *v)
588 {
589 rasterpos(v[0], v[1], 0.0F, 1.0F);
590 }
591
592 void GLAPIENTRY
593 _mesa_RasterPos2iv(const GLint *v)
594 {
595 rasterpos((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F);
596 }
597
598 void GLAPIENTRY
599 _mesa_RasterPos2sv(const GLshort *v)
600 {
601 rasterpos(v[0], v[1], 0.0F, 1.0F);
602 }
603
604 void GLAPIENTRY
605 _mesa_RasterPos3dv(const GLdouble *v)
606 {
607 rasterpos((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F);
608 }
609
610 void GLAPIENTRY
611 _mesa_RasterPos3fv(const GLfloat *v)
612 {
613 rasterpos(v[0], v[1], v[2], 1.0F);
614 }
615
616 void GLAPIENTRY
617 _mesa_RasterPos3iv(const GLint *v)
618 {
619 rasterpos((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F);
620 }
621
622 void GLAPIENTRY
623 _mesa_RasterPos3sv(const GLshort *v)
624 {
625 rasterpos(v[0], v[1], v[2], 1.0F);
626 }
627
628 void GLAPIENTRY
629 _mesa_RasterPos4dv(const GLdouble *v)
630 {
631 rasterpos((GLfloat) v[0], (GLfloat) v[1],
632 (GLfloat) v[2], (GLfloat) v[3]);
633 }
634
635 void GLAPIENTRY
636 _mesa_RasterPos4fv(const GLfloat *v)
637 {
638 rasterpos(v[0], v[1], v[2], v[3]);
639 }
640
641 void GLAPIENTRY
642 _mesa_RasterPos4iv(const GLint *v)
643 {
644 rasterpos((GLfloat) v[0], (GLfloat) v[1],
645 (GLfloat) v[2], (GLfloat) v[3]);
646 }
647
648 void GLAPIENTRY
649 _mesa_RasterPos4sv(const GLshort *v)
650 {
651 rasterpos(v[0], v[1], v[2], v[3]);
652 }
653
654
655 /**********************************************************************/
656 /*** GL_ARB_window_pos / GL_MESA_window_pos ***/
657 /**********************************************************************/
658
659
660 /**
661 * All glWindowPosMESA and glWindowPosARB commands call this function to
662 * update the current raster position.
663 */
664 static void
665 window_pos3f(GLfloat x, GLfloat y, GLfloat z)
666 {
667 GET_CURRENT_CONTEXT(ctx);
668 GLfloat z2;
669
670 FLUSH_VERTICES(ctx, 0);
671 FLUSH_CURRENT(ctx, 0);
672
673 z2 = CLAMP(z, 0.0F, 1.0F)
674 * (ctx->ViewportArray[0].Far - ctx->ViewportArray[0].Near)
675 + ctx->ViewportArray[0].Near;
676
677 /* set raster position */
678 ctx->Current.RasterPos[0] = x;
679 ctx->Current.RasterPos[1] = y;
680 ctx->Current.RasterPos[2] = z2;
681 ctx->Current.RasterPos[3] = 1.0F;
682
683 ctx->Current.RasterPosValid = GL_TRUE;
684
685 if (ctx->Fog.FogCoordinateSource == GL_FOG_COORDINATE_EXT)
686 ctx->Current.RasterDistance = ctx->Current.Attrib[VERT_ATTRIB_FOG][0];
687 else
688 ctx->Current.RasterDistance = 0.0;
689
690 /* raster color = current color or index */
691 ctx->Current.RasterColor[0]
692 = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR0][0], 0.0F, 1.0F);
693 ctx->Current.RasterColor[1]
694 = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR0][1], 0.0F, 1.0F);
695 ctx->Current.RasterColor[2]
696 = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR0][2], 0.0F, 1.0F);
697 ctx->Current.RasterColor[3]
698 = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR0][3], 0.0F, 1.0F);
699 ctx->Current.RasterSecondaryColor[0]
700 = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR1][0], 0.0F, 1.0F);
701 ctx->Current.RasterSecondaryColor[1]
702 = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR1][1], 0.0F, 1.0F);
703 ctx->Current.RasterSecondaryColor[2]
704 = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR1][2], 0.0F, 1.0F);
705 ctx->Current.RasterSecondaryColor[3]
706 = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR1][3], 0.0F, 1.0F);
707
708 /* raster texcoord = current texcoord */
709 {
710 GLuint texSet;
711 for (texSet = 0; texSet < ctx->Const.MaxTextureCoordUnits; texSet++) {
712 assert(texSet < ARRAY_SIZE(ctx->Current.RasterTexCoords));
713 COPY_4FV( ctx->Current.RasterTexCoords[texSet],
714 ctx->Current.Attrib[VERT_ATTRIB_TEX0 + texSet] );
715 }
716 }
717
718 if (ctx->RenderMode==GL_SELECT) {
719 _mesa_update_hitflag( ctx, ctx->Current.RasterPos[2] );
720 }
721 }
722
723
724 /* This is just to support the GL_MESA_window_pos version */
725 static void
726 window_pos4f(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
727 {
728 GET_CURRENT_CONTEXT(ctx);
729 window_pos3f(x, y, z);
730 ctx->Current.RasterPos[3] = w;
731 }
732
733
734 void GLAPIENTRY
735 _mesa_WindowPos2d(GLdouble x, GLdouble y)
736 {
737 window_pos4f((GLfloat) x, (GLfloat) y, 0.0F, 1.0F);
738 }
739
740 void GLAPIENTRY
741 _mesa_WindowPos2f(GLfloat x, GLfloat y)
742 {
743 window_pos4f(x, y, 0.0F, 1.0F);
744 }
745
746 void GLAPIENTRY
747 _mesa_WindowPos2i(GLint x, GLint y)
748 {
749 window_pos4f((GLfloat) x, (GLfloat) y, 0.0F, 1.0F);
750 }
751
752 void GLAPIENTRY
753 _mesa_WindowPos2s(GLshort x, GLshort y)
754 {
755 window_pos4f(x, y, 0.0F, 1.0F);
756 }
757
758 void GLAPIENTRY
759 _mesa_WindowPos3d(GLdouble x, GLdouble y, GLdouble z)
760 {
761 window_pos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F);
762 }
763
764 void GLAPIENTRY
765 _mesa_WindowPos3f(GLfloat x, GLfloat y, GLfloat z)
766 {
767 window_pos4f(x, y, z, 1.0F);
768 }
769
770 void GLAPIENTRY
771 _mesa_WindowPos3i(GLint x, GLint y, GLint z)
772 {
773 window_pos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F);
774 }
775
776 void GLAPIENTRY
777 _mesa_WindowPos3s(GLshort x, GLshort y, GLshort z)
778 {
779 window_pos4f(x, y, z, 1.0F);
780 }
781
782 void GLAPIENTRY
783 _mesa_WindowPos4dMESA(GLdouble x, GLdouble y, GLdouble z, GLdouble w)
784 {
785 window_pos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
786 }
787
788 void GLAPIENTRY
789 _mesa_WindowPos4fMESA(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
790 {
791 window_pos4f(x, y, z, w);
792 }
793
794 void GLAPIENTRY
795 _mesa_WindowPos4iMESA(GLint x, GLint y, GLint z, GLint w)
796 {
797 window_pos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
798 }
799
800 void GLAPIENTRY
801 _mesa_WindowPos4sMESA(GLshort x, GLshort y, GLshort z, GLshort w)
802 {
803 window_pos4f(x, y, z, w);
804 }
805
806 void GLAPIENTRY
807 _mesa_WindowPos2dv(const GLdouble *v)
808 {
809 window_pos4f((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F);
810 }
811
812 void GLAPIENTRY
813 _mesa_WindowPos2fv(const GLfloat *v)
814 {
815 window_pos4f(v[0], v[1], 0.0F, 1.0F);
816 }
817
818 void GLAPIENTRY
819 _mesa_WindowPos2iv(const GLint *v)
820 {
821 window_pos4f((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F);
822 }
823
824 void GLAPIENTRY
825 _mesa_WindowPos2sv(const GLshort *v)
826 {
827 window_pos4f(v[0], v[1], 0.0F, 1.0F);
828 }
829
830 void GLAPIENTRY
831 _mesa_WindowPos3dv(const GLdouble *v)
832 {
833 window_pos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F);
834 }
835
836 void GLAPIENTRY
837 _mesa_WindowPos3fv(const GLfloat *v)
838 {
839 window_pos4f(v[0], v[1], v[2], 1.0);
840 }
841
842 void GLAPIENTRY
843 _mesa_WindowPos3iv(const GLint *v)
844 {
845 window_pos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F);
846 }
847
848 void GLAPIENTRY
849 _mesa_WindowPos3sv(const GLshort *v)
850 {
851 window_pos4f(v[0], v[1], v[2], 1.0F);
852 }
853
854 void GLAPIENTRY
855 _mesa_WindowPos4dvMESA(const GLdouble *v)
856 {
857 window_pos4f((GLfloat) v[0], (GLfloat) v[1],
858 (GLfloat) v[2], (GLfloat) v[3]);
859 }
860
861 void GLAPIENTRY
862 _mesa_WindowPos4fvMESA(const GLfloat *v)
863 {
864 window_pos4f(v[0], v[1], v[2], v[3]);
865 }
866
867 void GLAPIENTRY
868 _mesa_WindowPos4ivMESA(const GLint *v)
869 {
870 window_pos4f((GLfloat) v[0], (GLfloat) v[1],
871 (GLfloat) v[2], (GLfloat) v[3]);
872 }
873
874 void GLAPIENTRY
875 _mesa_WindowPos4svMESA(const GLshort *v)
876 {
877 window_pos4f(v[0], v[1], v[2], v[3]);
878 }
879
880
881 #if 0
882
883 /*
884 * OpenGL implementation of glWindowPos*MESA()
885 */
886 void glWindowPos4fMESA( GLfloat x, GLfloat y, GLfloat z, GLfloat w )
887 {
888 GLfloat fx, fy;
889
890 /* Push current matrix mode and viewport attributes */
891 glPushAttrib( GL_TRANSFORM_BIT | GL_VIEWPORT_BIT );
892
893 /* Setup projection parameters */
894 glMatrixMode( GL_PROJECTION );
895 glPushMatrix();
896 glLoadIdentity();
897 glMatrixMode( GL_MODELVIEW );
898 glPushMatrix();
899 glLoadIdentity();
900
901 glDepthRange( z, z );
902 glViewport( (int) x - 1, (int) y - 1, 2, 2 );
903
904 /* set the raster (window) position */
905 fx = x - (int) x;
906 fy = y - (int) y;
907 glRasterPos4f( fx, fy, 0.0, w );
908
909 /* restore matrices, viewport and matrix mode */
910 glPopMatrix();
911 glMatrixMode( GL_PROJECTION );
912 glPopMatrix();
913
914 glPopAttrib();
915 }
916
917 #endif
918
919
920 /**********************************************************************/
921 /** \name Initialization */
922 /**********************************************************************/
923 /*@{*/
924
925 /**
926 * Initialize the context current raster position information.
927 *
928 * \param ctx GL context.
929 *
930 * Initialize the current raster position information in
931 * __struct gl_contextRec::Current, and adds the extension entry points to the
932 * dispatcher.
933 */
934 void _mesa_init_rastpos( struct gl_context * ctx )
935 {
936 unsigned i;
937
938 ASSIGN_4V( ctx->Current.RasterPos, 0.0, 0.0, 0.0, 1.0 );
939 ctx->Current.RasterDistance = 0.0;
940 ASSIGN_4V( ctx->Current.RasterColor, 1.0, 1.0, 1.0, 1.0 );
941 ASSIGN_4V( ctx->Current.RasterSecondaryColor, 0.0, 0.0, 0.0, 1.0 );
942 for (i = 0; i < ARRAY_SIZE(ctx->Current.RasterTexCoords); i++)
943 ASSIGN_4V( ctx->Current.RasterTexCoords[i], 0.0, 0.0, 0.0, 1.0 );
944 ctx->Current.RasterPosValid = GL_TRUE;
945 }
946
947 /*@}*/