more compiler warning fixes
[mesa.git] / src / mesa / main / rastpos.c
1 /* $Id: rastpos.c,v 1.31 2001/09/18 23:06:14 kschultz Exp $ */
2
3 /*
4 * Mesa 3-D graphics library
5 * Version: 3.5
6 *
7 * Copyright (C) 1999-2001 Brian Paul All Rights Reserved.
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included
17 * in all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
23 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 */
26
27
28 #ifdef PC_HEADER
29 #include "all.h"
30 #else
31 #include "glheader.h"
32 #include "clip.h"
33 #include "colormac.h"
34 #include "context.h"
35 #include "feedback.h"
36 #include "light.h"
37 #include "macros.h"
38 #include "mmath.h"
39 #include "rastpos.h"
40 #include "state.h"
41 #include "simple_list.h"
42 #include "mtypes.h"
43
44 #include "math/m_matrix.h"
45 #include "math/m_xform.h"
46 #endif
47
48
49 /*
50 * Clip a point against the view volume.
51 * Input: v - vertex-vector describing the point to clip
52 * Return: 0 = outside view volume
53 * 1 = inside view volume
54 */
55 static GLuint
56 viewclip_point( const GLfloat v[] )
57 {
58 if ( v[0] > v[3] || v[0] < -v[3]
59 || v[1] > v[3] || v[1] < -v[3]
60 || v[2] > v[3] || v[2] < -v[3] ) {
61 return 0;
62 }
63 else {
64 return 1;
65 }
66 }
67
68
69 /* As above, but only clip test against far/near Z planes */
70 static GLuint
71 viewclip_point_z( const GLfloat v[] )
72 {
73 if (v[2] > v[3] || v[2] < -v[3] ) {
74 return 0;
75 }
76 else {
77 return 1;
78 }
79 }
80
81
82
83 /*
84 * Clip a point against the user clipping planes.
85 * Input: v - vertex-vector describing the point to clip.
86 * Return: 0 = point was clipped
87 * 1 = point not clipped
88 */
89 static GLuint
90 userclip_point( GLcontext* ctx, const GLfloat v[] )
91 {
92 GLuint p;
93
94 for (p = 0; p < ctx->Const.MaxClipPlanes; p++) {
95 if (ctx->Transform.ClipEnabled[p]) {
96 GLfloat dot = v[0] * ctx->Transform._ClipUserPlane[p][0]
97 + v[1] * ctx->Transform._ClipUserPlane[p][1]
98 + v[2] * ctx->Transform._ClipUserPlane[p][2]
99 + v[3] * ctx->Transform._ClipUserPlane[p][3];
100 if (dot < 0.0F) {
101 return 0;
102 }
103 }
104 }
105
106 return 1;
107 }
108
109
110 /* This has been split off to allow the normal shade routines to
111 * get a little closer to the vertex buffer, and to use the
112 * GLvector objects directly.
113 * Input: ctx - the context
114 * vertex - vertex location
115 * normal - normal vector
116 * Output: Rcolor - returned color
117 * Rspec - returned specular color (if separate specular enabled)
118 * Rindex - returned color index
119 */
120 static void
121 shade_rastpos(GLcontext *ctx,
122 const GLfloat vertex[4],
123 const GLfloat normal[3],
124 GLfloat Rcolor[4],
125 GLfloat Rspec[4],
126 GLuint *Rindex)
127 {
128 GLfloat (*base)[3] = ctx->Light._BaseColor;
129 struct gl_light *light;
130 GLfloat diffuseColor[4], specularColor[4];
131 GLfloat diffuse = 0, specular = 0;
132
133 if (!ctx->_ShineTable[0] || !ctx->_ShineTable[1])
134 _mesa_validate_all_lighting_tables( ctx );
135
136 COPY_3V(diffuseColor, base[0]);
137 diffuseColor[3] = CLAMP( ctx->Light.Material[0].Diffuse[3], 0.0F, 1.0F );
138 ASSIGN_4V(specularColor, 0.0, 0.0, 0.0, 0.0);
139
140 foreach (light, &ctx->Light.EnabledList) {
141 GLfloat n_dot_h;
142 GLfloat attenuation = 1.0;
143 GLfloat VP[3];
144 GLfloat n_dot_VP;
145 GLfloat *h;
146 GLfloat diffuseContrib[3], specularContrib[3];
147 GLboolean normalized;
148
149 if (!(light->_Flags & LIGHT_POSITIONAL)) {
150 COPY_3V(VP, light->_VP_inf_norm);
151 attenuation = light->_VP_inf_spot_attenuation;
152 }
153 else {
154 GLfloat d;
155
156 SUB_3V(VP, light->_Position, vertex);
157 d = (GLfloat) LEN_3FV( VP );
158
159 if ( d > 1e-6) {
160 GLfloat invd = 1.0F / d;
161 SELF_SCALE_SCALAR_3V(VP, invd);
162 }
163 attenuation = 1.0F / (light->ConstantAttenuation + d *
164 (light->LinearAttenuation + d *
165 light->QuadraticAttenuation));
166
167 if (light->_Flags & LIGHT_SPOT) {
168 GLfloat PV_dot_dir = - DOT3(VP, light->_NormDirection);
169
170 if (PV_dot_dir<light->_CosCutoff) {
171 continue;
172 }
173 else {
174 double x = PV_dot_dir * (EXP_TABLE_SIZE-1);
175 int k = (int) x;
176 GLfloat spot = (GLfloat) (light->_SpotExpTable[k][0]
177 + (x-k)*light->_SpotExpTable[k][1]);
178 attenuation *= spot;
179 }
180 }
181 }
182
183 if (attenuation < 1e-3)
184 continue;
185
186 n_dot_VP = DOT3( normal, VP );
187
188 if (n_dot_VP < 0.0F) {
189 ACC_SCALE_SCALAR_3V(diffuseColor, attenuation, light->_MatAmbient[0]);
190 continue;
191 }
192
193 COPY_3V(diffuseContrib, light->_MatAmbient[0]);
194 ACC_SCALE_SCALAR_3V(diffuseContrib, n_dot_VP, light->_MatDiffuse[0]);
195 diffuse += n_dot_VP * light->_dli * attenuation;
196 ASSIGN_3V(specularContrib, 0.0, 0.0, 0.0);
197
198 {
199 if (ctx->Light.Model.LocalViewer) {
200 GLfloat v[3];
201 COPY_3V(v, vertex);
202 NORMALIZE_3FV(v);
203 SUB_3V(VP, VP, v);
204 h = VP;
205 normalized = 0;
206 }
207 else if (light->_Flags & LIGHT_POSITIONAL) {
208 h = VP;
209 ACC_3V(h, ctx->_EyeZDir);
210 normalized = 0;
211 }
212 else {
213 h = light->_h_inf_norm;
214 normalized = 1;
215 }
216
217 n_dot_h = DOT3(normal, h);
218
219 if (n_dot_h > 0.0F) {
220 const struct gl_material *mat = &ctx->Light.Material[0];
221 GLfloat spec_coef;
222 GLfloat shininess = mat->Shininess;
223
224 if (!normalized) {
225 n_dot_h *= n_dot_h;
226 n_dot_h /= LEN_SQUARED_3FV( h );
227 shininess *= .5;
228 }
229
230 GET_SHINE_TAB_ENTRY( ctx->_ShineTable[0], n_dot_h, spec_coef );
231
232 if (spec_coef > 1.0e-10) {
233 if (ctx->Light.Model.ColorControl==GL_SEPARATE_SPECULAR_COLOR) {
234 ACC_SCALE_SCALAR_3V( specularContrib, spec_coef,
235 light->_MatSpecular[0]);
236 }
237 else {
238 ACC_SCALE_SCALAR_3V( diffuseContrib, spec_coef,
239 light->_MatSpecular[0]);
240 }
241 specular += spec_coef * light->_sli * attenuation;
242 }
243 }
244 }
245
246 ACC_SCALE_SCALAR_3V( diffuseColor, attenuation, diffuseContrib );
247 ACC_SCALE_SCALAR_3V( specularColor, attenuation, specularContrib );
248 }
249
250 if (ctx->Visual.rgbMode) {
251 Rcolor[0] = CLAMP(diffuseColor[0], 0.0F, 1.0F);
252 Rcolor[1] = CLAMP(diffuseColor[1], 0.0F, 1.0F);
253 Rcolor[2] = CLAMP(diffuseColor[2], 0.0F, 1.0F);
254 Rcolor[3] = CLAMP(diffuseColor[3], 0.0F, 1.0F);
255 Rspec[0] = CLAMP(specularColor[0], 0.0F, 1.0F);
256 Rspec[1] = CLAMP(specularColor[1], 0.0F, 1.0F);
257 Rspec[2] = CLAMP(specularColor[2], 0.0F, 1.0F);
258 Rspec[3] = CLAMP(specularColor[3], 0.0F, 1.0F);
259 }
260 else {
261 struct gl_material *mat = &ctx->Light.Material[0];
262 GLfloat d_a = mat->DiffuseIndex - mat->AmbientIndex;
263 GLfloat s_a = mat->SpecularIndex - mat->AmbientIndex;
264 GLfloat ind = mat->AmbientIndex
265 + diffuse * (1.0F-specular) * d_a
266 + specular * s_a;
267 if (ind > mat->SpecularIndex) {
268 ind = mat->SpecularIndex;
269 }
270 *Rindex = (GLuint) (GLint) ind;
271 }
272
273 }
274
275 /*
276 * Caller: context->API.RasterPos4f
277 */
278 static void
279 raster_pos4f(GLcontext *ctx, GLfloat x, GLfloat y, GLfloat z, GLfloat w)
280 {
281 GLfloat v[4], eye[4], clip[4], ndc[3], d;
282 ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx);
283 FLUSH_CURRENT(ctx, 0);
284
285 if (ctx->NewState)
286 _mesa_update_state( ctx );
287
288 ASSIGN_4V( v, x, y, z, w );
289 TRANSFORM_POINT( eye, ctx->ModelView.m, v );
290
291 /* raster color */
292 if (ctx->Light.Enabled) {
293 GLfloat *norm, eyenorm[3];
294 GLfloat *objnorm = ctx->Current.Normal;
295
296 if (ctx->_NeedEyeCoords) {
297 GLfloat *inv = ctx->ModelView.inv;
298 TRANSFORM_NORMAL( eyenorm, objnorm, inv );
299 norm = eyenorm;
300 }
301 else {
302 norm = objnorm;
303 }
304
305 shade_rastpos( ctx, v, norm,
306 ctx->Current.RasterColor,
307 ctx->Current.RasterSecondaryColor,
308 &ctx->Current.RasterIndex );
309
310 }
311 else {
312 /* use current color or index */
313 if (ctx->Visual.rgbMode) {
314 COPY_4FV(ctx->Current.RasterColor, ctx->Current.Color);
315 COPY_4FV(ctx->Current.RasterSecondaryColor,
316 ctx->Current.SecondaryColor);
317 }
318 else {
319 ctx->Current.RasterIndex = ctx->Current.Index;
320 }
321 }
322
323 /* compute raster distance */
324 ctx->Current.RasterDistance = (GLfloat)
325 GL_SQRT( eye[0]*eye[0] + eye[1]*eye[1] + eye[2]*eye[2] );
326
327 /* apply projection matrix: clip = Proj * eye */
328 TRANSFORM_POINT( clip, ctx->ProjectionMatrix.m, eye );
329
330 /* clip to view volume */
331 if (ctx->Transform.RasterPositionUnclipped) {
332 /* GL_IBM_rasterpos_clip: only clip against Z */
333 if (viewclip_point_z(clip) == 0)
334 ctx->Current.RasterPosValid = GL_FALSE;
335 }
336 else if (viewclip_point(clip) == 0) {
337 /* Normal OpenGL behaviour */
338 ctx->Current.RasterPosValid = GL_FALSE;
339 return;
340 }
341
342 /* clip to user clipping planes */
343 if (ctx->Transform._AnyClip &&
344 userclip_point(ctx, clip) == 0) {
345 ctx->Current.RasterPosValid = GL_FALSE;
346 return;
347 }
348
349 /* ndc = clip / W */
350 ASSERT( clip[3]!=0.0 );
351 d = 1.0F / clip[3];
352 ndc[0] = clip[0] * d;
353 ndc[1] = clip[1] * d;
354 ndc[2] = clip[2] * d;
355
356 ctx->Current.RasterPos[0] = (ndc[0] * ctx->Viewport._WindowMap.m[MAT_SX] +
357 ctx->Viewport._WindowMap.m[MAT_TX]);
358 ctx->Current.RasterPos[1] = (ndc[1] * ctx->Viewport._WindowMap.m[MAT_SY] +
359 ctx->Viewport._WindowMap.m[MAT_TY]);
360 ctx->Current.RasterPos[2] = (ndc[2] * ctx->Viewport._WindowMap.m[MAT_SZ] +
361 ctx->Viewport._WindowMap.m[MAT_TZ]) / ctx->DepthMaxF;
362 ctx->Current.RasterPos[3] = clip[3];
363 ctx->Current.RasterPosValid = GL_TRUE;
364
365 ctx->Current.RasterFogCoord = ctx->Current.FogCoord;
366
367 {
368 GLuint texSet;
369 for (texSet = 0; texSet < ctx->Const.MaxTextureUnits; texSet++) {
370 COPY_4FV( ctx->Current.RasterMultiTexCoord[texSet],
371 ctx->Current.Texcoord[texSet] );
372 }
373 }
374
375 if (ctx->RenderMode==GL_SELECT) {
376 _mesa_update_hitflag( ctx, ctx->Current.RasterPos[2] );
377 }
378
379 }
380
381
382
383 void
384 _mesa_RasterPos2d(GLdouble x, GLdouble y)
385 {
386 _mesa_RasterPos4f((GLfloat) x, (GLfloat) y, 0.0F, 1.0F);
387 }
388
389 void
390 _mesa_RasterPos2f(GLfloat x, GLfloat y)
391 {
392 _mesa_RasterPos4f(x, y, 0.0F, 1.0F);
393 }
394
395 void
396 _mesa_RasterPos2i(GLint x, GLint y)
397 {
398 _mesa_RasterPos4f((GLfloat) x, (GLfloat) y, 0.0F, 1.0F);
399 }
400
401 void
402 _mesa_RasterPos2s(GLshort x, GLshort y)
403 {
404 _mesa_RasterPos4f(x, y, 0.0F, 1.0F);
405 }
406
407 void
408 _mesa_RasterPos3d(GLdouble x, GLdouble y, GLdouble z)
409 {
410 _mesa_RasterPos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F);
411 }
412
413 void
414 _mesa_RasterPos3f(GLfloat x, GLfloat y, GLfloat z)
415 {
416 _mesa_RasterPos4f(x, y, z, 1.0F);
417 }
418
419 void
420 _mesa_RasterPos3i(GLint x, GLint y, GLint z)
421 {
422 _mesa_RasterPos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F);
423 }
424
425 void
426 _mesa_RasterPos3s(GLshort x, GLshort y, GLshort z)
427 {
428 _mesa_RasterPos4f(x, y, z, 1.0F);
429 }
430
431 void
432 _mesa_RasterPos4d(GLdouble x, GLdouble y, GLdouble z, GLdouble w)
433 {
434 _mesa_RasterPos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
435 }
436
437 void
438 _mesa_RasterPos4f(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
439 {
440 GET_CURRENT_CONTEXT(ctx);
441 raster_pos4f(ctx, x, y, z, w);
442 }
443
444 void
445 _mesa_RasterPos4i(GLint x, GLint y, GLint z, GLint w)
446 {
447 _mesa_RasterPos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
448 }
449
450 void
451 _mesa_RasterPos4s(GLshort x, GLshort y, GLshort z, GLshort w)
452 {
453 _mesa_RasterPos4f(x, y, z, w);
454 }
455
456 void
457 _mesa_RasterPos2dv(const GLdouble *v)
458 {
459 _mesa_RasterPos4f((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F);
460 }
461
462 void
463 _mesa_RasterPos2fv(const GLfloat *v)
464 {
465 _mesa_RasterPos4f(v[0], v[1], 0.0F, 1.0F);
466 }
467
468 void
469 _mesa_RasterPos2iv(const GLint *v)
470 {
471 _mesa_RasterPos4f((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F);
472 }
473
474 void
475 _mesa_RasterPos2sv(const GLshort *v)
476 {
477 _mesa_RasterPos4f(v[0], v[1], 0.0F, 1.0F);
478 }
479
480 void
481 _mesa_RasterPos3dv(const GLdouble *v)
482 {
483 _mesa_RasterPos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F);
484 }
485
486 void
487 _mesa_RasterPos3fv(const GLfloat *v)
488 {
489 _mesa_RasterPos4f(v[0], v[1], v[2], 1.0F);
490 }
491
492 void
493 _mesa_RasterPos3iv(const GLint *v)
494 {
495 _mesa_RasterPos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F);
496 }
497
498 void
499 _mesa_RasterPos3sv(const GLshort *v)
500 {
501 _mesa_RasterPos4f(v[0], v[1], v[2], 1.0F);
502 }
503
504 void
505 _mesa_RasterPos4dv(const GLdouble *v)
506 {
507 _mesa_RasterPos4f((GLfloat) v[0], (GLfloat) v[1],
508 (GLfloat) v[2], (GLfloat) v[3]);
509 }
510
511 void
512 _mesa_RasterPos4fv(const GLfloat *v)
513 {
514 _mesa_RasterPos4f(v[0], v[1], v[2], v[3]);
515 }
516
517 void
518 _mesa_RasterPos4iv(const GLint *v)
519 {
520 _mesa_RasterPos4f((GLfloat) v[0], (GLfloat) v[1],
521 (GLfloat) v[2], (GLfloat) v[3]);
522 }
523
524 void
525 _mesa_RasterPos4sv(const GLshort *v)
526 {
527 _mesa_RasterPos4f(v[0], v[1], v[2], v[3]);
528 }
529
530
531
532 /**********************************************************************/
533 /*** GL_MESA_window_pos ***/
534 /**********************************************************************/
535
536
537 /*
538 * This is a MESA extension function. Pretty much just like glRasterPos
539 * except we don't apply the modelview or projection matrices; specify a
540 * window coordinate directly.
541 * Caller: context->API.WindowPos4fMESA pointer.
542 */
543 void
544 _mesa_WindowPos4fMESA( GLfloat x, GLfloat y, GLfloat z, GLfloat w )
545 {
546 GET_CURRENT_CONTEXT(ctx);
547 ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx);
548 FLUSH_CURRENT(ctx, 0);
549
550 /* set raster position */
551 ctx->Current.RasterPos[0] = x;
552 ctx->Current.RasterPos[1] = y;
553 ctx->Current.RasterPos[2] = CLAMP( z, 0.0F, 1.0F );
554 ctx->Current.RasterPos[3] = w;
555
556 ctx->Current.RasterPosValid = GL_TRUE;
557 ctx->Current.RasterDistance = 0.0F;
558 ctx->Current.RasterFogCoord = 0.0F;
559
560 /* raster color = current color or index */
561 if (ctx->Visual.rgbMode) {
562 ctx->Current.RasterColor[0] = (ctx->Current.Color[0]);
563 ctx->Current.RasterColor[1] = (ctx->Current.Color[1]);
564 ctx->Current.RasterColor[2] = (ctx->Current.Color[2]);
565 ctx->Current.RasterColor[3] = (ctx->Current.Color[3]);
566 }
567 else {
568 ctx->Current.RasterIndex = ctx->Current.Index;
569 }
570
571 /* raster texcoord = current texcoord */
572 {
573 GLuint texSet;
574 for (texSet = 0; texSet < ctx->Const.MaxTextureUnits; texSet++) {
575 COPY_4FV( ctx->Current.RasterMultiTexCoord[texSet],
576 ctx->Current.Texcoord[texSet] );
577 }
578 }
579
580 if (ctx->RenderMode==GL_SELECT) {
581 _mesa_update_hitflag( ctx, ctx->Current.RasterPos[2] );
582 }
583 }
584
585
586
587
588 void
589 _mesa_WindowPos2dMESA(GLdouble x, GLdouble y)
590 {
591 _mesa_WindowPos4fMESA((GLfloat) x, (GLfloat) y, 0.0F, 1.0F);
592 }
593
594 void
595 _mesa_WindowPos2fMESA(GLfloat x, GLfloat y)
596 {
597 _mesa_WindowPos4fMESA(x, y, 0.0F, 1.0F);
598 }
599
600 void
601 _mesa_WindowPos2iMESA(GLint x, GLint y)
602 {
603 _mesa_WindowPos4fMESA((GLfloat) x, (GLfloat) y, 0.0F, 1.0F);
604 }
605
606 void
607 _mesa_WindowPos2sMESA(GLshort x, GLshort y)
608 {
609 _mesa_WindowPos4fMESA(x, y, 0.0F, 1.0F);
610 }
611
612 void
613 _mesa_WindowPos3dMESA(GLdouble x, GLdouble y, GLdouble z)
614 {
615 _mesa_WindowPos4fMESA((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F);
616 }
617
618 void
619 _mesa_WindowPos3fMESA(GLfloat x, GLfloat y, GLfloat z)
620 {
621 _mesa_WindowPos4fMESA(x, y, z, 1.0F);
622 }
623
624 void
625 _mesa_WindowPos3iMESA(GLint x, GLint y, GLint z)
626 {
627 _mesa_WindowPos4fMESA((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F);
628 }
629
630 void
631 _mesa_WindowPos3sMESA(GLshort x, GLshort y, GLshort z)
632 {
633 _mesa_WindowPos4fMESA(x, y, z, 1.0F);
634 }
635
636 void
637 _mesa_WindowPos4dMESA(GLdouble x, GLdouble y, GLdouble z, GLdouble w)
638 {
639 _mesa_WindowPos4fMESA((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
640 }
641
642 void
643 _mesa_WindowPos4iMESA(GLint x, GLint y, GLint z, GLint w)
644 {
645 _mesa_WindowPos4fMESA((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
646 }
647
648 void
649 _mesa_WindowPos4sMESA(GLshort x, GLshort y, GLshort z, GLshort w)
650 {
651 _mesa_WindowPos4fMESA(x, y, z, w);
652 }
653
654 void
655 _mesa_WindowPos2dvMESA(const GLdouble *v)
656 {
657 _mesa_WindowPos4fMESA((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F);
658 }
659
660 void
661 _mesa_WindowPos2fvMESA(const GLfloat *v)
662 {
663 _mesa_WindowPos4fMESA(v[0], v[1], 0.0F, 1.0F);
664 }
665
666 void
667 _mesa_WindowPos2ivMESA(const GLint *v)
668 {
669 _mesa_WindowPos4fMESA((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F);
670 }
671
672 void
673 _mesa_WindowPos2svMESA(const GLshort *v)
674 {
675 _mesa_WindowPos4fMESA(v[0], v[1], 0.0F, 1.0F);
676 }
677
678 void
679 _mesa_WindowPos3dvMESA(const GLdouble *v)
680 {
681 _mesa_WindowPos4fMESA((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F);
682 }
683
684 void
685 _mesa_WindowPos3fvMESA(const GLfloat *v)
686 {
687 _mesa_WindowPos4fMESA(v[0], v[1], v[2], 1.0F);
688 }
689
690 void
691 _mesa_WindowPos3ivMESA(const GLint *v)
692 {
693 _mesa_WindowPos4fMESA((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F);
694 }
695
696 void
697 _mesa_WindowPos3svMESA(const GLshort *v)
698 {
699 _mesa_WindowPos4fMESA(v[0], v[1], v[2], 1.0F);
700 }
701
702 void
703 _mesa_WindowPos4dvMESA(const GLdouble *v)
704 {
705 _mesa_WindowPos4fMESA((GLfloat) v[0], (GLfloat) v[1],
706 (GLfloat) v[2], (GLfloat) v[3]);
707 }
708
709 void
710 _mesa_WindowPos4fvMESA(const GLfloat *v)
711 {
712 _mesa_WindowPos4fMESA(v[0], v[1], v[2], v[3]);
713 }
714
715 void
716 _mesa_WindowPos4ivMESA(const GLint *v)
717 {
718 _mesa_WindowPos4fMESA((GLfloat) v[0], (GLfloat) v[1],
719 (GLfloat) v[2], (GLfloat) v[3]);
720 }
721
722 void
723 _mesa_WindowPos4svMESA(const GLshort *v)
724 {
725 _mesa_WindowPos4fMESA(v[0], v[1], v[2], v[3]);
726 }
727
728
729
730 #if 0
731
732 /*
733 * OpenGL implementation of glWindowPos*MESA()
734 */
735 void glWindowPos4fMESA( GLfloat x, GLfloat y, GLfloat z, GLfloat w )
736 {
737 GLfloat fx, fy;
738
739 /* Push current matrix mode and viewport attributes */
740 glPushAttrib( GL_TRANSFORM_BIT | GL_VIEWPORT_BIT );
741
742 /* Setup projection parameters */
743 glMatrixMode( GL_PROJECTION );
744 glPushMatrix();
745 glLoadIdentity();
746 glMatrixMode( GL_MODELVIEW );
747 glPushMatrix();
748 glLoadIdentity();
749
750 glDepthRange( z, z );
751 glViewport( (int) x - 1, (int) y - 1, 2, 2 );
752
753 /* set the raster (window) position */
754 fx = x - (int) x;
755 fy = y - (int) y;
756 glRasterPos4f( fx, fy, 0.0, w );
757
758 /* restore matrices, viewport and matrix mode */
759 glPopMatrix();
760 glMatrixMode( GL_PROJECTION );
761 glPopMatrix();
762
763 glPopAttrib();
764 }
765
766 #endif