mesa: refactor: move glReadPixels code into new readpix.c file
[mesa.git] / src / mesa / main / renderbuffer.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 6.5
4 *
5 * Copyright (C) 1999-2006 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /**
27 * Functions for allocating/managing renderbuffers.
28 * Also, routines for reading/writing software-based renderbuffer data as
29 * ubytes, ushorts, uints, etc.
30 *
31 * The 'alpha8' renderbuffer is interesting. It's used to add a software-based
32 * alpha channel to RGB renderbuffers. This is done by wrapping the RGB
33 * renderbuffer with the alpha renderbuffer. We can do this because of the
34 * OO-nature of renderbuffers.
35 *
36 * Down the road we'll use this for run-time support of 8, 16 and 32-bit
37 * color channels. For example, Mesa may use 32-bit/float color channels
38 * internally (swrast) and use wrapper renderbuffers to convert 32-bit
39 * values down to 16 or 8-bit values for whatever kind of framebuffer we have.
40 */
41
42
43 #include "glheader.h"
44 #include "imports.h"
45 #include "context.h"
46 #include "mtypes.h"
47 #include "fbobject.h"
48 #include "renderbuffer.h"
49
50 #include "rbadaptors.h"
51
52
53 /* 32-bit color index format. Not a public format. */
54 #define COLOR_INDEX32 0x424243
55
56
57 /*
58 * Routines for get/put values in common buffer formats follow.
59 * Someday add support for arbitrary row stride to make them more
60 * flexible.
61 */
62
63 /**********************************************************************
64 * Functions for buffers of 1 X GLubyte values.
65 * Typically stencil.
66 */
67
68 static void *
69 get_pointer_ubyte(GLcontext *ctx, struct gl_renderbuffer *rb,
70 GLint x, GLint y)
71 {
72 if (!rb->Data)
73 return NULL;
74 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
75 /* Can't assert _ActualFormat since these funcs may be used for serveral
76 * different formats (GL_ALPHA8, GL_STENCIL_INDEX8, etc).
77 */
78 return (GLubyte *) rb->Data + y * rb->Width + x;
79 }
80
81
82 static void
83 get_row_ubyte(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
84 GLint x, GLint y, void *values)
85 {
86 const GLubyte *src = (const GLubyte *) rb->Data + y * rb->Width + x;
87 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
88 _mesa_memcpy(values, src, count * sizeof(GLubyte));
89 }
90
91
92 static void
93 get_values_ubyte(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
94 const GLint x[], const GLint y[], void *values)
95 {
96 GLubyte *dst = (GLubyte *) values;
97 GLuint i;
98 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
99 for (i = 0; i < count; i++) {
100 const GLubyte *src = (GLubyte *) rb->Data + y[i] * rb->Width + x[i];
101 dst[i] = *src;
102 }
103 }
104
105
106 static void
107 put_row_ubyte(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
108 GLint x, GLint y, const void *values, const GLubyte *mask)
109 {
110 const GLubyte *src = (const GLubyte *) values;
111 GLubyte *dst = (GLubyte *) rb->Data + y * rb->Width + x;
112 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
113 if (mask) {
114 GLuint i;
115 for (i = 0; i < count; i++) {
116 if (mask[i]) {
117 dst[i] = src[i];
118 }
119 }
120 }
121 else {
122 _mesa_memcpy(dst, values, count * sizeof(GLubyte));
123 }
124 }
125
126
127 static void
128 put_mono_row_ubyte(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
129 GLint x, GLint y, const void *value, const GLubyte *mask)
130 {
131 const GLubyte val = *((const GLubyte *) value);
132 GLubyte *dst = (GLubyte *) rb->Data + y * rb->Width + x;
133 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
134 if (mask) {
135 GLuint i;
136 for (i = 0; i < count; i++) {
137 if (mask[i]) {
138 dst[i] = val;
139 }
140 }
141 }
142 else {
143 GLuint i;
144 for (i = 0; i < count; i++) {
145 dst[i] = val;
146 }
147 }
148 }
149
150
151 static void
152 put_values_ubyte(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
153 const GLint x[], const GLint y[],
154 const void *values, const GLubyte *mask)
155 {
156 const GLubyte *src = (const GLubyte *) values;
157 GLuint i;
158 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
159 for (i = 0; i < count; i++) {
160 if (!mask || mask[i]) {
161 GLubyte *dst = (GLubyte *) rb->Data + y[i] * rb->Width + x[i];
162 *dst = src[i];
163 }
164 }
165 }
166
167
168 static void
169 put_mono_values_ubyte(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
170 const GLint x[], const GLint y[],
171 const void *value, const GLubyte *mask)
172 {
173 const GLubyte val = *((const GLubyte *) value);
174 GLuint i;
175 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
176 for (i = 0; i < count; i++) {
177 if (!mask || mask[i]) {
178 GLubyte *dst = (GLubyte *) rb->Data + y[i] * rb->Width + x[i];
179 *dst = val;
180 }
181 }
182 }
183
184
185 /**********************************************************************
186 * Functions for buffers of 1 X GLushort values.
187 * Typically depth/Z.
188 */
189
190 static void *
191 get_pointer_ushort(GLcontext *ctx, struct gl_renderbuffer *rb,
192 GLint x, GLint y)
193 {
194 if (!rb->Data)
195 return NULL;
196 ASSERT(rb->DataType == GL_UNSIGNED_SHORT);
197 ASSERT(rb->Width > 0);
198 return (GLushort *) rb->Data + y * rb->Width + x;
199 }
200
201
202 static void
203 get_row_ushort(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
204 GLint x, GLint y, void *values)
205 {
206 const void *src = rb->GetPointer(ctx, rb, x, y);
207 ASSERT(rb->DataType == GL_UNSIGNED_SHORT);
208 _mesa_memcpy(values, src, count * sizeof(GLushort));
209 }
210
211
212 static void
213 get_values_ushort(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
214 const GLint x[], const GLint y[], void *values)
215 {
216 GLushort *dst = (GLushort *) values;
217 GLuint i;
218 ASSERT(rb->DataType == GL_UNSIGNED_SHORT);
219 for (i = 0; i < count; i++) {
220 const GLushort *src = (GLushort *) rb->Data + y[i] * rb->Width + x[i];
221 dst[i] = *src;
222 }
223 }
224
225
226 static void
227 put_row_ushort(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
228 GLint x, GLint y, const void *values, const GLubyte *mask)
229 {
230 const GLushort *src = (const GLushort *) values;
231 GLushort *dst = (GLushort *) rb->Data + y * rb->Width + x;
232 ASSERT(rb->DataType == GL_UNSIGNED_SHORT);
233 if (mask) {
234 GLuint i;
235 for (i = 0; i < count; i++) {
236 if (mask[i]) {
237 dst[i] = src[i];
238 }
239 }
240 }
241 else {
242 _mesa_memcpy(dst, src, count * sizeof(GLushort));
243 }
244 }
245
246
247 static void
248 put_mono_row_ushort(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
249 GLint x, GLint y, const void *value, const GLubyte *mask)
250 {
251 const GLushort val = *((const GLushort *) value);
252 GLushort *dst = (GLushort *) rb->Data + y * rb->Width + x;
253 ASSERT(rb->DataType == GL_UNSIGNED_SHORT);
254 if (mask) {
255 GLuint i;
256 for (i = 0; i < count; i++) {
257 if (mask[i]) {
258 dst[i] = val;
259 }
260 }
261 }
262 else {
263 GLuint i;
264 for (i = 0; i < count; i++) {
265 dst[i] = val;
266 }
267 }
268 }
269
270
271 static void
272 put_values_ushort(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
273 const GLint x[], const GLint y[], const void *values,
274 const GLubyte *mask)
275 {
276 const GLushort *src = (const GLushort *) values;
277 GLuint i;
278 ASSERT(rb->DataType == GL_UNSIGNED_SHORT);
279 for (i = 0; i < count; i++) {
280 if (!mask || mask[i]) {
281 GLushort *dst = (GLushort *) rb->Data + y[i] * rb->Width + x[i];
282 *dst = src[i];
283 }
284 }
285 }
286
287
288 static void
289 put_mono_values_ushort(GLcontext *ctx, struct gl_renderbuffer *rb,
290 GLuint count, const GLint x[], const GLint y[],
291 const void *value, const GLubyte *mask)
292 {
293 const GLushort val = *((const GLushort *) value);
294 ASSERT(rb->DataType == GL_UNSIGNED_SHORT);
295 if (mask) {
296 GLuint i;
297 for (i = 0; i < count; i++) {
298 if (mask[i]) {
299 GLushort *dst = (GLushort *) rb->Data + y[i] * rb->Width + x[i];
300 *dst = val;
301 }
302 }
303 }
304 else {
305 GLuint i;
306 for (i = 0; i < count; i++) {
307 GLushort *dst = (GLushort *) rb->Data + y[i] * rb->Width + x[i];
308 *dst = val;
309 }
310 }
311 }
312
313
314 /**********************************************************************
315 * Functions for buffers of 1 X GLuint values.
316 * Typically depth/Z or color index.
317 */
318
319 static void *
320 get_pointer_uint(GLcontext *ctx, struct gl_renderbuffer *rb,
321 GLint x, GLint y)
322 {
323 if (!rb->Data)
324 return NULL;
325 ASSERT(rb->DataType == GL_UNSIGNED_INT ||
326 rb->DataType == GL_UNSIGNED_INT_24_8_EXT);
327 return (GLuint *) rb->Data + y * rb->Width + x;
328 }
329
330
331 static void
332 get_row_uint(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
333 GLint x, GLint y, void *values)
334 {
335 const void *src = rb->GetPointer(ctx, rb, x, y);
336 ASSERT(rb->DataType == GL_UNSIGNED_INT ||
337 rb->DataType == GL_UNSIGNED_INT_24_8_EXT);
338 _mesa_memcpy(values, src, count * sizeof(GLuint));
339 }
340
341
342 static void
343 get_values_uint(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
344 const GLint x[], const GLint y[], void *values)
345 {
346 GLuint *dst = (GLuint *) values;
347 GLuint i;
348 ASSERT(rb->DataType == GL_UNSIGNED_INT ||
349 rb->DataType == GL_UNSIGNED_INT_24_8_EXT);
350 for (i = 0; i < count; i++) {
351 const GLuint *src = (GLuint *) rb->Data + y[i] * rb->Width + x[i];
352 dst[i] = *src;
353 }
354 }
355
356
357 static void
358 put_row_uint(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
359 GLint x, GLint y, const void *values, const GLubyte *mask)
360 {
361 const GLuint *src = (const GLuint *) values;
362 GLuint *dst = (GLuint *) rb->Data + y * rb->Width + x;
363 ASSERT(rb->DataType == GL_UNSIGNED_INT ||
364 rb->DataType == GL_UNSIGNED_INT_24_8_EXT);
365 if (mask) {
366 GLuint i;
367 for (i = 0; i < count; i++) {
368 if (mask[i]) {
369 dst[i] = src[i];
370 }
371 }
372 }
373 else {
374 _mesa_memcpy(dst, src, count * sizeof(GLuint));
375 }
376 }
377
378
379 static void
380 put_mono_row_uint(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
381 GLint x, GLint y, const void *value, const GLubyte *mask)
382 {
383 const GLuint val = *((const GLuint *) value);
384 GLuint *dst = (GLuint *) rb->Data + y * rb->Width + x;
385 ASSERT(rb->DataType == GL_UNSIGNED_INT ||
386 rb->DataType == GL_UNSIGNED_INT_24_8_EXT);
387 if (mask) {
388 GLuint i;
389 for (i = 0; i < count; i++) {
390 if (mask[i]) {
391 dst[i] = val;
392 }
393 }
394 }
395 else {
396 GLuint i;
397 for (i = 0; i < count; i++) {
398 dst[i] = val;
399 }
400 }
401 }
402
403
404 static void
405 put_values_uint(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
406 const GLint x[], const GLint y[], const void *values,
407 const GLubyte *mask)
408 {
409 const GLuint *src = (const GLuint *) values;
410 GLuint i;
411 ASSERT(rb->DataType == GL_UNSIGNED_INT ||
412 rb->DataType == GL_UNSIGNED_INT_24_8_EXT);
413 for (i = 0; i < count; i++) {
414 if (!mask || mask[i]) {
415 GLuint *dst = (GLuint *) rb->Data + y[i] * rb->Width + x[i];
416 *dst = src[i];
417 }
418 }
419 }
420
421
422 static void
423 put_mono_values_uint(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
424 const GLint x[], const GLint y[], const void *value,
425 const GLubyte *mask)
426 {
427 const GLuint val = *((const GLuint *) value);
428 GLuint i;
429 ASSERT(rb->DataType == GL_UNSIGNED_INT ||
430 rb->DataType == GL_UNSIGNED_INT_24_8_EXT);
431 for (i = 0; i < count; i++) {
432 if (!mask || mask[i]) {
433 GLuint *dst = (GLuint *) rb->Data + y[i] * rb->Width + x[i];
434 *dst = val;
435 }
436 }
437 }
438
439
440 /**********************************************************************
441 * Functions for buffers of 3 X GLubyte (or GLbyte) values.
442 * Typically color buffers.
443 * NOTE: the incoming and outgoing colors are RGBA! We ignore incoming
444 * alpha values and return 255 for outgoing alpha values.
445 */
446
447 static void *
448 get_pointer_ubyte3(GLcontext *ctx, struct gl_renderbuffer *rb,
449 GLint x, GLint y)
450 {
451 ASSERT(rb->_ActualFormat == GL_RGB8);
452 /* No direct access since this buffer is RGB but caller will be
453 * treating it as if it were RGBA.
454 */
455 return NULL;
456 }
457
458
459 static void
460 get_row_ubyte3(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
461 GLint x, GLint y, void *values)
462 {
463 const GLubyte *src = (const GLubyte *) rb->Data + 3 * (y * rb->Width + x);
464 GLubyte *dst = (GLubyte *) values;
465 GLuint i;
466 ASSERT(rb->_ActualFormat == GL_RGB8);
467 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
468 for (i = 0; i < count; i++) {
469 dst[i * 4 + 0] = src[i * 3 + 0];
470 dst[i * 4 + 1] = src[i * 3 + 1];
471 dst[i * 4 + 2] = src[i * 3 + 2];
472 dst[i * 4 + 3] = 255;
473 }
474 }
475
476
477 static void
478 get_values_ubyte3(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
479 const GLint x[], const GLint y[], void *values)
480 {
481 GLubyte *dst = (GLubyte *) values;
482 GLuint i;
483 ASSERT(rb->_ActualFormat == GL_RGB8);
484 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
485 for (i = 0; i < count; i++) {
486 const GLubyte *src
487 = (GLubyte *) rb->Data + 3 * (y[i] * rb->Width + x[i]);
488 dst[i * 4 + 0] = src[0];
489 dst[i * 4 + 1] = src[1];
490 dst[i * 4 + 2] = src[2];
491 dst[i * 4 + 3] = 255;
492 }
493 }
494
495
496 static void
497 put_row_ubyte3(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
498 GLint x, GLint y, const void *values, const GLubyte *mask)
499 {
500 /* note: incoming values are RGB+A! */
501 const GLubyte *src = (const GLubyte *) values;
502 GLubyte *dst = (GLubyte *) rb->Data + 3 * (y * rb->Width + x);
503 GLuint i;
504 ASSERT(rb->_ActualFormat == GL_RGB8);
505 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
506 for (i = 0; i < count; i++) {
507 if (!mask || mask[i]) {
508 dst[i * 3 + 0] = src[i * 4 + 0];
509 dst[i * 3 + 1] = src[i * 4 + 1];
510 dst[i * 3 + 2] = src[i * 4 + 2];
511 }
512 }
513 }
514
515
516 static void
517 put_row_rgb_ubyte3(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
518 GLint x, GLint y, const void *values, const GLubyte *mask)
519 {
520 /* note: incoming values are RGB+A! */
521 const GLubyte *src = (const GLubyte *) values;
522 GLubyte *dst = (GLubyte *) rb->Data + 3 * (y * rb->Width + x);
523 GLuint i;
524 ASSERT(rb->_ActualFormat == GL_RGB8);
525 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
526 for (i = 0; i < count; i++) {
527 if (!mask || mask[i]) {
528 dst[i * 3 + 0] = src[i * 3 + 0];
529 dst[i * 3 + 1] = src[i * 3 + 1];
530 dst[i * 3 + 2] = src[i * 3 + 2];
531 }
532 }
533 }
534
535
536 static void
537 put_mono_row_ubyte3(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
538 GLint x, GLint y, const void *value, const GLubyte *mask)
539 {
540 /* note: incoming value is RGB+A! */
541 const GLubyte val0 = ((const GLubyte *) value)[0];
542 const GLubyte val1 = ((const GLubyte *) value)[1];
543 const GLubyte val2 = ((const GLubyte *) value)[2];
544 GLubyte *dst = (GLubyte *) rb->Data + 3 * (y * rb->Width + x);
545 ASSERT(rb->_ActualFormat == GL_RGB8);
546 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
547 if (!mask && val0 == val1 && val1 == val2) {
548 /* optimized case */
549 _mesa_memset(dst, val0, 3 * count);
550 }
551 else {
552 GLuint i;
553 for (i = 0; i < count; i++) {
554 if (!mask || mask[i]) {
555 dst[i * 3 + 0] = val0;
556 dst[i * 3 + 1] = val1;
557 dst[i * 3 + 2] = val2;
558 }
559 }
560 }
561 }
562
563
564 static void
565 put_values_ubyte3(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
566 const GLint x[], const GLint y[], const void *values,
567 const GLubyte *mask)
568 {
569 /* note: incoming values are RGB+A! */
570 const GLubyte *src = (const GLubyte *) values;
571 GLuint i;
572 ASSERT(rb->_ActualFormat == GL_RGB8);
573 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
574 for (i = 0; i < count; i++) {
575 if (!mask || mask[i]) {
576 GLubyte *dst = (GLubyte *) rb->Data + 3 * (y[i] * rb->Width + x[i]);
577 dst[0] = src[i * 4 + 0];
578 dst[1] = src[i * 4 + 1];
579 dst[2] = src[i * 4 + 2];
580 }
581 }
582 }
583
584
585 static void
586 put_mono_values_ubyte3(GLcontext *ctx, struct gl_renderbuffer *rb,
587 GLuint count, const GLint x[], const GLint y[],
588 const void *value, const GLubyte *mask)
589 {
590 /* note: incoming value is RGB+A! */
591 const GLubyte val0 = ((const GLubyte *) value)[0];
592 const GLubyte val1 = ((const GLubyte *) value)[1];
593 const GLubyte val2 = ((const GLubyte *) value)[2];
594 GLuint i;
595 ASSERT(rb->_ActualFormat == GL_RGB8);
596 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
597 for (i = 0; i < count; i++) {
598 if (!mask || mask[i]) {
599 GLubyte *dst = (GLubyte *) rb->Data + 3 * (y[i] * rb->Width + x[i]);
600 dst[0] = val0;
601 dst[1] = val1;
602 dst[2] = val2;
603 }
604 }
605 }
606
607
608 /**********************************************************************
609 * Functions for buffers of 4 X GLubyte (or GLbyte) values.
610 * Typically color buffers.
611 */
612
613 static void *
614 get_pointer_ubyte4(GLcontext *ctx, struct gl_renderbuffer *rb,
615 GLint x, GLint y)
616 {
617 if (!rb->Data)
618 return NULL;
619 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
620 ASSERT(rb->_ActualFormat == GL_RGBA8);
621 return (GLubyte *) rb->Data + 4 * (y * rb->Width + x);
622 }
623
624
625 static void
626 get_row_ubyte4(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
627 GLint x, GLint y, void *values)
628 {
629 const GLubyte *src = (const GLubyte *) rb->Data + 4 * (y * rb->Width + x);
630 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
631 ASSERT(rb->_ActualFormat == GL_RGBA8);
632 _mesa_memcpy(values, src, 4 * count * sizeof(GLubyte));
633 }
634
635
636 static void
637 get_values_ubyte4(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
638 const GLint x[], const GLint y[], void *values)
639 {
640 /* treat 4*GLubyte as 1*GLuint */
641 GLuint *dst = (GLuint *) values;
642 GLuint i;
643 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
644 ASSERT(rb->_ActualFormat == GL_RGBA8);
645 for (i = 0; i < count; i++) {
646 const GLuint *src = (GLuint *) rb->Data + (y[i] * rb->Width + x[i]);
647 dst[i] = *src;
648 }
649 }
650
651
652 static void
653 put_row_ubyte4(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
654 GLint x, GLint y, const void *values, const GLubyte *mask)
655 {
656 /* treat 4*GLubyte as 1*GLuint */
657 const GLuint *src = (const GLuint *) values;
658 GLuint *dst = (GLuint *) rb->Data + (y * rb->Width + x);
659 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
660 ASSERT(rb->_ActualFormat == GL_RGBA8);
661 if (mask) {
662 GLuint i;
663 for (i = 0; i < count; i++) {
664 if (mask[i]) {
665 dst[i] = src[i];
666 }
667 }
668 }
669 else {
670 _mesa_memcpy(dst, src, 4 * count * sizeof(GLubyte));
671 }
672 }
673
674
675 static void
676 put_row_rgb_ubyte4(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
677 GLint x, GLint y, const void *values, const GLubyte *mask)
678 {
679 /* Store RGB values in RGBA buffer */
680 const GLubyte *src = (const GLubyte *) values;
681 GLubyte *dst = (GLubyte *) rb->Data + 4 * (y * rb->Width + x);
682 GLuint i;
683 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
684 ASSERT(rb->_ActualFormat == GL_RGBA8);
685 for (i = 0; i < count; i++) {
686 if (!mask || mask[i]) {
687 dst[i * 4 + 0] = src[i * 3 + 0];
688 dst[i * 4 + 1] = src[i * 3 + 1];
689 dst[i * 4 + 2] = src[i * 3 + 2];
690 dst[i * 4 + 3] = 0xff;
691 }
692 }
693 }
694
695
696 static void
697 put_mono_row_ubyte4(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
698 GLint x, GLint y, const void *value, const GLubyte *mask)
699 {
700 /* treat 4*GLubyte as 1*GLuint */
701 const GLuint val = *((const GLuint *) value);
702 GLuint *dst = (GLuint *) rb->Data + (y * rb->Width + x);
703 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
704 ASSERT(rb->_ActualFormat == GL_RGBA8);
705 if (!mask && val == 0) {
706 /* common case */
707 _mesa_bzero(dst, count * 4 * sizeof(GLubyte));
708 }
709 else {
710 /* general case */
711 if (mask) {
712 GLuint i;
713 for (i = 0; i < count; i++) {
714 if (mask[i]) {
715 dst[i] = val;
716 }
717 }
718 }
719 else {
720 GLuint i;
721 for (i = 0; i < count; i++) {
722 dst[i] = val;
723 }
724 }
725 }
726 }
727
728
729 static void
730 put_values_ubyte4(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
731 const GLint x[], const GLint y[], const void *values,
732 const GLubyte *mask)
733 {
734 /* treat 4*GLubyte as 1*GLuint */
735 const GLuint *src = (const GLuint *) values;
736 GLuint i;
737 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
738 ASSERT(rb->_ActualFormat == GL_RGBA8);
739 for (i = 0; i < count; i++) {
740 if (!mask || mask[i]) {
741 GLuint *dst = (GLuint *) rb->Data + (y[i] * rb->Width + x[i]);
742 *dst = src[i];
743 }
744 }
745 }
746
747
748 static void
749 put_mono_values_ubyte4(GLcontext *ctx, struct gl_renderbuffer *rb,
750 GLuint count, const GLint x[], const GLint y[],
751 const void *value, const GLubyte *mask)
752 {
753 /* treat 4*GLubyte as 1*GLuint */
754 const GLuint val = *((const GLuint *) value);
755 GLuint i;
756 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
757 ASSERT(rb->_ActualFormat == GL_RGBA8);
758 for (i = 0; i < count; i++) {
759 if (!mask || mask[i]) {
760 GLuint *dst = (GLuint *) rb->Data + (y[i] * rb->Width + x[i]);
761 *dst = val;
762 }
763 }
764 }
765
766
767 /**********************************************************************
768 * Functions for buffers of 4 X GLushort (or GLshort) values.
769 * Typically accum buffer.
770 */
771
772 static void *
773 get_pointer_ushort4(GLcontext *ctx, struct gl_renderbuffer *rb,
774 GLint x, GLint y)
775 {
776 if (!rb->Data)
777 return NULL;
778 ASSERT(rb->DataType == GL_UNSIGNED_SHORT || rb->DataType == GL_SHORT);
779 return (GLushort *) rb->Data + 4 * (y * rb->Width + x);
780 }
781
782
783 static void
784 get_row_ushort4(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
785 GLint x, GLint y, void *values)
786 {
787 const GLshort *src = (const GLshort *) rb->Data + 4 * (y * rb->Width + x);
788 ASSERT(rb->DataType == GL_UNSIGNED_SHORT || rb->DataType == GL_SHORT);
789 _mesa_memcpy(values, src, 4 * count * sizeof(GLshort));
790 }
791
792
793 static void
794 get_values_ushort4(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
795 const GLint x[], const GLint y[], void *values)
796 {
797 GLushort *dst = (GLushort *) values;
798 GLuint i;
799 ASSERT(rb->DataType == GL_UNSIGNED_SHORT || rb->DataType == GL_SHORT);
800 for (i = 0; i < count; i++) {
801 const GLushort *src
802 = (GLushort *) rb->Data + 4 * (y[i] * rb->Width + x[i]);
803 dst[i] = *src;
804 }
805 }
806
807
808 static void
809 put_row_ushort4(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
810 GLint x, GLint y, const void *values, const GLubyte *mask)
811 {
812 const GLushort *src = (const GLushort *) values;
813 GLushort *dst = (GLushort *) rb->Data + 4 * (y * rb->Width + x);
814 ASSERT(rb->DataType == GL_UNSIGNED_SHORT || rb->DataType == GL_SHORT);
815 if (mask) {
816 GLuint i;
817 for (i = 0; i < count; i++) {
818 if (mask[i]) {
819 dst[i * 4 + 0] = src[i * 4 + 0];
820 dst[i * 4 + 1] = src[i * 4 + 1];
821 dst[i * 4 + 2] = src[i * 4 + 2];
822 dst[i * 4 + 3] = src[i * 4 + 3];
823 }
824 }
825 }
826 else {
827 _mesa_memcpy(dst, src, 4 * count * sizeof(GLushort));
828 }
829 }
830
831
832 static void
833 put_row_rgb_ushort4(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
834 GLint x, GLint y, const void *values, const GLubyte *mask)
835 {
836 /* Put RGB values in RGBA buffer */
837 const GLushort *src = (const GLushort *) values;
838 GLushort *dst = (GLushort *) rb->Data + 4 * (y * rb->Width + x);
839 ASSERT(rb->DataType == GL_UNSIGNED_SHORT || rb->DataType == GL_SHORT);
840 if (mask) {
841 GLuint i;
842 for (i = 0; i < count; i++) {
843 if (mask[i]) {
844 dst[i * 4 + 0] = src[i * 3 + 0];
845 dst[i * 4 + 1] = src[i * 3 + 1];
846 dst[i * 4 + 2] = src[i * 3 + 2];
847 dst[i * 4 + 3] = 0xffff;
848 }
849 }
850 }
851 else {
852 _mesa_memcpy(dst, src, 4 * count * sizeof(GLushort));
853 }
854 }
855
856
857 static void
858 put_mono_row_ushort4(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
859 GLint x, GLint y, const void *value, const GLubyte *mask)
860 {
861 const GLushort val0 = ((const GLushort *) value)[0];
862 const GLushort val1 = ((const GLushort *) value)[1];
863 const GLushort val2 = ((const GLushort *) value)[2];
864 const GLushort val3 = ((const GLushort *) value)[3];
865 GLushort *dst = (GLushort *) rb->Data + 4 * (y * rb->Width + x);
866 ASSERT(rb->DataType == GL_UNSIGNED_SHORT || rb->DataType == GL_SHORT);
867 if (!mask && val0 == 0 && val1 == 0 && val2 == 0 && val3 == 0) {
868 /* common case for clearing accum buffer */
869 _mesa_bzero(dst, count * 4 * sizeof(GLushort));
870 }
871 else {
872 GLuint i;
873 for (i = 0; i < count; i++) {
874 if (!mask || mask[i]) {
875 dst[i * 4 + 0] = val0;
876 dst[i * 4 + 1] = val1;
877 dst[i * 4 + 2] = val2;
878 dst[i * 4 + 3] = val3;
879 }
880 }
881 }
882 }
883
884
885 static void
886 put_values_ushort4(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
887 const GLint x[], const GLint y[], const void *values,
888 const GLubyte *mask)
889 {
890 const GLushort *src = (const GLushort *) values;
891 GLuint i;
892 ASSERT(rb->DataType == GL_UNSIGNED_SHORT || rb->DataType == GL_SHORT);
893 for (i = 0; i < count; i++) {
894 if (!mask || mask[i]) {
895 GLushort *dst = (GLushort *) rb->Data + 4 * (y[i] * rb->Width + x[i]);
896 dst[0] = src[i * 4 + 0];
897 dst[1] = src[i * 4 + 1];
898 dst[2] = src[i * 4 + 2];
899 dst[3] = src[i * 4 + 3];
900 }
901 }
902 }
903
904
905 static void
906 put_mono_values_ushort4(GLcontext *ctx, struct gl_renderbuffer *rb,
907 GLuint count, const GLint x[], const GLint y[],
908 const void *value, const GLubyte *mask)
909 {
910 const GLushort val0 = ((const GLushort *) value)[0];
911 const GLushort val1 = ((const GLushort *) value)[1];
912 const GLushort val2 = ((const GLushort *) value)[2];
913 const GLushort val3 = ((const GLushort *) value)[3];
914 GLuint i;
915 ASSERT(rb->DataType == GL_UNSIGNED_SHORT || rb->DataType == GL_SHORT);
916 for (i = 0; i < count; i++) {
917 if (!mask || mask[i]) {
918 GLushort *dst = (GLushort *) rb->Data + 4 * (y[i] * rb->Width + x[i]);
919 dst[0] = val0;
920 dst[1] = val1;
921 dst[2] = val2;
922 dst[3] = val3;
923 }
924 }
925 }
926
927
928
929 /**
930 * This is a software fallback for the gl_renderbuffer->AllocStorage
931 * function.
932 * Device drivers will typically override this function for the buffers
933 * which it manages (typically color buffers, Z and stencil).
934 * Other buffers (like software accumulation and aux buffers) which the driver
935 * doesn't manage can be handled with this function.
936 *
937 * This one multi-purpose function can allocate stencil, depth, accum, color
938 * or color-index buffers!
939 *
940 * This function also plugs in the appropriate GetPointer, Get/PutRow and
941 * Get/PutValues functions.
942 */
943 GLboolean
944 _mesa_soft_renderbuffer_storage(GLcontext *ctx, struct gl_renderbuffer *rb,
945 GLenum internalFormat,
946 GLuint width, GLuint height)
947 {
948 GLuint pixelSize;
949
950 /* first clear these fields */
951 rb->RedBits =
952 rb->GreenBits =
953 rb->BlueBits =
954 rb->AlphaBits =
955 rb->IndexBits =
956 rb->DepthBits =
957 rb->StencilBits = 0;
958
959 switch (internalFormat) {
960 case GL_RGB:
961 case GL_R3_G3_B2:
962 case GL_RGB4:
963 case GL_RGB5:
964 case GL_RGB8:
965 case GL_RGB10:
966 case GL_RGB12:
967 case GL_RGB16:
968 rb->_ActualFormat = GL_RGB8;
969 rb->_BaseFormat = GL_RGB;
970 rb->DataType = GL_UNSIGNED_BYTE;
971 rb->GetPointer = get_pointer_ubyte3;
972 rb->GetRow = get_row_ubyte3;
973 rb->GetValues = get_values_ubyte3;
974 rb->PutRow = put_row_ubyte3;
975 rb->PutRowRGB = put_row_rgb_ubyte3;
976 rb->PutMonoRow = put_mono_row_ubyte3;
977 rb->PutValues = put_values_ubyte3;
978 rb->PutMonoValues = put_mono_values_ubyte3;
979 rb->RedBits = 8 * sizeof(GLubyte);
980 rb->GreenBits = 8 * sizeof(GLubyte);
981 rb->BlueBits = 8 * sizeof(GLubyte);
982 rb->AlphaBits = 0;
983 pixelSize = 3 * sizeof(GLubyte);
984 break;
985 case GL_RGBA:
986 case GL_RGBA2:
987 case GL_RGBA4:
988 case GL_RGB5_A1:
989 case GL_RGBA8:
990 rb->_ActualFormat = GL_RGBA8;
991 rb->_BaseFormat = GL_RGBA;
992 rb->DataType = GL_UNSIGNED_BYTE;
993 rb->GetPointer = get_pointer_ubyte4;
994 rb->GetRow = get_row_ubyte4;
995 rb->GetValues = get_values_ubyte4;
996 rb->PutRow = put_row_ubyte4;
997 rb->PutRowRGB = put_row_rgb_ubyte4;
998 rb->PutMonoRow = put_mono_row_ubyte4;
999 rb->PutValues = put_values_ubyte4;
1000 rb->PutMonoValues = put_mono_values_ubyte4;
1001 rb->RedBits = 8 * sizeof(GLubyte);
1002 rb->GreenBits = 8 * sizeof(GLubyte);
1003 rb->BlueBits = 8 * sizeof(GLubyte);
1004 rb->AlphaBits = 8 * sizeof(GLubyte);
1005 pixelSize = 4 * sizeof(GLubyte);
1006 break;
1007 case GL_RGB10_A2:
1008 case GL_RGBA12:
1009 case GL_RGBA16:
1010 rb->_ActualFormat = GL_RGBA16;
1011 rb->_BaseFormat = GL_RGBA;
1012 rb->DataType = GL_UNSIGNED_SHORT;
1013 rb->GetPointer = get_pointer_ushort4;
1014 rb->GetRow = get_row_ushort4;
1015 rb->GetValues = get_values_ushort4;
1016 rb->PutRow = put_row_ushort4;
1017 rb->PutRowRGB = put_row_rgb_ushort4;
1018 rb->PutMonoRow = put_mono_row_ushort4;
1019 rb->PutValues = put_values_ushort4;
1020 rb->PutMonoValues = put_mono_values_ushort4;
1021 rb->RedBits = 8 * sizeof(GLushort);
1022 rb->GreenBits = 8 * sizeof(GLushort);
1023 rb->BlueBits = 8 * sizeof(GLushort);
1024 rb->AlphaBits = 8 * sizeof(GLushort);
1025 pixelSize = 4 * sizeof(GLushort);
1026 break;
1027 #if 00
1028 case GL_ALPHA8:
1029 rb->_ActualFormat = GL_ALPHA8;
1030 rb->_BaseFormat = GL_RGBA; /* Yes, not GL_ALPHA! */
1031 rb->DataType = GL_UNSIGNED_BYTE;
1032 rb->GetPointer = get_pointer_alpha8;
1033 rb->GetRow = get_row_alpha8;
1034 rb->GetValues = get_values_alpha8;
1035 rb->PutRow = put_row_alpha8;
1036 rb->PutRowRGB = NULL;
1037 rb->PutMonoRow = put_mono_row_alpha8;
1038 rb->PutValues = put_values_alpha8;
1039 rb->PutMonoValues = put_mono_values_alpha8;
1040 rb->RedBits = 0; /*red*/
1041 rb->GreenBits = 0; /*green*/
1042 rb->BlueBits = 0; /*blue*/
1043 rb->AlphaBits = 8 * sizeof(GLubyte);
1044 pixelSize = sizeof(GLubyte);
1045 break;
1046 #endif
1047 case GL_STENCIL_INDEX:
1048 case GL_STENCIL_INDEX1_EXT:
1049 case GL_STENCIL_INDEX4_EXT:
1050 case GL_STENCIL_INDEX8_EXT:
1051 rb->_ActualFormat = GL_STENCIL_INDEX8_EXT;
1052 rb->_BaseFormat = GL_STENCIL_INDEX;
1053 rb->DataType = GL_UNSIGNED_BYTE;
1054 rb->GetPointer = get_pointer_ubyte;
1055 rb->GetRow = get_row_ubyte;
1056 rb->GetValues = get_values_ubyte;
1057 rb->PutRow = put_row_ubyte;
1058 rb->PutRowRGB = NULL;
1059 rb->PutMonoRow = put_mono_row_ubyte;
1060 rb->PutValues = put_values_ubyte;
1061 rb->PutMonoValues = put_mono_values_ubyte;
1062 rb->StencilBits = 8 * sizeof(GLubyte);
1063 pixelSize = sizeof(GLubyte);
1064 break;
1065 case GL_STENCIL_INDEX16_EXT:
1066 rb->_ActualFormat = GL_STENCIL_INDEX16_EXT;
1067 rb->_BaseFormat = GL_STENCIL_INDEX;
1068 rb->DataType = GL_UNSIGNED_SHORT;
1069 rb->GetPointer = get_pointer_ushort;
1070 rb->GetRow = get_row_ushort;
1071 rb->GetValues = get_values_ushort;
1072 rb->PutRow = put_row_ushort;
1073 rb->PutRowRGB = NULL;
1074 rb->PutMonoRow = put_mono_row_ushort;
1075 rb->PutValues = put_values_ushort;
1076 rb->PutMonoValues = put_mono_values_ushort;
1077 rb->StencilBits = 8 * sizeof(GLushort);
1078 pixelSize = sizeof(GLushort);
1079 break;
1080 case GL_DEPTH_COMPONENT:
1081 case GL_DEPTH_COMPONENT16:
1082 rb->_ActualFormat = GL_DEPTH_COMPONENT16;
1083 rb->_BaseFormat = GL_DEPTH_COMPONENT;
1084 rb->DataType = GL_UNSIGNED_SHORT;
1085 rb->GetPointer = get_pointer_ushort;
1086 rb->GetRow = get_row_ushort;
1087 rb->GetValues = get_values_ushort;
1088 rb->PutRow = put_row_ushort;
1089 rb->PutRowRGB = NULL;
1090 rb->PutMonoRow = put_mono_row_ushort;
1091 rb->PutValues = put_values_ushort;
1092 rb->PutMonoValues = put_mono_values_ushort;
1093 rb->DepthBits = 8 * sizeof(GLushort);
1094 pixelSize = sizeof(GLushort);
1095 break;
1096 case GL_DEPTH_COMPONENT24:
1097 case GL_DEPTH_COMPONENT32:
1098 rb->_BaseFormat = GL_DEPTH_COMPONENT;
1099 rb->DataType = GL_UNSIGNED_INT;
1100 rb->GetPointer = get_pointer_uint;
1101 rb->GetRow = get_row_uint;
1102 rb->GetValues = get_values_uint;
1103 rb->PutRow = put_row_uint;
1104 rb->PutRowRGB = NULL;
1105 rb->PutMonoRow = put_mono_row_uint;
1106 rb->PutValues = put_values_uint;
1107 rb->PutMonoValues = put_mono_values_uint;
1108 if (internalFormat == GL_DEPTH_COMPONENT24) {
1109 rb->_ActualFormat = GL_DEPTH_COMPONENT24;
1110 rb->DepthBits = 24;
1111 }
1112 else {
1113 rb->_ActualFormat = GL_DEPTH_COMPONENT32;
1114 rb->DepthBits = 32;
1115 }
1116 pixelSize = sizeof(GLuint);
1117 break;
1118 case GL_DEPTH_STENCIL_EXT:
1119 case GL_DEPTH24_STENCIL8_EXT:
1120 rb->_ActualFormat = GL_DEPTH24_STENCIL8_EXT;
1121 rb->_BaseFormat = GL_DEPTH_STENCIL_EXT;
1122 rb->DataType = GL_UNSIGNED_INT_24_8_EXT;
1123 rb->GetPointer = get_pointer_uint;
1124 rb->GetRow = get_row_uint;
1125 rb->GetValues = get_values_uint;
1126 rb->PutRow = put_row_uint;
1127 rb->PutRowRGB = NULL;
1128 rb->PutMonoRow = put_mono_row_uint;
1129 rb->PutValues = put_values_uint;
1130 rb->PutMonoValues = put_mono_values_uint;
1131 rb->DepthBits = 24;
1132 rb->StencilBits = 8;
1133 pixelSize = sizeof(GLuint);
1134 break;
1135 case GL_COLOR_INDEX8_EXT:
1136 rb->_ActualFormat = GL_COLOR_INDEX8_EXT;
1137 rb->_BaseFormat = GL_COLOR_INDEX;
1138 rb->DataType = GL_UNSIGNED_BYTE;
1139 rb->GetPointer = get_pointer_ubyte;
1140 rb->GetRow = get_row_ubyte;
1141 rb->GetValues = get_values_ubyte;
1142 rb->PutRow = put_row_ubyte;
1143 rb->PutRowRGB = NULL;
1144 rb->PutMonoRow = put_mono_row_ubyte;
1145 rb->PutValues = put_values_ubyte;
1146 rb->PutMonoValues = put_mono_values_ubyte;
1147 rb->IndexBits = 8 * sizeof(GLubyte);
1148 pixelSize = sizeof(GLubyte);
1149 break;
1150 case GL_COLOR_INDEX16_EXT:
1151 rb->_ActualFormat = GL_COLOR_INDEX16_EXT;
1152 rb->_BaseFormat = GL_COLOR_INDEX;
1153 rb->DataType = GL_UNSIGNED_SHORT;
1154 rb->GetPointer = get_pointer_ushort;
1155 rb->GetRow = get_row_ushort;
1156 rb->GetValues = get_values_ushort;
1157 rb->PutRow = put_row_ushort;
1158 rb->PutRowRGB = NULL;
1159 rb->PutMonoRow = put_mono_row_ushort;
1160 rb->PutValues = put_values_ushort;
1161 rb->PutMonoValues = put_mono_values_ushort;
1162 rb->IndexBits = 8 * sizeof(GLushort);
1163 pixelSize = sizeof(GLushort);
1164 break;
1165 case COLOR_INDEX32:
1166 rb->_ActualFormat = COLOR_INDEX32;
1167 rb->_BaseFormat = GL_COLOR_INDEX;
1168 rb->DataType = GL_UNSIGNED_INT;
1169 rb->GetPointer = get_pointer_uint;
1170 rb->GetRow = get_row_uint;
1171 rb->GetValues = get_values_uint;
1172 rb->PutRow = put_row_uint;
1173 rb->PutRowRGB = NULL;
1174 rb->PutMonoRow = put_mono_row_uint;
1175 rb->PutValues = put_values_uint;
1176 rb->PutMonoValues = put_mono_values_uint;
1177 rb->IndexBits = 8 * sizeof(GLuint);
1178 pixelSize = sizeof(GLuint);
1179 break;
1180 default:
1181 _mesa_problem(ctx, "Bad internalFormat in _mesa_soft_renderbuffer_storage");
1182 return GL_FALSE;
1183 }
1184
1185 ASSERT(rb->DataType);
1186 ASSERT(rb->GetPointer);
1187 ASSERT(rb->GetRow);
1188 ASSERT(rb->GetValues);
1189 ASSERT(rb->PutRow);
1190 ASSERT(rb->PutMonoRow);
1191 ASSERT(rb->PutValues);
1192 ASSERT(rb->PutMonoValues);
1193
1194 /* free old buffer storage */
1195 if (rb->Data) {
1196 _mesa_free(rb->Data);
1197 rb->Data = NULL;
1198 }
1199
1200 if (width > 0 && height > 0) {
1201 /* allocate new buffer storage */
1202 rb->Data = _mesa_malloc(width * height * pixelSize);
1203 if (rb->Data == NULL) {
1204 rb->Width = 0;
1205 rb->Height = 0;
1206 _mesa_error(ctx, GL_OUT_OF_MEMORY,
1207 "software renderbuffer allocation (%d x %d x %d)",
1208 width, height, pixelSize);
1209 return GL_FALSE;
1210 }
1211 }
1212
1213 rb->Width = width;
1214 rb->Height = height;
1215
1216 return GL_TRUE;
1217 }
1218
1219
1220
1221 /**********************************************************************/
1222 /**********************************************************************/
1223 /**********************************************************************/
1224
1225
1226 /**
1227 * Here we utilize the gl_renderbuffer->Wrapper field to put an alpha
1228 * buffer wrapper around an existing RGB renderbuffer (hw or sw).
1229 *
1230 * When PutRow is called (for example), we store the alpha values in
1231 * this buffer, then pass on the PutRow call to the wrapped RGB
1232 * buffer.
1233 */
1234
1235
1236 static GLboolean
1237 alloc_storage_alpha8(GLcontext *ctx, struct gl_renderbuffer *arb,
1238 GLenum internalFormat, GLuint width, GLuint height)
1239 {
1240 ASSERT(arb != arb->Wrapped);
1241 ASSERT(arb->_ActualFormat == GL_ALPHA8);
1242
1243 /* first, pass the call to the wrapped RGB buffer */
1244 if (!arb->Wrapped->AllocStorage(ctx, arb->Wrapped, internalFormat,
1245 width, height)) {
1246 return GL_FALSE;
1247 }
1248
1249 /* next, resize my alpha buffer */
1250 if (arb->Data) {
1251 _mesa_free(arb->Data);
1252 }
1253
1254 arb->Data = _mesa_malloc(width * height * sizeof(GLubyte));
1255 if (arb->Data == NULL) {
1256 arb->Width = 0;
1257 arb->Height = 0;
1258 _mesa_error(ctx, GL_OUT_OF_MEMORY, "software alpha buffer allocation");
1259 return GL_FALSE;
1260 }
1261
1262 arb->Width = width;
1263 arb->Height = height;
1264
1265 return GL_TRUE;
1266 }
1267
1268
1269 /**
1270 * Delete an alpha_renderbuffer object, as well as the wrapped RGB buffer.
1271 */
1272 static void
1273 delete_renderbuffer_alpha8(struct gl_renderbuffer *arb)
1274 {
1275 if (arb->Data) {
1276 _mesa_free(arb->Data);
1277 }
1278 ASSERT(arb->Wrapped);
1279 ASSERT(arb != arb->Wrapped);
1280 arb->Wrapped->Delete(arb->Wrapped);
1281 arb->Wrapped = NULL;
1282 _mesa_free(arb);
1283 }
1284
1285
1286 static void *
1287 get_pointer_alpha8(GLcontext *ctx, struct gl_renderbuffer *arb,
1288 GLint x, GLint y)
1289 {
1290 return NULL; /* don't allow direct access! */
1291 }
1292
1293
1294 static void
1295 get_row_alpha8(GLcontext *ctx, struct gl_renderbuffer *arb, GLuint count,
1296 GLint x, GLint y, void *values)
1297 {
1298 /* NOTE: 'values' is RGBA format! */
1299 const GLubyte *src = (const GLubyte *) arb->Data + y * arb->Width + x;
1300 GLubyte *dst = (GLubyte *) values;
1301 GLuint i;
1302 ASSERT(arb != arb->Wrapped);
1303 ASSERT(arb->DataType == GL_UNSIGNED_BYTE);
1304 /* first, pass the call to the wrapped RGB buffer */
1305 arb->Wrapped->GetRow(ctx, arb->Wrapped, count, x, y, values);
1306 /* second, fill in alpha values from this buffer! */
1307 for (i = 0; i < count; i++) {
1308 dst[i * 4 + 3] = src[i];
1309 }
1310 }
1311
1312
1313 static void
1314 get_values_alpha8(GLcontext *ctx, struct gl_renderbuffer *arb, GLuint count,
1315 const GLint x[], const GLint y[], void *values)
1316 {
1317 GLubyte *dst = (GLubyte *) values;
1318 GLuint i;
1319 ASSERT(arb != arb->Wrapped);
1320 ASSERT(arb->DataType == GL_UNSIGNED_BYTE);
1321 /* first, pass the call to the wrapped RGB buffer */
1322 arb->Wrapped->GetValues(ctx, arb->Wrapped, count, x, y, values);
1323 /* second, fill in alpha values from this buffer! */
1324 for (i = 0; i < count; i++) {
1325 const GLubyte *src = (GLubyte *) arb->Data + y[i] * arb->Width + x[i];
1326 dst[i * 4 + 3] = *src;
1327 }
1328 }
1329
1330
1331 static void
1332 put_row_alpha8(GLcontext *ctx, struct gl_renderbuffer *arb, GLuint count,
1333 GLint x, GLint y, const void *values, const GLubyte *mask)
1334 {
1335 const GLubyte *src = (const GLubyte *) values;
1336 GLubyte *dst = (GLubyte *) arb->Data + y * arb->Width + x;
1337 GLuint i;
1338 ASSERT(arb != arb->Wrapped);
1339 ASSERT(arb->DataType == GL_UNSIGNED_BYTE);
1340 /* first, pass the call to the wrapped RGB buffer */
1341 arb->Wrapped->PutRow(ctx, arb->Wrapped, count, x, y, values, mask);
1342 /* second, store alpha in our buffer */
1343 for (i = 0; i < count; i++) {
1344 if (!mask || mask[i]) {
1345 dst[i] = src[i * 4 + 3];
1346 }
1347 }
1348 }
1349
1350
1351 static void
1352 put_row_rgb_alpha8(GLcontext *ctx, struct gl_renderbuffer *arb, GLuint count,
1353 GLint x, GLint y, const void *values, const GLubyte *mask)
1354 {
1355 const GLubyte *src = (const GLubyte *) values;
1356 GLubyte *dst = (GLubyte *) arb->Data + y * arb->Width + x;
1357 GLuint i;
1358 ASSERT(arb != arb->Wrapped);
1359 ASSERT(arb->DataType == GL_UNSIGNED_BYTE);
1360 /* first, pass the call to the wrapped RGB buffer */
1361 arb->Wrapped->PutRowRGB(ctx, arb->Wrapped, count, x, y, values, mask);
1362 /* second, store alpha in our buffer */
1363 for (i = 0; i < count; i++) {
1364 if (!mask || mask[i]) {
1365 dst[i] = src[i * 4 + 3];
1366 }
1367 }
1368 }
1369
1370
1371 static void
1372 put_mono_row_alpha8(GLcontext *ctx, struct gl_renderbuffer *arb, GLuint count,
1373 GLint x, GLint y, const void *value, const GLubyte *mask)
1374 {
1375 const GLubyte val = ((const GLubyte *) value)[3];
1376 GLubyte *dst = (GLubyte *) arb->Data + y * arb->Width + x;
1377 ASSERT(arb != arb->Wrapped);
1378 ASSERT(arb->DataType == GL_UNSIGNED_BYTE);
1379 /* first, pass the call to the wrapped RGB buffer */
1380 arb->Wrapped->PutMonoRow(ctx, arb->Wrapped, count, x, y, value, mask);
1381 /* second, store alpha in our buffer */
1382 if (mask) {
1383 GLuint i;
1384 for (i = 0; i < count; i++) {
1385 if (mask[i]) {
1386 dst[i] = val;
1387 }
1388 }
1389 }
1390 else {
1391 _mesa_memset(dst, val, count);
1392 }
1393 }
1394
1395
1396 static void
1397 put_values_alpha8(GLcontext *ctx, struct gl_renderbuffer *arb, GLuint count,
1398 const GLint x[], const GLint y[],
1399 const void *values, const GLubyte *mask)
1400 {
1401 const GLubyte *src = (const GLubyte *) values;
1402 GLuint i;
1403 ASSERT(arb != arb->Wrapped);
1404 ASSERT(arb->DataType == GL_UNSIGNED_BYTE);
1405 /* first, pass the call to the wrapped RGB buffer */
1406 arb->Wrapped->PutValues(ctx, arb->Wrapped, count, x, y, values, mask);
1407 /* second, store alpha in our buffer */
1408 for (i = 0; i < count; i++) {
1409 if (!mask || mask[i]) {
1410 GLubyte *dst = (GLubyte *) arb->Data + y[i] * arb->Width + x[i];
1411 *dst = src[i * 4 + 3];
1412 }
1413 }
1414 }
1415
1416
1417 static void
1418 put_mono_values_alpha8(GLcontext *ctx, struct gl_renderbuffer *arb,
1419 GLuint count, const GLint x[], const GLint y[],
1420 const void *value, const GLubyte *mask)
1421 {
1422 const GLubyte val = ((const GLubyte *) value)[3];
1423 GLuint i;
1424 ASSERT(arb != arb->Wrapped);
1425 ASSERT(arb->DataType == GL_UNSIGNED_BYTE);
1426 /* first, pass the call to the wrapped RGB buffer */
1427 arb->Wrapped->PutValues(ctx, arb->Wrapped, count, x, y, value, mask);
1428 /* second, store alpha in our buffer */
1429 for (i = 0; i < count; i++) {
1430 if (!mask || mask[i]) {
1431 GLubyte *dst = (GLubyte *) arb->Data + y[i] * arb->Width + x[i];
1432 *dst = val;
1433 }
1434 }
1435 }
1436
1437
1438 static void
1439 copy_buffer_alpha8(struct gl_renderbuffer* dst, struct gl_renderbuffer* src)
1440 {
1441 ASSERT(dst->_ActualFormat == GL_ALPHA8);
1442 ASSERT(src->_ActualFormat == GL_ALPHA8);
1443 ASSERT(dst->Width == src->Width);
1444 ASSERT(dst->Height == src->Height);
1445
1446 _mesa_memcpy(dst->Data, src->Data, dst->Width * dst->Height * sizeof(GLubyte));
1447 }
1448
1449
1450 /**********************************************************************/
1451 /**********************************************************************/
1452 /**********************************************************************/
1453
1454
1455 /**
1456 * Default GetPointer routine. Always return NULL to indicate that
1457 * direct buffer access is not supported.
1458 */
1459 static void *
1460 nop_get_pointer(GLcontext *ctx, struct gl_renderbuffer *rb, GLint x, GLint y)
1461 {
1462 return NULL;
1463 }
1464
1465
1466 /**
1467 * Initialize the fields of a gl_renderbuffer to default values.
1468 */
1469 void
1470 _mesa_init_renderbuffer(struct gl_renderbuffer *rb, GLuint name)
1471 {
1472 _glthread_INIT_MUTEX(rb->Mutex);
1473
1474 rb->Magic = RB_MAGIC;
1475 rb->ClassID = 0;
1476 rb->Name = name;
1477 rb->RefCount = 0;
1478 rb->Delete = _mesa_delete_renderbuffer;
1479
1480 /* The rest of these should be set later by the caller of this function or
1481 * the AllocStorage method:
1482 */
1483 rb->AllocStorage = NULL;
1484
1485 rb->Width = 0;
1486 rb->Height = 0;
1487 rb->InternalFormat = GL_NONE;
1488 rb->_ActualFormat = GL_NONE;
1489 rb->_BaseFormat = GL_NONE;
1490 rb->DataType = GL_NONE;
1491 rb->RedBits = rb->GreenBits = rb->BlueBits = rb->AlphaBits = 0;
1492 rb->IndexBits = 0;
1493 rb->DepthBits = 0;
1494 rb->StencilBits = 0;
1495 rb->Data = NULL;
1496
1497 /* Point back to ourself so that we don't have to check for Wrapped==NULL
1498 * all over the drivers.
1499 */
1500 rb->Wrapped = rb;
1501
1502 rb->GetPointer = nop_get_pointer;
1503 rb->GetRow = NULL;
1504 rb->GetValues = NULL;
1505 rb->PutRow = NULL;
1506 rb->PutRowRGB = NULL;
1507 rb->PutMonoRow = NULL;
1508 rb->PutValues = NULL;
1509 rb->PutMonoValues = NULL;
1510 }
1511
1512
1513 /**
1514 * Allocate a new gl_renderbuffer object. This can be used for user-created
1515 * renderbuffers or window-system renderbuffers.
1516 */
1517 struct gl_renderbuffer *
1518 _mesa_new_renderbuffer(GLcontext *ctx, GLuint name)
1519 {
1520 struct gl_renderbuffer *rb = CALLOC_STRUCT(gl_renderbuffer);
1521 if (rb) {
1522 _mesa_init_renderbuffer(rb, name);
1523 }
1524 return rb;
1525 }
1526
1527
1528 /**
1529 * Delete a gl_framebuffer.
1530 * This is the default function for renderbuffer->Delete().
1531 */
1532 void
1533 _mesa_delete_renderbuffer(struct gl_renderbuffer *rb)
1534 {
1535 if (rb->Data) {
1536 _mesa_free(rb->Data);
1537 }
1538 _mesa_free(rb);
1539 }
1540
1541
1542 /**
1543 * Allocate a software-based renderbuffer. This is called via the
1544 * ctx->Driver.NewRenderbuffer() function when the user creates a new
1545 * renderbuffer.
1546 * This would not be used for hardware-based renderbuffers.
1547 */
1548 struct gl_renderbuffer *
1549 _mesa_new_soft_renderbuffer(GLcontext *ctx, GLuint name)
1550 {
1551 struct gl_renderbuffer *rb = _mesa_new_renderbuffer(ctx, name);
1552 if (rb) {
1553 rb->AllocStorage = _mesa_soft_renderbuffer_storage;
1554 /* Normally, one would setup the PutRow, GetRow, etc functions here.
1555 * But we're doing that in the _mesa_soft_renderbuffer_storage() function
1556 * instead.
1557 */
1558 }
1559 return rb;
1560 }
1561
1562
1563 /**
1564 * Add software-based color renderbuffers to the given framebuffer.
1565 * This is a helper routine for device drivers when creating a
1566 * window system framebuffer (not a user-created render/framebuffer).
1567 * Once this function is called, you can basically forget about this
1568 * renderbuffer; core Mesa will handle all the buffer management and
1569 * rendering!
1570 */
1571 GLboolean
1572 _mesa_add_color_renderbuffers(GLcontext *ctx, struct gl_framebuffer *fb,
1573 GLuint rgbBits, GLuint alphaBits,
1574 GLboolean frontLeft, GLboolean backLeft,
1575 GLboolean frontRight, GLboolean backRight)
1576 {
1577 GLuint b;
1578
1579 if (rgbBits > 16 || alphaBits > 16) {
1580 _mesa_problem(ctx,
1581 "Unsupported bit depth in _mesa_add_color_renderbuffers");
1582 return GL_FALSE;
1583 }
1584
1585 assert(MAX_COLOR_ATTACHMENTS >= 4);
1586
1587 for (b = BUFFER_FRONT_LEFT; b <= BUFFER_BACK_RIGHT; b++) {
1588 struct gl_renderbuffer *rb;
1589
1590 if (b == BUFFER_FRONT_LEFT && !frontLeft)
1591 continue;
1592 else if (b == BUFFER_BACK_LEFT && !backLeft)
1593 continue;
1594 else if (b == BUFFER_FRONT_RIGHT && !frontRight)
1595 continue;
1596 else if (b == BUFFER_BACK_RIGHT && !backRight)
1597 continue;
1598
1599 assert(fb->Attachment[b].Renderbuffer == NULL);
1600
1601 rb = _mesa_new_renderbuffer(ctx, 0);
1602 if (!rb) {
1603 _mesa_error(ctx, GL_OUT_OF_MEMORY, "Allocating color buffer");
1604 return GL_FALSE;
1605 }
1606
1607 if (rgbBits <= 8) {
1608 if (alphaBits)
1609 rb->_ActualFormat = GL_RGBA8;
1610 else
1611 rb->_ActualFormat = GL_RGB8;
1612 }
1613 else {
1614 assert(rgbBits <= 16);
1615 if (alphaBits)
1616 rb->_ActualFormat = GL_RGBA16;
1617 else
1618 rb->_ActualFormat = GL_RGBA16; /* don't really have RGB16 yet */
1619 }
1620 rb->InternalFormat = rb->_ActualFormat;
1621
1622 rb->AllocStorage = _mesa_soft_renderbuffer_storage;
1623 _mesa_add_renderbuffer(fb, b, rb);
1624 }
1625
1626 return GL_TRUE;
1627 }
1628
1629
1630 /**
1631 * Add software-based color index renderbuffers to the given framebuffer.
1632 * This is a helper routine for device drivers when creating a
1633 * window system framebuffer (not a user-created render/framebuffer).
1634 * Once this function is called, you can basically forget about this
1635 * renderbuffer; core Mesa will handle all the buffer management and
1636 * rendering!
1637 */
1638 GLboolean
1639 _mesa_add_color_index_renderbuffers(GLcontext *ctx, struct gl_framebuffer *fb,
1640 GLuint indexBits,
1641 GLboolean frontLeft, GLboolean backLeft,
1642 GLboolean frontRight, GLboolean backRight)
1643 {
1644 GLuint b;
1645
1646 if (indexBits > 8) {
1647 _mesa_problem(ctx,
1648 "Unsupported bit depth in _mesa_add_color_index_renderbuffers");
1649 return GL_FALSE;
1650 }
1651
1652 assert(MAX_COLOR_ATTACHMENTS >= 4);
1653
1654 for (b = BUFFER_FRONT_LEFT; b <= BUFFER_BACK_RIGHT; b++) {
1655 struct gl_renderbuffer *rb;
1656
1657 if (b == BUFFER_FRONT_LEFT && !frontLeft)
1658 continue;
1659 else if (b == BUFFER_BACK_LEFT && !backLeft)
1660 continue;
1661 else if (b == BUFFER_FRONT_RIGHT && !frontRight)
1662 continue;
1663 else if (b == BUFFER_BACK_RIGHT && !backRight)
1664 continue;
1665
1666 assert(fb->Attachment[b].Renderbuffer == NULL);
1667
1668 rb = _mesa_new_renderbuffer(ctx, 0);
1669 if (!rb) {
1670 _mesa_error(ctx, GL_OUT_OF_MEMORY, "Allocating color buffer");
1671 return GL_FALSE;
1672 }
1673
1674 if (indexBits <= 8) {
1675 /* only support GLuint for now */
1676 /*rb->InternalFormat = GL_COLOR_INDEX8_EXT;*/
1677 rb->_ActualFormat = COLOR_INDEX32;
1678 }
1679 else {
1680 rb->_ActualFormat = COLOR_INDEX32;
1681 }
1682 rb->InternalFormat = rb->_ActualFormat;
1683
1684 rb->AllocStorage = _mesa_soft_renderbuffer_storage;
1685 _mesa_add_renderbuffer(fb, b, rb);
1686 }
1687
1688 return GL_TRUE;
1689 }
1690
1691
1692 /**
1693 * Add software-based alpha renderbuffers to the given framebuffer.
1694 * This is a helper routine for device drivers when creating a
1695 * window system framebuffer (not a user-created render/framebuffer).
1696 * Once this function is called, you can basically forget about this
1697 * renderbuffer; core Mesa will handle all the buffer management and
1698 * rendering!
1699 */
1700 GLboolean
1701 _mesa_add_alpha_renderbuffers(GLcontext *ctx, struct gl_framebuffer *fb,
1702 GLuint alphaBits,
1703 GLboolean frontLeft, GLboolean backLeft,
1704 GLboolean frontRight, GLboolean backRight)
1705 {
1706 GLuint b;
1707
1708 /* for window system framebuffers only! */
1709 assert(fb->Name == 0);
1710
1711 if (alphaBits > 8) {
1712 _mesa_problem(ctx,
1713 "Unsupported bit depth in _mesa_add_alpha_renderbuffers");
1714 return GL_FALSE;
1715 }
1716
1717 assert(MAX_COLOR_ATTACHMENTS >= 4);
1718
1719 /* Wrap each of the RGB color buffers with an alpha renderbuffer.
1720 */
1721 for (b = BUFFER_FRONT_LEFT; b <= BUFFER_BACK_RIGHT; b++) {
1722 struct gl_renderbuffer *arb;
1723
1724 if (b == BUFFER_FRONT_LEFT && !frontLeft)
1725 continue;
1726 else if (b == BUFFER_BACK_LEFT && !backLeft)
1727 continue;
1728 else if (b == BUFFER_FRONT_RIGHT && !frontRight)
1729 continue;
1730 else if (b == BUFFER_BACK_RIGHT && !backRight)
1731 continue;
1732
1733 /* the RGB buffer to wrap must already exist!! */
1734 assert(fb->Attachment[b].Renderbuffer);
1735
1736 /* only GLubyte supported for now */
1737 assert(fb->Attachment[b].Renderbuffer->DataType == GL_UNSIGNED_BYTE);
1738
1739 /* allocate alpha renderbuffer */
1740 arb = _mesa_new_renderbuffer(ctx, 0);
1741 if (!arb) {
1742 _mesa_error(ctx, GL_OUT_OF_MEMORY, "Allocating alpha buffer");
1743 return GL_FALSE;
1744 }
1745
1746 /* wrap the alpha renderbuffer around the RGB renderbuffer */
1747 arb->Wrapped = fb->Attachment[b].Renderbuffer;
1748
1749 /* Set up my alphabuffer fields and plug in my functions.
1750 * The functions will put/get the alpha values from/to RGBA arrays
1751 * and then call the wrapped buffer's functions to handle the RGB
1752 * values.
1753 */
1754 arb->InternalFormat = arb->Wrapped->InternalFormat;
1755 arb->_ActualFormat = GL_ALPHA8;
1756 arb->_BaseFormat = arb->Wrapped->_BaseFormat;
1757 arb->DataType = arb->Wrapped->DataType;
1758 arb->AllocStorage = alloc_storage_alpha8;
1759 arb->Delete = delete_renderbuffer_alpha8;
1760 arb->GetPointer = get_pointer_alpha8;
1761 arb->GetRow = get_row_alpha8;
1762 arb->GetValues = get_values_alpha8;
1763 arb->PutRow = put_row_alpha8;
1764 arb->PutRowRGB = put_row_rgb_alpha8;
1765 arb->PutMonoRow = put_mono_row_alpha8;
1766 arb->PutValues = put_values_alpha8;
1767 arb->PutMonoValues = put_mono_values_alpha8;
1768
1769 /* clear the pointer to avoid assertion/sanity check failure later */
1770 fb->Attachment[b].Renderbuffer = NULL;
1771
1772 /* plug the alpha renderbuffer into the colorbuffer attachment */
1773 _mesa_add_renderbuffer(fb, b, arb);
1774 }
1775
1776 return GL_TRUE;
1777 }
1778
1779
1780 /**
1781 * For framebuffers that use a software alpha channel wrapper
1782 * created by _mesa_add_alpha_renderbuffer or _mesa_add_soft_renderbuffers,
1783 * copy the back buffer alpha channel into the front buffer alpha channel.
1784 */
1785 void
1786 _mesa_copy_soft_alpha_renderbuffers(GLcontext *ctx, struct gl_framebuffer *fb)
1787 {
1788 if (fb->Attachment[BUFFER_FRONT_LEFT].Renderbuffer &&
1789 fb->Attachment[BUFFER_BACK_LEFT].Renderbuffer)
1790 copy_buffer_alpha8(fb->Attachment[BUFFER_FRONT_LEFT].Renderbuffer,
1791 fb->Attachment[BUFFER_BACK_LEFT].Renderbuffer);
1792
1793
1794 if (fb->Attachment[BUFFER_FRONT_RIGHT].Renderbuffer &&
1795 fb->Attachment[BUFFER_BACK_RIGHT].Renderbuffer)
1796 copy_buffer_alpha8(fb->Attachment[BUFFER_FRONT_RIGHT].Renderbuffer,
1797 fb->Attachment[BUFFER_BACK_RIGHT].Renderbuffer);
1798 }
1799
1800
1801 /**
1802 * Add a software-based depth renderbuffer to the given framebuffer.
1803 * This is a helper routine for device drivers when creating a
1804 * window system framebuffer (not a user-created render/framebuffer).
1805 * Once this function is called, you can basically forget about this
1806 * renderbuffer; core Mesa will handle all the buffer management and
1807 * rendering!
1808 */
1809 GLboolean
1810 _mesa_add_depth_renderbuffer(GLcontext *ctx, struct gl_framebuffer *fb,
1811 GLuint depthBits)
1812 {
1813 struct gl_renderbuffer *rb;
1814
1815 if (depthBits > 32) {
1816 _mesa_problem(ctx,
1817 "Unsupported depthBits in _mesa_add_depth_renderbuffer");
1818 return GL_FALSE;
1819 }
1820
1821 assert(fb->Attachment[BUFFER_DEPTH].Renderbuffer == NULL);
1822
1823 rb = _mesa_new_renderbuffer(ctx, 0);
1824 if (!rb) {
1825 _mesa_error(ctx, GL_OUT_OF_MEMORY, "Allocating depth buffer");
1826 return GL_FALSE;
1827 }
1828
1829 if (depthBits <= 16) {
1830 rb->_ActualFormat = GL_DEPTH_COMPONENT16;
1831 }
1832 else if (depthBits <= 24) {
1833 rb->_ActualFormat = GL_DEPTH_COMPONENT24;
1834 }
1835 else {
1836 rb->_ActualFormat = GL_DEPTH_COMPONENT32;
1837 }
1838 rb->InternalFormat = rb->_ActualFormat;
1839
1840 rb->AllocStorage = _mesa_soft_renderbuffer_storage;
1841 _mesa_add_renderbuffer(fb, BUFFER_DEPTH, rb);
1842
1843 return GL_TRUE;
1844 }
1845
1846
1847 /**
1848 * Add a software-based stencil renderbuffer to the given framebuffer.
1849 * This is a helper routine for device drivers when creating a
1850 * window system framebuffer (not a user-created render/framebuffer).
1851 * Once this function is called, you can basically forget about this
1852 * renderbuffer; core Mesa will handle all the buffer management and
1853 * rendering!
1854 */
1855 GLboolean
1856 _mesa_add_stencil_renderbuffer(GLcontext *ctx, struct gl_framebuffer *fb,
1857 GLuint stencilBits)
1858 {
1859 struct gl_renderbuffer *rb;
1860
1861 if (stencilBits > 16) {
1862 _mesa_problem(ctx,
1863 "Unsupported stencilBits in _mesa_add_stencil_renderbuffer");
1864 return GL_FALSE;
1865 }
1866
1867 assert(fb->Attachment[BUFFER_STENCIL].Renderbuffer == NULL);
1868
1869 rb = _mesa_new_renderbuffer(ctx, 0);
1870 if (!rb) {
1871 _mesa_error(ctx, GL_OUT_OF_MEMORY, "Allocating stencil buffer");
1872 return GL_FALSE;
1873 }
1874
1875 if (stencilBits <= 8) {
1876 rb->_ActualFormat = GL_STENCIL_INDEX8_EXT;
1877 }
1878 else {
1879 /* not really supported (see s_stencil.c code) */
1880 rb->_ActualFormat = GL_STENCIL_INDEX16_EXT;
1881 }
1882 rb->InternalFormat = rb->_ActualFormat;
1883
1884 rb->AllocStorage = _mesa_soft_renderbuffer_storage;
1885 _mesa_add_renderbuffer(fb, BUFFER_STENCIL, rb);
1886
1887 return GL_TRUE;
1888 }
1889
1890
1891 /**
1892 * Add a software-based accumulation renderbuffer to the given framebuffer.
1893 * This is a helper routine for device drivers when creating a
1894 * window system framebuffer (not a user-created render/framebuffer).
1895 * Once this function is called, you can basically forget about this
1896 * renderbuffer; core Mesa will handle all the buffer management and
1897 * rendering!
1898 */
1899 GLboolean
1900 _mesa_add_accum_renderbuffer(GLcontext *ctx, struct gl_framebuffer *fb,
1901 GLuint redBits, GLuint greenBits,
1902 GLuint blueBits, GLuint alphaBits)
1903 {
1904 struct gl_renderbuffer *rb;
1905
1906 if (redBits > 16 || greenBits > 16 || blueBits > 16 || alphaBits > 16) {
1907 _mesa_problem(ctx,
1908 "Unsupported accumBits in _mesa_add_accum_renderbuffer");
1909 return GL_FALSE;
1910 }
1911
1912 assert(fb->Attachment[BUFFER_ACCUM].Renderbuffer == NULL);
1913
1914 rb = _mesa_new_renderbuffer(ctx, 0);
1915 if (!rb) {
1916 _mesa_error(ctx, GL_OUT_OF_MEMORY, "Allocating accum buffer");
1917 return GL_FALSE;
1918 }
1919
1920 rb->_ActualFormat = GL_RGBA16;
1921 rb->InternalFormat = GL_RGBA16;
1922 rb->AllocStorage = _mesa_soft_renderbuffer_storage;
1923 _mesa_add_renderbuffer(fb, BUFFER_ACCUM, rb);
1924
1925 return GL_TRUE;
1926 }
1927
1928
1929
1930 /**
1931 * Add a software-based accumulation renderbuffer to the given framebuffer.
1932 * This is a helper routine for device drivers when creating a
1933 * window system framebuffer (not a user-created render/framebuffer).
1934 * Once this function is called, you can basically forget about this
1935 * renderbuffer; core Mesa will handle all the buffer management and
1936 * rendering!
1937 *
1938 * NOTE: color-index aux buffers not supported.
1939 */
1940 GLboolean
1941 _mesa_add_aux_renderbuffers(GLcontext *ctx, struct gl_framebuffer *fb,
1942 GLuint colorBits, GLuint numBuffers)
1943 {
1944 GLuint i;
1945
1946 if (colorBits > 16) {
1947 _mesa_problem(ctx,
1948 "Unsupported accumBits in _mesa_add_aux_renderbuffers");
1949 return GL_FALSE;
1950 }
1951
1952 assert(numBuffers < MAX_AUX_BUFFERS);
1953
1954 for (i = 0; i < numBuffers; i++) {
1955 struct gl_renderbuffer *rb = _mesa_new_renderbuffer(ctx, 0);
1956
1957 assert(fb->Attachment[BUFFER_AUX0 + i].Renderbuffer == NULL);
1958
1959 if (!rb) {
1960 _mesa_error(ctx, GL_OUT_OF_MEMORY, "Allocating accum buffer");
1961 return GL_FALSE;
1962 }
1963
1964 if (colorBits <= 8) {
1965 rb->_ActualFormat = GL_RGBA8;
1966 }
1967 else {
1968 rb->_ActualFormat = GL_RGBA16;
1969 }
1970 rb->InternalFormat = rb->_ActualFormat;
1971
1972 rb->AllocStorage = _mesa_soft_renderbuffer_storage;
1973 _mesa_add_renderbuffer(fb, BUFFER_AUX0 + i, rb);
1974 }
1975 return GL_TRUE;
1976 }
1977
1978
1979 /**
1980 * Create/attach software-based renderbuffers to the given framebuffer.
1981 * This is a helper routine for device drivers. Drivers can just as well
1982 * call the individual _mesa_add_*_renderbuffer() routines directly.
1983 */
1984 void
1985 _mesa_add_soft_renderbuffers(struct gl_framebuffer *fb,
1986 GLboolean color,
1987 GLboolean depth,
1988 GLboolean stencil,
1989 GLboolean accum,
1990 GLboolean alpha,
1991 GLboolean aux)
1992 {
1993 GLboolean frontLeft = GL_TRUE;
1994 GLboolean backLeft = fb->Visual.doubleBufferMode;
1995 GLboolean frontRight = fb->Visual.stereoMode;
1996 GLboolean backRight = fb->Visual.stereoMode && fb->Visual.doubleBufferMode;
1997
1998 if (color) {
1999 if (fb->Visual.rgbMode) {
2000 assert(fb->Visual.redBits == fb->Visual.greenBits);
2001 assert(fb->Visual.redBits == fb->Visual.blueBits);
2002 _mesa_add_color_renderbuffers(NULL, fb,
2003 fb->Visual.redBits,
2004 fb->Visual.alphaBits,
2005 frontLeft, backLeft,
2006 frontRight, backRight);
2007 }
2008 else {
2009 _mesa_add_color_index_renderbuffers(NULL, fb,
2010 fb->Visual.indexBits,
2011 frontLeft, backLeft,
2012 frontRight, backRight);
2013 }
2014 }
2015
2016 if (depth) {
2017 assert(fb->Visual.depthBits > 0);
2018 _mesa_add_depth_renderbuffer(NULL, fb, fb->Visual.depthBits);
2019 }
2020
2021 if (stencil) {
2022 assert(fb->Visual.stencilBits > 0);
2023 _mesa_add_stencil_renderbuffer(NULL, fb, fb->Visual.stencilBits);
2024 }
2025
2026 if (accum) {
2027 assert(fb->Visual.rgbMode);
2028 assert(fb->Visual.accumRedBits > 0);
2029 assert(fb->Visual.accumGreenBits > 0);
2030 assert(fb->Visual.accumBlueBits > 0);
2031 _mesa_add_accum_renderbuffer(NULL, fb,
2032 fb->Visual.accumRedBits,
2033 fb->Visual.accumGreenBits,
2034 fb->Visual.accumBlueBits,
2035 fb->Visual.accumAlphaBits);
2036 }
2037
2038 if (aux) {
2039 assert(fb->Visual.rgbMode);
2040 assert(fb->Visual.numAuxBuffers > 0);
2041 _mesa_add_aux_renderbuffers(NULL, fb, fb->Visual.redBits,
2042 fb->Visual.numAuxBuffers);
2043 }
2044
2045 if (alpha) {
2046 assert(fb->Visual.rgbMode);
2047 assert(fb->Visual.alphaBits > 0);
2048 _mesa_add_alpha_renderbuffers(NULL, fb, fb->Visual.alphaBits,
2049 frontLeft, backLeft,
2050 frontRight, backRight);
2051 }
2052
2053 #if 0
2054 if (multisample) {
2055 /* maybe someday */
2056 }
2057 #endif
2058 }
2059
2060
2061 /**
2062 * Attach a renderbuffer to a framebuffer.
2063 */
2064 void
2065 _mesa_add_renderbuffer(struct gl_framebuffer *fb,
2066 GLuint bufferName, struct gl_renderbuffer *rb)
2067 {
2068 assert(fb);
2069 assert(rb);
2070 assert(bufferName < BUFFER_COUNT);
2071
2072 /* There should be no previous renderbuffer on this attachment point,
2073 * with the exception of depth/stencil since the same renderbuffer may
2074 * be used for both.
2075 */
2076 assert(bufferName == BUFFER_DEPTH ||
2077 bufferName == BUFFER_STENCIL ||
2078 fb->Attachment[bufferName].Renderbuffer == NULL);
2079
2080 /* winsys vs. user-created buffer cross check */
2081 if (fb->Name) {
2082 assert(rb->Name);
2083 }
2084 else {
2085 assert(!rb->Name);
2086 }
2087
2088 /* If Mesa's compiled with deep color channels (16 or 32 bits / channel)
2089 * and the device driver is expecting 8-bit values (GLubyte), we can
2090 * use a "renderbuffer adaptor/wrapper" to do the necessary conversions.
2091 */
2092 if (rb->_BaseFormat == GL_RGBA) {
2093 if (CHAN_BITS == 16 && rb->DataType == GL_UNSIGNED_BYTE) {
2094 GET_CURRENT_CONTEXT(ctx);
2095 rb = _mesa_new_renderbuffer_16wrap8(ctx, rb);
2096 }
2097 else if (CHAN_BITS == 32 && rb->DataType == GL_UNSIGNED_BYTE) {
2098 GET_CURRENT_CONTEXT(ctx);
2099 rb = _mesa_new_renderbuffer_32wrap8(ctx, rb);
2100 }
2101 else if (CHAN_BITS == 32 && rb->DataType == GL_UNSIGNED_SHORT) {
2102 GET_CURRENT_CONTEXT(ctx);
2103 rb = _mesa_new_renderbuffer_32wrap16(ctx, rb);
2104 }
2105 }
2106
2107 fb->Attachment[bufferName].Type = GL_RENDERBUFFER_EXT;
2108 fb->Attachment[bufferName].Complete = GL_TRUE;
2109 _mesa_reference_renderbuffer(&fb->Attachment[bufferName].Renderbuffer, rb);
2110 }
2111
2112
2113 /**
2114 * Remove the named renderbuffer from the given framebuffer.
2115 */
2116 void
2117 _mesa_remove_renderbuffer(struct gl_framebuffer *fb, GLuint bufferName)
2118 {
2119 struct gl_renderbuffer *rb;
2120
2121 assert(bufferName < BUFFER_COUNT);
2122
2123 rb = fb->Attachment[bufferName].Renderbuffer;
2124 if (!rb)
2125 return;
2126
2127 _mesa_reference_renderbuffer(&rb, NULL);
2128
2129 fb->Attachment[bufferName].Renderbuffer = NULL;
2130 }
2131
2132
2133 /**
2134 * Set *ptr to point to rb. If *ptr points to another renderbuffer,
2135 * dereference that buffer first. The new renderbuffer's refcount will
2136 * be incremented. The old renderbuffer's refcount will be decremented.
2137 */
2138 void
2139 _mesa_reference_renderbuffer(struct gl_renderbuffer **ptr,
2140 struct gl_renderbuffer *rb)
2141 {
2142 assert(ptr);
2143 if (*ptr == rb) {
2144 /* no change */
2145 return;
2146 }
2147
2148 if (*ptr) {
2149 /* Unreference the old renderbuffer */
2150 GLboolean deleteFlag = GL_FALSE;
2151 struct gl_renderbuffer *oldRb = *ptr;
2152
2153 assert(oldRb->Magic == RB_MAGIC);
2154 _glthread_LOCK_MUTEX(oldRb->Mutex);
2155 assert(oldRb->Magic == RB_MAGIC);
2156 ASSERT(oldRb->RefCount > 0);
2157 oldRb->RefCount--;
2158 /*printf("RB DECR %p (%d) to %d\n", (void*) oldRb, oldRb->Name, oldRb->RefCount);*/
2159 deleteFlag = (oldRb->RefCount == 0);
2160 _glthread_UNLOCK_MUTEX(oldRb->Mutex);
2161
2162 if (deleteFlag) {
2163 oldRb->Magic = 0; /* now invalid memory! */
2164 oldRb->Delete(oldRb);
2165 }
2166
2167 *ptr = NULL;
2168 }
2169 assert(!*ptr);
2170
2171 if (rb) {
2172 assert(rb->Magic == RB_MAGIC);
2173 /* reference new renderbuffer */
2174 _glthread_LOCK_MUTEX(rb->Mutex);
2175 rb->RefCount++;
2176 /*printf("RB INCR %p (%d) to %d\n", (void*) rb, rb->Name, rb->RefCount);*/
2177 _glthread_UNLOCK_MUTEX(rb->Mutex);
2178 *ptr = rb;
2179 }
2180 }
2181
2182
2183 /**
2184 * Create a new combined depth/stencil renderbuffer for implementing
2185 * the GL_EXT_packed_depth_stencil extension.
2186 * \return new depth/stencil renderbuffer
2187 */
2188 struct gl_renderbuffer *
2189 _mesa_new_depthstencil_renderbuffer(GLcontext *ctx, GLuint name)
2190 {
2191 struct gl_renderbuffer *dsrb;
2192
2193 dsrb = _mesa_new_renderbuffer(ctx, name);
2194 if (!dsrb)
2195 return NULL;
2196
2197 /* init fields not covered by _mesa_new_renderbuffer() */
2198 dsrb->InternalFormat = GL_DEPTH24_STENCIL8_EXT;
2199 dsrb->_ActualFormat = GL_DEPTH24_STENCIL8_EXT;
2200 dsrb->AllocStorage = _mesa_soft_renderbuffer_storage;
2201
2202 return dsrb;
2203 }