mesa: Add a function to set up the default renderbuffer accessors.
[mesa.git] / src / mesa / main / renderbuffer.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 6.5
4 *
5 * Copyright (C) 1999-2006 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /**
27 * Functions for allocating/managing renderbuffers.
28 * Also, routines for reading/writing software-based renderbuffer data as
29 * ubytes, ushorts, uints, etc.
30 *
31 * The 'alpha8' renderbuffer is interesting. It's used to add a software-based
32 * alpha channel to RGB renderbuffers. This is done by wrapping the RGB
33 * renderbuffer with the alpha renderbuffer. We can do this because of the
34 * OO-nature of renderbuffers.
35 *
36 * Down the road we'll use this for run-time support of 8, 16 and 32-bit
37 * color channels. For example, Mesa may use 32-bit/float color channels
38 * internally (swrast) and use wrapper renderbuffers to convert 32-bit
39 * values down to 16 or 8-bit values for whatever kind of framebuffer we have.
40 */
41
42
43 #include "glheader.h"
44 #include "imports.h"
45 #include "context.h"
46 #include "fbobject.h"
47 #include "formats.h"
48 #include "mtypes.h"
49 #include "renderbuffer.h"
50
51
52 /*
53 * Routines for get/put values in common buffer formats follow.
54 */
55
56 /**********************************************************************
57 * Functions for buffers of 1 X GLubyte values.
58 * Typically stencil.
59 */
60
61 static void *
62 get_pointer_ubyte(struct gl_context *ctx, struct gl_renderbuffer *rb,
63 GLint x, GLint y)
64 {
65 if (!rb->Data)
66 return NULL;
67 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
68 /* Can't assert rb->Format since these funcs may be used for serveral
69 * different formats (GL_ALPHA8, GL_STENCIL_INDEX8, etc).
70 */
71 return (GLubyte *) rb->Data + y * rb->RowStride + x;
72 }
73
74
75 static void
76 get_row_ubyte(struct gl_context *ctx, struct gl_renderbuffer *rb, GLuint count,
77 GLint x, GLint y, void *values)
78 {
79 const GLubyte *src = (const GLubyte *) rb->Data + y * rb->RowStride + x;
80 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
81 memcpy(values, src, count * sizeof(GLubyte));
82 }
83
84
85 static void
86 get_values_ubyte(struct gl_context *ctx, struct gl_renderbuffer *rb, GLuint count,
87 const GLint x[], const GLint y[], void *values)
88 {
89 GLubyte *dst = (GLubyte *) values;
90 GLuint i;
91 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
92 for (i = 0; i < count; i++) {
93 const GLubyte *src = (GLubyte *) rb->Data + y[i] * rb->RowStride + x[i];
94 dst[i] = *src;
95 }
96 }
97
98
99 static void
100 put_row_ubyte(struct gl_context *ctx, struct gl_renderbuffer *rb, GLuint count,
101 GLint x, GLint y, const void *values, const GLubyte *mask)
102 {
103 const GLubyte *src = (const GLubyte *) values;
104 GLubyte *dst = (GLubyte *) rb->Data + y * rb->RowStride + x;
105 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
106 if (mask) {
107 GLuint i;
108 for (i = 0; i < count; i++) {
109 if (mask[i]) {
110 dst[i] = src[i];
111 }
112 }
113 }
114 else {
115 memcpy(dst, values, count * sizeof(GLubyte));
116 }
117 }
118
119
120 static void
121 put_mono_row_ubyte(struct gl_context *ctx, struct gl_renderbuffer *rb, GLuint count,
122 GLint x, GLint y, const void *value, const GLubyte *mask)
123 {
124 const GLubyte val = *((const GLubyte *) value);
125 GLubyte *dst = (GLubyte *) rb->Data + y * rb->RowStride + x;
126 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
127 if (mask) {
128 GLuint i;
129 for (i = 0; i < count; i++) {
130 if (mask[i]) {
131 dst[i] = val;
132 }
133 }
134 }
135 else {
136 GLuint i;
137 for (i = 0; i < count; i++) {
138 dst[i] = val;
139 }
140 }
141 }
142
143
144 static void
145 put_values_ubyte(struct gl_context *ctx, struct gl_renderbuffer *rb, GLuint count,
146 const GLint x[], const GLint y[],
147 const void *values, const GLubyte *mask)
148 {
149 const GLubyte *src = (const GLubyte *) values;
150 GLuint i;
151 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
152 for (i = 0; i < count; i++) {
153 if (!mask || mask[i]) {
154 GLubyte *dst = (GLubyte *) rb->Data + y[i] * rb->RowStride + x[i];
155 *dst = src[i];
156 }
157 }
158 }
159
160
161 static void
162 put_mono_values_ubyte(struct gl_context *ctx, struct gl_renderbuffer *rb, GLuint count,
163 const GLint x[], const GLint y[],
164 const void *value, const GLubyte *mask)
165 {
166 const GLubyte val = *((const GLubyte *) value);
167 GLuint i;
168 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
169 for (i = 0; i < count; i++) {
170 if (!mask || mask[i]) {
171 GLubyte *dst = (GLubyte *) rb->Data + y[i] * rb->RowStride + x[i];
172 *dst = val;
173 }
174 }
175 }
176
177
178 /**********************************************************************
179 * Functions for buffers of 1 X GLushort values.
180 * Typically depth/Z.
181 */
182
183 static void *
184 get_pointer_ushort(struct gl_context *ctx, struct gl_renderbuffer *rb,
185 GLint x, GLint y)
186 {
187 if (!rb->Data)
188 return NULL;
189 ASSERT(rb->DataType == GL_UNSIGNED_SHORT);
190 ASSERT(rb->Width > 0);
191 return (GLushort *) rb->Data + y * rb->RowStride + x;
192 }
193
194
195 static void
196 get_row_ushort(struct gl_context *ctx, struct gl_renderbuffer *rb, GLuint count,
197 GLint x, GLint y, void *values)
198 {
199 const void *src = rb->GetPointer(ctx, rb, x, y);
200 ASSERT(rb->DataType == GL_UNSIGNED_SHORT);
201 memcpy(values, src, count * sizeof(GLushort));
202 }
203
204
205 static void
206 get_values_ushort(struct gl_context *ctx, struct gl_renderbuffer *rb, GLuint count,
207 const GLint x[], const GLint y[], void *values)
208 {
209 GLushort *dst = (GLushort *) values;
210 GLuint i;
211 ASSERT(rb->DataType == GL_UNSIGNED_SHORT);
212 for (i = 0; i < count; i++) {
213 const GLushort *src = (GLushort *) rb->Data + y[i] * rb->RowStride + x[i];
214 dst[i] = *src;
215 }
216 }
217
218
219 static void
220 put_row_ushort(struct gl_context *ctx, struct gl_renderbuffer *rb, GLuint count,
221 GLint x, GLint y, const void *values, const GLubyte *mask)
222 {
223 const GLushort *src = (const GLushort *) values;
224 GLushort *dst = (GLushort *) rb->Data + y * rb->RowStride + x;
225 ASSERT(rb->DataType == GL_UNSIGNED_SHORT);
226 if (mask) {
227 GLuint i;
228 for (i = 0; i < count; i++) {
229 if (mask[i]) {
230 dst[i] = src[i];
231 }
232 }
233 }
234 else {
235 memcpy(dst, src, count * sizeof(GLushort));
236 }
237 }
238
239
240 static void
241 put_mono_row_ushort(struct gl_context *ctx, struct gl_renderbuffer *rb, GLuint count,
242 GLint x, GLint y, const void *value, const GLubyte *mask)
243 {
244 const GLushort val = *((const GLushort *) value);
245 GLushort *dst = (GLushort *) rb->Data + y * rb->RowStride + x;
246 ASSERT(rb->DataType == GL_UNSIGNED_SHORT);
247 if (mask) {
248 GLuint i;
249 for (i = 0; i < count; i++) {
250 if (mask[i]) {
251 dst[i] = val;
252 }
253 }
254 }
255 else {
256 GLuint i;
257 for (i = 0; i < count; i++) {
258 dst[i] = val;
259 }
260 }
261 }
262
263
264 static void
265 put_values_ushort(struct gl_context *ctx, struct gl_renderbuffer *rb, GLuint count,
266 const GLint x[], const GLint y[], const void *values,
267 const GLubyte *mask)
268 {
269 const GLushort *src = (const GLushort *) values;
270 GLuint i;
271 ASSERT(rb->DataType == GL_UNSIGNED_SHORT);
272 for (i = 0; i < count; i++) {
273 if (!mask || mask[i]) {
274 GLushort *dst = (GLushort *) rb->Data + y[i] * rb->RowStride + x[i];
275 *dst = src[i];
276 }
277 }
278 }
279
280
281 static void
282 put_mono_values_ushort(struct gl_context *ctx, struct gl_renderbuffer *rb,
283 GLuint count, const GLint x[], const GLint y[],
284 const void *value, const GLubyte *mask)
285 {
286 const GLushort val = *((const GLushort *) value);
287 ASSERT(rb->DataType == GL_UNSIGNED_SHORT);
288 if (mask) {
289 GLuint i;
290 for (i = 0; i < count; i++) {
291 if (mask[i]) {
292 GLushort *dst = (GLushort *) rb->Data + y[i] * rb->RowStride + x[i];
293 *dst = val;
294 }
295 }
296 }
297 else {
298 GLuint i;
299 for (i = 0; i < count; i++) {
300 GLushort *dst = (GLushort *) rb->Data + y[i] * rb->RowStride + x[i];
301 *dst = val;
302 }
303 }
304 }
305
306
307 /**********************************************************************
308 * Functions for buffers of 1 X GLuint values.
309 * Typically depth/Z or color index.
310 */
311
312 static void *
313 get_pointer_uint(struct gl_context *ctx, struct gl_renderbuffer *rb,
314 GLint x, GLint y)
315 {
316 if (!rb->Data)
317 return NULL;
318 ASSERT(rb->DataType == GL_UNSIGNED_INT ||
319 rb->DataType == GL_UNSIGNED_INT_24_8_EXT);
320 return (GLuint *) rb->Data + y * rb->RowStride + x;
321 }
322
323
324 static void
325 get_row_uint(struct gl_context *ctx, struct gl_renderbuffer *rb, GLuint count,
326 GLint x, GLint y, void *values)
327 {
328 const void *src = rb->GetPointer(ctx, rb, x, y);
329 ASSERT(rb->DataType == GL_UNSIGNED_INT ||
330 rb->DataType == GL_UNSIGNED_INT_24_8_EXT);
331 memcpy(values, src, count * sizeof(GLuint));
332 }
333
334
335 static void
336 get_values_uint(struct gl_context *ctx, struct gl_renderbuffer *rb, GLuint count,
337 const GLint x[], const GLint y[], void *values)
338 {
339 GLuint *dst = (GLuint *) values;
340 GLuint i;
341 ASSERT(rb->DataType == GL_UNSIGNED_INT ||
342 rb->DataType == GL_UNSIGNED_INT_24_8_EXT);
343 for (i = 0; i < count; i++) {
344 const GLuint *src = (GLuint *) rb->Data + y[i] * rb->RowStride + x[i];
345 dst[i] = *src;
346 }
347 }
348
349
350 static void
351 put_row_uint(struct gl_context *ctx, struct gl_renderbuffer *rb, GLuint count,
352 GLint x, GLint y, const void *values, const GLubyte *mask)
353 {
354 const GLuint *src = (const GLuint *) values;
355 GLuint *dst = (GLuint *) rb->Data + y * rb->RowStride + x;
356 ASSERT(rb->DataType == GL_UNSIGNED_INT ||
357 rb->DataType == GL_UNSIGNED_INT_24_8_EXT);
358 if (mask) {
359 GLuint i;
360 for (i = 0; i < count; i++) {
361 if (mask[i]) {
362 dst[i] = src[i];
363 }
364 }
365 }
366 else {
367 memcpy(dst, src, count * sizeof(GLuint));
368 }
369 }
370
371
372 static void
373 put_mono_row_uint(struct gl_context *ctx, struct gl_renderbuffer *rb, GLuint count,
374 GLint x, GLint y, const void *value, const GLubyte *mask)
375 {
376 const GLuint val = *((const GLuint *) value);
377 GLuint *dst = (GLuint *) rb->Data + y * rb->RowStride + x;
378 ASSERT(rb->DataType == GL_UNSIGNED_INT ||
379 rb->DataType == GL_UNSIGNED_INT_24_8_EXT);
380 if (mask) {
381 GLuint i;
382 for (i = 0; i < count; i++) {
383 if (mask[i]) {
384 dst[i] = val;
385 }
386 }
387 }
388 else {
389 GLuint i;
390 for (i = 0; i < count; i++) {
391 dst[i] = val;
392 }
393 }
394 }
395
396
397 static void
398 put_values_uint(struct gl_context *ctx, struct gl_renderbuffer *rb, GLuint count,
399 const GLint x[], const GLint y[], const void *values,
400 const GLubyte *mask)
401 {
402 const GLuint *src = (const GLuint *) values;
403 GLuint i;
404 ASSERT(rb->DataType == GL_UNSIGNED_INT ||
405 rb->DataType == GL_UNSIGNED_INT_24_8_EXT);
406 for (i = 0; i < count; i++) {
407 if (!mask || mask[i]) {
408 GLuint *dst = (GLuint *) rb->Data + y[i] * rb->RowStride + x[i];
409 *dst = src[i];
410 }
411 }
412 }
413
414
415 static void
416 put_mono_values_uint(struct gl_context *ctx, struct gl_renderbuffer *rb, GLuint count,
417 const GLint x[], const GLint y[], const void *value,
418 const GLubyte *mask)
419 {
420 const GLuint val = *((const GLuint *) value);
421 GLuint i;
422 ASSERT(rb->DataType == GL_UNSIGNED_INT ||
423 rb->DataType == GL_UNSIGNED_INT_24_8_EXT);
424 for (i = 0; i < count; i++) {
425 if (!mask || mask[i]) {
426 GLuint *dst = (GLuint *) rb->Data + y[i] * rb->RowStride + x[i];
427 *dst = val;
428 }
429 }
430 }
431
432
433 /**********************************************************************
434 * Functions for buffers of 3 X GLubyte (or GLbyte) values.
435 * Typically color buffers.
436 * NOTE: the incoming and outgoing colors are RGBA! We ignore incoming
437 * alpha values and return 255 for outgoing alpha values.
438 */
439
440 static void *
441 get_pointer_ubyte3(struct gl_context *ctx, struct gl_renderbuffer *rb,
442 GLint x, GLint y)
443 {
444 ASSERT(rb->Format == MESA_FORMAT_RGB888);
445 /* No direct access since this buffer is RGB but caller will be
446 * treating it as if it were RGBA.
447 */
448 return NULL;
449 }
450
451
452 static void
453 get_row_ubyte3(struct gl_context *ctx, struct gl_renderbuffer *rb, GLuint count,
454 GLint x, GLint y, void *values)
455 {
456 const GLubyte *src = (const GLubyte *) (rb->Data +
457 3 * (y * rb->RowStride + x));
458 GLubyte *dst = (GLubyte *) values;
459 GLuint i;
460 ASSERT(rb->Format == MESA_FORMAT_RGB888);
461 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
462 for (i = 0; i < count; i++) {
463 dst[i * 4 + 0] = src[i * 3 + 0];
464 dst[i * 4 + 1] = src[i * 3 + 1];
465 dst[i * 4 + 2] = src[i * 3 + 2];
466 dst[i * 4 + 3] = 255;
467 }
468 }
469
470
471 static void
472 get_values_ubyte3(struct gl_context *ctx, struct gl_renderbuffer *rb, GLuint count,
473 const GLint x[], const GLint y[], void *values)
474 {
475 GLubyte *dst = (GLubyte *) values;
476 GLuint i;
477 ASSERT(rb->Format == MESA_FORMAT_RGB888);
478 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
479 for (i = 0; i < count; i++) {
480 const GLubyte *src
481 = (GLubyte *) rb->Data + 3 * (y[i] * rb->RowStride + x[i]);
482 dst[i * 4 + 0] = src[0];
483 dst[i * 4 + 1] = src[1];
484 dst[i * 4 + 2] = src[2];
485 dst[i * 4 + 3] = 255;
486 }
487 }
488
489
490 static void
491 put_row_ubyte3(struct gl_context *ctx, struct gl_renderbuffer *rb, GLuint count,
492 GLint x, GLint y, const void *values, const GLubyte *mask)
493 {
494 /* note: incoming values are RGB+A! */
495 const GLubyte *src = (const GLubyte *) values;
496 GLubyte *dst = (GLubyte *) rb->Data + 3 * (y * rb->RowStride + x);
497 GLuint i;
498 ASSERT(rb->Format == MESA_FORMAT_RGB888);
499 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
500 for (i = 0; i < count; i++) {
501 if (!mask || mask[i]) {
502 dst[i * 3 + 0] = src[i * 4 + 0];
503 dst[i * 3 + 1] = src[i * 4 + 1];
504 dst[i * 3 + 2] = src[i * 4 + 2];
505 }
506 }
507 }
508
509
510 static void
511 put_row_rgb_ubyte3(struct gl_context *ctx, struct gl_renderbuffer *rb, GLuint count,
512 GLint x, GLint y, const void *values, const GLubyte *mask)
513 {
514 /* note: incoming values are RGB+A! */
515 const GLubyte *src = (const GLubyte *) values;
516 GLubyte *dst = (GLubyte *) rb->Data + 3 * (y * rb->RowStride + x);
517 GLuint i;
518 ASSERT(rb->Format == MESA_FORMAT_RGB888);
519 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
520 for (i = 0; i < count; i++) {
521 if (!mask || mask[i]) {
522 dst[i * 3 + 0] = src[i * 3 + 0];
523 dst[i * 3 + 1] = src[i * 3 + 1];
524 dst[i * 3 + 2] = src[i * 3 + 2];
525 }
526 }
527 }
528
529
530 static void
531 put_mono_row_ubyte3(struct gl_context *ctx, struct gl_renderbuffer *rb, GLuint count,
532 GLint x, GLint y, const void *value, const GLubyte *mask)
533 {
534 /* note: incoming value is RGB+A! */
535 const GLubyte val0 = ((const GLubyte *) value)[0];
536 const GLubyte val1 = ((const GLubyte *) value)[1];
537 const GLubyte val2 = ((const GLubyte *) value)[2];
538 GLubyte *dst = (GLubyte *) rb->Data + 3 * (y * rb->RowStride + x);
539 ASSERT(rb->Format == MESA_FORMAT_RGB888);
540 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
541 if (!mask && val0 == val1 && val1 == val2) {
542 /* optimized case */
543 memset(dst, val0, 3 * count);
544 }
545 else {
546 GLuint i;
547 for (i = 0; i < count; i++) {
548 if (!mask || mask[i]) {
549 dst[i * 3 + 0] = val0;
550 dst[i * 3 + 1] = val1;
551 dst[i * 3 + 2] = val2;
552 }
553 }
554 }
555 }
556
557
558 static void
559 put_values_ubyte3(struct gl_context *ctx, struct gl_renderbuffer *rb, GLuint count,
560 const GLint x[], const GLint y[], const void *values,
561 const GLubyte *mask)
562 {
563 /* note: incoming values are RGB+A! */
564 const GLubyte *src = (const GLubyte *) values;
565 GLuint i;
566 ASSERT(rb->Format == MESA_FORMAT_RGB888);
567 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
568 for (i = 0; i < count; i++) {
569 if (!mask || mask[i]) {
570 GLubyte *dst = (GLubyte *) rb->Data + 3 * (y[i] * rb->RowStride + x[i]);
571 dst[0] = src[i * 4 + 0];
572 dst[1] = src[i * 4 + 1];
573 dst[2] = src[i * 4 + 2];
574 }
575 }
576 }
577
578
579 static void
580 put_mono_values_ubyte3(struct gl_context *ctx, struct gl_renderbuffer *rb,
581 GLuint count, const GLint x[], const GLint y[],
582 const void *value, const GLubyte *mask)
583 {
584 /* note: incoming value is RGB+A! */
585 const GLubyte val0 = ((const GLubyte *) value)[0];
586 const GLubyte val1 = ((const GLubyte *) value)[1];
587 const GLubyte val2 = ((const GLubyte *) value)[2];
588 GLuint i;
589 ASSERT(rb->Format == MESA_FORMAT_RGB888);
590 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
591 for (i = 0; i < count; i++) {
592 if (!mask || mask[i]) {
593 GLubyte *dst = (GLubyte *) (rb->Data +
594 3 * (y[i] * rb->RowStride + x[i]));
595 dst[0] = val0;
596 dst[1] = val1;
597 dst[2] = val2;
598 }
599 }
600 }
601
602
603 /**********************************************************************
604 * Functions for buffers of 4 X GLubyte (or GLbyte) values.
605 * Typically color buffers.
606 */
607
608 static void *
609 get_pointer_ubyte4(struct gl_context *ctx, struct gl_renderbuffer *rb,
610 GLint x, GLint y)
611 {
612 if (!rb->Data)
613 return NULL;
614 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
615 ASSERT(rb->Format == MESA_FORMAT_RGBA8888);
616 return (GLubyte *) rb->Data + 4 * (y * rb->RowStride + x);
617 }
618
619
620 static void
621 get_row_ubyte4(struct gl_context *ctx, struct gl_renderbuffer *rb, GLuint count,
622 GLint x, GLint y, void *values)
623 {
624 const GLubyte *src = (const GLubyte *) (rb->Data +
625 4 * (y * rb->RowStride + x));
626 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
627 ASSERT(rb->Format == MESA_FORMAT_RGBA8888);
628 memcpy(values, src, 4 * count * sizeof(GLubyte));
629 }
630
631
632 static void
633 get_values_ubyte4(struct gl_context *ctx, struct gl_renderbuffer *rb, GLuint count,
634 const GLint x[], const GLint y[], void *values)
635 {
636 /* treat 4*GLubyte as 1*GLuint */
637 GLuint *dst = (GLuint *) values;
638 GLuint i;
639 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
640 ASSERT(rb->Format == MESA_FORMAT_RGBA8888);
641 for (i = 0; i < count; i++) {
642 const GLuint *src = (GLuint *) rb->Data + (y[i] * rb->RowStride + x[i]);
643 dst[i] = *src;
644 }
645 }
646
647
648 static void
649 put_row_ubyte4(struct gl_context *ctx, struct gl_renderbuffer *rb, GLuint count,
650 GLint x, GLint y, const void *values, const GLubyte *mask)
651 {
652 /* treat 4*GLubyte as 1*GLuint */
653 const GLuint *src = (const GLuint *) values;
654 GLuint *dst = (GLuint *) rb->Data + (y * rb->RowStride + x);
655 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
656 ASSERT(rb->Format == MESA_FORMAT_RGBA8888);
657 if (mask) {
658 GLuint i;
659 for (i = 0; i < count; i++) {
660 if (mask[i]) {
661 dst[i] = src[i];
662 }
663 }
664 }
665 else {
666 memcpy(dst, src, 4 * count * sizeof(GLubyte));
667 }
668 }
669
670
671 static void
672 put_row_rgb_ubyte4(struct gl_context *ctx, struct gl_renderbuffer *rb, GLuint count,
673 GLint x, GLint y, const void *values, const GLubyte *mask)
674 {
675 /* Store RGB values in RGBA buffer */
676 const GLubyte *src = (const GLubyte *) values;
677 GLubyte *dst = (GLubyte *) rb->Data + 4 * (y * rb->RowStride + x);
678 GLuint i;
679 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
680 ASSERT(rb->Format == MESA_FORMAT_RGBA8888);
681 for (i = 0; i < count; i++) {
682 if (!mask || mask[i]) {
683 dst[i * 4 + 0] = src[i * 3 + 0];
684 dst[i * 4 + 1] = src[i * 3 + 1];
685 dst[i * 4 + 2] = src[i * 3 + 2];
686 dst[i * 4 + 3] = 0xff;
687 }
688 }
689 }
690
691
692 static void
693 put_mono_row_ubyte4(struct gl_context *ctx, struct gl_renderbuffer *rb, GLuint count,
694 GLint x, GLint y, const void *value, const GLubyte *mask)
695 {
696 /* treat 4*GLubyte as 1*GLuint */
697 const GLuint val = *((const GLuint *) value);
698 GLuint *dst = (GLuint *) rb->Data + (y * rb->RowStride + x);
699 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
700 ASSERT(rb->Format == MESA_FORMAT_RGBA8888);
701 if (!mask && val == 0) {
702 /* common case */
703 memset(dst, 0, count * 4 * sizeof(GLubyte));
704 }
705 else {
706 /* general case */
707 if (mask) {
708 GLuint i;
709 for (i = 0; i < count; i++) {
710 if (mask[i]) {
711 dst[i] = val;
712 }
713 }
714 }
715 else {
716 GLuint i;
717 for (i = 0; i < count; i++) {
718 dst[i] = val;
719 }
720 }
721 }
722 }
723
724
725 static void
726 put_values_ubyte4(struct gl_context *ctx, struct gl_renderbuffer *rb, GLuint count,
727 const GLint x[], const GLint y[], const void *values,
728 const GLubyte *mask)
729 {
730 /* treat 4*GLubyte as 1*GLuint */
731 const GLuint *src = (const GLuint *) values;
732 GLuint i;
733 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
734 ASSERT(rb->Format == MESA_FORMAT_RGBA8888);
735 for (i = 0; i < count; i++) {
736 if (!mask || mask[i]) {
737 GLuint *dst = (GLuint *) rb->Data + (y[i] * rb->RowStride + x[i]);
738 *dst = src[i];
739 }
740 }
741 }
742
743
744 static void
745 put_mono_values_ubyte4(struct gl_context *ctx, struct gl_renderbuffer *rb,
746 GLuint count, const GLint x[], const GLint y[],
747 const void *value, const GLubyte *mask)
748 {
749 /* treat 4*GLubyte as 1*GLuint */
750 const GLuint val = *((const GLuint *) value);
751 GLuint i;
752 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
753 ASSERT(rb->Format == MESA_FORMAT_RGBA8888);
754 for (i = 0; i < count; i++) {
755 if (!mask || mask[i]) {
756 GLuint *dst = (GLuint *) rb->Data + (y[i] * rb->RowStride + x[i]);
757 *dst = val;
758 }
759 }
760 }
761
762
763 /**********************************************************************
764 * Functions for buffers of 4 X GLushort (or GLshort) values.
765 * Typically accum buffer.
766 */
767
768 static void *
769 get_pointer_ushort4(struct gl_context *ctx, struct gl_renderbuffer *rb,
770 GLint x, GLint y)
771 {
772 if (!rb->Data)
773 return NULL;
774 ASSERT(rb->DataType == GL_UNSIGNED_SHORT || rb->DataType == GL_SHORT);
775 return (GLushort *) rb->Data + 4 * (y * rb->RowStride + x);
776 }
777
778
779 static void
780 get_row_ushort4(struct gl_context *ctx, struct gl_renderbuffer *rb, GLuint count,
781 GLint x, GLint y, void *values)
782 {
783 const GLshort *src = (const GLshort *) (rb->Data +
784 4 * (y * rb->RowStride + x));
785 ASSERT(rb->DataType == GL_UNSIGNED_SHORT || rb->DataType == GL_SHORT);
786 memcpy(values, src, 4 * count * sizeof(GLshort));
787 }
788
789
790 static void
791 get_values_ushort4(struct gl_context *ctx, struct gl_renderbuffer *rb, GLuint count,
792 const GLint x[], const GLint y[], void *values)
793 {
794 GLushort *dst = (GLushort *) values;
795 GLuint i;
796 ASSERT(rb->DataType == GL_UNSIGNED_SHORT || rb->DataType == GL_SHORT);
797 for (i = 0; i < count; i++) {
798 const GLushort *src
799 = (GLushort *) rb->Data + 4 * (y[i] * rb->RowStride + x[i]);
800 dst[i] = *src;
801 }
802 }
803
804
805 static void
806 put_row_ushort4(struct gl_context *ctx, struct gl_renderbuffer *rb, GLuint count,
807 GLint x, GLint y, const void *values, const GLubyte *mask)
808 {
809 const GLushort *src = (const GLushort *) values;
810 GLushort *dst = (GLushort *) rb->Data + 4 * (y * rb->RowStride + x);
811 ASSERT(rb->DataType == GL_UNSIGNED_SHORT || rb->DataType == GL_SHORT);
812 if (mask) {
813 GLuint i;
814 for (i = 0; i < count; i++) {
815 if (mask[i]) {
816 dst[i * 4 + 0] = src[i * 4 + 0];
817 dst[i * 4 + 1] = src[i * 4 + 1];
818 dst[i * 4 + 2] = src[i * 4 + 2];
819 dst[i * 4 + 3] = src[i * 4 + 3];
820 }
821 }
822 }
823 else {
824 memcpy(dst, src, 4 * count * sizeof(GLushort));
825 }
826 }
827
828
829 static void
830 put_row_rgb_ushort4(struct gl_context *ctx, struct gl_renderbuffer *rb, GLuint count,
831 GLint x, GLint y, const void *values, const GLubyte *mask)
832 {
833 /* Put RGB values in RGBA buffer */
834 const GLushort *src = (const GLushort *) values;
835 GLushort *dst = (GLushort *) rb->Data + 4 * (y * rb->RowStride + x);
836 ASSERT(rb->DataType == GL_UNSIGNED_SHORT || rb->DataType == GL_SHORT);
837 if (mask) {
838 GLuint i;
839 for (i = 0; i < count; i++) {
840 if (mask[i]) {
841 dst[i * 4 + 0] = src[i * 3 + 0];
842 dst[i * 4 + 1] = src[i * 3 + 1];
843 dst[i * 4 + 2] = src[i * 3 + 2];
844 dst[i * 4 + 3] = 0xffff;
845 }
846 }
847 }
848 else {
849 memcpy(dst, src, 4 * count * sizeof(GLushort));
850 }
851 }
852
853
854 static void
855 put_mono_row_ushort4(struct gl_context *ctx, struct gl_renderbuffer *rb, GLuint count,
856 GLint x, GLint y, const void *value, const GLubyte *mask)
857 {
858 const GLushort val0 = ((const GLushort *) value)[0];
859 const GLushort val1 = ((const GLushort *) value)[1];
860 const GLushort val2 = ((const GLushort *) value)[2];
861 const GLushort val3 = ((const GLushort *) value)[3];
862 GLushort *dst = (GLushort *) rb->Data + 4 * (y * rb->RowStride + x);
863 ASSERT(rb->DataType == GL_UNSIGNED_SHORT || rb->DataType == GL_SHORT);
864 if (!mask && val0 == 0 && val1 == 0 && val2 == 0 && val3 == 0) {
865 /* common case for clearing accum buffer */
866 memset(dst, 0, count * 4 * sizeof(GLushort));
867 }
868 else {
869 GLuint i;
870 for (i = 0; i < count; i++) {
871 if (!mask || mask[i]) {
872 dst[i * 4 + 0] = val0;
873 dst[i * 4 + 1] = val1;
874 dst[i * 4 + 2] = val2;
875 dst[i * 4 + 3] = val3;
876 }
877 }
878 }
879 }
880
881
882 static void
883 put_values_ushort4(struct gl_context *ctx, struct gl_renderbuffer *rb, GLuint count,
884 const GLint x[], const GLint y[], const void *values,
885 const GLubyte *mask)
886 {
887 const GLushort *src = (const GLushort *) values;
888 GLuint i;
889 ASSERT(rb->DataType == GL_UNSIGNED_SHORT || rb->DataType == GL_SHORT);
890 for (i = 0; i < count; i++) {
891 if (!mask || mask[i]) {
892 GLushort *dst = (GLushort *) (rb->Data + 4 *
893 (y[i] * rb->RowStride + x[i]));
894 dst[0] = src[i * 4 + 0];
895 dst[1] = src[i * 4 + 1];
896 dst[2] = src[i * 4 + 2];
897 dst[3] = src[i * 4 + 3];
898 }
899 }
900 }
901
902
903 static void
904 put_mono_values_ushort4(struct gl_context *ctx, struct gl_renderbuffer *rb,
905 GLuint count, const GLint x[], const GLint y[],
906 const void *value, const GLubyte *mask)
907 {
908 const GLushort val0 = ((const GLushort *) value)[0];
909 const GLushort val1 = ((const GLushort *) value)[1];
910 const GLushort val2 = ((const GLushort *) value)[2];
911 const GLushort val3 = ((const GLushort *) value)[3];
912 GLuint i;
913 ASSERT(rb->DataType == GL_UNSIGNED_SHORT || rb->DataType == GL_SHORT);
914 for (i = 0; i < count; i++) {
915 if (!mask || mask[i]) {
916 GLushort *dst = (GLushort *) (rb->Data +
917 4 * (y[i] * rb->RowStride + x[i]));
918 dst[0] = val0;
919 dst[1] = val1;
920 dst[2] = val2;
921 dst[3] = val3;
922 }
923 }
924 }
925
926 /**
927 * This is the default software fallback for gl_renderbuffer's span
928 * access functions.
929 *
930 * The assumptions are that rb->Data will be a pointer to (0,0), that pixels
931 * are packed in the type of rb->Format, and that subsequent rows appear
932 * rb->RowStride pixels later.
933 */
934 void
935 _mesa_set_renderbuffer_accessors(struct gl_renderbuffer *rb)
936 {
937 switch (rb->Format) {
938 case MESA_FORMAT_RGB888:
939 rb->DataType = GL_UNSIGNED_BYTE;
940 rb->GetPointer = get_pointer_ubyte3;
941 rb->GetRow = get_row_ubyte3;
942 rb->GetValues = get_values_ubyte3;
943 rb->PutRow = put_row_ubyte3;
944 rb->PutRowRGB = put_row_rgb_ubyte3;
945 rb->PutMonoRow = put_mono_row_ubyte3;
946 rb->PutValues = put_values_ubyte3;
947 rb->PutMonoValues = put_mono_values_ubyte3;
948 break;
949
950 case MESA_FORMAT_RGBA8888:
951 rb->DataType = GL_UNSIGNED_BYTE;
952 rb->GetPointer = get_pointer_ubyte4;
953 rb->GetRow = get_row_ubyte4;
954 rb->GetValues = get_values_ubyte4;
955 rb->PutRow = put_row_ubyte4;
956 rb->PutRowRGB = put_row_rgb_ubyte4;
957 rb->PutMonoRow = put_mono_row_ubyte4;
958 rb->PutValues = put_values_ubyte4;
959 rb->PutMonoValues = put_mono_values_ubyte4;
960 break;
961
962 case MESA_FORMAT_SIGNED_RGBA_16:
963 rb->DataType = GL_SHORT;
964 rb->GetPointer = get_pointer_ushort4;
965 rb->GetRow = get_row_ushort4;
966 rb->GetValues = get_values_ushort4;
967 rb->PutRow = put_row_ushort4;
968 rb->PutRowRGB = put_row_rgb_ushort4;
969 rb->PutMonoRow = put_mono_row_ushort4;
970 rb->PutValues = put_values_ushort4;
971 rb->PutMonoValues = put_mono_values_ushort4;
972 break;
973
974 #if 0
975 case MESA_FORMAT_A8:
976 rb->DataType = GL_UNSIGNED_BYTE;
977 rb->GetPointer = get_pointer_alpha8;
978 rb->GetRow = get_row_alpha8;
979 rb->GetValues = get_values_alpha8;
980 rb->PutRow = put_row_alpha8;
981 rb->PutRowRGB = NULL;
982 rb->PutMonoRow = put_mono_row_alpha8;
983 rb->PutValues = put_values_alpha8;
984 rb->PutMonoValues = put_mono_values_alpha8;
985 break;
986 #endif
987
988 case MESA_FORMAT_S8:
989 rb->DataType = GL_UNSIGNED_BYTE;
990 rb->GetPointer = get_pointer_ubyte;
991 rb->GetRow = get_row_ubyte;
992 rb->GetValues = get_values_ubyte;
993 rb->PutRow = put_row_ubyte;
994 rb->PutRowRGB = NULL;
995 rb->PutMonoRow = put_mono_row_ubyte;
996 rb->PutValues = put_values_ubyte;
997 rb->PutMonoValues = put_mono_values_ubyte;
998 break;
999
1000 case MESA_FORMAT_Z16:
1001 rb->DataType = GL_UNSIGNED_SHORT;
1002 rb->GetPointer = get_pointer_ushort;
1003 rb->GetRow = get_row_ushort;
1004 rb->GetValues = get_values_ushort;
1005 rb->PutRow = put_row_ushort;
1006 rb->PutRowRGB = NULL;
1007 rb->PutMonoRow = put_mono_row_ushort;
1008 rb->PutValues = put_values_ushort;
1009 rb->PutMonoValues = put_mono_values_ushort;
1010 break;
1011
1012 case MESA_FORMAT_Z32:
1013 case MESA_FORMAT_X8_Z24:
1014 rb->DataType = GL_UNSIGNED_INT;
1015 rb->GetPointer = get_pointer_uint;
1016 rb->GetRow = get_row_uint;
1017 rb->GetValues = get_values_uint;
1018 rb->PutRow = put_row_uint;
1019 rb->PutRowRGB = NULL;
1020 rb->PutMonoRow = put_mono_row_uint;
1021 rb->PutValues = put_values_uint;
1022 rb->PutMonoValues = put_mono_values_uint;
1023 break;
1024
1025 case MESA_FORMAT_Z24_S8:
1026 rb->DataType = GL_UNSIGNED_INT_24_8_EXT;
1027 rb->GetPointer = get_pointer_uint;
1028 rb->GetRow = get_row_uint;
1029 rb->GetValues = get_values_uint;
1030 rb->PutRow = put_row_uint;
1031 rb->PutRowRGB = NULL;
1032 rb->PutMonoRow = put_mono_row_uint;
1033 rb->PutValues = put_values_uint;
1034 rb->PutMonoValues = put_mono_values_uint;
1035 break;
1036
1037 default:
1038 break;
1039 }
1040 }
1041
1042 /**
1043 * This is a software fallback for the gl_renderbuffer->AllocStorage
1044 * function.
1045 * Device drivers will typically override this function for the buffers
1046 * which it manages (typically color buffers, Z and stencil).
1047 * Other buffers (like software accumulation and aux buffers) which the driver
1048 * doesn't manage can be handled with this function.
1049 *
1050 * This one multi-purpose function can allocate stencil, depth, accum, color
1051 * or color-index buffers!
1052 *
1053 * This function also plugs in the appropriate GetPointer, Get/PutRow and
1054 * Get/PutValues functions.
1055 */
1056 GLboolean
1057 _mesa_soft_renderbuffer_storage(struct gl_context *ctx, struct gl_renderbuffer *rb,
1058 GLenum internalFormat,
1059 GLuint width, GLuint height)
1060 {
1061 switch (internalFormat) {
1062 case GL_RGB:
1063 case GL_R3_G3_B2:
1064 case GL_RGB4:
1065 case GL_RGB5:
1066 case GL_RGB8:
1067 case GL_RGB10:
1068 case GL_RGB12:
1069 case GL_RGB16:
1070 rb->Format = MESA_FORMAT_RGB888;
1071 break;
1072 case GL_RGBA:
1073 case GL_RGBA2:
1074 case GL_RGBA4:
1075 case GL_RGB5_A1:
1076 case GL_RGBA8:
1077 #if 1
1078 case GL_RGB10_A2:
1079 case GL_RGBA12:
1080 #endif
1081 rb->Format = MESA_FORMAT_RGBA8888;
1082 break;
1083 case GL_RGBA16:
1084 case GL_RGBA16_SNORM:
1085 /* for accum buffer */
1086 rb->Format = MESA_FORMAT_SIGNED_RGBA_16;
1087 break;
1088 #if 0
1089 case GL_ALPHA8:
1090 rb->Format = MESA_FORMAT_A8;
1091 break;
1092 #endif
1093 case GL_STENCIL_INDEX:
1094 case GL_STENCIL_INDEX1_EXT:
1095 case GL_STENCIL_INDEX4_EXT:
1096 case GL_STENCIL_INDEX8_EXT:
1097 case GL_STENCIL_INDEX16_EXT:
1098 rb->Format = MESA_FORMAT_S8;
1099 break;
1100 case GL_DEPTH_COMPONENT:
1101 case GL_DEPTH_COMPONENT16:
1102 rb->Format = MESA_FORMAT_Z16;
1103 break;
1104 case GL_DEPTH_COMPONENT24:
1105 rb->Format = MESA_FORMAT_X8_Z24;
1106 break;
1107 case GL_DEPTH_COMPONENT32:
1108 rb->Format = MESA_FORMAT_Z32;
1109 break;
1110 case GL_DEPTH_STENCIL_EXT:
1111 case GL_DEPTH24_STENCIL8_EXT:
1112 rb->Format = MESA_FORMAT_Z24_S8;
1113 break;
1114 default:
1115 /* unsupported format */
1116 return GL_FALSE;
1117 }
1118
1119 _mesa_set_renderbuffer_accessors(rb);
1120
1121 ASSERT(rb->DataType);
1122 ASSERT(rb->GetPointer);
1123 ASSERT(rb->GetRow);
1124 ASSERT(rb->GetValues);
1125 ASSERT(rb->PutRow);
1126 ASSERT(rb->PutMonoRow);
1127 ASSERT(rb->PutValues);
1128 ASSERT(rb->PutMonoValues);
1129
1130 /* free old buffer storage */
1131 if (rb->Data) {
1132 free(rb->Data);
1133 rb->Data = NULL;
1134 }
1135
1136 rb->RowStride = width;
1137
1138 if (width > 0 && height > 0) {
1139 /* allocate new buffer storage */
1140 rb->Data = malloc(width * height * _mesa_get_format_bytes(rb->Format));
1141
1142 if (rb->Data == NULL) {
1143 rb->Width = 0;
1144 rb->Height = 0;
1145 rb->RowStride = 0;
1146 _mesa_error(ctx, GL_OUT_OF_MEMORY,
1147 "software renderbuffer allocation (%d x %d x %d)",
1148 width, height, _mesa_get_format_bytes(rb->Format));
1149 return GL_FALSE;
1150 }
1151 }
1152
1153 rb->Width = width;
1154 rb->Height = height;
1155 rb->_BaseFormat = _mesa_base_fbo_format(ctx, internalFormat);
1156
1157 if (rb->Name == 0 &&
1158 internalFormat == GL_RGBA16_SNORM &&
1159 rb->_BaseFormat == 0) {
1160 /* NOTE: This is a special case just for accumulation buffers.
1161 * This is a very limited use case- there's no snorm texturing or
1162 * rendering going on.
1163 */
1164 rb->_BaseFormat = GL_RGBA;
1165 }
1166 else {
1167 /* the internalFormat should have been error checked long ago */
1168 ASSERT(rb->_BaseFormat);
1169 }
1170
1171 return GL_TRUE;
1172 }
1173
1174
1175
1176 /**********************************************************************/
1177 /**********************************************************************/
1178 /**********************************************************************/
1179
1180
1181 /**
1182 * Here we utilize the gl_renderbuffer->Wrapper field to put an alpha
1183 * buffer wrapper around an existing RGB renderbuffer (hw or sw).
1184 *
1185 * When PutRow is called (for example), we store the alpha values in
1186 * this buffer, then pass on the PutRow call to the wrapped RGB
1187 * buffer.
1188 */
1189
1190
1191 static GLboolean
1192 alloc_storage_alpha8(struct gl_context *ctx, struct gl_renderbuffer *arb,
1193 GLenum internalFormat, GLuint width, GLuint height)
1194 {
1195 ASSERT(arb != arb->Wrapped);
1196 ASSERT(arb->Format == MESA_FORMAT_A8);
1197
1198 /* first, pass the call to the wrapped RGB buffer */
1199 if (!arb->Wrapped->AllocStorage(ctx, arb->Wrapped, internalFormat,
1200 width, height)) {
1201 return GL_FALSE;
1202 }
1203
1204 /* next, resize my alpha buffer */
1205 if (arb->Data) {
1206 free(arb->Data);
1207 }
1208
1209 arb->Data = malloc(width * height * sizeof(GLubyte));
1210 if (arb->Data == NULL) {
1211 arb->Width = 0;
1212 arb->Height = 0;
1213 _mesa_error(ctx, GL_OUT_OF_MEMORY, "software alpha buffer allocation");
1214 return GL_FALSE;
1215 }
1216
1217 arb->Width = width;
1218 arb->Height = height;
1219 arb->RowStride = width;
1220
1221 return GL_TRUE;
1222 }
1223
1224
1225 /**
1226 * Delete an alpha_renderbuffer object, as well as the wrapped RGB buffer.
1227 */
1228 static void
1229 delete_renderbuffer_alpha8(struct gl_renderbuffer *arb)
1230 {
1231 if (arb->Data) {
1232 free(arb->Data);
1233 }
1234 ASSERT(arb->Wrapped);
1235 ASSERT(arb != arb->Wrapped);
1236 arb->Wrapped->Delete(arb->Wrapped);
1237 arb->Wrapped = NULL;
1238 free(arb);
1239 }
1240
1241
1242 static void *
1243 get_pointer_alpha8(struct gl_context *ctx, struct gl_renderbuffer *arb,
1244 GLint x, GLint y)
1245 {
1246 return NULL; /* don't allow direct access! */
1247 }
1248
1249
1250 static void
1251 get_row_alpha8(struct gl_context *ctx, struct gl_renderbuffer *arb, GLuint count,
1252 GLint x, GLint y, void *values)
1253 {
1254 /* NOTE: 'values' is RGBA format! */
1255 const GLubyte *src = (const GLubyte *) arb->Data + y * arb->RowStride + x;
1256 GLubyte *dst = (GLubyte *) values;
1257 GLuint i;
1258 ASSERT(arb != arb->Wrapped);
1259 ASSERT(arb->DataType == GL_UNSIGNED_BYTE);
1260 /* first, pass the call to the wrapped RGB buffer */
1261 arb->Wrapped->GetRow(ctx, arb->Wrapped, count, x, y, values);
1262 /* second, fill in alpha values from this buffer! */
1263 for (i = 0; i < count; i++) {
1264 dst[i * 4 + 3] = src[i];
1265 }
1266 }
1267
1268
1269 static void
1270 get_values_alpha8(struct gl_context *ctx, struct gl_renderbuffer *arb, GLuint count,
1271 const GLint x[], const GLint y[], void *values)
1272 {
1273 GLubyte *dst = (GLubyte *) values;
1274 GLuint i;
1275 ASSERT(arb != arb->Wrapped);
1276 ASSERT(arb->DataType == GL_UNSIGNED_BYTE);
1277 /* first, pass the call to the wrapped RGB buffer */
1278 arb->Wrapped->GetValues(ctx, arb->Wrapped, count, x, y, values);
1279 /* second, fill in alpha values from this buffer! */
1280 for (i = 0; i < count; i++) {
1281 const GLubyte *src = (GLubyte *) arb->Data + y[i] * arb->RowStride + x[i];
1282 dst[i * 4 + 3] = *src;
1283 }
1284 }
1285
1286
1287 static void
1288 put_row_alpha8(struct gl_context *ctx, struct gl_renderbuffer *arb, GLuint count,
1289 GLint x, GLint y, const void *values, const GLubyte *mask)
1290 {
1291 const GLubyte *src = (const GLubyte *) values;
1292 GLubyte *dst = (GLubyte *) arb->Data + y * arb->RowStride + x;
1293 GLuint i;
1294 ASSERT(arb != arb->Wrapped);
1295 ASSERT(arb->DataType == GL_UNSIGNED_BYTE);
1296 /* first, pass the call to the wrapped RGB buffer */
1297 arb->Wrapped->PutRow(ctx, arb->Wrapped, count, x, y, values, mask);
1298 /* second, store alpha in our buffer */
1299 for (i = 0; i < count; i++) {
1300 if (!mask || mask[i]) {
1301 dst[i] = src[i * 4 + 3];
1302 }
1303 }
1304 }
1305
1306
1307 static void
1308 put_row_rgb_alpha8(struct gl_context *ctx, struct gl_renderbuffer *arb, GLuint count,
1309 GLint x, GLint y, const void *values, const GLubyte *mask)
1310 {
1311 const GLubyte *src = (const GLubyte *) values;
1312 GLubyte *dst = (GLubyte *) arb->Data + y * arb->RowStride + x;
1313 GLuint i;
1314 ASSERT(arb != arb->Wrapped);
1315 ASSERT(arb->DataType == GL_UNSIGNED_BYTE);
1316 /* first, pass the call to the wrapped RGB buffer */
1317 arb->Wrapped->PutRowRGB(ctx, arb->Wrapped, count, x, y, values, mask);
1318 /* second, store alpha in our buffer */
1319 for (i = 0; i < count; i++) {
1320 if (!mask || mask[i]) {
1321 dst[i] = src[i * 4 + 3];
1322 }
1323 }
1324 }
1325
1326
1327 static void
1328 put_mono_row_alpha8(struct gl_context *ctx, struct gl_renderbuffer *arb, GLuint count,
1329 GLint x, GLint y, const void *value, const GLubyte *mask)
1330 {
1331 const GLubyte val = ((const GLubyte *) value)[3];
1332 GLubyte *dst = (GLubyte *) arb->Data + y * arb->RowStride + x;
1333 ASSERT(arb != arb->Wrapped);
1334 ASSERT(arb->DataType == GL_UNSIGNED_BYTE);
1335 /* first, pass the call to the wrapped RGB buffer */
1336 arb->Wrapped->PutMonoRow(ctx, arb->Wrapped, count, x, y, value, mask);
1337 /* second, store alpha in our buffer */
1338 if (mask) {
1339 GLuint i;
1340 for (i = 0; i < count; i++) {
1341 if (mask[i]) {
1342 dst[i] = val;
1343 }
1344 }
1345 }
1346 else {
1347 memset(dst, val, count);
1348 }
1349 }
1350
1351
1352 static void
1353 put_values_alpha8(struct gl_context *ctx, struct gl_renderbuffer *arb, GLuint count,
1354 const GLint x[], const GLint y[],
1355 const void *values, const GLubyte *mask)
1356 {
1357 const GLubyte *src = (const GLubyte *) values;
1358 GLuint i;
1359 ASSERT(arb != arb->Wrapped);
1360 ASSERT(arb->DataType == GL_UNSIGNED_BYTE);
1361 /* first, pass the call to the wrapped RGB buffer */
1362 arb->Wrapped->PutValues(ctx, arb->Wrapped, count, x, y, values, mask);
1363 /* second, store alpha in our buffer */
1364 for (i = 0; i < count; i++) {
1365 if (!mask || mask[i]) {
1366 GLubyte *dst = (GLubyte *) arb->Data + y[i] * arb->RowStride + x[i];
1367 *dst = src[i * 4 + 3];
1368 }
1369 }
1370 }
1371
1372
1373 static void
1374 put_mono_values_alpha8(struct gl_context *ctx, struct gl_renderbuffer *arb,
1375 GLuint count, const GLint x[], const GLint y[],
1376 const void *value, const GLubyte *mask)
1377 {
1378 const GLubyte val = ((const GLubyte *) value)[3];
1379 GLuint i;
1380 ASSERT(arb != arb->Wrapped);
1381 ASSERT(arb->DataType == GL_UNSIGNED_BYTE);
1382 /* first, pass the call to the wrapped RGB buffer */
1383 arb->Wrapped->PutValues(ctx, arb->Wrapped, count, x, y, value, mask);
1384 /* second, store alpha in our buffer */
1385 for (i = 0; i < count; i++) {
1386 if (!mask || mask[i]) {
1387 GLubyte *dst = (GLubyte *) arb->Data + y[i] * arb->RowStride + x[i];
1388 *dst = val;
1389 }
1390 }
1391 }
1392
1393
1394 static void
1395 copy_buffer_alpha8(struct gl_renderbuffer* dst, struct gl_renderbuffer* src)
1396 {
1397 ASSERT(dst->Format == MESA_FORMAT_A8);
1398 ASSERT(src->Format == MESA_FORMAT_A8);
1399 ASSERT(dst->Width == src->Width);
1400 ASSERT(dst->Height == src->Height);
1401 ASSERT(dst->RowStride == src->RowStride);
1402
1403 memcpy(dst->Data, src->Data, dst->RowStride * dst->Height * sizeof(GLubyte));
1404 }
1405
1406
1407 /**********************************************************************/
1408 /**********************************************************************/
1409 /**********************************************************************/
1410
1411
1412 /**
1413 * Default GetPointer routine. Always return NULL to indicate that
1414 * direct buffer access is not supported.
1415 */
1416 static void *
1417 nop_get_pointer(struct gl_context *ctx, struct gl_renderbuffer *rb, GLint x, GLint y)
1418 {
1419 return NULL;
1420 }
1421
1422
1423 /**
1424 * Initialize the fields of a gl_renderbuffer to default values.
1425 */
1426 void
1427 _mesa_init_renderbuffer(struct gl_renderbuffer *rb, GLuint name)
1428 {
1429 _glthread_INIT_MUTEX(rb->Mutex);
1430
1431 rb->ClassID = 0;
1432 rb->Name = name;
1433 rb->RefCount = 0;
1434 rb->Delete = _mesa_delete_renderbuffer;
1435
1436 /* The rest of these should be set later by the caller of this function or
1437 * the AllocStorage method:
1438 */
1439 rb->AllocStorage = NULL;
1440
1441 rb->Width = 0;
1442 rb->Height = 0;
1443 rb->InternalFormat = GL_NONE;
1444 rb->Format = MESA_FORMAT_NONE;
1445
1446 rb->DataType = GL_NONE;
1447 rb->Data = NULL;
1448
1449 /* Point back to ourself so that we don't have to check for Wrapped==NULL
1450 * all over the drivers.
1451 */
1452 rb->Wrapped = rb;
1453
1454 rb->GetPointer = nop_get_pointer;
1455 rb->GetRow = NULL;
1456 rb->GetValues = NULL;
1457 rb->PutRow = NULL;
1458 rb->PutRowRGB = NULL;
1459 rb->PutMonoRow = NULL;
1460 rb->PutValues = NULL;
1461 rb->PutMonoValues = NULL;
1462 }
1463
1464
1465 /**
1466 * Allocate a new gl_renderbuffer object. This can be used for user-created
1467 * renderbuffers or window-system renderbuffers.
1468 */
1469 struct gl_renderbuffer *
1470 _mesa_new_renderbuffer(struct gl_context *ctx, GLuint name)
1471 {
1472 struct gl_renderbuffer *rb = CALLOC_STRUCT(gl_renderbuffer);
1473 if (rb) {
1474 _mesa_init_renderbuffer(rb, name);
1475 }
1476 return rb;
1477 }
1478
1479
1480 /**
1481 * Delete a gl_framebuffer.
1482 * This is the default function for renderbuffer->Delete().
1483 */
1484 void
1485 _mesa_delete_renderbuffer(struct gl_renderbuffer *rb)
1486 {
1487 if (rb->Data) {
1488 free(rb->Data);
1489 }
1490 free(rb);
1491 }
1492
1493
1494 /**
1495 * Allocate a software-based renderbuffer. This is called via the
1496 * ctx->Driver.NewRenderbuffer() function when the user creates a new
1497 * renderbuffer.
1498 * This would not be used for hardware-based renderbuffers.
1499 */
1500 struct gl_renderbuffer *
1501 _mesa_new_soft_renderbuffer(struct gl_context *ctx, GLuint name)
1502 {
1503 struct gl_renderbuffer *rb = _mesa_new_renderbuffer(ctx, name);
1504 if (rb) {
1505 rb->AllocStorage = _mesa_soft_renderbuffer_storage;
1506 /* Normally, one would setup the PutRow, GetRow, etc functions here.
1507 * But we're doing that in the _mesa_soft_renderbuffer_storage() function
1508 * instead.
1509 */
1510 }
1511 return rb;
1512 }
1513
1514
1515 /**
1516 * Add software-based color renderbuffers to the given framebuffer.
1517 * This is a helper routine for device drivers when creating a
1518 * window system framebuffer (not a user-created render/framebuffer).
1519 * Once this function is called, you can basically forget about this
1520 * renderbuffer; core Mesa will handle all the buffer management and
1521 * rendering!
1522 */
1523 GLboolean
1524 _mesa_add_color_renderbuffers(struct gl_context *ctx, struct gl_framebuffer *fb,
1525 GLuint rgbBits, GLuint alphaBits,
1526 GLboolean frontLeft, GLboolean backLeft,
1527 GLboolean frontRight, GLboolean backRight)
1528 {
1529 gl_buffer_index b;
1530
1531 if (rgbBits > 16 || alphaBits > 16) {
1532 _mesa_problem(ctx,
1533 "Unsupported bit depth in _mesa_add_color_renderbuffers");
1534 return GL_FALSE;
1535 }
1536
1537 assert(MAX_COLOR_ATTACHMENTS >= 4);
1538
1539 for (b = BUFFER_FRONT_LEFT; b <= BUFFER_BACK_RIGHT; b++) {
1540 struct gl_renderbuffer *rb;
1541
1542 if (b == BUFFER_FRONT_LEFT && !frontLeft)
1543 continue;
1544 else if (b == BUFFER_BACK_LEFT && !backLeft)
1545 continue;
1546 else if (b == BUFFER_FRONT_RIGHT && !frontRight)
1547 continue;
1548 else if (b == BUFFER_BACK_RIGHT && !backRight)
1549 continue;
1550
1551 assert(fb->Attachment[b].Renderbuffer == NULL);
1552
1553 rb = _mesa_new_renderbuffer(ctx, 0);
1554 if (!rb) {
1555 _mesa_error(ctx, GL_OUT_OF_MEMORY, "Allocating color buffer");
1556 return GL_FALSE;
1557 }
1558
1559 if (rgbBits <= 8) {
1560 if (alphaBits)
1561 rb->Format = MESA_FORMAT_RGBA8888;
1562 else
1563 rb->Format = MESA_FORMAT_RGB888;
1564 }
1565 else {
1566 assert(rgbBits <= 16);
1567 rb->Format = MESA_FORMAT_NONE; /*XXX RGBA16;*/
1568 }
1569 rb->InternalFormat = GL_RGBA;
1570
1571 rb->AllocStorage = _mesa_soft_renderbuffer_storage;
1572 _mesa_add_renderbuffer(fb, b, rb);
1573 }
1574
1575 return GL_TRUE;
1576 }
1577
1578
1579 /**
1580 * Add software-based alpha renderbuffers to the given framebuffer.
1581 * This is a helper routine for device drivers when creating a
1582 * window system framebuffer (not a user-created render/framebuffer).
1583 * Once this function is called, you can basically forget about this
1584 * renderbuffer; core Mesa will handle all the buffer management and
1585 * rendering!
1586 */
1587 GLboolean
1588 _mesa_add_alpha_renderbuffers(struct gl_context *ctx, struct gl_framebuffer *fb,
1589 GLuint alphaBits,
1590 GLboolean frontLeft, GLboolean backLeft,
1591 GLboolean frontRight, GLboolean backRight)
1592 {
1593 gl_buffer_index b;
1594
1595 /* for window system framebuffers only! */
1596 assert(fb->Name == 0);
1597
1598 if (alphaBits > 8) {
1599 _mesa_problem(ctx,
1600 "Unsupported bit depth in _mesa_add_alpha_renderbuffers");
1601 return GL_FALSE;
1602 }
1603
1604 assert(MAX_COLOR_ATTACHMENTS >= 4);
1605
1606 /* Wrap each of the RGB color buffers with an alpha renderbuffer.
1607 */
1608 for (b = BUFFER_FRONT_LEFT; b <= BUFFER_BACK_RIGHT; b++) {
1609 struct gl_renderbuffer *arb;
1610
1611 if (b == BUFFER_FRONT_LEFT && !frontLeft)
1612 continue;
1613 else if (b == BUFFER_BACK_LEFT && !backLeft)
1614 continue;
1615 else if (b == BUFFER_FRONT_RIGHT && !frontRight)
1616 continue;
1617 else if (b == BUFFER_BACK_RIGHT && !backRight)
1618 continue;
1619
1620 /* the RGB buffer to wrap must already exist!! */
1621 assert(fb->Attachment[b].Renderbuffer);
1622
1623 /* only GLubyte supported for now */
1624 assert(fb->Attachment[b].Renderbuffer->DataType == GL_UNSIGNED_BYTE);
1625
1626 /* allocate alpha renderbuffer */
1627 arb = _mesa_new_renderbuffer(ctx, 0);
1628 if (!arb) {
1629 _mesa_error(ctx, GL_OUT_OF_MEMORY, "Allocating alpha buffer");
1630 return GL_FALSE;
1631 }
1632
1633 /* wrap the alpha renderbuffer around the RGB renderbuffer */
1634 arb->Wrapped = fb->Attachment[b].Renderbuffer;
1635
1636 /* Set up my alphabuffer fields and plug in my functions.
1637 * The functions will put/get the alpha values from/to RGBA arrays
1638 * and then call the wrapped buffer's functions to handle the RGB
1639 * values.
1640 */
1641 arb->InternalFormat = arb->Wrapped->InternalFormat;
1642 arb->Format = MESA_FORMAT_A8;
1643 arb->DataType = arb->Wrapped->DataType;
1644 arb->AllocStorage = alloc_storage_alpha8;
1645 arb->Delete = delete_renderbuffer_alpha8;
1646 arb->GetPointer = get_pointer_alpha8;
1647 arb->GetRow = get_row_alpha8;
1648 arb->GetValues = get_values_alpha8;
1649 arb->PutRow = put_row_alpha8;
1650 arb->PutRowRGB = put_row_rgb_alpha8;
1651 arb->PutMonoRow = put_mono_row_alpha8;
1652 arb->PutValues = put_values_alpha8;
1653 arb->PutMonoValues = put_mono_values_alpha8;
1654
1655 /* clear the pointer to avoid assertion/sanity check failure later */
1656 fb->Attachment[b].Renderbuffer = NULL;
1657
1658 /* plug the alpha renderbuffer into the colorbuffer attachment */
1659 _mesa_add_renderbuffer(fb, b, arb);
1660 }
1661
1662 return GL_TRUE;
1663 }
1664
1665
1666 /**
1667 * For framebuffers that use a software alpha channel wrapper
1668 * created by _mesa_add_alpha_renderbuffer or _mesa_add_soft_renderbuffers,
1669 * copy the back buffer alpha channel into the front buffer alpha channel.
1670 */
1671 void
1672 _mesa_copy_soft_alpha_renderbuffers(struct gl_context *ctx, struct gl_framebuffer *fb)
1673 {
1674 if (fb->Attachment[BUFFER_FRONT_LEFT].Renderbuffer &&
1675 fb->Attachment[BUFFER_BACK_LEFT].Renderbuffer)
1676 copy_buffer_alpha8(fb->Attachment[BUFFER_FRONT_LEFT].Renderbuffer,
1677 fb->Attachment[BUFFER_BACK_LEFT].Renderbuffer);
1678
1679
1680 if (fb->Attachment[BUFFER_FRONT_RIGHT].Renderbuffer &&
1681 fb->Attachment[BUFFER_BACK_RIGHT].Renderbuffer)
1682 copy_buffer_alpha8(fb->Attachment[BUFFER_FRONT_RIGHT].Renderbuffer,
1683 fb->Attachment[BUFFER_BACK_RIGHT].Renderbuffer);
1684 }
1685
1686
1687 /**
1688 * Add a software-based depth renderbuffer to the given framebuffer.
1689 * This is a helper routine for device drivers when creating a
1690 * window system framebuffer (not a user-created render/framebuffer).
1691 * Once this function is called, you can basically forget about this
1692 * renderbuffer; core Mesa will handle all the buffer management and
1693 * rendering!
1694 */
1695 GLboolean
1696 _mesa_add_depth_renderbuffer(struct gl_context *ctx, struct gl_framebuffer *fb,
1697 GLuint depthBits)
1698 {
1699 struct gl_renderbuffer *rb;
1700
1701 if (depthBits > 32) {
1702 _mesa_problem(ctx,
1703 "Unsupported depthBits in _mesa_add_depth_renderbuffer");
1704 return GL_FALSE;
1705 }
1706
1707 assert(fb->Attachment[BUFFER_DEPTH].Renderbuffer == NULL);
1708
1709 rb = _mesa_new_renderbuffer(ctx, 0);
1710 if (!rb) {
1711 _mesa_error(ctx, GL_OUT_OF_MEMORY, "Allocating depth buffer");
1712 return GL_FALSE;
1713 }
1714
1715 if (depthBits <= 16) {
1716 rb->Format = MESA_FORMAT_Z16;
1717 rb->InternalFormat = GL_DEPTH_COMPONENT16;
1718 }
1719 else if (depthBits <= 24) {
1720 rb->Format = MESA_FORMAT_X8_Z24;
1721 rb->InternalFormat = GL_DEPTH_COMPONENT24;
1722 }
1723 else {
1724 rb->Format = MESA_FORMAT_Z32;
1725 rb->InternalFormat = GL_DEPTH_COMPONENT32;
1726 }
1727
1728 rb->AllocStorage = _mesa_soft_renderbuffer_storage;
1729 _mesa_add_renderbuffer(fb, BUFFER_DEPTH, rb);
1730
1731 return GL_TRUE;
1732 }
1733
1734
1735 /**
1736 * Add a software-based stencil renderbuffer to the given framebuffer.
1737 * This is a helper routine for device drivers when creating a
1738 * window system framebuffer (not a user-created render/framebuffer).
1739 * Once this function is called, you can basically forget about this
1740 * renderbuffer; core Mesa will handle all the buffer management and
1741 * rendering!
1742 */
1743 GLboolean
1744 _mesa_add_stencil_renderbuffer(struct gl_context *ctx, struct gl_framebuffer *fb,
1745 GLuint stencilBits)
1746 {
1747 struct gl_renderbuffer *rb;
1748
1749 if (stencilBits > 16) {
1750 _mesa_problem(ctx,
1751 "Unsupported stencilBits in _mesa_add_stencil_renderbuffer");
1752 return GL_FALSE;
1753 }
1754
1755 assert(fb->Attachment[BUFFER_STENCIL].Renderbuffer == NULL);
1756
1757 rb = _mesa_new_renderbuffer(ctx, 0);
1758 if (!rb) {
1759 _mesa_error(ctx, GL_OUT_OF_MEMORY, "Allocating stencil buffer");
1760 return GL_FALSE;
1761 }
1762
1763 assert(stencilBits <= 8);
1764 rb->Format = MESA_FORMAT_S8;
1765 rb->InternalFormat = GL_STENCIL_INDEX8;
1766
1767 rb->AllocStorage = _mesa_soft_renderbuffer_storage;
1768 _mesa_add_renderbuffer(fb, BUFFER_STENCIL, rb);
1769
1770 return GL_TRUE;
1771 }
1772
1773
1774 /**
1775 * Add a software-based accumulation renderbuffer to the given framebuffer.
1776 * This is a helper routine for device drivers when creating a
1777 * window system framebuffer (not a user-created render/framebuffer).
1778 * Once this function is called, you can basically forget about this
1779 * renderbuffer; core Mesa will handle all the buffer management and
1780 * rendering!
1781 */
1782 GLboolean
1783 _mesa_add_accum_renderbuffer(struct gl_context *ctx, struct gl_framebuffer *fb,
1784 GLuint redBits, GLuint greenBits,
1785 GLuint blueBits, GLuint alphaBits)
1786 {
1787 struct gl_renderbuffer *rb;
1788
1789 if (redBits > 16 || greenBits > 16 || blueBits > 16 || alphaBits > 16) {
1790 _mesa_problem(ctx,
1791 "Unsupported accumBits in _mesa_add_accum_renderbuffer");
1792 return GL_FALSE;
1793 }
1794
1795 assert(fb->Attachment[BUFFER_ACCUM].Renderbuffer == NULL);
1796
1797 rb = _mesa_new_renderbuffer(ctx, 0);
1798 if (!rb) {
1799 _mesa_error(ctx, GL_OUT_OF_MEMORY, "Allocating accum buffer");
1800 return GL_FALSE;
1801 }
1802
1803 rb->Format = MESA_FORMAT_SIGNED_RGBA_16;
1804 rb->InternalFormat = GL_RGBA16_SNORM;
1805 rb->AllocStorage = _mesa_soft_renderbuffer_storage;
1806 _mesa_add_renderbuffer(fb, BUFFER_ACCUM, rb);
1807
1808 return GL_TRUE;
1809 }
1810
1811
1812
1813 /**
1814 * Add a software-based aux renderbuffer to the given framebuffer.
1815 * This is a helper routine for device drivers when creating a
1816 * window system framebuffer (not a user-created render/framebuffer).
1817 * Once this function is called, you can basically forget about this
1818 * renderbuffer; core Mesa will handle all the buffer management and
1819 * rendering!
1820 *
1821 * NOTE: color-index aux buffers not supported.
1822 */
1823 GLboolean
1824 _mesa_add_aux_renderbuffers(struct gl_context *ctx, struct gl_framebuffer *fb,
1825 GLuint colorBits, GLuint numBuffers)
1826 {
1827 GLuint i;
1828
1829 if (colorBits > 16) {
1830 _mesa_problem(ctx,
1831 "Unsupported accumBits in _mesa_add_aux_renderbuffers");
1832 return GL_FALSE;
1833 }
1834
1835 assert(numBuffers <= MAX_AUX_BUFFERS);
1836
1837 for (i = 0; i < numBuffers; i++) {
1838 struct gl_renderbuffer *rb = _mesa_new_renderbuffer(ctx, 0);
1839
1840 assert(fb->Attachment[BUFFER_AUX0 + i].Renderbuffer == NULL);
1841
1842 if (!rb) {
1843 _mesa_error(ctx, GL_OUT_OF_MEMORY, "Allocating aux buffer");
1844 return GL_FALSE;
1845 }
1846
1847 assert (colorBits <= 8);
1848 rb->Format = MESA_FORMAT_RGBA8888;
1849 rb->InternalFormat = GL_RGBA;
1850
1851 rb->AllocStorage = _mesa_soft_renderbuffer_storage;
1852 _mesa_add_renderbuffer(fb, BUFFER_AUX0 + i, rb);
1853 }
1854 return GL_TRUE;
1855 }
1856
1857
1858 /**
1859 * Create/attach software-based renderbuffers to the given framebuffer.
1860 * This is a helper routine for device drivers. Drivers can just as well
1861 * call the individual _mesa_add_*_renderbuffer() routines directly.
1862 */
1863 void
1864 _mesa_add_soft_renderbuffers(struct gl_framebuffer *fb,
1865 GLboolean color,
1866 GLboolean depth,
1867 GLboolean stencil,
1868 GLboolean accum,
1869 GLboolean alpha,
1870 GLboolean aux)
1871 {
1872 GLboolean frontLeft = GL_TRUE;
1873 GLboolean backLeft = fb->Visual.doubleBufferMode;
1874 GLboolean frontRight = fb->Visual.stereoMode;
1875 GLboolean backRight = fb->Visual.stereoMode && fb->Visual.doubleBufferMode;
1876
1877 if (color) {
1878 assert(fb->Visual.redBits == fb->Visual.greenBits);
1879 assert(fb->Visual.redBits == fb->Visual.blueBits);
1880 _mesa_add_color_renderbuffers(NULL, fb,
1881 fb->Visual.redBits,
1882 fb->Visual.alphaBits,
1883 frontLeft, backLeft,
1884 frontRight, backRight);
1885 }
1886
1887 if (depth) {
1888 assert(fb->Visual.depthBits > 0);
1889 _mesa_add_depth_renderbuffer(NULL, fb, fb->Visual.depthBits);
1890 }
1891
1892 if (stencil) {
1893 assert(fb->Visual.stencilBits > 0);
1894 _mesa_add_stencil_renderbuffer(NULL, fb, fb->Visual.stencilBits);
1895 }
1896
1897 if (accum) {
1898 assert(fb->Visual.accumRedBits > 0);
1899 assert(fb->Visual.accumGreenBits > 0);
1900 assert(fb->Visual.accumBlueBits > 0);
1901 _mesa_add_accum_renderbuffer(NULL, fb,
1902 fb->Visual.accumRedBits,
1903 fb->Visual.accumGreenBits,
1904 fb->Visual.accumBlueBits,
1905 fb->Visual.accumAlphaBits);
1906 }
1907
1908 if (aux) {
1909 assert(fb->Visual.numAuxBuffers > 0);
1910 _mesa_add_aux_renderbuffers(NULL, fb, fb->Visual.redBits,
1911 fb->Visual.numAuxBuffers);
1912 }
1913
1914 if (alpha) {
1915 assert(fb->Visual.alphaBits > 0);
1916 _mesa_add_alpha_renderbuffers(NULL, fb, fb->Visual.alphaBits,
1917 frontLeft, backLeft,
1918 frontRight, backRight);
1919 }
1920
1921 #if 0
1922 if (multisample) {
1923 /* maybe someday */
1924 }
1925 #endif
1926 }
1927
1928
1929 /**
1930 * Attach a renderbuffer to a framebuffer.
1931 * \param bufferName one of the BUFFER_x tokens
1932 */
1933 void
1934 _mesa_add_renderbuffer(struct gl_framebuffer *fb,
1935 gl_buffer_index bufferName, struct gl_renderbuffer *rb)
1936 {
1937 assert(fb);
1938 assert(rb);
1939 assert(bufferName < BUFFER_COUNT);
1940
1941 /* There should be no previous renderbuffer on this attachment point,
1942 * with the exception of depth/stencil since the same renderbuffer may
1943 * be used for both.
1944 */
1945 assert(bufferName == BUFFER_DEPTH ||
1946 bufferName == BUFFER_STENCIL ||
1947 fb->Attachment[bufferName].Renderbuffer == NULL);
1948
1949 /* winsys vs. user-created buffer cross check */
1950 if (fb->Name) {
1951 assert(rb->Name);
1952 }
1953 else {
1954 assert(!rb->Name);
1955 }
1956
1957 fb->Attachment[bufferName].Type = GL_RENDERBUFFER_EXT;
1958 fb->Attachment[bufferName].Complete = GL_TRUE;
1959 _mesa_reference_renderbuffer(&fb->Attachment[bufferName].Renderbuffer, rb);
1960 }
1961
1962
1963 /**
1964 * Remove the named renderbuffer from the given framebuffer.
1965 * \param bufferName one of the BUFFER_x tokens
1966 */
1967 void
1968 _mesa_remove_renderbuffer(struct gl_framebuffer *fb,
1969 gl_buffer_index bufferName)
1970 {
1971 struct gl_renderbuffer *rb;
1972
1973 assert(bufferName < BUFFER_COUNT);
1974
1975 rb = fb->Attachment[bufferName].Renderbuffer;
1976 if (!rb)
1977 return;
1978
1979 _mesa_reference_renderbuffer(&rb, NULL);
1980
1981 fb->Attachment[bufferName].Renderbuffer = NULL;
1982 }
1983
1984
1985 /**
1986 * Set *ptr to point to rb. If *ptr points to another renderbuffer,
1987 * dereference that buffer first. The new renderbuffer's refcount will
1988 * be incremented. The old renderbuffer's refcount will be decremented.
1989 */
1990 void
1991 _mesa_reference_renderbuffer(struct gl_renderbuffer **ptr,
1992 struct gl_renderbuffer *rb)
1993 {
1994 assert(ptr);
1995 if (*ptr == rb) {
1996 /* no change */
1997 return;
1998 }
1999
2000 if (*ptr) {
2001 /* Unreference the old renderbuffer */
2002 GLboolean deleteFlag = GL_FALSE;
2003 struct gl_renderbuffer *oldRb = *ptr;
2004
2005 _glthread_LOCK_MUTEX(oldRb->Mutex);
2006 ASSERT(oldRb->RefCount > 0);
2007 oldRb->RefCount--;
2008 /*printf("RB DECR %p (%d) to %d\n", (void*) oldRb, oldRb->Name, oldRb->RefCount);*/
2009 deleteFlag = (oldRb->RefCount == 0);
2010 _glthread_UNLOCK_MUTEX(oldRb->Mutex);
2011
2012 if (deleteFlag) {
2013 oldRb->Delete(oldRb);
2014 }
2015
2016 *ptr = NULL;
2017 }
2018 assert(!*ptr);
2019
2020 if (rb) {
2021 /* reference new renderbuffer */
2022 _glthread_LOCK_MUTEX(rb->Mutex);
2023 rb->RefCount++;
2024 /*printf("RB INCR %p (%d) to %d\n", (void*) rb, rb->Name, rb->RefCount);*/
2025 _glthread_UNLOCK_MUTEX(rb->Mutex);
2026 *ptr = rb;
2027 }
2028 }
2029
2030
2031 /**
2032 * Create a new combined depth/stencil renderbuffer for implementing
2033 * the GL_EXT_packed_depth_stencil extension.
2034 * \return new depth/stencil renderbuffer
2035 */
2036 struct gl_renderbuffer *
2037 _mesa_new_depthstencil_renderbuffer(struct gl_context *ctx, GLuint name)
2038 {
2039 struct gl_renderbuffer *dsrb;
2040
2041 dsrb = _mesa_new_renderbuffer(ctx, name);
2042 if (!dsrb)
2043 return NULL;
2044
2045 /* init fields not covered by _mesa_new_renderbuffer() */
2046 dsrb->InternalFormat = GL_DEPTH24_STENCIL8_EXT;
2047 dsrb->Format = MESA_FORMAT_Z24_S8;
2048 dsrb->AllocStorage = _mesa_soft_renderbuffer_storage;
2049
2050 return dsrb;
2051 }