mesa: remove some color index code
[mesa.git] / src / mesa / main / renderbuffer.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 6.5
4 *
5 * Copyright (C) 1999-2006 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /**
27 * Functions for allocating/managing renderbuffers.
28 * Also, routines for reading/writing software-based renderbuffer data as
29 * ubytes, ushorts, uints, etc.
30 *
31 * The 'alpha8' renderbuffer is interesting. It's used to add a software-based
32 * alpha channel to RGB renderbuffers. This is done by wrapping the RGB
33 * renderbuffer with the alpha renderbuffer. We can do this because of the
34 * OO-nature of renderbuffers.
35 *
36 * Down the road we'll use this for run-time support of 8, 16 and 32-bit
37 * color channels. For example, Mesa may use 32-bit/float color channels
38 * internally (swrast) and use wrapper renderbuffers to convert 32-bit
39 * values down to 16 or 8-bit values for whatever kind of framebuffer we have.
40 */
41
42
43 #include "glheader.h"
44 #include "imports.h"
45 #include "context.h"
46 #include "fbobject.h"
47 #include "formats.h"
48 #include "mtypes.h"
49 #include "fbobject.h"
50 #include "renderbuffer.h"
51
52
53 /*
54 * Routines for get/put values in common buffer formats follow.
55 * Someday add support for arbitrary row stride to make them more
56 * flexible.
57 */
58
59 /**********************************************************************
60 * Functions for buffers of 1 X GLubyte values.
61 * Typically stencil.
62 */
63
64 static void *
65 get_pointer_ubyte(GLcontext *ctx, struct gl_renderbuffer *rb,
66 GLint x, GLint y)
67 {
68 if (!rb->Data)
69 return NULL;
70 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
71 /* Can't assert rb->Format since these funcs may be used for serveral
72 * different formats (GL_ALPHA8, GL_STENCIL_INDEX8, etc).
73 */
74 return (GLubyte *) rb->Data + y * rb->Width + x;
75 }
76
77
78 static void
79 get_row_ubyte(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
80 GLint x, GLint y, void *values)
81 {
82 const GLubyte *src = (const GLubyte *) rb->Data + y * rb->Width + x;
83 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
84 memcpy(values, src, count * sizeof(GLubyte));
85 }
86
87
88 static void
89 get_values_ubyte(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
90 const GLint x[], const GLint y[], void *values)
91 {
92 GLubyte *dst = (GLubyte *) values;
93 GLuint i;
94 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
95 for (i = 0; i < count; i++) {
96 const GLubyte *src = (GLubyte *) rb->Data + y[i] * rb->Width + x[i];
97 dst[i] = *src;
98 }
99 }
100
101
102 static void
103 put_row_ubyte(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
104 GLint x, GLint y, const void *values, const GLubyte *mask)
105 {
106 const GLubyte *src = (const GLubyte *) values;
107 GLubyte *dst = (GLubyte *) rb->Data + y * rb->Width + x;
108 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
109 if (mask) {
110 GLuint i;
111 for (i = 0; i < count; i++) {
112 if (mask[i]) {
113 dst[i] = src[i];
114 }
115 }
116 }
117 else {
118 memcpy(dst, values, count * sizeof(GLubyte));
119 }
120 }
121
122
123 static void
124 put_mono_row_ubyte(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
125 GLint x, GLint y, const void *value, const GLubyte *mask)
126 {
127 const GLubyte val = *((const GLubyte *) value);
128 GLubyte *dst = (GLubyte *) rb->Data + y * rb->Width + x;
129 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
130 if (mask) {
131 GLuint i;
132 for (i = 0; i < count; i++) {
133 if (mask[i]) {
134 dst[i] = val;
135 }
136 }
137 }
138 else {
139 GLuint i;
140 for (i = 0; i < count; i++) {
141 dst[i] = val;
142 }
143 }
144 }
145
146
147 static void
148 put_values_ubyte(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
149 const GLint x[], const GLint y[],
150 const void *values, const GLubyte *mask)
151 {
152 const GLubyte *src = (const GLubyte *) values;
153 GLuint i;
154 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
155 for (i = 0; i < count; i++) {
156 if (!mask || mask[i]) {
157 GLubyte *dst = (GLubyte *) rb->Data + y[i] * rb->Width + x[i];
158 *dst = src[i];
159 }
160 }
161 }
162
163
164 static void
165 put_mono_values_ubyte(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
166 const GLint x[], const GLint y[],
167 const void *value, const GLubyte *mask)
168 {
169 const GLubyte val = *((const GLubyte *) value);
170 GLuint i;
171 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
172 for (i = 0; i < count; i++) {
173 if (!mask || mask[i]) {
174 GLubyte *dst = (GLubyte *) rb->Data + y[i] * rb->Width + x[i];
175 *dst = val;
176 }
177 }
178 }
179
180
181 /**********************************************************************
182 * Functions for buffers of 1 X GLushort values.
183 * Typically depth/Z.
184 */
185
186 static void *
187 get_pointer_ushort(GLcontext *ctx, struct gl_renderbuffer *rb,
188 GLint x, GLint y)
189 {
190 if (!rb->Data)
191 return NULL;
192 ASSERT(rb->DataType == GL_UNSIGNED_SHORT);
193 ASSERT(rb->Width > 0);
194 return (GLushort *) rb->Data + y * rb->Width + x;
195 }
196
197
198 static void
199 get_row_ushort(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
200 GLint x, GLint y, void *values)
201 {
202 const void *src = rb->GetPointer(ctx, rb, x, y);
203 ASSERT(rb->DataType == GL_UNSIGNED_SHORT);
204 memcpy(values, src, count * sizeof(GLushort));
205 }
206
207
208 static void
209 get_values_ushort(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
210 const GLint x[], const GLint y[], void *values)
211 {
212 GLushort *dst = (GLushort *) values;
213 GLuint i;
214 ASSERT(rb->DataType == GL_UNSIGNED_SHORT);
215 for (i = 0; i < count; i++) {
216 const GLushort *src = (GLushort *) rb->Data + y[i] * rb->Width + x[i];
217 dst[i] = *src;
218 }
219 }
220
221
222 static void
223 put_row_ushort(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
224 GLint x, GLint y, const void *values, const GLubyte *mask)
225 {
226 const GLushort *src = (const GLushort *) values;
227 GLushort *dst = (GLushort *) rb->Data + y * rb->Width + x;
228 ASSERT(rb->DataType == GL_UNSIGNED_SHORT);
229 if (mask) {
230 GLuint i;
231 for (i = 0; i < count; i++) {
232 if (mask[i]) {
233 dst[i] = src[i];
234 }
235 }
236 }
237 else {
238 memcpy(dst, src, count * sizeof(GLushort));
239 }
240 }
241
242
243 static void
244 put_mono_row_ushort(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
245 GLint x, GLint y, const void *value, const GLubyte *mask)
246 {
247 const GLushort val = *((const GLushort *) value);
248 GLushort *dst = (GLushort *) rb->Data + y * rb->Width + x;
249 ASSERT(rb->DataType == GL_UNSIGNED_SHORT);
250 if (mask) {
251 GLuint i;
252 for (i = 0; i < count; i++) {
253 if (mask[i]) {
254 dst[i] = val;
255 }
256 }
257 }
258 else {
259 GLuint i;
260 for (i = 0; i < count; i++) {
261 dst[i] = val;
262 }
263 }
264 }
265
266
267 static void
268 put_values_ushort(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
269 const GLint x[], const GLint y[], const void *values,
270 const GLubyte *mask)
271 {
272 const GLushort *src = (const GLushort *) values;
273 GLuint i;
274 ASSERT(rb->DataType == GL_UNSIGNED_SHORT);
275 for (i = 0; i < count; i++) {
276 if (!mask || mask[i]) {
277 GLushort *dst = (GLushort *) rb->Data + y[i] * rb->Width + x[i];
278 *dst = src[i];
279 }
280 }
281 }
282
283
284 static void
285 put_mono_values_ushort(GLcontext *ctx, struct gl_renderbuffer *rb,
286 GLuint count, const GLint x[], const GLint y[],
287 const void *value, const GLubyte *mask)
288 {
289 const GLushort val = *((const GLushort *) value);
290 ASSERT(rb->DataType == GL_UNSIGNED_SHORT);
291 if (mask) {
292 GLuint i;
293 for (i = 0; i < count; i++) {
294 if (mask[i]) {
295 GLushort *dst = (GLushort *) rb->Data + y[i] * rb->Width + x[i];
296 *dst = val;
297 }
298 }
299 }
300 else {
301 GLuint i;
302 for (i = 0; i < count; i++) {
303 GLushort *dst = (GLushort *) rb->Data + y[i] * rb->Width + x[i];
304 *dst = val;
305 }
306 }
307 }
308
309
310 /**********************************************************************
311 * Functions for buffers of 1 X GLuint values.
312 * Typically depth/Z or color index.
313 */
314
315 static void *
316 get_pointer_uint(GLcontext *ctx, struct gl_renderbuffer *rb,
317 GLint x, GLint y)
318 {
319 if (!rb->Data)
320 return NULL;
321 ASSERT(rb->DataType == GL_UNSIGNED_INT ||
322 rb->DataType == GL_UNSIGNED_INT_24_8_EXT);
323 return (GLuint *) rb->Data + y * rb->Width + x;
324 }
325
326
327 static void
328 get_row_uint(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
329 GLint x, GLint y, void *values)
330 {
331 const void *src = rb->GetPointer(ctx, rb, x, y);
332 ASSERT(rb->DataType == GL_UNSIGNED_INT ||
333 rb->DataType == GL_UNSIGNED_INT_24_8_EXT);
334 memcpy(values, src, count * sizeof(GLuint));
335 }
336
337
338 static void
339 get_values_uint(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
340 const GLint x[], const GLint y[], void *values)
341 {
342 GLuint *dst = (GLuint *) values;
343 GLuint i;
344 ASSERT(rb->DataType == GL_UNSIGNED_INT ||
345 rb->DataType == GL_UNSIGNED_INT_24_8_EXT);
346 for (i = 0; i < count; i++) {
347 const GLuint *src = (GLuint *) rb->Data + y[i] * rb->Width + x[i];
348 dst[i] = *src;
349 }
350 }
351
352
353 static void
354 put_row_uint(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
355 GLint x, GLint y, const void *values, const GLubyte *mask)
356 {
357 const GLuint *src = (const GLuint *) values;
358 GLuint *dst = (GLuint *) rb->Data + y * rb->Width + x;
359 ASSERT(rb->DataType == GL_UNSIGNED_INT ||
360 rb->DataType == GL_UNSIGNED_INT_24_8_EXT);
361 if (mask) {
362 GLuint i;
363 for (i = 0; i < count; i++) {
364 if (mask[i]) {
365 dst[i] = src[i];
366 }
367 }
368 }
369 else {
370 memcpy(dst, src, count * sizeof(GLuint));
371 }
372 }
373
374
375 static void
376 put_mono_row_uint(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
377 GLint x, GLint y, const void *value, const GLubyte *mask)
378 {
379 const GLuint val = *((const GLuint *) value);
380 GLuint *dst = (GLuint *) rb->Data + y * rb->Width + x;
381 ASSERT(rb->DataType == GL_UNSIGNED_INT ||
382 rb->DataType == GL_UNSIGNED_INT_24_8_EXT);
383 if (mask) {
384 GLuint i;
385 for (i = 0; i < count; i++) {
386 if (mask[i]) {
387 dst[i] = val;
388 }
389 }
390 }
391 else {
392 GLuint i;
393 for (i = 0; i < count; i++) {
394 dst[i] = val;
395 }
396 }
397 }
398
399
400 static void
401 put_values_uint(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
402 const GLint x[], const GLint y[], const void *values,
403 const GLubyte *mask)
404 {
405 const GLuint *src = (const GLuint *) values;
406 GLuint i;
407 ASSERT(rb->DataType == GL_UNSIGNED_INT ||
408 rb->DataType == GL_UNSIGNED_INT_24_8_EXT);
409 for (i = 0; i < count; i++) {
410 if (!mask || mask[i]) {
411 GLuint *dst = (GLuint *) rb->Data + y[i] * rb->Width + x[i];
412 *dst = src[i];
413 }
414 }
415 }
416
417
418 static void
419 put_mono_values_uint(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
420 const GLint x[], const GLint y[], const void *value,
421 const GLubyte *mask)
422 {
423 const GLuint val = *((const GLuint *) value);
424 GLuint i;
425 ASSERT(rb->DataType == GL_UNSIGNED_INT ||
426 rb->DataType == GL_UNSIGNED_INT_24_8_EXT);
427 for (i = 0; i < count; i++) {
428 if (!mask || mask[i]) {
429 GLuint *dst = (GLuint *) rb->Data + y[i] * rb->Width + x[i];
430 *dst = val;
431 }
432 }
433 }
434
435
436 /**********************************************************************
437 * Functions for buffers of 3 X GLubyte (or GLbyte) values.
438 * Typically color buffers.
439 * NOTE: the incoming and outgoing colors are RGBA! We ignore incoming
440 * alpha values and return 255 for outgoing alpha values.
441 */
442
443 static void *
444 get_pointer_ubyte3(GLcontext *ctx, struct gl_renderbuffer *rb,
445 GLint x, GLint y)
446 {
447 ASSERT(rb->Format == MESA_FORMAT_RGB888);
448 /* No direct access since this buffer is RGB but caller will be
449 * treating it as if it were RGBA.
450 */
451 return NULL;
452 }
453
454
455 static void
456 get_row_ubyte3(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
457 GLint x, GLint y, void *values)
458 {
459 const GLubyte *src = (const GLubyte *) rb->Data + 3 * (y * rb->Width + x);
460 GLubyte *dst = (GLubyte *) values;
461 GLuint i;
462 ASSERT(rb->Format == MESA_FORMAT_RGB888);
463 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
464 for (i = 0; i < count; i++) {
465 dst[i * 4 + 0] = src[i * 3 + 0];
466 dst[i * 4 + 1] = src[i * 3 + 1];
467 dst[i * 4 + 2] = src[i * 3 + 2];
468 dst[i * 4 + 3] = 255;
469 }
470 }
471
472
473 static void
474 get_values_ubyte3(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
475 const GLint x[], const GLint y[], void *values)
476 {
477 GLubyte *dst = (GLubyte *) values;
478 GLuint i;
479 ASSERT(rb->Format == MESA_FORMAT_RGB888);
480 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
481 for (i = 0; i < count; i++) {
482 const GLubyte *src
483 = (GLubyte *) rb->Data + 3 * (y[i] * rb->Width + x[i]);
484 dst[i * 4 + 0] = src[0];
485 dst[i * 4 + 1] = src[1];
486 dst[i * 4 + 2] = src[2];
487 dst[i * 4 + 3] = 255;
488 }
489 }
490
491
492 static void
493 put_row_ubyte3(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
494 GLint x, GLint y, const void *values, const GLubyte *mask)
495 {
496 /* note: incoming values are RGB+A! */
497 const GLubyte *src = (const GLubyte *) values;
498 GLubyte *dst = (GLubyte *) rb->Data + 3 * (y * rb->Width + x);
499 GLuint i;
500 ASSERT(rb->Format == MESA_FORMAT_RGB888);
501 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
502 for (i = 0; i < count; i++) {
503 if (!mask || mask[i]) {
504 dst[i * 3 + 0] = src[i * 4 + 0];
505 dst[i * 3 + 1] = src[i * 4 + 1];
506 dst[i * 3 + 2] = src[i * 4 + 2];
507 }
508 }
509 }
510
511
512 static void
513 put_row_rgb_ubyte3(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
514 GLint x, GLint y, const void *values, const GLubyte *mask)
515 {
516 /* note: incoming values are RGB+A! */
517 const GLubyte *src = (const GLubyte *) values;
518 GLubyte *dst = (GLubyte *) rb->Data + 3 * (y * rb->Width + x);
519 GLuint i;
520 ASSERT(rb->Format == MESA_FORMAT_RGB888);
521 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
522 for (i = 0; i < count; i++) {
523 if (!mask || mask[i]) {
524 dst[i * 3 + 0] = src[i * 3 + 0];
525 dst[i * 3 + 1] = src[i * 3 + 1];
526 dst[i * 3 + 2] = src[i * 3 + 2];
527 }
528 }
529 }
530
531
532 static void
533 put_mono_row_ubyte3(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
534 GLint x, GLint y, const void *value, const GLubyte *mask)
535 {
536 /* note: incoming value is RGB+A! */
537 const GLubyte val0 = ((const GLubyte *) value)[0];
538 const GLubyte val1 = ((const GLubyte *) value)[1];
539 const GLubyte val2 = ((const GLubyte *) value)[2];
540 GLubyte *dst = (GLubyte *) rb->Data + 3 * (y * rb->Width + x);
541 ASSERT(rb->Format == MESA_FORMAT_RGB888);
542 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
543 if (!mask && val0 == val1 && val1 == val2) {
544 /* optimized case */
545 memset(dst, val0, 3 * count);
546 }
547 else {
548 GLuint i;
549 for (i = 0; i < count; i++) {
550 if (!mask || mask[i]) {
551 dst[i * 3 + 0] = val0;
552 dst[i * 3 + 1] = val1;
553 dst[i * 3 + 2] = val2;
554 }
555 }
556 }
557 }
558
559
560 static void
561 put_values_ubyte3(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
562 const GLint x[], const GLint y[], const void *values,
563 const GLubyte *mask)
564 {
565 /* note: incoming values are RGB+A! */
566 const GLubyte *src = (const GLubyte *) values;
567 GLuint i;
568 ASSERT(rb->Format == MESA_FORMAT_RGB888);
569 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
570 for (i = 0; i < count; i++) {
571 if (!mask || mask[i]) {
572 GLubyte *dst = (GLubyte *) rb->Data + 3 * (y[i] * rb->Width + x[i]);
573 dst[0] = src[i * 4 + 0];
574 dst[1] = src[i * 4 + 1];
575 dst[2] = src[i * 4 + 2];
576 }
577 }
578 }
579
580
581 static void
582 put_mono_values_ubyte3(GLcontext *ctx, struct gl_renderbuffer *rb,
583 GLuint count, const GLint x[], const GLint y[],
584 const void *value, const GLubyte *mask)
585 {
586 /* note: incoming value is RGB+A! */
587 const GLubyte val0 = ((const GLubyte *) value)[0];
588 const GLubyte val1 = ((const GLubyte *) value)[1];
589 const GLubyte val2 = ((const GLubyte *) value)[2];
590 GLuint i;
591 ASSERT(rb->Format == MESA_FORMAT_RGB888);
592 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
593 for (i = 0; i < count; i++) {
594 if (!mask || mask[i]) {
595 GLubyte *dst = (GLubyte *) rb->Data + 3 * (y[i] * rb->Width + x[i]);
596 dst[0] = val0;
597 dst[1] = val1;
598 dst[2] = val2;
599 }
600 }
601 }
602
603
604 /**********************************************************************
605 * Functions for buffers of 4 X GLubyte (or GLbyte) values.
606 * Typically color buffers.
607 */
608
609 static void *
610 get_pointer_ubyte4(GLcontext *ctx, struct gl_renderbuffer *rb,
611 GLint x, GLint y)
612 {
613 if (!rb->Data)
614 return NULL;
615 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
616 ASSERT(rb->Format == MESA_FORMAT_RGBA8888);
617 return (GLubyte *) rb->Data + 4 * (y * rb->Width + x);
618 }
619
620
621 static void
622 get_row_ubyte4(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
623 GLint x, GLint y, void *values)
624 {
625 const GLubyte *src = (const GLubyte *) rb->Data + 4 * (y * rb->Width + x);
626 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
627 ASSERT(rb->Format == MESA_FORMAT_RGBA8888);
628 memcpy(values, src, 4 * count * sizeof(GLubyte));
629 }
630
631
632 static void
633 get_values_ubyte4(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
634 const GLint x[], const GLint y[], void *values)
635 {
636 /* treat 4*GLubyte as 1*GLuint */
637 GLuint *dst = (GLuint *) values;
638 GLuint i;
639 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
640 ASSERT(rb->Format == MESA_FORMAT_RGBA8888);
641 for (i = 0; i < count; i++) {
642 const GLuint *src = (GLuint *) rb->Data + (y[i] * rb->Width + x[i]);
643 dst[i] = *src;
644 }
645 }
646
647
648 static void
649 put_row_ubyte4(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
650 GLint x, GLint y, const void *values, const GLubyte *mask)
651 {
652 /* treat 4*GLubyte as 1*GLuint */
653 const GLuint *src = (const GLuint *) values;
654 GLuint *dst = (GLuint *) rb->Data + (y * rb->Width + x);
655 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
656 ASSERT(rb->Format == MESA_FORMAT_RGBA8888);
657 if (mask) {
658 GLuint i;
659 for (i = 0; i < count; i++) {
660 if (mask[i]) {
661 dst[i] = src[i];
662 }
663 }
664 }
665 else {
666 memcpy(dst, src, 4 * count * sizeof(GLubyte));
667 }
668 }
669
670
671 static void
672 put_row_rgb_ubyte4(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
673 GLint x, GLint y, const void *values, const GLubyte *mask)
674 {
675 /* Store RGB values in RGBA buffer */
676 const GLubyte *src = (const GLubyte *) values;
677 GLubyte *dst = (GLubyte *) rb->Data + 4 * (y * rb->Width + x);
678 GLuint i;
679 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
680 ASSERT(rb->Format == MESA_FORMAT_RGBA8888);
681 for (i = 0; i < count; i++) {
682 if (!mask || mask[i]) {
683 dst[i * 4 + 0] = src[i * 3 + 0];
684 dst[i * 4 + 1] = src[i * 3 + 1];
685 dst[i * 4 + 2] = src[i * 3 + 2];
686 dst[i * 4 + 3] = 0xff;
687 }
688 }
689 }
690
691
692 static void
693 put_mono_row_ubyte4(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
694 GLint x, GLint y, const void *value, const GLubyte *mask)
695 {
696 /* treat 4*GLubyte as 1*GLuint */
697 const GLuint val = *((const GLuint *) value);
698 GLuint *dst = (GLuint *) rb->Data + (y * rb->Width + x);
699 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
700 ASSERT(rb->Format == MESA_FORMAT_RGBA8888);
701 if (!mask && val == 0) {
702 /* common case */
703 memset(dst, 0, count * 4 * sizeof(GLubyte));
704 }
705 else {
706 /* general case */
707 if (mask) {
708 GLuint i;
709 for (i = 0; i < count; i++) {
710 if (mask[i]) {
711 dst[i] = val;
712 }
713 }
714 }
715 else {
716 GLuint i;
717 for (i = 0; i < count; i++) {
718 dst[i] = val;
719 }
720 }
721 }
722 }
723
724
725 static void
726 put_values_ubyte4(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
727 const GLint x[], const GLint y[], const void *values,
728 const GLubyte *mask)
729 {
730 /* treat 4*GLubyte as 1*GLuint */
731 const GLuint *src = (const GLuint *) values;
732 GLuint i;
733 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
734 ASSERT(rb->Format == MESA_FORMAT_RGBA8888);
735 for (i = 0; i < count; i++) {
736 if (!mask || mask[i]) {
737 GLuint *dst = (GLuint *) rb->Data + (y[i] * rb->Width + x[i]);
738 *dst = src[i];
739 }
740 }
741 }
742
743
744 static void
745 put_mono_values_ubyte4(GLcontext *ctx, struct gl_renderbuffer *rb,
746 GLuint count, const GLint x[], const GLint y[],
747 const void *value, const GLubyte *mask)
748 {
749 /* treat 4*GLubyte as 1*GLuint */
750 const GLuint val = *((const GLuint *) value);
751 GLuint i;
752 ASSERT(rb->DataType == GL_UNSIGNED_BYTE);
753 ASSERT(rb->Format == MESA_FORMAT_RGBA8888);
754 for (i = 0; i < count; i++) {
755 if (!mask || mask[i]) {
756 GLuint *dst = (GLuint *) rb->Data + (y[i] * rb->Width + x[i]);
757 *dst = val;
758 }
759 }
760 }
761
762
763 /**********************************************************************
764 * Functions for buffers of 4 X GLushort (or GLshort) values.
765 * Typically accum buffer.
766 */
767
768 static void *
769 get_pointer_ushort4(GLcontext *ctx, struct gl_renderbuffer *rb,
770 GLint x, GLint y)
771 {
772 if (!rb->Data)
773 return NULL;
774 ASSERT(rb->DataType == GL_UNSIGNED_SHORT || rb->DataType == GL_SHORT);
775 return (GLushort *) rb->Data + 4 * (y * rb->Width + x);
776 }
777
778
779 static void
780 get_row_ushort4(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
781 GLint x, GLint y, void *values)
782 {
783 const GLshort *src = (const GLshort *) rb->Data + 4 * (y * rb->Width + x);
784 ASSERT(rb->DataType == GL_UNSIGNED_SHORT || rb->DataType == GL_SHORT);
785 memcpy(values, src, 4 * count * sizeof(GLshort));
786 }
787
788
789 static void
790 get_values_ushort4(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
791 const GLint x[], const GLint y[], void *values)
792 {
793 GLushort *dst = (GLushort *) values;
794 GLuint i;
795 ASSERT(rb->DataType == GL_UNSIGNED_SHORT || rb->DataType == GL_SHORT);
796 for (i = 0; i < count; i++) {
797 const GLushort *src
798 = (GLushort *) rb->Data + 4 * (y[i] * rb->Width + x[i]);
799 dst[i] = *src;
800 }
801 }
802
803
804 static void
805 put_row_ushort4(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
806 GLint x, GLint y, const void *values, const GLubyte *mask)
807 {
808 const GLushort *src = (const GLushort *) values;
809 GLushort *dst = (GLushort *) rb->Data + 4 * (y * rb->Width + x);
810 ASSERT(rb->DataType == GL_UNSIGNED_SHORT || rb->DataType == GL_SHORT);
811 if (mask) {
812 GLuint i;
813 for (i = 0; i < count; i++) {
814 if (mask[i]) {
815 dst[i * 4 + 0] = src[i * 4 + 0];
816 dst[i * 4 + 1] = src[i * 4 + 1];
817 dst[i * 4 + 2] = src[i * 4 + 2];
818 dst[i * 4 + 3] = src[i * 4 + 3];
819 }
820 }
821 }
822 else {
823 memcpy(dst, src, 4 * count * sizeof(GLushort));
824 }
825 }
826
827
828 static void
829 put_row_rgb_ushort4(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
830 GLint x, GLint y, const void *values, const GLubyte *mask)
831 {
832 /* Put RGB values in RGBA buffer */
833 const GLushort *src = (const GLushort *) values;
834 GLushort *dst = (GLushort *) rb->Data + 4 * (y * rb->Width + x);
835 ASSERT(rb->DataType == GL_UNSIGNED_SHORT || rb->DataType == GL_SHORT);
836 if (mask) {
837 GLuint i;
838 for (i = 0; i < count; i++) {
839 if (mask[i]) {
840 dst[i * 4 + 0] = src[i * 3 + 0];
841 dst[i * 4 + 1] = src[i * 3 + 1];
842 dst[i * 4 + 2] = src[i * 3 + 2];
843 dst[i * 4 + 3] = 0xffff;
844 }
845 }
846 }
847 else {
848 memcpy(dst, src, 4 * count * sizeof(GLushort));
849 }
850 }
851
852
853 static void
854 put_mono_row_ushort4(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
855 GLint x, GLint y, const void *value, const GLubyte *mask)
856 {
857 const GLushort val0 = ((const GLushort *) value)[0];
858 const GLushort val1 = ((const GLushort *) value)[1];
859 const GLushort val2 = ((const GLushort *) value)[2];
860 const GLushort val3 = ((const GLushort *) value)[3];
861 GLushort *dst = (GLushort *) rb->Data + 4 * (y * rb->Width + x);
862 ASSERT(rb->DataType == GL_UNSIGNED_SHORT || rb->DataType == GL_SHORT);
863 if (!mask && val0 == 0 && val1 == 0 && val2 == 0 && val3 == 0) {
864 /* common case for clearing accum buffer */
865 memset(dst, 0, count * 4 * sizeof(GLushort));
866 }
867 else {
868 GLuint i;
869 for (i = 0; i < count; i++) {
870 if (!mask || mask[i]) {
871 dst[i * 4 + 0] = val0;
872 dst[i * 4 + 1] = val1;
873 dst[i * 4 + 2] = val2;
874 dst[i * 4 + 3] = val3;
875 }
876 }
877 }
878 }
879
880
881 static void
882 put_values_ushort4(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count,
883 const GLint x[], const GLint y[], const void *values,
884 const GLubyte *mask)
885 {
886 const GLushort *src = (const GLushort *) values;
887 GLuint i;
888 ASSERT(rb->DataType == GL_UNSIGNED_SHORT || rb->DataType == GL_SHORT);
889 for (i = 0; i < count; i++) {
890 if (!mask || mask[i]) {
891 GLushort *dst = (GLushort *) rb->Data + 4 * (y[i] * rb->Width + x[i]);
892 dst[0] = src[i * 4 + 0];
893 dst[1] = src[i * 4 + 1];
894 dst[2] = src[i * 4 + 2];
895 dst[3] = src[i * 4 + 3];
896 }
897 }
898 }
899
900
901 static void
902 put_mono_values_ushort4(GLcontext *ctx, struct gl_renderbuffer *rb,
903 GLuint count, const GLint x[], const GLint y[],
904 const void *value, const GLubyte *mask)
905 {
906 const GLushort val0 = ((const GLushort *) value)[0];
907 const GLushort val1 = ((const GLushort *) value)[1];
908 const GLushort val2 = ((const GLushort *) value)[2];
909 const GLushort val3 = ((const GLushort *) value)[3];
910 GLuint i;
911 ASSERT(rb->DataType == GL_UNSIGNED_SHORT || rb->DataType == GL_SHORT);
912 for (i = 0; i < count; i++) {
913 if (!mask || mask[i]) {
914 GLushort *dst = (GLushort *) rb->Data + 4 * (y[i] * rb->Width + x[i]);
915 dst[0] = val0;
916 dst[1] = val1;
917 dst[2] = val2;
918 dst[3] = val3;
919 }
920 }
921 }
922
923
924
925 /**
926 * This is a software fallback for the gl_renderbuffer->AllocStorage
927 * function.
928 * Device drivers will typically override this function for the buffers
929 * which it manages (typically color buffers, Z and stencil).
930 * Other buffers (like software accumulation and aux buffers) which the driver
931 * doesn't manage can be handled with this function.
932 *
933 * This one multi-purpose function can allocate stencil, depth, accum, color
934 * or color-index buffers!
935 *
936 * This function also plugs in the appropriate GetPointer, Get/PutRow and
937 * Get/PutValues functions.
938 */
939 GLboolean
940 _mesa_soft_renderbuffer_storage(GLcontext *ctx, struct gl_renderbuffer *rb,
941 GLenum internalFormat,
942 GLuint width, GLuint height)
943 {
944 GLuint pixelSize;
945
946 switch (internalFormat) {
947 case GL_RGB:
948 case GL_R3_G3_B2:
949 case GL_RGB4:
950 case GL_RGB5:
951 case GL_RGB8:
952 case GL_RGB10:
953 case GL_RGB12:
954 case GL_RGB16:
955 rb->Format = MESA_FORMAT_RGB888;
956 rb->DataType = GL_UNSIGNED_BYTE;
957 rb->GetPointer = get_pointer_ubyte3;
958 rb->GetRow = get_row_ubyte3;
959 rb->GetValues = get_values_ubyte3;
960 rb->PutRow = put_row_ubyte3;
961 rb->PutRowRGB = put_row_rgb_ubyte3;
962 rb->PutMonoRow = put_mono_row_ubyte3;
963 rb->PutValues = put_values_ubyte3;
964 rb->PutMonoValues = put_mono_values_ubyte3;
965 pixelSize = 3 * sizeof(GLubyte);
966 break;
967 case GL_RGBA:
968 case GL_RGBA2:
969 case GL_RGBA4:
970 case GL_RGB5_A1:
971 case GL_RGBA8:
972 #if 1
973 case GL_RGB10_A2:
974 case GL_RGBA12:
975 #endif
976 rb->Format = MESA_FORMAT_RGBA8888;
977 rb->DataType = GL_UNSIGNED_BYTE;
978 rb->GetPointer = get_pointer_ubyte4;
979 rb->GetRow = get_row_ubyte4;
980 rb->GetValues = get_values_ubyte4;
981 rb->PutRow = put_row_ubyte4;
982 rb->PutRowRGB = put_row_rgb_ubyte4;
983 rb->PutMonoRow = put_mono_row_ubyte4;
984 rb->PutValues = put_values_ubyte4;
985 rb->PutMonoValues = put_mono_values_ubyte4;
986 pixelSize = 4 * sizeof(GLubyte);
987 break;
988 case GL_RGBA16:
989 /* for accum buffer */
990 rb->Format = MESA_FORMAT_SIGNED_RGBA_16;
991 rb->DataType = GL_SHORT;
992 rb->GetPointer = get_pointer_ushort4;
993 rb->GetRow = get_row_ushort4;
994 rb->GetValues = get_values_ushort4;
995 rb->PutRow = put_row_ushort4;
996 rb->PutRowRGB = put_row_rgb_ushort4;
997 rb->PutMonoRow = put_mono_row_ushort4;
998 rb->PutValues = put_values_ushort4;
999 rb->PutMonoValues = put_mono_values_ushort4;
1000 pixelSize = 4 * sizeof(GLushort);
1001 break;
1002 #if 0
1003 case GL_ALPHA8:
1004 rb->Format = MESA_FORMAT_A8;
1005 rb->DataType = GL_UNSIGNED_BYTE;
1006 rb->GetPointer = get_pointer_alpha8;
1007 rb->GetRow = get_row_alpha8;
1008 rb->GetValues = get_values_alpha8;
1009 rb->PutRow = put_row_alpha8;
1010 rb->PutRowRGB = NULL;
1011 rb->PutMonoRow = put_mono_row_alpha8;
1012 rb->PutValues = put_values_alpha8;
1013 rb->PutMonoValues = put_mono_values_alpha8;
1014 pixelSize = sizeof(GLubyte);
1015 break;
1016 #endif
1017 case GL_STENCIL_INDEX:
1018 case GL_STENCIL_INDEX1_EXT:
1019 case GL_STENCIL_INDEX4_EXT:
1020 case GL_STENCIL_INDEX8_EXT:
1021 case GL_STENCIL_INDEX16_EXT:
1022 rb->Format = MESA_FORMAT_S8;
1023 rb->DataType = GL_UNSIGNED_BYTE;
1024 rb->GetPointer = get_pointer_ubyte;
1025 rb->GetRow = get_row_ubyte;
1026 rb->GetValues = get_values_ubyte;
1027 rb->PutRow = put_row_ubyte;
1028 rb->PutRowRGB = NULL;
1029 rb->PutMonoRow = put_mono_row_ubyte;
1030 rb->PutValues = put_values_ubyte;
1031 rb->PutMonoValues = put_mono_values_ubyte;
1032 pixelSize = sizeof(GLubyte);
1033 break;
1034 case GL_DEPTH_COMPONENT:
1035 case GL_DEPTH_COMPONENT16:
1036 rb->Format = MESA_FORMAT_Z16;
1037 rb->DataType = GL_UNSIGNED_SHORT;
1038 rb->GetPointer = get_pointer_ushort;
1039 rb->GetRow = get_row_ushort;
1040 rb->GetValues = get_values_ushort;
1041 rb->PutRow = put_row_ushort;
1042 rb->PutRowRGB = NULL;
1043 rb->PutMonoRow = put_mono_row_ushort;
1044 rb->PutValues = put_values_ushort;
1045 rb->PutMonoValues = put_mono_values_ushort;
1046 pixelSize = sizeof(GLushort);
1047 break;
1048 case GL_DEPTH_COMPONENT24:
1049 rb->DataType = GL_UNSIGNED_INT;
1050 rb->GetPointer = get_pointer_uint;
1051 rb->GetRow = get_row_uint;
1052 rb->GetValues = get_values_uint;
1053 rb->PutRow = put_row_uint;
1054 rb->PutRowRGB = NULL;
1055 rb->PutMonoRow = put_mono_row_uint;
1056 rb->PutValues = put_values_uint;
1057 rb->PutMonoValues = put_mono_values_uint;
1058 rb->Format = MESA_FORMAT_X8_Z24;
1059 pixelSize = sizeof(GLuint);
1060 break;
1061 case GL_DEPTH_COMPONENT32:
1062 rb->DataType = GL_UNSIGNED_INT;
1063 rb->GetPointer = get_pointer_uint;
1064 rb->GetRow = get_row_uint;
1065 rb->GetValues = get_values_uint;
1066 rb->PutRow = put_row_uint;
1067 rb->PutRowRGB = NULL;
1068 rb->PutMonoRow = put_mono_row_uint;
1069 rb->PutValues = put_values_uint;
1070 rb->PutMonoValues = put_mono_values_uint;
1071 rb->Format = MESA_FORMAT_Z32;
1072 pixelSize = sizeof(GLuint);
1073 break;
1074 case GL_DEPTH_STENCIL_EXT:
1075 case GL_DEPTH24_STENCIL8_EXT:
1076 rb->Format = MESA_FORMAT_Z24_S8;
1077 rb->DataType = GL_UNSIGNED_INT_24_8_EXT;
1078 rb->GetPointer = get_pointer_uint;
1079 rb->GetRow = get_row_uint;
1080 rb->GetValues = get_values_uint;
1081 rb->PutRow = put_row_uint;
1082 rb->PutRowRGB = NULL;
1083 rb->PutMonoRow = put_mono_row_uint;
1084 rb->PutValues = put_values_uint;
1085 rb->PutMonoValues = put_mono_values_uint;
1086 pixelSize = sizeof(GLuint);
1087 break;
1088 default:
1089 _mesa_problem(ctx, "Bad internalFormat in _mesa_soft_renderbuffer_storage");
1090 return GL_FALSE;
1091 }
1092
1093 ASSERT(rb->DataType);
1094 ASSERT(rb->GetPointer);
1095 ASSERT(rb->GetRow);
1096 ASSERT(rb->GetValues);
1097 ASSERT(rb->PutRow);
1098 ASSERT(rb->PutMonoRow);
1099 ASSERT(rb->PutValues);
1100 ASSERT(rb->PutMonoValues);
1101
1102 /* free old buffer storage */
1103 if (rb->Data) {
1104 free(rb->Data);
1105 rb->Data = NULL;
1106 }
1107
1108 if (width > 0 && height > 0) {
1109 /* allocate new buffer storage */
1110 rb->Data = malloc(width * height * pixelSize);
1111
1112 if (rb->Data == NULL) {
1113 rb->Width = 0;
1114 rb->Height = 0;
1115 _mesa_error(ctx, GL_OUT_OF_MEMORY,
1116 "software renderbuffer allocation (%d x %d x %d)",
1117 width, height, pixelSize);
1118 return GL_FALSE;
1119 }
1120 }
1121
1122 rb->Width = width;
1123 rb->Height = height;
1124 rb->_BaseFormat = _mesa_base_fbo_format(ctx, internalFormat);
1125 ASSERT(rb->_BaseFormat);
1126
1127 return GL_TRUE;
1128 }
1129
1130
1131
1132 /**********************************************************************/
1133 /**********************************************************************/
1134 /**********************************************************************/
1135
1136
1137 /**
1138 * Here we utilize the gl_renderbuffer->Wrapper field to put an alpha
1139 * buffer wrapper around an existing RGB renderbuffer (hw or sw).
1140 *
1141 * When PutRow is called (for example), we store the alpha values in
1142 * this buffer, then pass on the PutRow call to the wrapped RGB
1143 * buffer.
1144 */
1145
1146
1147 static GLboolean
1148 alloc_storage_alpha8(GLcontext *ctx, struct gl_renderbuffer *arb,
1149 GLenum internalFormat, GLuint width, GLuint height)
1150 {
1151 ASSERT(arb != arb->Wrapped);
1152 ASSERT(arb->Format == MESA_FORMAT_A8);
1153
1154 /* first, pass the call to the wrapped RGB buffer */
1155 if (!arb->Wrapped->AllocStorage(ctx, arb->Wrapped, internalFormat,
1156 width, height)) {
1157 return GL_FALSE;
1158 }
1159
1160 /* next, resize my alpha buffer */
1161 if (arb->Data) {
1162 free(arb->Data);
1163 }
1164
1165 arb->Data = malloc(width * height * sizeof(GLubyte));
1166 if (arb->Data == NULL) {
1167 arb->Width = 0;
1168 arb->Height = 0;
1169 _mesa_error(ctx, GL_OUT_OF_MEMORY, "software alpha buffer allocation");
1170 return GL_FALSE;
1171 }
1172
1173 arb->Width = width;
1174 arb->Height = height;
1175
1176 return GL_TRUE;
1177 }
1178
1179
1180 /**
1181 * Delete an alpha_renderbuffer object, as well as the wrapped RGB buffer.
1182 */
1183 static void
1184 delete_renderbuffer_alpha8(struct gl_renderbuffer *arb)
1185 {
1186 if (arb->Data) {
1187 free(arb->Data);
1188 }
1189 ASSERT(arb->Wrapped);
1190 ASSERT(arb != arb->Wrapped);
1191 arb->Wrapped->Delete(arb->Wrapped);
1192 arb->Wrapped = NULL;
1193 free(arb);
1194 }
1195
1196
1197 static void *
1198 get_pointer_alpha8(GLcontext *ctx, struct gl_renderbuffer *arb,
1199 GLint x, GLint y)
1200 {
1201 return NULL; /* don't allow direct access! */
1202 }
1203
1204
1205 static void
1206 get_row_alpha8(GLcontext *ctx, struct gl_renderbuffer *arb, GLuint count,
1207 GLint x, GLint y, void *values)
1208 {
1209 /* NOTE: 'values' is RGBA format! */
1210 const GLubyte *src = (const GLubyte *) arb->Data + y * arb->Width + x;
1211 GLubyte *dst = (GLubyte *) values;
1212 GLuint i;
1213 ASSERT(arb != arb->Wrapped);
1214 ASSERT(arb->DataType == GL_UNSIGNED_BYTE);
1215 /* first, pass the call to the wrapped RGB buffer */
1216 arb->Wrapped->GetRow(ctx, arb->Wrapped, count, x, y, values);
1217 /* second, fill in alpha values from this buffer! */
1218 for (i = 0; i < count; i++) {
1219 dst[i * 4 + 3] = src[i];
1220 }
1221 }
1222
1223
1224 static void
1225 get_values_alpha8(GLcontext *ctx, struct gl_renderbuffer *arb, GLuint count,
1226 const GLint x[], const GLint y[], void *values)
1227 {
1228 GLubyte *dst = (GLubyte *) values;
1229 GLuint i;
1230 ASSERT(arb != arb->Wrapped);
1231 ASSERT(arb->DataType == GL_UNSIGNED_BYTE);
1232 /* first, pass the call to the wrapped RGB buffer */
1233 arb->Wrapped->GetValues(ctx, arb->Wrapped, count, x, y, values);
1234 /* second, fill in alpha values from this buffer! */
1235 for (i = 0; i < count; i++) {
1236 const GLubyte *src = (GLubyte *) arb->Data + y[i] * arb->Width + x[i];
1237 dst[i * 4 + 3] = *src;
1238 }
1239 }
1240
1241
1242 static void
1243 put_row_alpha8(GLcontext *ctx, struct gl_renderbuffer *arb, GLuint count,
1244 GLint x, GLint y, const void *values, const GLubyte *mask)
1245 {
1246 const GLubyte *src = (const GLubyte *) values;
1247 GLubyte *dst = (GLubyte *) arb->Data + y * arb->Width + x;
1248 GLuint i;
1249 ASSERT(arb != arb->Wrapped);
1250 ASSERT(arb->DataType == GL_UNSIGNED_BYTE);
1251 /* first, pass the call to the wrapped RGB buffer */
1252 arb->Wrapped->PutRow(ctx, arb->Wrapped, count, x, y, values, mask);
1253 /* second, store alpha in our buffer */
1254 for (i = 0; i < count; i++) {
1255 if (!mask || mask[i]) {
1256 dst[i] = src[i * 4 + 3];
1257 }
1258 }
1259 }
1260
1261
1262 static void
1263 put_row_rgb_alpha8(GLcontext *ctx, struct gl_renderbuffer *arb, GLuint count,
1264 GLint x, GLint y, const void *values, const GLubyte *mask)
1265 {
1266 const GLubyte *src = (const GLubyte *) values;
1267 GLubyte *dst = (GLubyte *) arb->Data + y * arb->Width + x;
1268 GLuint i;
1269 ASSERT(arb != arb->Wrapped);
1270 ASSERT(arb->DataType == GL_UNSIGNED_BYTE);
1271 /* first, pass the call to the wrapped RGB buffer */
1272 arb->Wrapped->PutRowRGB(ctx, arb->Wrapped, count, x, y, values, mask);
1273 /* second, store alpha in our buffer */
1274 for (i = 0; i < count; i++) {
1275 if (!mask || mask[i]) {
1276 dst[i] = src[i * 4 + 3];
1277 }
1278 }
1279 }
1280
1281
1282 static void
1283 put_mono_row_alpha8(GLcontext *ctx, struct gl_renderbuffer *arb, GLuint count,
1284 GLint x, GLint y, const void *value, const GLubyte *mask)
1285 {
1286 const GLubyte val = ((const GLubyte *) value)[3];
1287 GLubyte *dst = (GLubyte *) arb->Data + y * arb->Width + x;
1288 ASSERT(arb != arb->Wrapped);
1289 ASSERT(arb->DataType == GL_UNSIGNED_BYTE);
1290 /* first, pass the call to the wrapped RGB buffer */
1291 arb->Wrapped->PutMonoRow(ctx, arb->Wrapped, count, x, y, value, mask);
1292 /* second, store alpha in our buffer */
1293 if (mask) {
1294 GLuint i;
1295 for (i = 0; i < count; i++) {
1296 if (mask[i]) {
1297 dst[i] = val;
1298 }
1299 }
1300 }
1301 else {
1302 memset(dst, val, count);
1303 }
1304 }
1305
1306
1307 static void
1308 put_values_alpha8(GLcontext *ctx, struct gl_renderbuffer *arb, GLuint count,
1309 const GLint x[], const GLint y[],
1310 const void *values, const GLubyte *mask)
1311 {
1312 const GLubyte *src = (const GLubyte *) values;
1313 GLuint i;
1314 ASSERT(arb != arb->Wrapped);
1315 ASSERT(arb->DataType == GL_UNSIGNED_BYTE);
1316 /* first, pass the call to the wrapped RGB buffer */
1317 arb->Wrapped->PutValues(ctx, arb->Wrapped, count, x, y, values, mask);
1318 /* second, store alpha in our buffer */
1319 for (i = 0; i < count; i++) {
1320 if (!mask || mask[i]) {
1321 GLubyte *dst = (GLubyte *) arb->Data + y[i] * arb->Width + x[i];
1322 *dst = src[i * 4 + 3];
1323 }
1324 }
1325 }
1326
1327
1328 static void
1329 put_mono_values_alpha8(GLcontext *ctx, struct gl_renderbuffer *arb,
1330 GLuint count, const GLint x[], const GLint y[],
1331 const void *value, const GLubyte *mask)
1332 {
1333 const GLubyte val = ((const GLubyte *) value)[3];
1334 GLuint i;
1335 ASSERT(arb != arb->Wrapped);
1336 ASSERT(arb->DataType == GL_UNSIGNED_BYTE);
1337 /* first, pass the call to the wrapped RGB buffer */
1338 arb->Wrapped->PutValues(ctx, arb->Wrapped, count, x, y, value, mask);
1339 /* second, store alpha in our buffer */
1340 for (i = 0; i < count; i++) {
1341 if (!mask || mask[i]) {
1342 GLubyte *dst = (GLubyte *) arb->Data + y[i] * arb->Width + x[i];
1343 *dst = val;
1344 }
1345 }
1346 }
1347
1348
1349 static void
1350 copy_buffer_alpha8(struct gl_renderbuffer* dst, struct gl_renderbuffer* src)
1351 {
1352 ASSERT(dst->Format == MESA_FORMAT_A8);
1353 ASSERT(src->Format == MESA_FORMAT_A8);
1354 ASSERT(dst->Width == src->Width);
1355 ASSERT(dst->Height == src->Height);
1356
1357 memcpy(dst->Data, src->Data, dst->Width * dst->Height * sizeof(GLubyte));
1358 }
1359
1360
1361 /**********************************************************************/
1362 /**********************************************************************/
1363 /**********************************************************************/
1364
1365
1366 /**
1367 * Default GetPointer routine. Always return NULL to indicate that
1368 * direct buffer access is not supported.
1369 */
1370 static void *
1371 nop_get_pointer(GLcontext *ctx, struct gl_renderbuffer *rb, GLint x, GLint y)
1372 {
1373 return NULL;
1374 }
1375
1376
1377 /**
1378 * Initialize the fields of a gl_renderbuffer to default values.
1379 */
1380 void
1381 _mesa_init_renderbuffer(struct gl_renderbuffer *rb, GLuint name)
1382 {
1383 _glthread_INIT_MUTEX(rb->Mutex);
1384
1385 rb->Magic = RB_MAGIC;
1386 rb->ClassID = 0;
1387 rb->Name = name;
1388 rb->RefCount = 0;
1389 rb->Delete = _mesa_delete_renderbuffer;
1390
1391 /* The rest of these should be set later by the caller of this function or
1392 * the AllocStorage method:
1393 */
1394 rb->AllocStorage = NULL;
1395
1396 rb->Width = 0;
1397 rb->Height = 0;
1398 rb->InternalFormat = GL_NONE;
1399 rb->Format = MESA_FORMAT_NONE;
1400
1401 rb->DataType = GL_NONE;
1402 rb->Data = NULL;
1403
1404 /* Point back to ourself so that we don't have to check for Wrapped==NULL
1405 * all over the drivers.
1406 */
1407 rb->Wrapped = rb;
1408
1409 rb->GetPointer = nop_get_pointer;
1410 rb->GetRow = NULL;
1411 rb->GetValues = NULL;
1412 rb->PutRow = NULL;
1413 rb->PutRowRGB = NULL;
1414 rb->PutMonoRow = NULL;
1415 rb->PutValues = NULL;
1416 rb->PutMonoValues = NULL;
1417 }
1418
1419
1420 /**
1421 * Allocate a new gl_renderbuffer object. This can be used for user-created
1422 * renderbuffers or window-system renderbuffers.
1423 */
1424 struct gl_renderbuffer *
1425 _mesa_new_renderbuffer(GLcontext *ctx, GLuint name)
1426 {
1427 struct gl_renderbuffer *rb = CALLOC_STRUCT(gl_renderbuffer);
1428 if (rb) {
1429 _mesa_init_renderbuffer(rb, name);
1430 }
1431 return rb;
1432 }
1433
1434
1435 /**
1436 * Delete a gl_framebuffer.
1437 * This is the default function for renderbuffer->Delete().
1438 */
1439 void
1440 _mesa_delete_renderbuffer(struct gl_renderbuffer *rb)
1441 {
1442 if (rb->Data) {
1443 free(rb->Data);
1444 }
1445 free(rb);
1446 }
1447
1448
1449 /**
1450 * Allocate a software-based renderbuffer. This is called via the
1451 * ctx->Driver.NewRenderbuffer() function when the user creates a new
1452 * renderbuffer.
1453 * This would not be used for hardware-based renderbuffers.
1454 */
1455 struct gl_renderbuffer *
1456 _mesa_new_soft_renderbuffer(GLcontext *ctx, GLuint name)
1457 {
1458 struct gl_renderbuffer *rb = _mesa_new_renderbuffer(ctx, name);
1459 if (rb) {
1460 rb->AllocStorage = _mesa_soft_renderbuffer_storage;
1461 /* Normally, one would setup the PutRow, GetRow, etc functions here.
1462 * But we're doing that in the _mesa_soft_renderbuffer_storage() function
1463 * instead.
1464 */
1465 }
1466 return rb;
1467 }
1468
1469
1470 /**
1471 * Add software-based color renderbuffers to the given framebuffer.
1472 * This is a helper routine for device drivers when creating a
1473 * window system framebuffer (not a user-created render/framebuffer).
1474 * Once this function is called, you can basically forget about this
1475 * renderbuffer; core Mesa will handle all the buffer management and
1476 * rendering!
1477 */
1478 GLboolean
1479 _mesa_add_color_renderbuffers(GLcontext *ctx, struct gl_framebuffer *fb,
1480 GLuint rgbBits, GLuint alphaBits,
1481 GLboolean frontLeft, GLboolean backLeft,
1482 GLboolean frontRight, GLboolean backRight)
1483 {
1484 GLuint b;
1485
1486 if (rgbBits > 16 || alphaBits > 16) {
1487 _mesa_problem(ctx,
1488 "Unsupported bit depth in _mesa_add_color_renderbuffers");
1489 return GL_FALSE;
1490 }
1491
1492 assert(MAX_COLOR_ATTACHMENTS >= 4);
1493
1494 for (b = BUFFER_FRONT_LEFT; b <= BUFFER_BACK_RIGHT; b++) {
1495 struct gl_renderbuffer *rb;
1496
1497 if (b == BUFFER_FRONT_LEFT && !frontLeft)
1498 continue;
1499 else if (b == BUFFER_BACK_LEFT && !backLeft)
1500 continue;
1501 else if (b == BUFFER_FRONT_RIGHT && !frontRight)
1502 continue;
1503 else if (b == BUFFER_BACK_RIGHT && !backRight)
1504 continue;
1505
1506 assert(fb->Attachment[b].Renderbuffer == NULL);
1507
1508 rb = _mesa_new_renderbuffer(ctx, 0);
1509 if (!rb) {
1510 _mesa_error(ctx, GL_OUT_OF_MEMORY, "Allocating color buffer");
1511 return GL_FALSE;
1512 }
1513
1514 if (rgbBits <= 8) {
1515 if (alphaBits)
1516 rb->Format = MESA_FORMAT_RGBA8888;
1517 else
1518 rb->Format = MESA_FORMAT_RGB888;
1519 }
1520 else {
1521 assert(rgbBits <= 16);
1522 rb->Format = MESA_FORMAT_NONE; /*XXX RGBA16;*/
1523 }
1524 rb->InternalFormat = GL_RGBA;
1525
1526 rb->AllocStorage = _mesa_soft_renderbuffer_storage;
1527 _mesa_add_renderbuffer(fb, b, rb);
1528 }
1529
1530 return GL_TRUE;
1531 }
1532
1533
1534 /**
1535 * Add software-based alpha renderbuffers to the given framebuffer.
1536 * This is a helper routine for device drivers when creating a
1537 * window system framebuffer (not a user-created render/framebuffer).
1538 * Once this function is called, you can basically forget about this
1539 * renderbuffer; core Mesa will handle all the buffer management and
1540 * rendering!
1541 */
1542 GLboolean
1543 _mesa_add_alpha_renderbuffers(GLcontext *ctx, struct gl_framebuffer *fb,
1544 GLuint alphaBits,
1545 GLboolean frontLeft, GLboolean backLeft,
1546 GLboolean frontRight, GLboolean backRight)
1547 {
1548 GLuint b;
1549
1550 /* for window system framebuffers only! */
1551 assert(fb->Name == 0);
1552
1553 if (alphaBits > 8) {
1554 _mesa_problem(ctx,
1555 "Unsupported bit depth in _mesa_add_alpha_renderbuffers");
1556 return GL_FALSE;
1557 }
1558
1559 assert(MAX_COLOR_ATTACHMENTS >= 4);
1560
1561 /* Wrap each of the RGB color buffers with an alpha renderbuffer.
1562 */
1563 for (b = BUFFER_FRONT_LEFT; b <= BUFFER_BACK_RIGHT; b++) {
1564 struct gl_renderbuffer *arb;
1565
1566 if (b == BUFFER_FRONT_LEFT && !frontLeft)
1567 continue;
1568 else if (b == BUFFER_BACK_LEFT && !backLeft)
1569 continue;
1570 else if (b == BUFFER_FRONT_RIGHT && !frontRight)
1571 continue;
1572 else if (b == BUFFER_BACK_RIGHT && !backRight)
1573 continue;
1574
1575 /* the RGB buffer to wrap must already exist!! */
1576 assert(fb->Attachment[b].Renderbuffer);
1577
1578 /* only GLubyte supported for now */
1579 assert(fb->Attachment[b].Renderbuffer->DataType == GL_UNSIGNED_BYTE);
1580
1581 /* allocate alpha renderbuffer */
1582 arb = _mesa_new_renderbuffer(ctx, 0);
1583 if (!arb) {
1584 _mesa_error(ctx, GL_OUT_OF_MEMORY, "Allocating alpha buffer");
1585 return GL_FALSE;
1586 }
1587
1588 /* wrap the alpha renderbuffer around the RGB renderbuffer */
1589 arb->Wrapped = fb->Attachment[b].Renderbuffer;
1590
1591 /* Set up my alphabuffer fields and plug in my functions.
1592 * The functions will put/get the alpha values from/to RGBA arrays
1593 * and then call the wrapped buffer's functions to handle the RGB
1594 * values.
1595 */
1596 arb->InternalFormat = arb->Wrapped->InternalFormat;
1597 arb->Format = MESA_FORMAT_A8;
1598 arb->DataType = arb->Wrapped->DataType;
1599 arb->AllocStorage = alloc_storage_alpha8;
1600 arb->Delete = delete_renderbuffer_alpha8;
1601 arb->GetPointer = get_pointer_alpha8;
1602 arb->GetRow = get_row_alpha8;
1603 arb->GetValues = get_values_alpha8;
1604 arb->PutRow = put_row_alpha8;
1605 arb->PutRowRGB = put_row_rgb_alpha8;
1606 arb->PutMonoRow = put_mono_row_alpha8;
1607 arb->PutValues = put_values_alpha8;
1608 arb->PutMonoValues = put_mono_values_alpha8;
1609
1610 /* clear the pointer to avoid assertion/sanity check failure later */
1611 fb->Attachment[b].Renderbuffer = NULL;
1612
1613 /* plug the alpha renderbuffer into the colorbuffer attachment */
1614 _mesa_add_renderbuffer(fb, b, arb);
1615 }
1616
1617 return GL_TRUE;
1618 }
1619
1620
1621 /**
1622 * For framebuffers that use a software alpha channel wrapper
1623 * created by _mesa_add_alpha_renderbuffer or _mesa_add_soft_renderbuffers,
1624 * copy the back buffer alpha channel into the front buffer alpha channel.
1625 */
1626 void
1627 _mesa_copy_soft_alpha_renderbuffers(GLcontext *ctx, struct gl_framebuffer *fb)
1628 {
1629 if (fb->Attachment[BUFFER_FRONT_LEFT].Renderbuffer &&
1630 fb->Attachment[BUFFER_BACK_LEFT].Renderbuffer)
1631 copy_buffer_alpha8(fb->Attachment[BUFFER_FRONT_LEFT].Renderbuffer,
1632 fb->Attachment[BUFFER_BACK_LEFT].Renderbuffer);
1633
1634
1635 if (fb->Attachment[BUFFER_FRONT_RIGHT].Renderbuffer &&
1636 fb->Attachment[BUFFER_BACK_RIGHT].Renderbuffer)
1637 copy_buffer_alpha8(fb->Attachment[BUFFER_FRONT_RIGHT].Renderbuffer,
1638 fb->Attachment[BUFFER_BACK_RIGHT].Renderbuffer);
1639 }
1640
1641
1642 /**
1643 * Add a software-based depth renderbuffer to the given framebuffer.
1644 * This is a helper routine for device drivers when creating a
1645 * window system framebuffer (not a user-created render/framebuffer).
1646 * Once this function is called, you can basically forget about this
1647 * renderbuffer; core Mesa will handle all the buffer management and
1648 * rendering!
1649 */
1650 GLboolean
1651 _mesa_add_depth_renderbuffer(GLcontext *ctx, struct gl_framebuffer *fb,
1652 GLuint depthBits)
1653 {
1654 struct gl_renderbuffer *rb;
1655
1656 if (depthBits > 32) {
1657 _mesa_problem(ctx,
1658 "Unsupported depthBits in _mesa_add_depth_renderbuffer");
1659 return GL_FALSE;
1660 }
1661
1662 assert(fb->Attachment[BUFFER_DEPTH].Renderbuffer == NULL);
1663
1664 rb = _mesa_new_renderbuffer(ctx, 0);
1665 if (!rb) {
1666 _mesa_error(ctx, GL_OUT_OF_MEMORY, "Allocating depth buffer");
1667 return GL_FALSE;
1668 }
1669
1670 if (depthBits <= 16) {
1671 rb->Format = MESA_FORMAT_Z16;
1672 rb->InternalFormat = GL_DEPTH_COMPONENT16;
1673 }
1674 else if (depthBits <= 24) {
1675 rb->Format = MESA_FORMAT_X8_Z24;
1676 rb->InternalFormat = GL_DEPTH_COMPONENT24;
1677 }
1678 else {
1679 rb->Format = MESA_FORMAT_Z32;
1680 rb->InternalFormat = GL_DEPTH_COMPONENT32;
1681 }
1682
1683 rb->AllocStorage = _mesa_soft_renderbuffer_storage;
1684 _mesa_add_renderbuffer(fb, BUFFER_DEPTH, rb);
1685
1686 return GL_TRUE;
1687 }
1688
1689
1690 /**
1691 * Add a software-based stencil renderbuffer to the given framebuffer.
1692 * This is a helper routine for device drivers when creating a
1693 * window system framebuffer (not a user-created render/framebuffer).
1694 * Once this function is called, you can basically forget about this
1695 * renderbuffer; core Mesa will handle all the buffer management and
1696 * rendering!
1697 */
1698 GLboolean
1699 _mesa_add_stencil_renderbuffer(GLcontext *ctx, struct gl_framebuffer *fb,
1700 GLuint stencilBits)
1701 {
1702 struct gl_renderbuffer *rb;
1703
1704 if (stencilBits > 16) {
1705 _mesa_problem(ctx,
1706 "Unsupported stencilBits in _mesa_add_stencil_renderbuffer");
1707 return GL_FALSE;
1708 }
1709
1710 assert(fb->Attachment[BUFFER_STENCIL].Renderbuffer == NULL);
1711
1712 rb = _mesa_new_renderbuffer(ctx, 0);
1713 if (!rb) {
1714 _mesa_error(ctx, GL_OUT_OF_MEMORY, "Allocating stencil buffer");
1715 return GL_FALSE;
1716 }
1717
1718 assert(stencilBits <= 8);
1719 rb->Format = MESA_FORMAT_S8;
1720 rb->InternalFormat = GL_STENCIL_INDEX8;
1721
1722 rb->AllocStorage = _mesa_soft_renderbuffer_storage;
1723 _mesa_add_renderbuffer(fb, BUFFER_STENCIL, rb);
1724
1725 return GL_TRUE;
1726 }
1727
1728
1729 /**
1730 * Add a software-based accumulation renderbuffer to the given framebuffer.
1731 * This is a helper routine for device drivers when creating a
1732 * window system framebuffer (not a user-created render/framebuffer).
1733 * Once this function is called, you can basically forget about this
1734 * renderbuffer; core Mesa will handle all the buffer management and
1735 * rendering!
1736 */
1737 GLboolean
1738 _mesa_add_accum_renderbuffer(GLcontext *ctx, struct gl_framebuffer *fb,
1739 GLuint redBits, GLuint greenBits,
1740 GLuint blueBits, GLuint alphaBits)
1741 {
1742 struct gl_renderbuffer *rb;
1743
1744 if (redBits > 16 || greenBits > 16 || blueBits > 16 || alphaBits > 16) {
1745 _mesa_problem(ctx,
1746 "Unsupported accumBits in _mesa_add_accum_renderbuffer");
1747 return GL_FALSE;
1748 }
1749
1750 assert(fb->Attachment[BUFFER_ACCUM].Renderbuffer == NULL);
1751
1752 rb = _mesa_new_renderbuffer(ctx, 0);
1753 if (!rb) {
1754 _mesa_error(ctx, GL_OUT_OF_MEMORY, "Allocating accum buffer");
1755 return GL_FALSE;
1756 }
1757
1758 rb->Format = MESA_FORMAT_SIGNED_RGBA_16;
1759 rb->InternalFormat = GL_RGBA16;
1760 rb->AllocStorage = _mesa_soft_renderbuffer_storage;
1761 _mesa_add_renderbuffer(fb, BUFFER_ACCUM, rb);
1762
1763 return GL_TRUE;
1764 }
1765
1766
1767
1768 /**
1769 * Add a software-based accumulation renderbuffer to the given framebuffer.
1770 * This is a helper routine for device drivers when creating a
1771 * window system framebuffer (not a user-created render/framebuffer).
1772 * Once this function is called, you can basically forget about this
1773 * renderbuffer; core Mesa will handle all the buffer management and
1774 * rendering!
1775 *
1776 * NOTE: color-index aux buffers not supported.
1777 */
1778 GLboolean
1779 _mesa_add_aux_renderbuffers(GLcontext *ctx, struct gl_framebuffer *fb,
1780 GLuint colorBits, GLuint numBuffers)
1781 {
1782 GLuint i;
1783
1784 if (colorBits > 16) {
1785 _mesa_problem(ctx,
1786 "Unsupported accumBits in _mesa_add_aux_renderbuffers");
1787 return GL_FALSE;
1788 }
1789
1790 assert(numBuffers <= MAX_AUX_BUFFERS);
1791
1792 for (i = 0; i < numBuffers; i++) {
1793 struct gl_renderbuffer *rb = _mesa_new_renderbuffer(ctx, 0);
1794
1795 assert(fb->Attachment[BUFFER_AUX0 + i].Renderbuffer == NULL);
1796
1797 if (!rb) {
1798 _mesa_error(ctx, GL_OUT_OF_MEMORY, "Allocating accum buffer");
1799 return GL_FALSE;
1800 }
1801
1802 assert (colorBits <= 8);
1803 rb->Format = MESA_FORMAT_RGBA8888;
1804 rb->InternalFormat = GL_RGBA;
1805
1806 rb->AllocStorage = _mesa_soft_renderbuffer_storage;
1807 _mesa_add_renderbuffer(fb, BUFFER_AUX0 + i, rb);
1808 }
1809 return GL_TRUE;
1810 }
1811
1812
1813 /**
1814 * Create/attach software-based renderbuffers to the given framebuffer.
1815 * This is a helper routine for device drivers. Drivers can just as well
1816 * call the individual _mesa_add_*_renderbuffer() routines directly.
1817 */
1818 void
1819 _mesa_add_soft_renderbuffers(struct gl_framebuffer *fb,
1820 GLboolean color,
1821 GLboolean depth,
1822 GLboolean stencil,
1823 GLboolean accum,
1824 GLboolean alpha,
1825 GLboolean aux)
1826 {
1827 GLboolean frontLeft = GL_TRUE;
1828 GLboolean backLeft = fb->Visual.doubleBufferMode;
1829 GLboolean frontRight = fb->Visual.stereoMode;
1830 GLboolean backRight = fb->Visual.stereoMode && fb->Visual.doubleBufferMode;
1831
1832 if (color) {
1833 assert(fb->Visual.redBits == fb->Visual.greenBits);
1834 assert(fb->Visual.redBits == fb->Visual.blueBits);
1835 _mesa_add_color_renderbuffers(NULL, fb,
1836 fb->Visual.redBits,
1837 fb->Visual.alphaBits,
1838 frontLeft, backLeft,
1839 frontRight, backRight);
1840 }
1841
1842 if (depth) {
1843 assert(fb->Visual.depthBits > 0);
1844 _mesa_add_depth_renderbuffer(NULL, fb, fb->Visual.depthBits);
1845 }
1846
1847 if (stencil) {
1848 assert(fb->Visual.stencilBits > 0);
1849 _mesa_add_stencil_renderbuffer(NULL, fb, fb->Visual.stencilBits);
1850 }
1851
1852 if (accum) {
1853 assert(fb->Visual.accumRedBits > 0);
1854 assert(fb->Visual.accumGreenBits > 0);
1855 assert(fb->Visual.accumBlueBits > 0);
1856 _mesa_add_accum_renderbuffer(NULL, fb,
1857 fb->Visual.accumRedBits,
1858 fb->Visual.accumGreenBits,
1859 fb->Visual.accumBlueBits,
1860 fb->Visual.accumAlphaBits);
1861 }
1862
1863 if (aux) {
1864 assert(fb->Visual.numAuxBuffers > 0);
1865 _mesa_add_aux_renderbuffers(NULL, fb, fb->Visual.redBits,
1866 fb->Visual.numAuxBuffers);
1867 }
1868
1869 if (alpha) {
1870 assert(fb->Visual.alphaBits > 0);
1871 _mesa_add_alpha_renderbuffers(NULL, fb, fb->Visual.alphaBits,
1872 frontLeft, backLeft,
1873 frontRight, backRight);
1874 }
1875
1876 #if 0
1877 if (multisample) {
1878 /* maybe someday */
1879 }
1880 #endif
1881 }
1882
1883
1884 /**
1885 * Attach a renderbuffer to a framebuffer.
1886 */
1887 void
1888 _mesa_add_renderbuffer(struct gl_framebuffer *fb,
1889 GLuint bufferName, struct gl_renderbuffer *rb)
1890 {
1891 assert(fb);
1892 assert(rb);
1893 assert(bufferName < BUFFER_COUNT);
1894
1895 /* There should be no previous renderbuffer on this attachment point,
1896 * with the exception of depth/stencil since the same renderbuffer may
1897 * be used for both.
1898 */
1899 assert(bufferName == BUFFER_DEPTH ||
1900 bufferName == BUFFER_STENCIL ||
1901 fb->Attachment[bufferName].Renderbuffer == NULL);
1902
1903 /* winsys vs. user-created buffer cross check */
1904 if (fb->Name) {
1905 assert(rb->Name);
1906 }
1907 else {
1908 assert(!rb->Name);
1909 }
1910
1911 fb->Attachment[bufferName].Type = GL_RENDERBUFFER_EXT;
1912 fb->Attachment[bufferName].Complete = GL_TRUE;
1913 _mesa_reference_renderbuffer(&fb->Attachment[bufferName].Renderbuffer, rb);
1914 }
1915
1916
1917 /**
1918 * Remove the named renderbuffer from the given framebuffer.
1919 */
1920 void
1921 _mesa_remove_renderbuffer(struct gl_framebuffer *fb, GLuint bufferName)
1922 {
1923 struct gl_renderbuffer *rb;
1924
1925 assert(bufferName < BUFFER_COUNT);
1926
1927 rb = fb->Attachment[bufferName].Renderbuffer;
1928 if (!rb)
1929 return;
1930
1931 _mesa_reference_renderbuffer(&rb, NULL);
1932
1933 fb->Attachment[bufferName].Renderbuffer = NULL;
1934 }
1935
1936
1937 /**
1938 * Set *ptr to point to rb. If *ptr points to another renderbuffer,
1939 * dereference that buffer first. The new renderbuffer's refcount will
1940 * be incremented. The old renderbuffer's refcount will be decremented.
1941 */
1942 void
1943 _mesa_reference_renderbuffer(struct gl_renderbuffer **ptr,
1944 struct gl_renderbuffer *rb)
1945 {
1946 assert(ptr);
1947 if (*ptr == rb) {
1948 /* no change */
1949 return;
1950 }
1951
1952 if (*ptr) {
1953 /* Unreference the old renderbuffer */
1954 GLboolean deleteFlag = GL_FALSE;
1955 struct gl_renderbuffer *oldRb = *ptr;
1956
1957 assert(oldRb->Magic == RB_MAGIC);
1958 _glthread_LOCK_MUTEX(oldRb->Mutex);
1959 assert(oldRb->Magic == RB_MAGIC);
1960 ASSERT(oldRb->RefCount > 0);
1961 oldRb->RefCount--;
1962 /*printf("RB DECR %p (%d) to %d\n", (void*) oldRb, oldRb->Name, oldRb->RefCount);*/
1963 deleteFlag = (oldRb->RefCount == 0);
1964 _glthread_UNLOCK_MUTEX(oldRb->Mutex);
1965
1966 if (deleteFlag) {
1967 oldRb->Magic = 0; /* now invalid memory! */
1968 oldRb->Delete(oldRb);
1969 }
1970
1971 *ptr = NULL;
1972 }
1973 assert(!*ptr);
1974
1975 if (rb) {
1976 assert(rb->Magic == RB_MAGIC);
1977 /* reference new renderbuffer */
1978 _glthread_LOCK_MUTEX(rb->Mutex);
1979 rb->RefCount++;
1980 /*printf("RB INCR %p (%d) to %d\n", (void*) rb, rb->Name, rb->RefCount);*/
1981 _glthread_UNLOCK_MUTEX(rb->Mutex);
1982 *ptr = rb;
1983 }
1984 }
1985
1986
1987 /**
1988 * Create a new combined depth/stencil renderbuffer for implementing
1989 * the GL_EXT_packed_depth_stencil extension.
1990 * \return new depth/stencil renderbuffer
1991 */
1992 struct gl_renderbuffer *
1993 _mesa_new_depthstencil_renderbuffer(GLcontext *ctx, GLuint name)
1994 {
1995 struct gl_renderbuffer *dsrb;
1996
1997 dsrb = _mesa_new_renderbuffer(ctx, name);
1998 if (!dsrb)
1999 return NULL;
2000
2001 /* init fields not covered by _mesa_new_renderbuffer() */
2002 dsrb->InternalFormat = GL_DEPTH24_STENCIL8_EXT;
2003 dsrb->Format = MESA_FORMAT_Z24_S8;
2004 dsrb->AllocStorage = _mesa_soft_renderbuffer_storage;
2005
2006 return dsrb;
2007 }