mesa: refactor: move glTexEnv-related functions into new texenv.c file
[mesa.git] / src / mesa / main / texenvprogram.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include "glheader.h"
29 #include "macros.h"
30 #include "enums.h"
31 #include "shader/prog_parameter.h"
32 #include "shader/prog_cache.h"
33 #include "shader/prog_instruction.h"
34 #include "shader/prog_print.h"
35 #include "shader/prog_statevars.h"
36 #include "shader/programopt.h"
37 #include "texenvprogram.h"
38
39 /**
40 * This MAX is probably a bit generous, but that's OK. There can be
41 * up to four instructions per texture unit (TEX + 3 for combine),
42 * then there's fog and specular add.
43 */
44 #define MAX_INSTRUCTIONS ((MAX_TEXTURE_UNITS * 4) + 12)
45
46 #define DISASSEM (MESA_VERBOSE & VERBOSE_DISASSEM)
47
48 struct mode_opt {
49 GLuint Source:4;
50 GLuint Operand:3;
51 };
52
53 struct state_key {
54 GLbitfield enabled_units;
55 GLuint separate_specular:1;
56 GLuint fog_enabled:1;
57 GLuint fog_mode:2;
58
59 struct {
60 GLuint enabled:1;
61 GLuint source_index:3; /* one of TEXTURE_1D/2D/3D/CUBE/RECT_INDEX */
62 GLuint ScaleShiftRGB:2;
63 GLuint ScaleShiftA:2;
64
65 GLuint NumArgsRGB:2;
66 GLuint ModeRGB:4;
67 struct mode_opt OptRGB[3];
68
69 GLuint NumArgsA:2;
70 GLuint ModeA:4;
71 struct mode_opt OptA[3];
72 } unit[8];
73 };
74
75 #define FOG_LINEAR 0
76 #define FOG_EXP 1
77 #define FOG_EXP2 2
78 #define FOG_UNKNOWN 3
79
80 static GLuint translate_fog_mode( GLenum mode )
81 {
82 switch (mode) {
83 case GL_LINEAR: return FOG_LINEAR;
84 case GL_EXP: return FOG_EXP;
85 case GL_EXP2: return FOG_EXP2;
86 default: return FOG_UNKNOWN;
87 }
88 }
89
90 #define OPR_SRC_COLOR 0
91 #define OPR_ONE_MINUS_SRC_COLOR 1
92 #define OPR_SRC_ALPHA 2
93 #define OPR_ONE_MINUS_SRC_ALPHA 3
94 #define OPR_ZERO 4
95 #define OPR_ONE 5
96 #define OPR_UNKNOWN 7
97
98 static GLuint translate_operand( GLenum operand )
99 {
100 switch (operand) {
101 case GL_SRC_COLOR: return OPR_SRC_COLOR;
102 case GL_ONE_MINUS_SRC_COLOR: return OPR_ONE_MINUS_SRC_COLOR;
103 case GL_SRC_ALPHA: return OPR_SRC_ALPHA;
104 case GL_ONE_MINUS_SRC_ALPHA: return OPR_ONE_MINUS_SRC_ALPHA;
105 case GL_ZERO: return OPR_ZERO;
106 case GL_ONE: return OPR_ONE;
107 default: return OPR_UNKNOWN;
108 }
109 }
110
111 #define SRC_TEXTURE 0
112 #define SRC_TEXTURE0 1
113 #define SRC_TEXTURE1 2
114 #define SRC_TEXTURE2 3
115 #define SRC_TEXTURE3 4
116 #define SRC_TEXTURE4 5
117 #define SRC_TEXTURE5 6
118 #define SRC_TEXTURE6 7
119 #define SRC_TEXTURE7 8
120 #define SRC_CONSTANT 9
121 #define SRC_PRIMARY_COLOR 10
122 #define SRC_PREVIOUS 11
123 #define SRC_UNKNOWN 15
124
125 static GLuint translate_source( GLenum src )
126 {
127 switch (src) {
128 case GL_TEXTURE: return SRC_TEXTURE;
129 case GL_TEXTURE0:
130 case GL_TEXTURE1:
131 case GL_TEXTURE2:
132 case GL_TEXTURE3:
133 case GL_TEXTURE4:
134 case GL_TEXTURE5:
135 case GL_TEXTURE6:
136 case GL_TEXTURE7: return SRC_TEXTURE0 + (src - GL_TEXTURE0);
137 case GL_CONSTANT: return SRC_CONSTANT;
138 case GL_PRIMARY_COLOR: return SRC_PRIMARY_COLOR;
139 case GL_PREVIOUS: return SRC_PREVIOUS;
140 default: return SRC_UNKNOWN;
141 }
142 }
143
144 #define MODE_REPLACE 0
145 #define MODE_MODULATE 1
146 #define MODE_ADD 2
147 #define MODE_ADD_SIGNED 3
148 #define MODE_INTERPOLATE 4
149 #define MODE_SUBTRACT 5
150 #define MODE_DOT3_RGB 6
151 #define MODE_DOT3_RGB_EXT 7
152 #define MODE_DOT3_RGBA 8
153 #define MODE_DOT3_RGBA_EXT 9
154 #define MODE_MODULATE_ADD_ATI 10
155 #define MODE_MODULATE_SIGNED_ADD_ATI 11
156 #define MODE_MODULATE_SUBTRACT_ATI 12
157 #define MODE_UNKNOWN 15
158
159 static GLuint translate_mode( GLenum mode )
160 {
161 switch (mode) {
162 case GL_REPLACE: return MODE_REPLACE;
163 case GL_MODULATE: return MODE_MODULATE;
164 case GL_ADD: return MODE_ADD;
165 case GL_ADD_SIGNED: return MODE_ADD_SIGNED;
166 case GL_INTERPOLATE: return MODE_INTERPOLATE;
167 case GL_SUBTRACT: return MODE_SUBTRACT;
168 case GL_DOT3_RGB: return MODE_DOT3_RGB;
169 case GL_DOT3_RGB_EXT: return MODE_DOT3_RGB_EXT;
170 case GL_DOT3_RGBA: return MODE_DOT3_RGBA;
171 case GL_DOT3_RGBA_EXT: return MODE_DOT3_RGBA_EXT;
172 case GL_MODULATE_ADD_ATI: return MODE_MODULATE_ADD_ATI;
173 case GL_MODULATE_SIGNED_ADD_ATI: return MODE_MODULATE_SIGNED_ADD_ATI;
174 case GL_MODULATE_SUBTRACT_ATI: return MODE_MODULATE_SUBTRACT_ATI;
175 default: return MODE_UNKNOWN;
176 }
177 }
178
179 #define TEXTURE_UNKNOWN_INDEX 7
180 static GLuint translate_tex_src_bit( GLbitfield bit )
181 {
182 switch (bit) {
183 case TEXTURE_1D_BIT: return TEXTURE_1D_INDEX;
184 case TEXTURE_2D_BIT: return TEXTURE_2D_INDEX;
185 case TEXTURE_RECT_BIT: return TEXTURE_RECT_INDEX;
186 case TEXTURE_3D_BIT: return TEXTURE_3D_INDEX;
187 case TEXTURE_CUBE_BIT: return TEXTURE_CUBE_INDEX;
188 default: return TEXTURE_UNKNOWN_INDEX;
189 }
190 }
191
192 /**
193 * Examine current texture environment state and generate a unique
194 * key to identify it.
195 */
196 static void make_state_key( GLcontext *ctx, struct state_key *key )
197 {
198 GLuint i, j;
199
200 memset(key, 0, sizeof(*key));
201
202 for (i=0;i<MAX_TEXTURE_UNITS;i++) {
203 const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
204
205 if (!texUnit->_ReallyEnabled)
206 continue;
207
208 key->unit[i].enabled = 1;
209 key->enabled_units |= (1<<i);
210
211 key->unit[i].source_index =
212 translate_tex_src_bit(texUnit->_ReallyEnabled);
213
214 key->unit[i].NumArgsRGB = texUnit->_CurrentCombine->_NumArgsRGB;
215 key->unit[i].NumArgsA = texUnit->_CurrentCombine->_NumArgsA;
216
217 key->unit[i].ModeRGB =
218 translate_mode(texUnit->_CurrentCombine->ModeRGB);
219 key->unit[i].ModeA =
220 translate_mode(texUnit->_CurrentCombine->ModeA);
221
222 key->unit[i].ScaleShiftRGB = texUnit->_CurrentCombine->ScaleShiftRGB;
223 key->unit[i].ScaleShiftA = texUnit->_CurrentCombine->ScaleShiftA;
224
225 for (j=0;j<3;j++) {
226 key->unit[i].OptRGB[j].Operand =
227 translate_operand(texUnit->_CurrentCombine->OperandRGB[j]);
228 key->unit[i].OptA[j].Operand =
229 translate_operand(texUnit->_CurrentCombine->OperandA[j]);
230 key->unit[i].OptRGB[j].Source =
231 translate_source(texUnit->_CurrentCombine->SourceRGB[j]);
232 key->unit[i].OptA[j].Source =
233 translate_source(texUnit->_CurrentCombine->SourceA[j]);
234 }
235 }
236
237 if (ctx->_TriangleCaps & DD_SEPARATE_SPECULAR)
238 key->separate_specular = 1;
239
240 if (ctx->Fog.Enabled) {
241 key->fog_enabled = 1;
242 key->fog_mode = translate_fog_mode(ctx->Fog.Mode);
243 }
244 }
245
246 /* Use uregs to represent registers internally, translate to Mesa's
247 * expected formats on emit.
248 *
249 * NOTE: These are passed by value extensively in this file rather
250 * than as usual by pointer reference. If this disturbs you, try
251 * remembering they are just 32bits in size.
252 *
253 * GCC is smart enough to deal with these dword-sized structures in
254 * much the same way as if I had defined them as dwords and was using
255 * macros to access and set the fields. This is much nicer and easier
256 * to evolve.
257 */
258 struct ureg {
259 GLuint file:4;
260 GLuint idx:8;
261 GLuint negatebase:1;
262 GLuint abs:1;
263 GLuint negateabs:1;
264 GLuint swz:12;
265 GLuint pad:5;
266 };
267
268 static const struct ureg undef = {
269 PROGRAM_UNDEFINED,
270 ~0,
271 0,
272 0,
273 0,
274 0,
275 0
276 };
277
278
279 /* State used to build the fragment program:
280 */
281 struct texenv_fragment_program {
282 struct gl_fragment_program *program;
283 GLcontext *ctx;
284 struct state_key *state;
285
286 GLbitfield alu_temps; /* Track texture indirections, see spec. */
287 GLbitfield temps_output; /* Track texture indirections, see spec. */
288 GLbitfield temp_in_use; /* Tracks temporary regs which are in use. */
289 GLboolean error;
290
291 struct ureg src_texture[MAX_TEXTURE_UNITS];
292 /* Reg containing each texture unit's sampled texture color,
293 * else undef.
294 */
295
296 struct ureg src_previous; /* Reg containing color from previous
297 * stage. May need to be decl'd.
298 */
299
300 GLuint last_tex_stage; /* Number of last enabled texture unit */
301
302 struct ureg half;
303 struct ureg one;
304 struct ureg zero;
305 };
306
307
308
309 static struct ureg make_ureg(GLuint file, GLuint idx)
310 {
311 struct ureg reg;
312 reg.file = file;
313 reg.idx = idx;
314 reg.negatebase = 0;
315 reg.abs = 0;
316 reg.negateabs = 0;
317 reg.swz = SWIZZLE_NOOP;
318 reg.pad = 0;
319 return reg;
320 }
321
322 static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w )
323 {
324 reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x),
325 GET_SWZ(reg.swz, y),
326 GET_SWZ(reg.swz, z),
327 GET_SWZ(reg.swz, w));
328
329 return reg;
330 }
331
332 static struct ureg swizzle1( struct ureg reg, int x )
333 {
334 return swizzle(reg, x, x, x, x);
335 }
336
337 static struct ureg negate( struct ureg reg )
338 {
339 reg.negatebase ^= 1;
340 return reg;
341 }
342
343 static GLboolean is_undef( struct ureg reg )
344 {
345 return reg.file == PROGRAM_UNDEFINED;
346 }
347
348
349 static struct ureg get_temp( struct texenv_fragment_program *p )
350 {
351 GLint bit;
352
353 /* First try and reuse temps which have been used already:
354 */
355 bit = _mesa_ffs( ~p->temp_in_use & p->alu_temps );
356
357 /* Then any unused temporary:
358 */
359 if (!bit)
360 bit = _mesa_ffs( ~p->temp_in_use );
361
362 if (!bit) {
363 _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
364 _mesa_exit(1);
365 }
366
367 if ((GLuint) bit > p->program->Base.NumTemporaries)
368 p->program->Base.NumTemporaries = bit;
369
370 p->temp_in_use |= 1<<(bit-1);
371 return make_ureg(PROGRAM_TEMPORARY, (bit-1));
372 }
373
374 static struct ureg get_tex_temp( struct texenv_fragment_program *p )
375 {
376 int bit;
377
378 /* First try to find availble temp not previously used (to avoid
379 * starting a new texture indirection). According to the spec, the
380 * ~p->temps_output isn't necessary, but will keep it there for
381 * now:
382 */
383 bit = _mesa_ffs( ~p->temp_in_use & ~p->alu_temps & ~p->temps_output );
384
385 /* Then any unused temporary:
386 */
387 if (!bit)
388 bit = _mesa_ffs( ~p->temp_in_use );
389
390 if (!bit) {
391 _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
392 _mesa_exit(1);
393 }
394
395 if ((GLuint) bit > p->program->Base.NumTemporaries)
396 p->program->Base.NumTemporaries = bit;
397
398 p->temp_in_use |= 1<<(bit-1);
399 return make_ureg(PROGRAM_TEMPORARY, (bit-1));
400 }
401
402
403 static void release_temps(GLcontext *ctx, struct texenv_fragment_program *p )
404 {
405 GLuint max_temp = ctx->Const.FragmentProgram.MaxTemps;
406
407 /* KW: To support tex_env_crossbar, don't release the registers in
408 * temps_output.
409 */
410 if (max_temp >= sizeof(int) * 8)
411 p->temp_in_use = p->temps_output;
412 else
413 p->temp_in_use = ~((1<<max_temp)-1) | p->temps_output;
414 }
415
416
417 static struct ureg register_param5( struct texenv_fragment_program *p,
418 GLint s0,
419 GLint s1,
420 GLint s2,
421 GLint s3,
422 GLint s4)
423 {
424 gl_state_index tokens[STATE_LENGTH];
425 GLuint idx;
426 tokens[0] = s0;
427 tokens[1] = s1;
428 tokens[2] = s2;
429 tokens[3] = s3;
430 tokens[4] = s4;
431 idx = _mesa_add_state_reference( p->program->Base.Parameters, tokens );
432 return make_ureg(PROGRAM_STATE_VAR, idx);
433 }
434
435
436 #define register_param1(p,s0) register_param5(p,s0,0,0,0,0)
437 #define register_param2(p,s0,s1) register_param5(p,s0,s1,0,0,0)
438 #define register_param3(p,s0,s1,s2) register_param5(p,s0,s1,s2,0,0)
439 #define register_param4(p,s0,s1,s2,s3) register_param5(p,s0,s1,s2,s3,0)
440
441
442 static struct ureg register_input( struct texenv_fragment_program *p, GLuint input )
443 {
444 p->program->Base.InputsRead |= (1 << input);
445 return make_ureg(PROGRAM_INPUT, input);
446 }
447
448
449 static void emit_arg( struct prog_src_register *reg,
450 struct ureg ureg )
451 {
452 reg->File = ureg.file;
453 reg->Index = ureg.idx;
454 reg->Swizzle = ureg.swz;
455 reg->NegateBase = ureg.negatebase ? 0xf : 0x0;
456 reg->Abs = ureg.abs;
457 reg->NegateAbs = ureg.negateabs;
458 }
459
460 static void emit_dst( struct prog_dst_register *dst,
461 struct ureg ureg, GLuint mask )
462 {
463 dst->File = ureg.file;
464 dst->Index = ureg.idx;
465 dst->WriteMask = mask;
466 dst->CondMask = COND_TR; /* always pass cond test */
467 dst->CondSwizzle = SWIZZLE_NOOP;
468 }
469
470 static struct prog_instruction *
471 emit_op(struct texenv_fragment_program *p,
472 enum prog_opcode op,
473 struct ureg dest,
474 GLuint mask,
475 GLboolean saturate,
476 struct ureg src0,
477 struct ureg src1,
478 struct ureg src2 )
479 {
480 GLuint nr = p->program->Base.NumInstructions++;
481 struct prog_instruction *inst = &p->program->Base.Instructions[nr];
482
483 assert(nr < MAX_INSTRUCTIONS);
484
485 _mesa_init_instructions(inst, 1);
486 inst->Opcode = op;
487
488 emit_arg( &inst->SrcReg[0], src0 );
489 emit_arg( &inst->SrcReg[1], src1 );
490 emit_arg( &inst->SrcReg[2], src2 );
491
492 inst->SaturateMode = saturate ? SATURATE_ZERO_ONE : SATURATE_OFF;
493
494 emit_dst( &inst->DstReg, dest, mask );
495
496 /* Accounting for indirection tracking:
497 */
498 if (dest.file == PROGRAM_TEMPORARY)
499 p->temps_output |= 1 << dest.idx;
500
501 return inst;
502 }
503
504
505 static struct ureg emit_arith( struct texenv_fragment_program *p,
506 enum prog_opcode op,
507 struct ureg dest,
508 GLuint mask,
509 GLboolean saturate,
510 struct ureg src0,
511 struct ureg src1,
512 struct ureg src2 )
513 {
514 emit_op(p, op, dest, mask, saturate, src0, src1, src2);
515
516 /* Accounting for indirection tracking:
517 */
518 if (src0.file == PROGRAM_TEMPORARY)
519 p->alu_temps |= 1 << src0.idx;
520
521 if (!is_undef(src1) && src1.file == PROGRAM_TEMPORARY)
522 p->alu_temps |= 1 << src1.idx;
523
524 if (!is_undef(src2) && src2.file == PROGRAM_TEMPORARY)
525 p->alu_temps |= 1 << src2.idx;
526
527 if (dest.file == PROGRAM_TEMPORARY)
528 p->alu_temps |= 1 << dest.idx;
529
530 p->program->Base.NumAluInstructions++;
531 return dest;
532 }
533
534 static struct ureg emit_texld( struct texenv_fragment_program *p,
535 enum prog_opcode op,
536 struct ureg dest,
537 GLuint destmask,
538 GLuint tex_unit,
539 GLuint tex_idx,
540 struct ureg coord )
541 {
542 struct prog_instruction *inst = emit_op( p, op,
543 dest, destmask,
544 GL_FALSE, /* don't saturate? */
545 coord, /* arg 0? */
546 undef,
547 undef);
548
549 inst->TexSrcTarget = tex_idx;
550 inst->TexSrcUnit = tex_unit;
551
552 p->program->Base.NumTexInstructions++;
553
554 /* Is this a texture indirection?
555 */
556 if ((coord.file == PROGRAM_TEMPORARY &&
557 (p->temps_output & (1<<coord.idx))) ||
558 (dest.file == PROGRAM_TEMPORARY &&
559 (p->alu_temps & (1<<dest.idx)))) {
560 p->program->Base.NumTexIndirections++;
561 p->temps_output = 1<<coord.idx;
562 p->alu_temps = 0;
563 assert(0); /* KW: texture env crossbar */
564 }
565
566 return dest;
567 }
568
569
570 static struct ureg register_const4f( struct texenv_fragment_program *p,
571 GLfloat s0,
572 GLfloat s1,
573 GLfloat s2,
574 GLfloat s3)
575 {
576 GLfloat values[4];
577 GLuint idx, swizzle;
578 values[0] = s0;
579 values[1] = s1;
580 values[2] = s2;
581 values[3] = s3;
582 idx = _mesa_add_unnamed_constant( p->program->Base.Parameters, values, 4,
583 &swizzle );
584 ASSERT(swizzle == SWIZZLE_NOOP);
585 return make_ureg(PROGRAM_CONSTANT, idx);
586 }
587
588 #define register_scalar_const(p, s0) register_const4f(p, s0, s0, s0, s0)
589 #define register_const1f(p, s0) register_const4f(p, s0, 0, 0, 1)
590 #define register_const2f(p, s0, s1) register_const4f(p, s0, s1, 0, 1)
591 #define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1)
592
593
594 static struct ureg get_one( struct texenv_fragment_program *p )
595 {
596 if (is_undef(p->one))
597 p->one = register_scalar_const(p, 1.0);
598 return p->one;
599 }
600
601 static struct ureg get_half( struct texenv_fragment_program *p )
602 {
603 if (is_undef(p->half))
604 p->half = register_scalar_const(p, 0.5);
605 return p->half;
606 }
607
608 static struct ureg get_zero( struct texenv_fragment_program *p )
609 {
610 if (is_undef(p->zero))
611 p->zero = register_scalar_const(p, 0.0);
612 return p->zero;
613 }
614
615
616 static void program_error( struct texenv_fragment_program *p, const char *msg )
617 {
618 _mesa_problem(NULL, msg);
619 p->error = 1;
620 }
621
622 static struct ureg get_source( struct texenv_fragment_program *p,
623 GLuint src, GLuint unit )
624 {
625 switch (src) {
626 case SRC_TEXTURE:
627 assert(!is_undef(p->src_texture[unit]));
628 return p->src_texture[unit];
629
630 case SRC_TEXTURE0:
631 case SRC_TEXTURE1:
632 case SRC_TEXTURE2:
633 case SRC_TEXTURE3:
634 case SRC_TEXTURE4:
635 case SRC_TEXTURE5:
636 case SRC_TEXTURE6:
637 case SRC_TEXTURE7:
638 assert(!is_undef(p->src_texture[src - SRC_TEXTURE0]));
639 return p->src_texture[src - SRC_TEXTURE0];
640
641 case SRC_CONSTANT:
642 return register_param2(p, STATE_TEXENV_COLOR, unit);
643
644 case SRC_PRIMARY_COLOR:
645 return register_input(p, FRAG_ATTRIB_COL0);
646
647 case SRC_PREVIOUS:
648 default:
649 if (is_undef(p->src_previous))
650 return register_input(p, FRAG_ATTRIB_COL0);
651 else
652 return p->src_previous;
653 }
654 }
655
656 static struct ureg emit_combine_source( struct texenv_fragment_program *p,
657 GLuint mask,
658 GLuint unit,
659 GLuint source,
660 GLuint operand )
661 {
662 struct ureg arg, src, one;
663
664 src = get_source(p, source, unit);
665
666 switch (operand) {
667 case OPR_ONE_MINUS_SRC_COLOR:
668 /* Get unused tmp,
669 * Emit tmp = 1.0 - arg.xyzw
670 */
671 arg = get_temp( p );
672 one = get_one( p );
673 return emit_arith( p, OPCODE_SUB, arg, mask, 0, one, src, undef);
674
675 case OPR_SRC_ALPHA:
676 if (mask == WRITEMASK_W)
677 return src;
678 else
679 return swizzle1( src, SWIZZLE_W );
680 case OPR_ONE_MINUS_SRC_ALPHA:
681 /* Get unused tmp,
682 * Emit tmp = 1.0 - arg.wwww
683 */
684 arg = get_temp(p);
685 one = get_one(p);
686 return emit_arith(p, OPCODE_SUB, arg, mask, 0,
687 one, swizzle1(src, SWIZZLE_W), undef);
688 case OPR_ZERO:
689 return get_zero(p);
690 case OPR_ONE:
691 return get_one(p);
692 case OPR_SRC_COLOR:
693 default:
694 return src;
695 }
696 }
697
698 static GLboolean args_match( struct state_key *key, GLuint unit )
699 {
700 GLuint i, nr = key->unit[unit].NumArgsRGB;
701
702 for (i = 0 ; i < nr ; i++) {
703 if (key->unit[unit].OptA[i].Source != key->unit[unit].OptRGB[i].Source)
704 return GL_FALSE;
705
706 switch(key->unit[unit].OptA[i].Operand) {
707 case OPR_SRC_ALPHA:
708 switch(key->unit[unit].OptRGB[i].Operand) {
709 case OPR_SRC_COLOR:
710 case OPR_SRC_ALPHA:
711 break;
712 default:
713 return GL_FALSE;
714 }
715 break;
716 case OPR_ONE_MINUS_SRC_ALPHA:
717 switch(key->unit[unit].OptRGB[i].Operand) {
718 case OPR_ONE_MINUS_SRC_COLOR:
719 case OPR_ONE_MINUS_SRC_ALPHA:
720 break;
721 default:
722 return GL_FALSE;
723 }
724 break;
725 default:
726 return GL_FALSE; /* impossible */
727 }
728 }
729
730 return GL_TRUE;
731 }
732
733 static struct ureg emit_combine( struct texenv_fragment_program *p,
734 struct ureg dest,
735 GLuint mask,
736 GLboolean saturate,
737 GLuint unit,
738 GLuint nr,
739 GLuint mode,
740 const struct mode_opt *opt)
741 {
742 struct ureg src[3];
743 struct ureg tmp, half;
744 GLuint i;
745
746 tmp = undef; /* silence warning (bug 5318) */
747
748 for (i = 0; i < nr; i++)
749 src[i] = emit_combine_source( p, mask, unit, opt[i].Source, opt[i].Operand );
750
751 switch (mode) {
752 case MODE_REPLACE:
753 if (mask == WRITEMASK_XYZW && !saturate)
754 return src[0];
755 else
756 return emit_arith( p, OPCODE_MOV, dest, mask, saturate, src[0], undef, undef );
757 case MODE_MODULATE:
758 return emit_arith( p, OPCODE_MUL, dest, mask, saturate,
759 src[0], src[1], undef );
760 case MODE_ADD:
761 return emit_arith( p, OPCODE_ADD, dest, mask, saturate,
762 src[0], src[1], undef );
763 case MODE_ADD_SIGNED:
764 /* tmp = arg0 + arg1
765 * result = tmp - .5
766 */
767 half = get_half(p);
768 tmp = get_temp( p );
769 emit_arith( p, OPCODE_ADD, tmp, mask, 0, src[0], src[1], undef );
770 emit_arith( p, OPCODE_SUB, dest, mask, saturate, tmp, half, undef );
771 return dest;
772 case MODE_INTERPOLATE:
773 /* Arg0 * (Arg2) + Arg1 * (1-Arg2) -- note arguments are reordered:
774 */
775 return emit_arith( p, OPCODE_LRP, dest, mask, saturate, src[2], src[0], src[1] );
776
777 case MODE_SUBTRACT:
778 return emit_arith( p, OPCODE_SUB, dest, mask, saturate, src[0], src[1], undef );
779
780 case MODE_DOT3_RGBA:
781 case MODE_DOT3_RGBA_EXT:
782 case MODE_DOT3_RGB_EXT:
783 case MODE_DOT3_RGB: {
784 struct ureg tmp0 = get_temp( p );
785 struct ureg tmp1 = get_temp( p );
786 struct ureg neg1 = register_scalar_const(p, -1);
787 struct ureg two = register_scalar_const(p, 2);
788
789 /* tmp0 = 2*src0 - 1
790 * tmp1 = 2*src1 - 1
791 *
792 * dst = tmp0 dot3 tmp1
793 */
794 emit_arith( p, OPCODE_MAD, tmp0, WRITEMASK_XYZW, 0,
795 two, src[0], neg1);
796
797 if (_mesa_memcmp(&src[0], &src[1], sizeof(struct ureg)) == 0)
798 tmp1 = tmp0;
799 else
800 emit_arith( p, OPCODE_MAD, tmp1, WRITEMASK_XYZW, 0,
801 two, src[1], neg1);
802 emit_arith( p, OPCODE_DP3, dest, mask, saturate, tmp0, tmp1, undef);
803 return dest;
804 }
805 case MODE_MODULATE_ADD_ATI:
806 /* Arg0 * Arg2 + Arg1 */
807 return emit_arith( p, OPCODE_MAD, dest, mask, saturate,
808 src[0], src[2], src[1] );
809 case MODE_MODULATE_SIGNED_ADD_ATI: {
810 /* Arg0 * Arg2 + Arg1 - 0.5 */
811 struct ureg tmp0 = get_temp(p);
812 half = get_half(p);
813 emit_arith( p, OPCODE_MAD, tmp0, mask, 0, src[0], src[2], src[1] );
814 emit_arith( p, OPCODE_SUB, dest, mask, saturate, tmp0, half, undef );
815 return dest;
816 }
817 case MODE_MODULATE_SUBTRACT_ATI:
818 /* Arg0 * Arg2 - Arg1 */
819 emit_arith( p, OPCODE_MAD, dest, mask, 0, src[0], src[2], negate(src[1]) );
820 return dest;
821 default:
822 return src[0];
823 }
824 }
825
826
827 /**
828 * Generate instructions for one texture unit's env/combiner mode.
829 */
830 static struct ureg
831 emit_texenv(struct texenv_fragment_program *p, GLuint unit)
832 {
833 struct state_key *key = p->state;
834 GLboolean saturate = (unit < p->last_tex_stage);
835 GLuint rgb_shift, alpha_shift;
836 struct ureg out, shift;
837 struct ureg dest;
838
839 if (!key->unit[unit].enabled) {
840 return get_source(p, SRC_PREVIOUS, 0);
841 }
842
843 switch (key->unit[unit].ModeRGB) {
844 case MODE_DOT3_RGB_EXT:
845 alpha_shift = key->unit[unit].ScaleShiftA;
846 rgb_shift = 0;
847 break;
848 case MODE_DOT3_RGBA_EXT:
849 alpha_shift = 0;
850 rgb_shift = 0;
851 break;
852 default:
853 rgb_shift = key->unit[unit].ScaleShiftRGB;
854 alpha_shift = key->unit[unit].ScaleShiftA;
855 break;
856 }
857
858 /* If this is the very last calculation, emit direct to output reg:
859 */
860 if (key->separate_specular ||
861 unit != p->last_tex_stage ||
862 alpha_shift ||
863 rgb_shift)
864 dest = get_temp( p );
865 else
866 dest = make_ureg(PROGRAM_OUTPUT, FRAG_RESULT_COLR);
867
868 /* Emit the RGB and A combine ops
869 */
870 if (key->unit[unit].ModeRGB == key->unit[unit].ModeA &&
871 args_match(key, unit)) {
872 out = emit_combine( p, dest, WRITEMASK_XYZW, saturate,
873 unit,
874 key->unit[unit].NumArgsRGB,
875 key->unit[unit].ModeRGB,
876 key->unit[unit].OptRGB);
877 }
878 else if (key->unit[unit].ModeRGB == MODE_DOT3_RGBA_EXT ||
879 key->unit[unit].ModeRGB == MODE_DOT3_RGBA) {
880
881 out = emit_combine( p, dest, WRITEMASK_XYZW, saturate,
882 unit,
883 key->unit[unit].NumArgsRGB,
884 key->unit[unit].ModeRGB,
885 key->unit[unit].OptRGB);
886 }
887 else {
888 /* Need to do something to stop from re-emitting identical
889 * argument calculations here:
890 */
891 out = emit_combine( p, dest, WRITEMASK_XYZ, saturate,
892 unit,
893 key->unit[unit].NumArgsRGB,
894 key->unit[unit].ModeRGB,
895 key->unit[unit].OptRGB);
896 out = emit_combine( p, dest, WRITEMASK_W, saturate,
897 unit,
898 key->unit[unit].NumArgsA,
899 key->unit[unit].ModeA,
900 key->unit[unit].OptA);
901 }
902
903 /* Deal with the final shift:
904 */
905 if (alpha_shift || rgb_shift) {
906 if (rgb_shift == alpha_shift) {
907 shift = register_scalar_const(p, (GLfloat)(1<<rgb_shift));
908 }
909 else {
910 shift = register_const4f(p,
911 (GLfloat)(1<<rgb_shift),
912 (GLfloat)(1<<rgb_shift),
913 (GLfloat)(1<<rgb_shift),
914 (GLfloat)(1<<alpha_shift));
915 }
916 return emit_arith( p, OPCODE_MUL, dest, WRITEMASK_XYZW,
917 saturate, out, shift, undef );
918 }
919 else
920 return out;
921 }
922
923
924 /**
925 * Generate instruction for getting a texture source term.
926 */
927 static void load_texture( struct texenv_fragment_program *p, GLuint unit )
928 {
929 if (is_undef(p->src_texture[unit])) {
930 GLuint dim = p->state->unit[unit].source_index;
931 struct ureg texcoord = register_input(p, FRAG_ATTRIB_TEX0+unit);
932 struct ureg tmp = get_tex_temp( p );
933
934 if (dim == TEXTURE_UNKNOWN_INDEX)
935 program_error(p, "TexSrcBit");
936
937 /* TODO: Use D0_MASK_XY where possible.
938 */
939 if (p->state->unit[unit].enabled) {
940 p->src_texture[unit] = emit_texld( p, OPCODE_TXP,
941 tmp, WRITEMASK_XYZW,
942 unit, dim, texcoord );
943 p->program->Base.SamplersUsed |= (1 << unit);
944 /* This identity mapping should already be in place
945 * (see _mesa_init_program_struct()) but let's be safe.
946 */
947 p->program->Base.SamplerUnits[unit] = unit;
948 }
949 else
950 p->src_texture[unit] = get_zero(p);
951 }
952 }
953
954 static GLboolean load_texenv_source( struct texenv_fragment_program *p,
955 GLuint src, GLuint unit )
956 {
957 switch (src) {
958 case SRC_TEXTURE:
959 load_texture(p, unit);
960 break;
961
962 case SRC_TEXTURE0:
963 case SRC_TEXTURE1:
964 case SRC_TEXTURE2:
965 case SRC_TEXTURE3:
966 case SRC_TEXTURE4:
967 case SRC_TEXTURE5:
968 case SRC_TEXTURE6:
969 case SRC_TEXTURE7:
970 load_texture(p, src - SRC_TEXTURE0);
971 break;
972
973 default:
974 break;
975 }
976
977 return GL_TRUE;
978 }
979
980
981 /**
982 * Generate instructions for loading all texture source terms.
983 */
984 static GLboolean
985 load_texunit_sources( struct texenv_fragment_program *p, int unit )
986 {
987 struct state_key *key = p->state;
988 GLuint i;
989
990 for (i = 0; i < key->unit[unit].NumArgsRGB; i++) {
991 load_texenv_source( p, key->unit[unit].OptRGB[i].Source, unit);
992 }
993
994 for (i = 0; i < key->unit[unit].NumArgsA; i++) {
995 load_texenv_source( p, key->unit[unit].OptA[i].Source, unit );
996 }
997
998 return GL_TRUE;
999 }
1000
1001
1002 /**
1003 * Generate a new fragment program which implements the context's
1004 * current texture env/combine mode.
1005 */
1006 static void
1007 create_new_program(GLcontext *ctx, struct state_key *key,
1008 struct gl_fragment_program *program)
1009 {
1010 struct prog_instruction instBuffer[MAX_INSTRUCTIONS];
1011 struct texenv_fragment_program p;
1012 GLuint unit;
1013 struct ureg cf, out;
1014
1015 _mesa_memset(&p, 0, sizeof(p));
1016 p.ctx = ctx;
1017 p.state = key;
1018 p.program = program;
1019
1020 /* During code generation, use locally-allocated instruction buffer,
1021 * then alloc dynamic storage below.
1022 */
1023 p.program->Base.Instructions = instBuffer;
1024 p.program->Base.Target = GL_FRAGMENT_PROGRAM_ARB;
1025 p.program->Base.NumTexIndirections = 1; /* correct? */
1026 p.program->Base.NumTexInstructions = 0;
1027 p.program->Base.NumAluInstructions = 0;
1028 p.program->Base.String = NULL;
1029 p.program->Base.NumInstructions =
1030 p.program->Base.NumTemporaries =
1031 p.program->Base.NumParameters =
1032 p.program->Base.NumAttributes = p.program->Base.NumAddressRegs = 0;
1033 p.program->Base.Parameters = _mesa_new_parameter_list();
1034
1035 p.program->Base.InputsRead = 0;
1036 p.program->Base.OutputsWritten = 1 << FRAG_RESULT_COLR;
1037
1038 for (unit = 0; unit < MAX_TEXTURE_UNITS; unit++)
1039 p.src_texture[unit] = undef;
1040
1041 p.src_previous = undef;
1042 p.half = undef;
1043 p.zero = undef;
1044 p.one = undef;
1045
1046 p.last_tex_stage = 0;
1047 release_temps(ctx, &p);
1048
1049 if (key->enabled_units) {
1050 /* First pass - to support texture_env_crossbar, first identify
1051 * all referenced texture sources and emit texld instructions
1052 * for each:
1053 */
1054 for (unit = 0 ; unit < ctx->Const.MaxTextureUnits ; unit++)
1055 if (key->unit[unit].enabled) {
1056 load_texunit_sources( &p, unit );
1057 p.last_tex_stage = unit;
1058 }
1059
1060 /* Second pass - emit combine instructions to build final color:
1061 */
1062 for (unit = 0 ; unit < ctx->Const.MaxTextureUnits; unit++)
1063 if (key->enabled_units & (1<<unit)) {
1064 p.src_previous = emit_texenv( &p, unit );
1065 release_temps(ctx, &p); /* release all temps */
1066 }
1067 }
1068
1069 cf = get_source( &p, SRC_PREVIOUS, 0 );
1070 out = make_ureg( PROGRAM_OUTPUT, FRAG_RESULT_COLR );
1071
1072 if (key->separate_specular) {
1073 /* Emit specular add.
1074 */
1075 struct ureg s = register_input(&p, FRAG_ATTRIB_COL1);
1076 emit_arith( &p, OPCODE_ADD, out, WRITEMASK_XYZ, 0, cf, s, undef );
1077 emit_arith( &p, OPCODE_MOV, out, WRITEMASK_W, 0, cf, undef, undef );
1078 }
1079 else if (_mesa_memcmp(&cf, &out, sizeof(cf)) != 0) {
1080 /* Will wind up in here if no texture enabled or a couple of
1081 * other scenarios (GL_REPLACE for instance).
1082 */
1083 emit_arith( &p, OPCODE_MOV, out, WRITEMASK_XYZW, 0, cf, undef, undef );
1084 }
1085
1086 /* Finish up:
1087 */
1088 emit_arith( &p, OPCODE_END, undef, WRITEMASK_XYZW, 0, undef, undef, undef);
1089
1090 if (key->fog_enabled) {
1091 /* Pull fog mode from GLcontext, the value in the state key is
1092 * a reduced value and not what is expected in FogOption
1093 */
1094 p.program->FogOption = ctx->Fog.Mode;
1095 p.program->Base.InputsRead |= FRAG_BIT_FOGC; /* XXX new */
1096 } else
1097 p.program->FogOption = GL_NONE;
1098
1099 if (p.program->Base.NumTexIndirections > ctx->Const.FragmentProgram.MaxTexIndirections)
1100 program_error(&p, "Exceeded max nr indirect texture lookups");
1101
1102 if (p.program->Base.NumTexInstructions > ctx->Const.FragmentProgram.MaxTexInstructions)
1103 program_error(&p, "Exceeded max TEX instructions");
1104
1105 if (p.program->Base.NumAluInstructions > ctx->Const.FragmentProgram.MaxAluInstructions)
1106 program_error(&p, "Exceeded max ALU instructions");
1107
1108 ASSERT(p.program->Base.NumInstructions <= MAX_INSTRUCTIONS);
1109
1110 /* Allocate final instruction array */
1111 p.program->Base.Instructions
1112 = _mesa_alloc_instructions(p.program->Base.NumInstructions);
1113 if (!p.program->Base.Instructions) {
1114 _mesa_error(ctx, GL_OUT_OF_MEMORY,
1115 "generating tex env program");
1116 return;
1117 }
1118 _mesa_copy_instructions(p.program->Base.Instructions, instBuffer,
1119 p.program->Base.NumInstructions);
1120
1121 if (p.program->FogOption) {
1122 _mesa_append_fog_code(ctx, p.program);
1123 p.program->FogOption = GL_NONE;
1124 }
1125
1126
1127 /* Notify driver the fragment program has (actually) changed.
1128 */
1129 if (ctx->Driver.ProgramStringNotify) {
1130 ctx->Driver.ProgramStringNotify( ctx, GL_FRAGMENT_PROGRAM_ARB,
1131 &p.program->Base );
1132 }
1133
1134 if (DISASSEM) {
1135 _mesa_print_program(&p.program->Base);
1136 _mesa_printf("\n");
1137 }
1138 }
1139
1140
1141 /**
1142 * Return a fragment program which implements the current
1143 * fixed-function texture, fog and color-sum operations.
1144 */
1145 struct gl_fragment_program *
1146 _mesa_get_fixed_func_fragment_program(GLcontext *ctx)
1147 {
1148 struct gl_fragment_program *prog;
1149 struct state_key key;
1150
1151 make_state_key(ctx, &key);
1152
1153 prog = (struct gl_fragment_program *)
1154 _mesa_search_program_cache(ctx->FragmentProgram.Cache,
1155 &key, sizeof(key));
1156
1157 if (!prog) {
1158 prog = (struct gl_fragment_program *)
1159 ctx->Driver.NewProgram(ctx, GL_FRAGMENT_PROGRAM_ARB, 0);
1160
1161 create_new_program(ctx, &key, prog);
1162
1163 _mesa_program_cache_insert(ctx, ctx->FragmentProgram.Cache,
1164 &key, sizeof(key), &prog->Base);
1165 }
1166
1167 return prog;
1168 }
1169
1170
1171
1172 /**
1173 * If _MaintainTexEnvProgram is set we'll generate a fragment program that
1174 * implements the current texture env/combine mode.
1175 * This function generates that program and puts it into effect.
1176 */
1177 void
1178 _mesa_UpdateTexEnvProgram( GLcontext *ctx )
1179 {
1180 const struct gl_fragment_program *prev = ctx->FragmentProgram._Current;
1181
1182 ASSERT(ctx->FragmentProgram._MaintainTexEnvProgram);
1183
1184 /* If a conventional fragment program/shader isn't in effect... */
1185 if (!ctx->FragmentProgram._Enabled &&
1186 (!ctx->Shader.CurrentProgram ||
1187 !ctx->Shader.CurrentProgram->FragmentProgram) ) {
1188
1189 ctx->FragmentProgram._Current
1190 = ctx->FragmentProgram._TexEnvProgram
1191 = _mesa_get_fixed_func_fragment_program(ctx);
1192 }
1193
1194 /* Tell the driver about the change. Could define a new target for
1195 * this?
1196 */
1197 if (ctx->FragmentProgram._Current != prev && ctx->Driver.BindProgram) {
1198 ctx->Driver.BindProgram(ctx, GL_FRAGMENT_PROGRAM_ARB,
1199 (struct gl_program *) ctx->FragmentProgram._Current);
1200 }
1201 }