mesa: bump version to 7.6 (devel)
[mesa.git] / src / mesa / main / texenvprogram.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 * Copyright 2009 VMware, Inc. All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 #include "glheader.h"
30 #include "macros.h"
31 #include "enums.h"
32 #include "shader/program.h"
33 #include "shader/prog_parameter.h"
34 #include "shader/prog_cache.h"
35 #include "shader/prog_instruction.h"
36 #include "shader/prog_print.h"
37 #include "shader/prog_statevars.h"
38 #include "shader/programopt.h"
39 #include "texenvprogram.h"
40
41
42 /*
43 * Note on texture units:
44 *
45 * The number of texture units supported by fixed-function fragment
46 * processing is MAX_TEXTURE_COORD_UNITS, not MAX_TEXTURE_IMAGE_UNITS.
47 * That's because there's a one-to-one correspondence between texture
48 * coordinates and samplers in fixed-function processing.
49 *
50 * Since fixed-function vertex processing is limited to MAX_TEXTURE_COORD_UNITS
51 * sets of texcoords, so is fixed-function fragment processing.
52 *
53 * We can safely use ctx->Const.MaxTextureUnits for loop bounds.
54 */
55
56
57 struct texenvprog_cache_item
58 {
59 GLuint hash;
60 void *key;
61 struct gl_fragment_program *data;
62 struct texenvprog_cache_item *next;
63 };
64
65
66 /**
67 * Up to nine instructions per tex unit, plus fog, specular color.
68 */
69 #define MAX_INSTRUCTIONS ((MAX_TEXTURE_COORD_UNITS * 9) + 12)
70
71 #define DISASSEM (MESA_VERBOSE & VERBOSE_DISASSEM)
72
73 struct mode_opt {
74 GLuint Source:4;
75 GLuint Operand:3;
76 };
77
78 struct state_key {
79 GLuint nr_enabled_units:8;
80 GLuint enabled_units:8;
81 GLuint separate_specular:1;
82 GLuint fog_enabled:1;
83 GLuint fog_mode:2;
84 GLuint inputs_available:12;
85
86 struct {
87 GLuint enabled:1;
88 GLuint source_index:3; /* one of TEXTURE_1D/2D/3D/CUBE/RECT_INDEX */
89 GLuint shadow:1;
90 GLuint ScaleShiftRGB:2;
91 GLuint ScaleShiftA:2;
92
93 GLuint NumArgsRGB:3;
94 GLuint ModeRGB:5;
95 struct mode_opt OptRGB[MAX_COMBINER_TERMS];
96
97 GLuint NumArgsA:3;
98 GLuint ModeA:5;
99 struct mode_opt OptA[MAX_COMBINER_TERMS];
100 } unit[8];
101 };
102
103 #define FOG_LINEAR 0
104 #define FOG_EXP 1
105 #define FOG_EXP2 2
106 #define FOG_UNKNOWN 3
107
108 static GLuint translate_fog_mode( GLenum mode )
109 {
110 switch (mode) {
111 case GL_LINEAR: return FOG_LINEAR;
112 case GL_EXP: return FOG_EXP;
113 case GL_EXP2: return FOG_EXP2;
114 default: return FOG_UNKNOWN;
115 }
116 }
117
118 #define OPR_SRC_COLOR 0
119 #define OPR_ONE_MINUS_SRC_COLOR 1
120 #define OPR_SRC_ALPHA 2
121 #define OPR_ONE_MINUS_SRC_ALPHA 3
122 #define OPR_ZERO 4
123 #define OPR_ONE 5
124 #define OPR_UNKNOWN 7
125
126 static GLuint translate_operand( GLenum operand )
127 {
128 switch (operand) {
129 case GL_SRC_COLOR: return OPR_SRC_COLOR;
130 case GL_ONE_MINUS_SRC_COLOR: return OPR_ONE_MINUS_SRC_COLOR;
131 case GL_SRC_ALPHA: return OPR_SRC_ALPHA;
132 case GL_ONE_MINUS_SRC_ALPHA: return OPR_ONE_MINUS_SRC_ALPHA;
133 case GL_ZERO: return OPR_ZERO;
134 case GL_ONE: return OPR_ONE;
135 default:
136 assert(0);
137 return OPR_UNKNOWN;
138 }
139 }
140
141 #define SRC_TEXTURE 0
142 #define SRC_TEXTURE0 1
143 #define SRC_TEXTURE1 2
144 #define SRC_TEXTURE2 3
145 #define SRC_TEXTURE3 4
146 #define SRC_TEXTURE4 5
147 #define SRC_TEXTURE5 6
148 #define SRC_TEXTURE6 7
149 #define SRC_TEXTURE7 8
150 #define SRC_CONSTANT 9
151 #define SRC_PRIMARY_COLOR 10
152 #define SRC_PREVIOUS 11
153 #define SRC_ZERO 12
154 #define SRC_UNKNOWN 15
155
156 static GLuint translate_source( GLenum src )
157 {
158 switch (src) {
159 case GL_TEXTURE: return SRC_TEXTURE;
160 case GL_TEXTURE0:
161 case GL_TEXTURE1:
162 case GL_TEXTURE2:
163 case GL_TEXTURE3:
164 case GL_TEXTURE4:
165 case GL_TEXTURE5:
166 case GL_TEXTURE6:
167 case GL_TEXTURE7: return SRC_TEXTURE0 + (src - GL_TEXTURE0);
168 case GL_CONSTANT: return SRC_CONSTANT;
169 case GL_PRIMARY_COLOR: return SRC_PRIMARY_COLOR;
170 case GL_PREVIOUS: return SRC_PREVIOUS;
171 case GL_ZERO:
172 return SRC_ZERO;
173 default:
174 assert(0);
175 return SRC_UNKNOWN;
176 }
177 }
178
179 #define MODE_REPLACE 0 /* r = a0 */
180 #define MODE_MODULATE 1 /* r = a0 * a1 */
181 #define MODE_ADD 2 /* r = a0 + a1 */
182 #define MODE_ADD_SIGNED 3 /* r = a0 + a1 - 0.5 */
183 #define MODE_INTERPOLATE 4 /* r = a0 * a2 + a1 * (1 - a2) */
184 #define MODE_SUBTRACT 5 /* r = a0 - a1 */
185 #define MODE_DOT3_RGB 6 /* r = a0 . a1 */
186 #define MODE_DOT3_RGB_EXT 7 /* r = a0 . a1 */
187 #define MODE_DOT3_RGBA 8 /* r = a0 . a1 */
188 #define MODE_DOT3_RGBA_EXT 9 /* r = a0 . a1 */
189 #define MODE_MODULATE_ADD_ATI 10 /* r = a0 * a2 + a1 */
190 #define MODE_MODULATE_SIGNED_ADD_ATI 11 /* r = a0 * a2 + a1 - 0.5 */
191 #define MODE_MODULATE_SUBTRACT_ATI 12 /* r = a0 * a2 - a1 */
192 #define MODE_ADD_PRODUCTS 13 /* r = a0 * a1 + a2 * a3 */
193 #define MODE_ADD_PRODUCTS_SIGNED 14 /* r = a0 * a1 + a2 * a3 - 0.5 */
194 #define MODE_BUMP_ENVMAP_ATI 15 /* special */
195 #define MODE_UNKNOWN 16
196
197 /**
198 * Translate GL combiner state into a MODE_x value
199 */
200 static GLuint translate_mode( GLenum envMode, GLenum mode )
201 {
202 switch (mode) {
203 case GL_REPLACE: return MODE_REPLACE;
204 case GL_MODULATE: return MODE_MODULATE;
205 case GL_ADD:
206 if (envMode == GL_COMBINE4_NV)
207 return MODE_ADD_PRODUCTS;
208 else
209 return MODE_ADD;
210 case GL_ADD_SIGNED:
211 if (envMode == GL_COMBINE4_NV)
212 return MODE_ADD_PRODUCTS_SIGNED;
213 else
214 return MODE_ADD_SIGNED;
215 case GL_INTERPOLATE: return MODE_INTERPOLATE;
216 case GL_SUBTRACT: return MODE_SUBTRACT;
217 case GL_DOT3_RGB: return MODE_DOT3_RGB;
218 case GL_DOT3_RGB_EXT: return MODE_DOT3_RGB_EXT;
219 case GL_DOT3_RGBA: return MODE_DOT3_RGBA;
220 case GL_DOT3_RGBA_EXT: return MODE_DOT3_RGBA_EXT;
221 case GL_MODULATE_ADD_ATI: return MODE_MODULATE_ADD_ATI;
222 case GL_MODULATE_SIGNED_ADD_ATI: return MODE_MODULATE_SIGNED_ADD_ATI;
223 case GL_MODULATE_SUBTRACT_ATI: return MODE_MODULATE_SUBTRACT_ATI;
224 case GL_BUMP_ENVMAP_ATI: return MODE_BUMP_ENVMAP_ATI;
225 default:
226 assert(0);
227 return MODE_UNKNOWN;
228 }
229 }
230
231 #define TEXTURE_UNKNOWN_INDEX 7
232 static GLuint translate_tex_src_bit( GLbitfield bit )
233 {
234 /* make sure number of switch cases is correct */
235 assert(NUM_TEXTURE_TARGETS == 7);
236 switch (bit) {
237 case TEXTURE_1D_BIT: return TEXTURE_1D_INDEX;
238 case TEXTURE_2D_BIT: return TEXTURE_2D_INDEX;
239 case TEXTURE_RECT_BIT: return TEXTURE_RECT_INDEX;
240 case TEXTURE_3D_BIT: return TEXTURE_3D_INDEX;
241 case TEXTURE_CUBE_BIT: return TEXTURE_CUBE_INDEX;
242 case TEXTURE_1D_ARRAY_BIT: return TEXTURE_1D_ARRAY_INDEX;
243 case TEXTURE_2D_ARRAY_BIT: return TEXTURE_2D_ARRAY_INDEX;
244 default:
245 assert(0);
246 return TEXTURE_UNKNOWN_INDEX;
247 }
248 }
249
250 #define VERT_BIT_TEX_ANY (0xff << VERT_ATTRIB_TEX0)
251 #define VERT_RESULT_TEX_ANY (0xff << VERT_RESULT_TEX0)
252
253 /**
254 * Identify all possible varying inputs. The fragment program will
255 * never reference non-varying inputs, but will track them via state
256 * constants instead.
257 *
258 * This function figures out all the inputs that the fragment program
259 * has access to. The bitmask is later reduced to just those which
260 * are actually referenced.
261 */
262 static GLbitfield get_fp_input_mask( GLcontext *ctx )
263 {
264 const GLboolean vertexShader = (ctx->Shader.CurrentProgram &&
265 ctx->Shader.CurrentProgram->VertexProgram);
266 const GLboolean vertexProgram = ctx->VertexProgram._Enabled;
267 GLbitfield fp_inputs = 0x0;
268
269 if (ctx->VertexProgram._Overriden) {
270 /* Somebody's messing with the vertex program and we don't have
271 * a clue what's happening. Assume that it could be producing
272 * all possible outputs.
273 */
274 fp_inputs = ~0;
275 }
276 else if (ctx->RenderMode == GL_FEEDBACK) {
277 fp_inputs = (FRAG_BIT_COL0 | FRAG_BIT_TEX0);
278 }
279 else if (!(vertexProgram || vertexShader) ||
280 !ctx->VertexProgram._Current) {
281 /* Fixed function vertex logic */
282 GLbitfield varying_inputs = ctx->varying_vp_inputs;
283
284 /* These get generated in the setup routine regardless of the
285 * vertex program:
286 */
287 if (ctx->Point.PointSprite)
288 varying_inputs |= FRAG_BITS_TEX_ANY;
289
290 /* First look at what values may be computed by the generated
291 * vertex program:
292 */
293 if (ctx->Light.Enabled) {
294 fp_inputs |= FRAG_BIT_COL0;
295
296 if (ctx->_TriangleCaps & DD_SEPARATE_SPECULAR)
297 fp_inputs |= FRAG_BIT_COL1;
298 }
299
300 fp_inputs |= (ctx->Texture._TexGenEnabled |
301 ctx->Texture._TexMatEnabled) << FRAG_ATTRIB_TEX0;
302
303 /* Then look at what might be varying as a result of enabled
304 * arrays, etc:
305 */
306 if (varying_inputs & VERT_BIT_COLOR0) fp_inputs |= FRAG_BIT_COL0;
307 if (varying_inputs & VERT_BIT_COLOR1) fp_inputs |= FRAG_BIT_COL1;
308
309 fp_inputs |= (((varying_inputs & VERT_BIT_TEX_ANY) >> VERT_ATTRIB_TEX0)
310 << FRAG_ATTRIB_TEX0);
311
312 }
313 else {
314 /* calculate from vp->outputs */
315 struct gl_vertex_program *vprog;
316 GLbitfield vp_outputs;
317
318 /* Choose GLSL vertex shader over ARB vertex program. Need this
319 * since vertex shader state validation comes after fragment state
320 * validation (see additional comments in state.c).
321 */
322 if (vertexShader)
323 vprog = ctx->Shader.CurrentProgram->VertexProgram;
324 else
325 vprog = ctx->VertexProgram._Current;
326
327 vp_outputs = vprog->Base.OutputsWritten;
328
329 /* These get generated in the setup routine regardless of the
330 * vertex program:
331 */
332 if (ctx->Point.PointSprite)
333 vp_outputs |= FRAG_BITS_TEX_ANY;
334
335 if (vp_outputs & (1 << VERT_RESULT_COL0)) fp_inputs |= FRAG_BIT_COL0;
336 if (vp_outputs & (1 << VERT_RESULT_COL1)) fp_inputs |= FRAG_BIT_COL1;
337
338 fp_inputs |= (((vp_outputs & VERT_RESULT_TEX_ANY) >> VERT_RESULT_TEX0)
339 << FRAG_ATTRIB_TEX0);
340 }
341
342 return fp_inputs;
343 }
344
345
346 /**
347 * Examine current texture environment state and generate a unique
348 * key to identify it.
349 */
350 static void make_state_key( GLcontext *ctx, struct state_key *key )
351 {
352 GLuint i, j;
353 GLbitfield inputs_referenced = FRAG_BIT_COL0;
354 GLbitfield inputs_available = get_fp_input_mask( ctx );
355
356 memset(key, 0, sizeof(*key));
357
358 for (i = 0; i < ctx->Const.MaxTextureUnits; i++) {
359 const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
360 GLenum format;
361
362 if (!texUnit->_ReallyEnabled || !texUnit->Enabled)
363 continue;
364
365 format = texUnit->_Current->Image[0][texUnit->_Current->BaseLevel]->_BaseFormat;
366
367 key->unit[i].enabled = 1;
368 key->enabled_units |= (1<<i);
369 key->nr_enabled_units = i+1;
370 inputs_referenced |= FRAG_BIT_TEX(i);
371
372 key->unit[i].source_index =
373 translate_tex_src_bit(texUnit->_ReallyEnabled);
374 key->unit[i].shadow = ((texUnit->_Current->CompareMode == GL_COMPARE_R_TO_TEXTURE) &&
375 ((format == GL_DEPTH_COMPONENT) ||
376 (format == GL_DEPTH_STENCIL_EXT)));
377
378 key->unit[i].NumArgsRGB = texUnit->_CurrentCombine->_NumArgsRGB;
379 key->unit[i].NumArgsA = texUnit->_CurrentCombine->_NumArgsA;
380
381 key->unit[i].ModeRGB =
382 translate_mode(texUnit->EnvMode, texUnit->_CurrentCombine->ModeRGB);
383 key->unit[i].ModeA =
384 translate_mode(texUnit->EnvMode, texUnit->_CurrentCombine->ModeA);
385
386 key->unit[i].ScaleShiftRGB = texUnit->_CurrentCombine->ScaleShiftRGB;
387 key->unit[i].ScaleShiftA = texUnit->_CurrentCombine->ScaleShiftA;
388
389 for (j = 0; j < MAX_COMBINER_TERMS; j++) {
390 key->unit[i].OptRGB[j].Operand =
391 translate_operand(texUnit->_CurrentCombine->OperandRGB[j]);
392 key->unit[i].OptA[j].Operand =
393 translate_operand(texUnit->_CurrentCombine->OperandA[j]);
394 key->unit[i].OptRGB[j].Source =
395 translate_source(texUnit->_CurrentCombine->SourceRGB[j]);
396 key->unit[i].OptA[j].Source =
397 translate_source(texUnit->_CurrentCombine->SourceA[j]);
398 }
399
400 if (key->unit[i].ModeRGB == MODE_BUMP_ENVMAP_ATI) {
401 /* requires some special translation */
402 key->unit[i].NumArgsRGB = 2;
403 key->unit[i].ScaleShiftRGB = 0;
404 key->unit[i].OptRGB[0].Operand = OPR_SRC_COLOR;
405 key->unit[i].OptRGB[0].Source = SRC_TEXTURE;
406 key->unit[i].OptRGB[1].Operand = OPR_SRC_COLOR;
407 key->unit[i].OptRGB[1].Source = texUnit->BumpTarget - GL_TEXTURE0 + SRC_TEXTURE0;
408 }
409 }
410
411 if (ctx->_TriangleCaps & DD_SEPARATE_SPECULAR) {
412 key->separate_specular = 1;
413 inputs_referenced |= FRAG_BIT_COL1;
414 }
415
416 if (ctx->Fog.Enabled) {
417 key->fog_enabled = 1;
418 key->fog_mode = translate_fog_mode(ctx->Fog.Mode);
419 inputs_referenced |= FRAG_BIT_FOGC; /* maybe */
420 }
421
422 key->inputs_available = (inputs_available & inputs_referenced);
423 }
424
425 /**
426 * Use uregs to represent registers internally, translate to Mesa's
427 * expected formats on emit.
428 *
429 * NOTE: These are passed by value extensively in this file rather
430 * than as usual by pointer reference. If this disturbs you, try
431 * remembering they are just 32bits in size.
432 *
433 * GCC is smart enough to deal with these dword-sized structures in
434 * much the same way as if I had defined them as dwords and was using
435 * macros to access and set the fields. This is much nicer and easier
436 * to evolve.
437 */
438 struct ureg {
439 GLuint file:4;
440 GLuint idx:8;
441 GLuint negatebase:1;
442 GLuint abs:1;
443 GLuint negateabs:1;
444 GLuint swz:12;
445 GLuint pad:5;
446 };
447
448 static const struct ureg undef = {
449 PROGRAM_UNDEFINED,
450 ~0,
451 0,
452 0,
453 0,
454 0,
455 0
456 };
457
458
459 /** State used to build the fragment program:
460 */
461 struct texenv_fragment_program {
462 struct gl_fragment_program *program;
463 GLcontext *ctx;
464 struct state_key *state;
465
466 GLbitfield alu_temps; /**< Track texture indirections, see spec. */
467 GLbitfield temps_output; /**< Track texture indirections, see spec. */
468 GLbitfield temp_in_use; /**< Tracks temporary regs which are in use. */
469 GLboolean error;
470
471 struct ureg src_texture[MAX_TEXTURE_COORD_UNITS];
472 /* Reg containing each texture unit's sampled texture color,
473 * else undef.
474 */
475
476 struct ureg texcoord_tex[MAX_TEXTURE_COORD_UNITS];
477 /* Reg containing texcoord for a texture unit,
478 * needed for bump mapping, else undef.
479 */
480
481 struct ureg src_previous; /**< Reg containing color from previous
482 * stage. May need to be decl'd.
483 */
484
485 GLuint last_tex_stage; /**< Number of last enabled texture unit */
486
487 struct ureg half;
488 struct ureg one;
489 struct ureg zero;
490 };
491
492
493
494 static struct ureg make_ureg(GLuint file, GLuint idx)
495 {
496 struct ureg reg;
497 reg.file = file;
498 reg.idx = idx;
499 reg.negatebase = 0;
500 reg.abs = 0;
501 reg.negateabs = 0;
502 reg.swz = SWIZZLE_NOOP;
503 reg.pad = 0;
504 return reg;
505 }
506
507 static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w )
508 {
509 reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x),
510 GET_SWZ(reg.swz, y),
511 GET_SWZ(reg.swz, z),
512 GET_SWZ(reg.swz, w));
513
514 return reg;
515 }
516
517 static struct ureg swizzle1( struct ureg reg, int x )
518 {
519 return swizzle(reg, x, x, x, x);
520 }
521
522 static struct ureg negate( struct ureg reg )
523 {
524 reg.negatebase ^= 1;
525 return reg;
526 }
527
528 static GLboolean is_undef( struct ureg reg )
529 {
530 return reg.file == PROGRAM_UNDEFINED;
531 }
532
533
534 static struct ureg get_temp( struct texenv_fragment_program *p )
535 {
536 GLint bit;
537
538 /* First try and reuse temps which have been used already:
539 */
540 bit = _mesa_ffs( ~p->temp_in_use & p->alu_temps );
541
542 /* Then any unused temporary:
543 */
544 if (!bit)
545 bit = _mesa_ffs( ~p->temp_in_use );
546
547 if (!bit) {
548 _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
549 _mesa_exit(1);
550 }
551
552 if ((GLuint) bit > p->program->Base.NumTemporaries)
553 p->program->Base.NumTemporaries = bit;
554
555 p->temp_in_use |= 1<<(bit-1);
556 return make_ureg(PROGRAM_TEMPORARY, (bit-1));
557 }
558
559 static struct ureg get_tex_temp( struct texenv_fragment_program *p )
560 {
561 int bit;
562
563 /* First try to find available temp not previously used (to avoid
564 * starting a new texture indirection). According to the spec, the
565 * ~p->temps_output isn't necessary, but will keep it there for
566 * now:
567 */
568 bit = _mesa_ffs( ~p->temp_in_use & ~p->alu_temps & ~p->temps_output );
569
570 /* Then any unused temporary:
571 */
572 if (!bit)
573 bit = _mesa_ffs( ~p->temp_in_use );
574
575 if (!bit) {
576 _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
577 _mesa_exit(1);
578 }
579
580 if ((GLuint) bit > p->program->Base.NumTemporaries)
581 p->program->Base.NumTemporaries = bit;
582
583 p->temp_in_use |= 1<<(bit-1);
584 return make_ureg(PROGRAM_TEMPORARY, (bit-1));
585 }
586
587
588 /** Mark a temp reg as being no longer allocatable. */
589 static void reserve_temp( struct texenv_fragment_program *p, struct ureg r )
590 {
591 if (r.file == PROGRAM_TEMPORARY)
592 p->temps_output |= (1 << r.idx);
593 }
594
595
596 static void release_temps(GLcontext *ctx, struct texenv_fragment_program *p )
597 {
598 GLuint max_temp = ctx->Const.FragmentProgram.MaxTemps;
599
600 /* KW: To support tex_env_crossbar, don't release the registers in
601 * temps_output.
602 */
603 if (max_temp >= sizeof(int) * 8)
604 p->temp_in_use = p->temps_output;
605 else
606 p->temp_in_use = ~((1<<max_temp)-1) | p->temps_output;
607 }
608
609
610 static struct ureg register_param5( struct texenv_fragment_program *p,
611 GLint s0,
612 GLint s1,
613 GLint s2,
614 GLint s3,
615 GLint s4)
616 {
617 gl_state_index tokens[STATE_LENGTH];
618 GLuint idx;
619 tokens[0] = s0;
620 tokens[1] = s1;
621 tokens[2] = s2;
622 tokens[3] = s3;
623 tokens[4] = s4;
624 idx = _mesa_add_state_reference( p->program->Base.Parameters, tokens );
625 return make_ureg(PROGRAM_STATE_VAR, idx);
626 }
627
628
629 #define register_param1(p,s0) register_param5(p,s0,0,0,0,0)
630 #define register_param2(p,s0,s1) register_param5(p,s0,s1,0,0,0)
631 #define register_param3(p,s0,s1,s2) register_param5(p,s0,s1,s2,0,0)
632 #define register_param4(p,s0,s1,s2,s3) register_param5(p,s0,s1,s2,s3,0)
633
634 static GLuint frag_to_vert_attrib( GLuint attrib )
635 {
636 switch (attrib) {
637 case FRAG_ATTRIB_COL0: return VERT_ATTRIB_COLOR0;
638 case FRAG_ATTRIB_COL1: return VERT_ATTRIB_COLOR1;
639 default:
640 assert(attrib >= FRAG_ATTRIB_TEX0);
641 assert(attrib <= FRAG_ATTRIB_TEX7);
642 return attrib - FRAG_ATTRIB_TEX0 + VERT_ATTRIB_TEX0;
643 }
644 }
645
646
647 static struct ureg register_input( struct texenv_fragment_program *p, GLuint input )
648 {
649 if (p->state->inputs_available & (1<<input)) {
650 p->program->Base.InputsRead |= (1 << input);
651 return make_ureg(PROGRAM_INPUT, input);
652 }
653 else {
654 GLuint idx = frag_to_vert_attrib( input );
655 return register_param3( p, STATE_INTERNAL, STATE_CURRENT_ATTRIB, idx );
656 }
657 }
658
659
660 static void emit_arg( struct prog_src_register *reg,
661 struct ureg ureg )
662 {
663 reg->File = ureg.file;
664 reg->Index = ureg.idx;
665 reg->Swizzle = ureg.swz;
666 reg->Negate = ureg.negatebase ? NEGATE_XYZW : NEGATE_NONE;
667 reg->Abs = ureg.abs;
668 }
669
670 static void emit_dst( struct prog_dst_register *dst,
671 struct ureg ureg, GLuint mask )
672 {
673 dst->File = ureg.file;
674 dst->Index = ureg.idx;
675 dst->WriteMask = mask;
676 dst->CondMask = COND_TR; /* always pass cond test */
677 dst->CondSwizzle = SWIZZLE_NOOP;
678 }
679
680 static struct prog_instruction *
681 emit_op(struct texenv_fragment_program *p,
682 enum prog_opcode op,
683 struct ureg dest,
684 GLuint mask,
685 GLboolean saturate,
686 struct ureg src0,
687 struct ureg src1,
688 struct ureg src2 )
689 {
690 GLuint nr = p->program->Base.NumInstructions++;
691 struct prog_instruction *inst = &p->program->Base.Instructions[nr];
692
693 assert(nr < MAX_INSTRUCTIONS);
694
695 _mesa_init_instructions(inst, 1);
696 inst->Opcode = op;
697
698 emit_arg( &inst->SrcReg[0], src0 );
699 emit_arg( &inst->SrcReg[1], src1 );
700 emit_arg( &inst->SrcReg[2], src2 );
701
702 inst->SaturateMode = saturate ? SATURATE_ZERO_ONE : SATURATE_OFF;
703
704 emit_dst( &inst->DstReg, dest, mask );
705
706 #if 0
707 /* Accounting for indirection tracking:
708 */
709 if (dest.file == PROGRAM_TEMPORARY)
710 p->temps_output |= 1 << dest.idx;
711 #endif
712
713 return inst;
714 }
715
716
717 static struct ureg emit_arith( struct texenv_fragment_program *p,
718 enum prog_opcode op,
719 struct ureg dest,
720 GLuint mask,
721 GLboolean saturate,
722 struct ureg src0,
723 struct ureg src1,
724 struct ureg src2 )
725 {
726 emit_op(p, op, dest, mask, saturate, src0, src1, src2);
727
728 /* Accounting for indirection tracking:
729 */
730 if (src0.file == PROGRAM_TEMPORARY)
731 p->alu_temps |= 1 << src0.idx;
732
733 if (!is_undef(src1) && src1.file == PROGRAM_TEMPORARY)
734 p->alu_temps |= 1 << src1.idx;
735
736 if (!is_undef(src2) && src2.file == PROGRAM_TEMPORARY)
737 p->alu_temps |= 1 << src2.idx;
738
739 if (dest.file == PROGRAM_TEMPORARY)
740 p->alu_temps |= 1 << dest.idx;
741
742 p->program->Base.NumAluInstructions++;
743 return dest;
744 }
745
746 static struct ureg emit_texld( struct texenv_fragment_program *p,
747 enum prog_opcode op,
748 struct ureg dest,
749 GLuint destmask,
750 GLuint tex_unit,
751 GLuint tex_idx,
752 GLuint tex_shadow,
753 struct ureg coord )
754 {
755 struct prog_instruction *inst = emit_op( p, op,
756 dest, destmask,
757 GL_FALSE, /* don't saturate? */
758 coord, /* arg 0? */
759 undef,
760 undef);
761
762 inst->TexSrcTarget = tex_idx;
763 inst->TexSrcUnit = tex_unit;
764 inst->TexShadow = tex_shadow;
765
766 p->program->Base.NumTexInstructions++;
767
768 /* Accounting for indirection tracking:
769 */
770 reserve_temp(p, dest);
771
772 #if 0
773 /* Is this a texture indirection?
774 */
775 if ((coord.file == PROGRAM_TEMPORARY &&
776 (p->temps_output & (1<<coord.idx))) ||
777 (dest.file == PROGRAM_TEMPORARY &&
778 (p->alu_temps & (1<<dest.idx)))) {
779 p->program->Base.NumTexIndirections++;
780 p->temps_output = 1<<coord.idx;
781 p->alu_temps = 0;
782 assert(0); /* KW: texture env crossbar */
783 }
784 #endif
785
786 return dest;
787 }
788
789
790 static struct ureg register_const4f( struct texenv_fragment_program *p,
791 GLfloat s0,
792 GLfloat s1,
793 GLfloat s2,
794 GLfloat s3)
795 {
796 GLfloat values[4];
797 GLuint idx, swizzle;
798 struct ureg r;
799 values[0] = s0;
800 values[1] = s1;
801 values[2] = s2;
802 values[3] = s3;
803 idx = _mesa_add_unnamed_constant( p->program->Base.Parameters, values, 4,
804 &swizzle );
805 r = make_ureg(PROGRAM_CONSTANT, idx);
806 r.swz = swizzle;
807 return r;
808 }
809
810 #define register_scalar_const(p, s0) register_const4f(p, s0, s0, s0, s0)
811 #define register_const1f(p, s0) register_const4f(p, s0, 0, 0, 1)
812 #define register_const2f(p, s0, s1) register_const4f(p, s0, s1, 0, 1)
813 #define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1)
814
815
816 static struct ureg get_one( struct texenv_fragment_program *p )
817 {
818 if (is_undef(p->one))
819 p->one = register_scalar_const(p, 1.0);
820 return p->one;
821 }
822
823 static struct ureg get_half( struct texenv_fragment_program *p )
824 {
825 if (is_undef(p->half))
826 p->half = register_scalar_const(p, 0.5);
827 return p->half;
828 }
829
830 static struct ureg get_zero( struct texenv_fragment_program *p )
831 {
832 if (is_undef(p->zero))
833 p->zero = register_scalar_const(p, 0.0);
834 return p->zero;
835 }
836
837
838 static void program_error( struct texenv_fragment_program *p, const char *msg )
839 {
840 _mesa_problem(NULL, msg);
841 p->error = 1;
842 }
843
844 static struct ureg get_source( struct texenv_fragment_program *p,
845 GLuint src, GLuint unit )
846 {
847 switch (src) {
848 case SRC_TEXTURE:
849 assert(!is_undef(p->src_texture[unit]));
850 return p->src_texture[unit];
851
852 case SRC_TEXTURE0:
853 case SRC_TEXTURE1:
854 case SRC_TEXTURE2:
855 case SRC_TEXTURE3:
856 case SRC_TEXTURE4:
857 case SRC_TEXTURE5:
858 case SRC_TEXTURE6:
859 case SRC_TEXTURE7:
860 assert(!is_undef(p->src_texture[src - SRC_TEXTURE0]));
861 return p->src_texture[src - SRC_TEXTURE0];
862
863 case SRC_CONSTANT:
864 return register_param2(p, STATE_TEXENV_COLOR, unit);
865
866 case SRC_PRIMARY_COLOR:
867 return register_input(p, FRAG_ATTRIB_COL0);
868
869 case SRC_ZERO:
870 return get_zero(p);
871
872 case SRC_PREVIOUS:
873 if (is_undef(p->src_previous))
874 return register_input(p, FRAG_ATTRIB_COL0);
875 else
876 return p->src_previous;
877
878 default:
879 assert(0);
880 }
881 }
882
883 static struct ureg emit_combine_source( struct texenv_fragment_program *p,
884 GLuint mask,
885 GLuint unit,
886 GLuint source,
887 GLuint operand )
888 {
889 struct ureg arg, src, one;
890
891 src = get_source(p, source, unit);
892
893 switch (operand) {
894 case OPR_ONE_MINUS_SRC_COLOR:
895 /* Get unused tmp,
896 * Emit tmp = 1.0 - arg.xyzw
897 */
898 arg = get_temp( p );
899 one = get_one( p );
900 return emit_arith( p, OPCODE_SUB, arg, mask, 0, one, src, undef);
901
902 case OPR_SRC_ALPHA:
903 if (mask == WRITEMASK_W)
904 return src;
905 else
906 return swizzle1( src, SWIZZLE_W );
907 case OPR_ONE_MINUS_SRC_ALPHA:
908 /* Get unused tmp,
909 * Emit tmp = 1.0 - arg.wwww
910 */
911 arg = get_temp(p);
912 one = get_one(p);
913 return emit_arith(p, OPCODE_SUB, arg, mask, 0,
914 one, swizzle1(src, SWIZZLE_W), undef);
915 case OPR_ZERO:
916 return get_zero(p);
917 case OPR_ONE:
918 return get_one(p);
919 case OPR_SRC_COLOR:
920 return src;
921 default:
922 assert(0);
923 return src;
924 }
925 }
926
927 static GLboolean args_match( struct state_key *key, GLuint unit )
928 {
929 GLuint i, nr = key->unit[unit].NumArgsRGB;
930
931 for (i = 0 ; i < nr ; i++) {
932 if (key->unit[unit].OptA[i].Source != key->unit[unit].OptRGB[i].Source)
933 return GL_FALSE;
934
935 switch(key->unit[unit].OptA[i].Operand) {
936 case OPR_SRC_ALPHA:
937 switch(key->unit[unit].OptRGB[i].Operand) {
938 case OPR_SRC_COLOR:
939 case OPR_SRC_ALPHA:
940 break;
941 default:
942 return GL_FALSE;
943 }
944 break;
945 case OPR_ONE_MINUS_SRC_ALPHA:
946 switch(key->unit[unit].OptRGB[i].Operand) {
947 case OPR_ONE_MINUS_SRC_COLOR:
948 case OPR_ONE_MINUS_SRC_ALPHA:
949 break;
950 default:
951 return GL_FALSE;
952 }
953 break;
954 default:
955 return GL_FALSE; /* impossible */
956 }
957 }
958
959 return GL_TRUE;
960 }
961
962 static struct ureg emit_combine( struct texenv_fragment_program *p,
963 struct ureg dest,
964 GLuint mask,
965 GLboolean saturate,
966 GLuint unit,
967 GLuint nr,
968 GLuint mode,
969 const struct mode_opt *opt)
970 {
971 struct ureg src[MAX_COMBINER_TERMS];
972 struct ureg tmp, half;
973 GLuint i;
974
975 assert(nr <= MAX_COMBINER_TERMS);
976
977 tmp = undef; /* silence warning (bug 5318) */
978
979 for (i = 0; i < nr; i++)
980 src[i] = emit_combine_source( p, mask, unit, opt[i].Source, opt[i].Operand );
981
982 switch (mode) {
983 case MODE_REPLACE:
984 if (mask == WRITEMASK_XYZW && !saturate)
985 return src[0];
986 else
987 return emit_arith( p, OPCODE_MOV, dest, mask, saturate, src[0], undef, undef );
988 case MODE_MODULATE:
989 return emit_arith( p, OPCODE_MUL, dest, mask, saturate,
990 src[0], src[1], undef );
991 case MODE_ADD:
992 return emit_arith( p, OPCODE_ADD, dest, mask, saturate,
993 src[0], src[1], undef );
994 case MODE_ADD_SIGNED:
995 /* tmp = arg0 + arg1
996 * result = tmp - .5
997 */
998 half = get_half(p);
999 tmp = get_temp( p );
1000 emit_arith( p, OPCODE_ADD, tmp, mask, 0, src[0], src[1], undef );
1001 emit_arith( p, OPCODE_SUB, dest, mask, saturate, tmp, half, undef );
1002 return dest;
1003 case MODE_INTERPOLATE:
1004 /* Arg0 * (Arg2) + Arg1 * (1-Arg2) -- note arguments are reordered:
1005 */
1006 return emit_arith( p, OPCODE_LRP, dest, mask, saturate, src[2], src[0], src[1] );
1007
1008 case MODE_SUBTRACT:
1009 return emit_arith( p, OPCODE_SUB, dest, mask, saturate, src[0], src[1], undef );
1010
1011 case MODE_DOT3_RGBA:
1012 case MODE_DOT3_RGBA_EXT:
1013 case MODE_DOT3_RGB_EXT:
1014 case MODE_DOT3_RGB: {
1015 struct ureg tmp0 = get_temp( p );
1016 struct ureg tmp1 = get_temp( p );
1017 struct ureg neg1 = register_scalar_const(p, -1);
1018 struct ureg two = register_scalar_const(p, 2);
1019
1020 /* tmp0 = 2*src0 - 1
1021 * tmp1 = 2*src1 - 1
1022 *
1023 * dst = tmp0 dot3 tmp1
1024 */
1025 emit_arith( p, OPCODE_MAD, tmp0, WRITEMASK_XYZW, 0,
1026 two, src[0], neg1);
1027
1028 if (_mesa_memcmp(&src[0], &src[1], sizeof(struct ureg)) == 0)
1029 tmp1 = tmp0;
1030 else
1031 emit_arith( p, OPCODE_MAD, tmp1, WRITEMASK_XYZW, 0,
1032 two, src[1], neg1);
1033 emit_arith( p, OPCODE_DP3, dest, mask, saturate, tmp0, tmp1, undef);
1034 return dest;
1035 }
1036 case MODE_MODULATE_ADD_ATI:
1037 /* Arg0 * Arg2 + Arg1 */
1038 return emit_arith( p, OPCODE_MAD, dest, mask, saturate,
1039 src[0], src[2], src[1] );
1040 case MODE_MODULATE_SIGNED_ADD_ATI: {
1041 /* Arg0 * Arg2 + Arg1 - 0.5 */
1042 struct ureg tmp0 = get_temp(p);
1043 half = get_half(p);
1044 emit_arith( p, OPCODE_MAD, tmp0, mask, 0, src[0], src[2], src[1] );
1045 emit_arith( p, OPCODE_SUB, dest, mask, saturate, tmp0, half, undef );
1046 return dest;
1047 }
1048 case MODE_MODULATE_SUBTRACT_ATI:
1049 /* Arg0 * Arg2 - Arg1 */
1050 emit_arith( p, OPCODE_MAD, dest, mask, 0, src[0], src[2], negate(src[1]) );
1051 return dest;
1052 case MODE_ADD_PRODUCTS:
1053 /* Arg0 * Arg1 + Arg2 * Arg3 */
1054 {
1055 struct ureg tmp0 = get_temp(p);
1056 emit_arith( p, OPCODE_MUL, tmp0, mask, 0, src[0], src[1], undef );
1057 emit_arith( p, OPCODE_MAD, dest, mask, saturate, src[2], src[3], tmp0 );
1058 }
1059 return dest;
1060 case MODE_ADD_PRODUCTS_SIGNED:
1061 /* Arg0 * Arg1 + Arg2 * Arg3 - 0.5 */
1062 {
1063 struct ureg tmp0 = get_temp(p);
1064 half = get_half(p);
1065 emit_arith( p, OPCODE_MUL, tmp0, mask, 0, src[0], src[1], undef );
1066 emit_arith( p, OPCODE_MAD, tmp0, mask, 0, src[2], src[3], tmp0 );
1067 emit_arith( p, OPCODE_SUB, dest, mask, saturate, tmp0, half, undef );
1068 }
1069 return dest;
1070 case MODE_BUMP_ENVMAP_ATI:
1071 /* special - not handled here */
1072 assert(0);
1073 return src[0];
1074 default:
1075 assert(0);
1076 return src[0];
1077 }
1078 }
1079
1080
1081 /**
1082 * Generate instructions for one texture unit's env/combiner mode.
1083 */
1084 static struct ureg
1085 emit_texenv(struct texenv_fragment_program *p, GLuint unit)
1086 {
1087 struct state_key *key = p->state;
1088 GLboolean saturate = (unit < p->last_tex_stage);
1089 GLuint rgb_shift, alpha_shift;
1090 struct ureg out, shift;
1091 struct ureg dest;
1092
1093 if (!key->unit[unit].enabled) {
1094 return get_source(p, SRC_PREVIOUS, 0);
1095 }
1096 if (key->unit[unit].ModeRGB == MODE_BUMP_ENVMAP_ATI) {
1097 /* this isn't really a env stage delivering a color and handled elsewhere */
1098 return get_source(p, SRC_PREVIOUS, 0);
1099 }
1100
1101 switch (key->unit[unit].ModeRGB) {
1102 case MODE_DOT3_RGB_EXT:
1103 alpha_shift = key->unit[unit].ScaleShiftA;
1104 rgb_shift = 0;
1105 break;
1106 case MODE_DOT3_RGBA_EXT:
1107 alpha_shift = 0;
1108 rgb_shift = 0;
1109 break;
1110 default:
1111 rgb_shift = key->unit[unit].ScaleShiftRGB;
1112 alpha_shift = key->unit[unit].ScaleShiftA;
1113 break;
1114 }
1115
1116 /* If this is the very last calculation, emit direct to output reg:
1117 */
1118 if (key->separate_specular ||
1119 unit != p->last_tex_stage ||
1120 alpha_shift ||
1121 rgb_shift)
1122 dest = get_temp( p );
1123 else
1124 dest = make_ureg(PROGRAM_OUTPUT, FRAG_RESULT_COLOR);
1125
1126 /* Emit the RGB and A combine ops
1127 */
1128 if (key->unit[unit].ModeRGB == key->unit[unit].ModeA &&
1129 args_match(key, unit)) {
1130 out = emit_combine( p, dest, WRITEMASK_XYZW, saturate,
1131 unit,
1132 key->unit[unit].NumArgsRGB,
1133 key->unit[unit].ModeRGB,
1134 key->unit[unit].OptRGB);
1135 }
1136 else if (key->unit[unit].ModeRGB == MODE_DOT3_RGBA_EXT ||
1137 key->unit[unit].ModeRGB == MODE_DOT3_RGBA) {
1138
1139 out = emit_combine( p, dest, WRITEMASK_XYZW, saturate,
1140 unit,
1141 key->unit[unit].NumArgsRGB,
1142 key->unit[unit].ModeRGB,
1143 key->unit[unit].OptRGB);
1144 }
1145 else {
1146 /* Need to do something to stop from re-emitting identical
1147 * argument calculations here:
1148 */
1149 out = emit_combine( p, dest, WRITEMASK_XYZ, saturate,
1150 unit,
1151 key->unit[unit].NumArgsRGB,
1152 key->unit[unit].ModeRGB,
1153 key->unit[unit].OptRGB);
1154 out = emit_combine( p, dest, WRITEMASK_W, saturate,
1155 unit,
1156 key->unit[unit].NumArgsA,
1157 key->unit[unit].ModeA,
1158 key->unit[unit].OptA);
1159 }
1160
1161 /* Deal with the final shift:
1162 */
1163 if (alpha_shift || rgb_shift) {
1164 if (rgb_shift == alpha_shift) {
1165 shift = register_scalar_const(p, (GLfloat)(1<<rgb_shift));
1166 }
1167 else {
1168 shift = register_const4f(p,
1169 (GLfloat)(1<<rgb_shift),
1170 (GLfloat)(1<<rgb_shift),
1171 (GLfloat)(1<<rgb_shift),
1172 (GLfloat)(1<<alpha_shift));
1173 }
1174 return emit_arith( p, OPCODE_MUL, dest, WRITEMASK_XYZW,
1175 saturate, out, shift, undef );
1176 }
1177 else
1178 return out;
1179 }
1180
1181
1182 /**
1183 * Generate instruction for getting a texture source term.
1184 */
1185 static void load_texture( struct texenv_fragment_program *p, GLuint unit )
1186 {
1187 if (is_undef(p->src_texture[unit])) {
1188 GLuint texTarget = p->state->unit[unit].source_index;
1189 struct ureg texcoord;
1190 struct ureg tmp = get_tex_temp( p );
1191
1192 if (is_undef(p->texcoord_tex[unit])) {
1193 texcoord = register_input(p, FRAG_ATTRIB_TEX0+unit);
1194 }
1195 else {
1196 /* might want to reuse this reg for tex output actually */
1197 texcoord = p->texcoord_tex[unit];
1198 }
1199
1200 if (texTarget == TEXTURE_UNKNOWN_INDEX)
1201 program_error(p, "TexSrcBit");
1202
1203 /* TODO: Use D0_MASK_XY where possible.
1204 */
1205 if (p->state->unit[unit].enabled) {
1206 GLboolean shadow = GL_FALSE;
1207
1208 if (p->state->unit[unit].shadow) {
1209 p->program->Base.ShadowSamplers |= 1 << unit;
1210 shadow = GL_TRUE;
1211 }
1212
1213 p->src_texture[unit] = emit_texld( p, OPCODE_TXP,
1214 tmp, WRITEMASK_XYZW,
1215 unit, texTarget, shadow,
1216 texcoord );
1217
1218 p->program->Base.SamplersUsed |= (1 << unit);
1219 /* This identity mapping should already be in place
1220 * (see _mesa_init_program_struct()) but let's be safe.
1221 */
1222 p->program->Base.SamplerUnits[unit] = unit;
1223 }
1224 else
1225 p->src_texture[unit] = get_zero(p);
1226 }
1227 }
1228
1229 static GLboolean load_texenv_source( struct texenv_fragment_program *p,
1230 GLuint src, GLuint unit )
1231 {
1232 switch (src) {
1233 case SRC_TEXTURE:
1234 load_texture(p, unit);
1235 break;
1236
1237 case SRC_TEXTURE0:
1238 case SRC_TEXTURE1:
1239 case SRC_TEXTURE2:
1240 case SRC_TEXTURE3:
1241 case SRC_TEXTURE4:
1242 case SRC_TEXTURE5:
1243 case SRC_TEXTURE6:
1244 case SRC_TEXTURE7:
1245 load_texture(p, src - SRC_TEXTURE0);
1246 break;
1247
1248 default:
1249 /* not a texture src - do nothing */
1250 break;
1251 }
1252
1253 return GL_TRUE;
1254 }
1255
1256
1257 /**
1258 * Generate instructions for loading all texture source terms.
1259 */
1260 static GLboolean
1261 load_texunit_sources( struct texenv_fragment_program *p, int unit )
1262 {
1263 struct state_key *key = p->state;
1264 GLuint i;
1265
1266 for (i = 0; i < key->unit[unit].NumArgsRGB; i++) {
1267 load_texenv_source( p, key->unit[unit].OptRGB[i].Source, unit );
1268 }
1269
1270 for (i = 0; i < key->unit[unit].NumArgsA; i++) {
1271 load_texenv_source( p, key->unit[unit].OptA[i].Source, unit );
1272 }
1273
1274 return GL_TRUE;
1275 }
1276
1277 /**
1278 * Generate instructions for loading bump map textures.
1279 */
1280 static GLboolean
1281 load_texunit_bumpmap( struct texenv_fragment_program *p, int unit )
1282 {
1283 struct state_key *key = p->state;
1284 GLuint bumpedUnitNr = key->unit[unit].OptRGB[1].Source - SRC_TEXTURE0;
1285 struct ureg texcDst, bumpMapRes;
1286 struct ureg constdudvcolor = register_const4f(p, 0.0, 0.0, 0.0, 1.0);
1287 struct ureg texcSrc = register_input(p, FRAG_ATTRIB_TEX0 + bumpedUnitNr);
1288 struct ureg rotMat0 = register_param3( p, STATE_INTERNAL, STATE_ROT_MATRIX_0, unit );
1289 struct ureg rotMat1 = register_param3( p, STATE_INTERNAL, STATE_ROT_MATRIX_1, unit );
1290
1291 load_texenv_source( p, unit + SRC_TEXTURE0, unit );
1292
1293 bumpMapRes = get_source(p, key->unit[unit].OptRGB[0].Source, unit);
1294 texcDst = get_tex_temp( p );
1295 p->texcoord_tex[bumpedUnitNr] = texcDst;
1296
1297 /* apply rot matrix and add coords to be available in next phase */
1298 /* dest = (Arg0.xxxx * rotMat0 + Arg1) + (Arg0.yyyy * rotMat1) */
1299 /* note only 2 coords are affected the rest are left unchanged (mul by 0) */
1300 emit_arith( p, OPCODE_MAD, texcDst, WRITEMASK_XYZW, 0,
1301 swizzle1(bumpMapRes, SWIZZLE_X), rotMat0, texcSrc );
1302 emit_arith( p, OPCODE_MAD, texcDst, WRITEMASK_XYZW, 0,
1303 swizzle1(bumpMapRes, SWIZZLE_Y), rotMat1, texcDst );
1304
1305 /* move 0,0,0,1 into bumpmap src if someone (crossbar) is foolish
1306 enough to access this later, should optimize away */
1307 emit_arith( p, OPCODE_MOV, bumpMapRes, WRITEMASK_XYZW, 0, constdudvcolor, undef, undef );
1308
1309 return GL_TRUE;
1310 }
1311
1312 /**
1313 * Generate a new fragment program which implements the context's
1314 * current texture env/combine mode.
1315 */
1316 static void
1317 create_new_program(GLcontext *ctx, struct state_key *key,
1318 struct gl_fragment_program *program)
1319 {
1320 struct prog_instruction instBuffer[MAX_INSTRUCTIONS];
1321 struct texenv_fragment_program p;
1322 GLuint unit;
1323 struct ureg cf, out;
1324
1325 _mesa_memset(&p, 0, sizeof(p));
1326 p.ctx = ctx;
1327 p.state = key;
1328 p.program = program;
1329
1330 /* During code generation, use locally-allocated instruction buffer,
1331 * then alloc dynamic storage below.
1332 */
1333 p.program->Base.Instructions = instBuffer;
1334 p.program->Base.Target = GL_FRAGMENT_PROGRAM_ARB;
1335 p.program->Base.NumTexIndirections = 1;
1336 p.program->Base.NumTexInstructions = 0;
1337 p.program->Base.NumAluInstructions = 0;
1338 p.program->Base.String = NULL;
1339 p.program->Base.NumInstructions =
1340 p.program->Base.NumTemporaries =
1341 p.program->Base.NumParameters =
1342 p.program->Base.NumAttributes = p.program->Base.NumAddressRegs = 0;
1343 p.program->Base.Parameters = _mesa_new_parameter_list();
1344
1345 p.program->Base.InputsRead = 0;
1346 p.program->Base.OutputsWritten = 1 << FRAG_RESULT_COLOR;
1347
1348 for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
1349 p.src_texture[unit] = undef;
1350 p.texcoord_tex[unit] = undef;
1351 }
1352
1353 p.src_previous = undef;
1354 p.half = undef;
1355 p.zero = undef;
1356 p.one = undef;
1357
1358 p.last_tex_stage = 0;
1359 release_temps(ctx, &p);
1360
1361 if (key->enabled_units) {
1362 GLboolean needbumpstage = GL_FALSE;
1363 /* Zeroth pass - bump map textures first */
1364 for (unit = 0 ; unit < ctx->Const.MaxTextureUnits ; unit++)
1365 if (key->unit[unit].enabled && key->unit[unit].ModeRGB == MODE_BUMP_ENVMAP_ATI) {
1366 needbumpstage = GL_TRUE;
1367 load_texunit_bumpmap( &p, unit );
1368 }
1369 if (needbumpstage)
1370 p.program->Base.NumTexIndirections++;
1371
1372 /* First pass - to support texture_env_crossbar, first identify
1373 * all referenced texture sources and emit texld instructions
1374 * for each:
1375 */
1376 for (unit = 0 ; unit < ctx->Const.MaxTextureUnits ; unit++)
1377 if (key->unit[unit].enabled) {
1378 load_texunit_sources( &p, unit );
1379 p.last_tex_stage = unit;
1380 }
1381
1382 /* Second pass - emit combine instructions to build final color:
1383 */
1384 for (unit = 0 ; unit < ctx->Const.MaxTextureUnits; unit++)
1385 if (key->enabled_units & (1<<unit)) {
1386 p.src_previous = emit_texenv( &p, unit );
1387 reserve_temp(&p, p.src_previous); /* don't re-use this temp reg */
1388 release_temps(ctx, &p); /* release all temps */
1389 }
1390 }
1391
1392 cf = get_source( &p, SRC_PREVIOUS, 0 );
1393 out = make_ureg( PROGRAM_OUTPUT, FRAG_RESULT_COLOR );
1394
1395 if (key->separate_specular) {
1396 /* Emit specular add.
1397 */
1398 struct ureg s = register_input(&p, FRAG_ATTRIB_COL1);
1399 emit_arith( &p, OPCODE_ADD, out, WRITEMASK_XYZ, 0, cf, s, undef );
1400 emit_arith( &p, OPCODE_MOV, out, WRITEMASK_W, 0, cf, undef, undef );
1401 }
1402 else if (_mesa_memcmp(&cf, &out, sizeof(cf)) != 0) {
1403 /* Will wind up in here if no texture enabled or a couple of
1404 * other scenarios (GL_REPLACE for instance).
1405 */
1406 emit_arith( &p, OPCODE_MOV, out, WRITEMASK_XYZW, 0, cf, undef, undef );
1407 }
1408
1409 /* Finish up:
1410 */
1411 emit_arith( &p, OPCODE_END, undef, WRITEMASK_XYZW, 0, undef, undef, undef);
1412
1413 if (key->fog_enabled) {
1414 /* Pull fog mode from GLcontext, the value in the state key is
1415 * a reduced value and not what is expected in FogOption
1416 */
1417 p.program->FogOption = ctx->Fog.Mode;
1418 p.program->Base.InputsRead |= FRAG_BIT_FOGC; /* XXX new */
1419 } else
1420 p.program->FogOption = GL_NONE;
1421
1422 if (p.program->Base.NumTexIndirections > ctx->Const.FragmentProgram.MaxTexIndirections)
1423 program_error(&p, "Exceeded max nr indirect texture lookups");
1424
1425 if (p.program->Base.NumTexInstructions > ctx->Const.FragmentProgram.MaxTexInstructions)
1426 program_error(&p, "Exceeded max TEX instructions");
1427
1428 if (p.program->Base.NumAluInstructions > ctx->Const.FragmentProgram.MaxAluInstructions)
1429 program_error(&p, "Exceeded max ALU instructions");
1430
1431 ASSERT(p.program->Base.NumInstructions <= MAX_INSTRUCTIONS);
1432
1433 /* Allocate final instruction array */
1434 p.program->Base.Instructions
1435 = _mesa_alloc_instructions(p.program->Base.NumInstructions);
1436 if (!p.program->Base.Instructions) {
1437 _mesa_error(ctx, GL_OUT_OF_MEMORY,
1438 "generating tex env program");
1439 return;
1440 }
1441 _mesa_copy_instructions(p.program->Base.Instructions, instBuffer,
1442 p.program->Base.NumInstructions);
1443
1444 if (p.program->FogOption) {
1445 _mesa_append_fog_code(ctx, p.program);
1446 p.program->FogOption = GL_NONE;
1447 }
1448
1449
1450 /* Notify driver the fragment program has (actually) changed.
1451 */
1452 if (ctx->Driver.ProgramStringNotify) {
1453 ctx->Driver.ProgramStringNotify( ctx, GL_FRAGMENT_PROGRAM_ARB,
1454 &p.program->Base );
1455 }
1456
1457 if (DISASSEM) {
1458 _mesa_print_program(&p.program->Base);
1459 _mesa_printf("\n");
1460 }
1461 }
1462
1463
1464 /**
1465 * Return a fragment program which implements the current
1466 * fixed-function texture, fog and color-sum operations.
1467 */
1468 struct gl_fragment_program *
1469 _mesa_get_fixed_func_fragment_program(GLcontext *ctx)
1470 {
1471 struct gl_fragment_program *prog;
1472 struct state_key key;
1473
1474 make_state_key(ctx, &key);
1475
1476 prog = (struct gl_fragment_program *)
1477 _mesa_search_program_cache(ctx->FragmentProgram.Cache,
1478 &key, sizeof(key));
1479
1480 if (!prog) {
1481 prog = (struct gl_fragment_program *)
1482 ctx->Driver.NewProgram(ctx, GL_FRAGMENT_PROGRAM_ARB, 0);
1483
1484 create_new_program(ctx, &key, prog);
1485
1486 _mesa_program_cache_insert(ctx, ctx->FragmentProgram.Cache,
1487 &key, sizeof(key), &prog->Base);
1488 }
1489
1490 return prog;
1491 }