c279956f2a2d9027cf8822a0de258760d0d2094c
[mesa.git] / src / mesa / main / texenvprogram.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include "glheader.h"
29 #include "macros.h"
30 #include "enums.h"
31 #include "shader/prog_parameter.h"
32 #include "shader/prog_cache.h"
33 #include "shader/prog_instruction.h"
34 #include "shader/prog_print.h"
35 #include "shader/prog_statevars.h"
36 #include "shader/programopt.h"
37 #include "texenvprogram.h"
38
39 /**
40 * Up to nine instructions per tex unit, plus fog, specular color.
41 */
42 #define MAX_INSTRUCTIONS ((MAX_TEXTURE_UNITS * 9) + 12)
43
44 #define DISASSEM (MESA_VERBOSE & VERBOSE_DISASSEM)
45
46 struct mode_opt {
47 GLubyte Source:4;
48 GLubyte Operand:3;
49 };
50
51 struct state_key {
52 GLuint nr_enabled_units:8;
53 GLuint enabled_units:8;
54 GLuint separate_specular:1;
55 GLuint fog_enabled:1;
56 GLuint fog_mode:2;
57 GLuint inputs_available:12;
58
59 struct {
60 GLuint enabled:1;
61 GLuint source_index:3; /* one of TEXTURE_1D/2D/3D/CUBE/RECT_INDEX */
62 GLuint ScaleShiftRGB:2;
63 GLuint ScaleShiftA:2;
64
65 GLuint NumArgsRGB:2;
66 GLuint ModeRGB:4;
67 GLuint NumArgsA:2;
68 GLuint ModeA:4;
69
70 struct mode_opt OptRGB[3];
71 struct mode_opt OptA[3];
72 } unit[8];
73 };
74
75 #define FOG_LINEAR 0
76 #define FOG_EXP 1
77 #define FOG_EXP2 2
78 #define FOG_UNKNOWN 3
79
80 static GLuint translate_fog_mode( GLenum mode )
81 {
82 switch (mode) {
83 case GL_LINEAR: return FOG_LINEAR;
84 case GL_EXP: return FOG_EXP;
85 case GL_EXP2: return FOG_EXP2;
86 default: return FOG_UNKNOWN;
87 }
88 }
89
90 #define OPR_SRC_COLOR 0
91 #define OPR_ONE_MINUS_SRC_COLOR 1
92 #define OPR_SRC_ALPHA 2
93 #define OPR_ONE_MINUS_SRC_ALPHA 3
94 #define OPR_ZERO 4
95 #define OPR_ONE 5
96 #define OPR_UNKNOWN 7
97
98 static GLuint translate_operand( GLenum operand )
99 {
100 switch (operand) {
101 case GL_SRC_COLOR: return OPR_SRC_COLOR;
102 case GL_ONE_MINUS_SRC_COLOR: return OPR_ONE_MINUS_SRC_COLOR;
103 case GL_SRC_ALPHA: return OPR_SRC_ALPHA;
104 case GL_ONE_MINUS_SRC_ALPHA: return OPR_ONE_MINUS_SRC_ALPHA;
105 case GL_ZERO: return OPR_ZERO;
106 case GL_ONE: return OPR_ONE;
107 default: return OPR_UNKNOWN;
108 }
109 }
110
111 #define SRC_TEXTURE 0
112 #define SRC_TEXTURE0 1
113 #define SRC_TEXTURE1 2
114 #define SRC_TEXTURE2 3
115 #define SRC_TEXTURE3 4
116 #define SRC_TEXTURE4 5
117 #define SRC_TEXTURE5 6
118 #define SRC_TEXTURE6 7
119 #define SRC_TEXTURE7 8
120 #define SRC_CONSTANT 9
121 #define SRC_PRIMARY_COLOR 10
122 #define SRC_PREVIOUS 11
123 #define SRC_UNKNOWN 15
124
125 static GLuint translate_source( GLenum src )
126 {
127 switch (src) {
128 case GL_TEXTURE: return SRC_TEXTURE;
129 case GL_TEXTURE0:
130 case GL_TEXTURE1:
131 case GL_TEXTURE2:
132 case GL_TEXTURE3:
133 case GL_TEXTURE4:
134 case GL_TEXTURE5:
135 case GL_TEXTURE6:
136 case GL_TEXTURE7: return SRC_TEXTURE0 + (src - GL_TEXTURE0);
137 case GL_CONSTANT: return SRC_CONSTANT;
138 case GL_PRIMARY_COLOR: return SRC_PRIMARY_COLOR;
139 case GL_PREVIOUS: return SRC_PREVIOUS;
140 default: return SRC_UNKNOWN;
141 }
142 }
143
144 #define MODE_REPLACE 0
145 #define MODE_MODULATE 1
146 #define MODE_ADD 2
147 #define MODE_ADD_SIGNED 3
148 #define MODE_INTERPOLATE 4
149 #define MODE_SUBTRACT 5
150 #define MODE_DOT3_RGB 6
151 #define MODE_DOT3_RGB_EXT 7
152 #define MODE_DOT3_RGBA 8
153 #define MODE_DOT3_RGBA_EXT 9
154 #define MODE_MODULATE_ADD_ATI 10
155 #define MODE_MODULATE_SIGNED_ADD_ATI 11
156 #define MODE_MODULATE_SUBTRACT_ATI 12
157 #define MODE_UNKNOWN 15
158
159 static GLuint translate_mode( GLenum mode )
160 {
161 switch (mode) {
162 case GL_REPLACE: return MODE_REPLACE;
163 case GL_MODULATE: return MODE_MODULATE;
164 case GL_ADD: return MODE_ADD;
165 case GL_ADD_SIGNED: return MODE_ADD_SIGNED;
166 case GL_INTERPOLATE: return MODE_INTERPOLATE;
167 case GL_SUBTRACT: return MODE_SUBTRACT;
168 case GL_DOT3_RGB: return MODE_DOT3_RGB;
169 case GL_DOT3_RGB_EXT: return MODE_DOT3_RGB_EXT;
170 case GL_DOT3_RGBA: return MODE_DOT3_RGBA;
171 case GL_DOT3_RGBA_EXT: return MODE_DOT3_RGBA_EXT;
172 case GL_MODULATE_ADD_ATI: return MODE_MODULATE_ADD_ATI;
173 case GL_MODULATE_SIGNED_ADD_ATI: return MODE_MODULATE_SIGNED_ADD_ATI;
174 case GL_MODULATE_SUBTRACT_ATI: return MODE_MODULATE_SUBTRACT_ATI;
175 default: return MODE_UNKNOWN;
176 }
177 }
178
179 #define TEXTURE_UNKNOWN_INDEX 7
180 static GLuint translate_tex_src_bit( GLbitfield bit )
181 {
182 switch (bit) {
183 case TEXTURE_1D_BIT: return TEXTURE_1D_INDEX;
184 case TEXTURE_2D_BIT: return TEXTURE_2D_INDEX;
185 case TEXTURE_RECT_BIT: return TEXTURE_RECT_INDEX;
186 case TEXTURE_3D_BIT: return TEXTURE_3D_INDEX;
187 case TEXTURE_CUBE_BIT: return TEXTURE_CUBE_INDEX;
188 default: return TEXTURE_UNKNOWN_INDEX;
189 }
190 }
191
192 #define VERT_BIT_TEX_ANY (0xff << VERT_ATTRIB_TEX0)
193 #define VERT_RESULT_TEX_ANY (0xff << VERT_RESULT_TEX0)
194
195 /**
196 * Identify all possible varying inputs. The fragment program will
197 * never reference non-varying inputs, but will track them via state
198 * constants instead.
199 *
200 * This function figures out all the inputs that the fragment program
201 * has access to. The bitmask is later reduced to just those which
202 * are actually referenced.
203 */
204 static GLbitfield get_fp_input_mask( GLcontext *ctx )
205 {
206 GLbitfield fp_inputs = 0x0;
207
208 if (ctx->VertexProgram._Overriden) {
209 /* Somebody's messing with the vertex program and we don't have
210 * a clue what's happening. Assume that it could be producing
211 * all possible outputs.
212 */
213 fp_inputs = ~0;
214 }
215 else if (ctx->RenderMode == GL_FEEDBACK) {
216 fp_inputs = (FRAG_BIT_COL0 | FRAG_BIT_TEX0);
217 }
218 else if (!ctx->VertexProgram._Enabled ||
219 !ctx->VertexProgram._Current) {
220
221 /* Fixed function logic */
222 GLbitfield varying_inputs = ctx->varying_vp_inputs;
223
224 /* These get generated in the setup routine regardless of the
225 * vertex program:
226 */
227 if (ctx->Point.PointSprite)
228 varying_inputs |= FRAG_BITS_TEX_ANY;
229
230 /* First look at what values may be computed by the generated
231 * vertex program:
232 */
233 if (ctx->Light.Enabled) {
234 fp_inputs |= FRAG_BIT_COL0;
235
236 if (ctx->_TriangleCaps & DD_SEPARATE_SPECULAR)
237 fp_inputs |= FRAG_BIT_COL1;
238 }
239
240 fp_inputs |= (ctx->Texture._TexGenEnabled |
241 ctx->Texture._TexMatEnabled) << FRAG_ATTRIB_TEX0;
242
243 /* Then look at what might be varying as a result of enabled
244 * arrays, etc:
245 */
246 if (varying_inputs & VERT_BIT_COLOR0) fp_inputs |= FRAG_BIT_COL0;
247 if (varying_inputs & VERT_BIT_COLOR1) fp_inputs |= FRAG_BIT_COL1;
248
249 fp_inputs |= (((varying_inputs & VERT_BIT_TEX_ANY) >> VERT_ATTRIB_TEX0)
250 << FRAG_ATTRIB_TEX0);
251
252 }
253 else {
254 /* calculate from vp->outputs */
255 GLbitfield vp_outputs = ctx->VertexProgram._Current->Base.OutputsWritten;
256
257 /* These get generated in the setup routine regardless of the
258 * vertex program:
259 */
260 if (ctx->Point.PointSprite)
261 vp_outputs |= FRAG_BITS_TEX_ANY;
262
263 if (vp_outputs & (1 << VERT_RESULT_COL0)) fp_inputs |= FRAG_BIT_COL0;
264 if (vp_outputs & (1 << VERT_RESULT_COL1)) fp_inputs |= FRAG_BIT_COL1;
265
266 fp_inputs |= (((vp_outputs & VERT_RESULT_TEX_ANY) >> VERT_RESULT_TEX0)
267 << FRAG_ATTRIB_TEX0);
268 }
269
270 return fp_inputs;
271 }
272
273
274 /**
275 * Examine current texture environment state and generate a unique
276 * key to identify it.
277 */
278 static void make_state_key( GLcontext *ctx, struct state_key *key )
279 {
280 GLuint i, j;
281 GLbitfield inputs_referenced = FRAG_BIT_COL0;
282 GLbitfield inputs_available = get_fp_input_mask( ctx );
283
284 memset(key, 0, sizeof(*key));
285
286 for (i=0;i<MAX_TEXTURE_UNITS;i++) {
287 const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
288
289 if (!texUnit->_ReallyEnabled)
290 continue;
291
292 key->unit[i].enabled = 1;
293 key->enabled_units |= (1<<i);
294 key->nr_enabled_units = i+1;
295 inputs_referenced |= FRAG_BIT_TEX(i);
296
297 key->unit[i].source_index =
298 translate_tex_src_bit(texUnit->_ReallyEnabled);
299
300 key->unit[i].NumArgsRGB = texUnit->_CurrentCombine->_NumArgsRGB;
301 key->unit[i].NumArgsA = texUnit->_CurrentCombine->_NumArgsA;
302
303 key->unit[i].ModeRGB =
304 translate_mode(texUnit->_CurrentCombine->ModeRGB);
305 key->unit[i].ModeA =
306 translate_mode(texUnit->_CurrentCombine->ModeA);
307
308 key->unit[i].ScaleShiftRGB = texUnit->_CurrentCombine->ScaleShiftRGB;
309 key->unit[i].ScaleShiftA = texUnit->_CurrentCombine->ScaleShiftA;
310
311 for (j=0;j<3;j++) {
312 key->unit[i].OptRGB[j].Operand =
313 translate_operand(texUnit->_CurrentCombine->OperandRGB[j]);
314 key->unit[i].OptA[j].Operand =
315 translate_operand(texUnit->_CurrentCombine->OperandA[j]);
316 key->unit[i].OptRGB[j].Source =
317 translate_source(texUnit->_CurrentCombine->SourceRGB[j]);
318 key->unit[i].OptA[j].Source =
319 translate_source(texUnit->_CurrentCombine->SourceA[j]);
320 }
321 }
322
323 if (ctx->_TriangleCaps & DD_SEPARATE_SPECULAR) {
324 key->separate_specular = 1;
325 inputs_referenced |= FRAG_BIT_COL1;
326 }
327
328 if (ctx->Fog.Enabled) {
329 key->fog_enabled = 1;
330 key->fog_mode = translate_fog_mode(ctx->Fog.Mode);
331 inputs_referenced |= FRAG_BIT_FOGC; /* maybe */
332 }
333
334 key->inputs_available = (inputs_available & inputs_referenced);
335 }
336
337 /**
338 * Use uregs to represent registers internally, translate to Mesa's
339 * expected formats on emit.
340 *
341 * NOTE: These are passed by value extensively in this file rather
342 * than as usual by pointer reference. If this disturbs you, try
343 * remembering they are just 32bits in size.
344 *
345 * GCC is smart enough to deal with these dword-sized structures in
346 * much the same way as if I had defined them as dwords and was using
347 * macros to access and set the fields. This is much nicer and easier
348 * to evolve.
349 */
350 struct ureg {
351 GLuint file:4;
352 GLuint idx:8;
353 GLuint negatebase:1;
354 GLuint abs:1;
355 GLuint negateabs:1;
356 GLuint swz:12;
357 GLuint pad:5;
358 };
359
360 static const struct ureg undef = {
361 PROGRAM_UNDEFINED,
362 ~0,
363 0,
364 0,
365 0,
366 0,
367 0
368 };
369
370
371 /** State used to build the fragment program:
372 */
373 struct texenv_fragment_program {
374 struct gl_fragment_program *program;
375 GLcontext *ctx;
376 struct state_key *state;
377
378 GLbitfield alu_temps; /**< Track texture indirections, see spec. */
379 GLbitfield temps_output; /**< Track texture indirections, see spec. */
380 GLbitfield temp_in_use; /**< Tracks temporary regs which are in use. */
381 GLboolean error;
382
383 struct ureg src_texture[MAX_TEXTURE_UNITS];
384 /* Reg containing each texture unit's sampled texture color,
385 * else undef.
386 */
387
388 struct ureg src_previous; /**< Reg containing color from previous
389 * stage. May need to be decl'd.
390 */
391
392 GLuint last_tex_stage; /**< Number of last enabled texture unit */
393
394 struct ureg half;
395 struct ureg one;
396 struct ureg zero;
397 };
398
399
400
401 static struct ureg make_ureg(GLuint file, GLuint idx)
402 {
403 struct ureg reg;
404 reg.file = file;
405 reg.idx = idx;
406 reg.negatebase = 0;
407 reg.abs = 0;
408 reg.negateabs = 0;
409 reg.swz = SWIZZLE_NOOP;
410 reg.pad = 0;
411 return reg;
412 }
413
414 static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w )
415 {
416 reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x),
417 GET_SWZ(reg.swz, y),
418 GET_SWZ(reg.swz, z),
419 GET_SWZ(reg.swz, w));
420
421 return reg;
422 }
423
424 static struct ureg swizzle1( struct ureg reg, int x )
425 {
426 return swizzle(reg, x, x, x, x);
427 }
428
429 static struct ureg negate( struct ureg reg )
430 {
431 reg.negatebase ^= 1;
432 return reg;
433 }
434
435 static GLboolean is_undef( struct ureg reg )
436 {
437 return reg.file == PROGRAM_UNDEFINED;
438 }
439
440
441 static struct ureg get_temp( struct texenv_fragment_program *p )
442 {
443 GLint bit;
444
445 /* First try and reuse temps which have been used already:
446 */
447 bit = _mesa_ffs( ~p->temp_in_use & p->alu_temps );
448
449 /* Then any unused temporary:
450 */
451 if (!bit)
452 bit = _mesa_ffs( ~p->temp_in_use );
453
454 if (!bit) {
455 _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
456 _mesa_exit(1);
457 }
458
459 if ((GLuint) bit > p->program->Base.NumTemporaries)
460 p->program->Base.NumTemporaries = bit;
461
462 p->temp_in_use |= 1<<(bit-1);
463 return make_ureg(PROGRAM_TEMPORARY, (bit-1));
464 }
465
466 static struct ureg get_tex_temp( struct texenv_fragment_program *p )
467 {
468 int bit;
469
470 /* First try to find available temp not previously used (to avoid
471 * starting a new texture indirection). According to the spec, the
472 * ~p->temps_output isn't necessary, but will keep it there for
473 * now:
474 */
475 bit = _mesa_ffs( ~p->temp_in_use & ~p->alu_temps & ~p->temps_output );
476
477 /* Then any unused temporary:
478 */
479 if (!bit)
480 bit = _mesa_ffs( ~p->temp_in_use );
481
482 if (!bit) {
483 _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
484 _mesa_exit(1);
485 }
486
487 if ((GLuint) bit > p->program->Base.NumTemporaries)
488 p->program->Base.NumTemporaries = bit;
489
490 p->temp_in_use |= 1<<(bit-1);
491 return make_ureg(PROGRAM_TEMPORARY, (bit-1));
492 }
493
494
495 /** Mark a temp reg as being no longer allocatable. */
496 static void reserve_temp( struct texenv_fragment_program *p, struct ureg r )
497 {
498 if (r.file == PROGRAM_TEMPORARY)
499 p->temps_output |= (1 << r.idx);
500 }
501
502
503 static void release_temps(GLcontext *ctx, struct texenv_fragment_program *p )
504 {
505 GLuint max_temp = ctx->Const.FragmentProgram.MaxTemps;
506
507 /* KW: To support tex_env_crossbar, don't release the registers in
508 * temps_output.
509 */
510 if (max_temp >= sizeof(int) * 8)
511 p->temp_in_use = p->temps_output;
512 else
513 p->temp_in_use = ~((1<<max_temp)-1) | p->temps_output;
514 }
515
516
517 static struct ureg register_param5( struct texenv_fragment_program *p,
518 GLint s0,
519 GLint s1,
520 GLint s2,
521 GLint s3,
522 GLint s4)
523 {
524 gl_state_index tokens[STATE_LENGTH];
525 GLuint idx;
526 tokens[0] = s0;
527 tokens[1] = s1;
528 tokens[2] = s2;
529 tokens[3] = s3;
530 tokens[4] = s4;
531 idx = _mesa_add_state_reference( p->program->Base.Parameters, tokens );
532 return make_ureg(PROGRAM_STATE_VAR, idx);
533 }
534
535
536 #define register_param1(p,s0) register_param5(p,s0,0,0,0,0)
537 #define register_param2(p,s0,s1) register_param5(p,s0,s1,0,0,0)
538 #define register_param3(p,s0,s1,s2) register_param5(p,s0,s1,s2,0,0)
539 #define register_param4(p,s0,s1,s2,s3) register_param5(p,s0,s1,s2,s3,0)
540
541 static GLuint frag_to_vert_attrib( GLuint attrib )
542 {
543 switch (attrib) {
544 case FRAG_ATTRIB_COL0: return VERT_ATTRIB_COLOR0;
545 case FRAG_ATTRIB_COL1: return VERT_ATTRIB_COLOR1;
546 default:
547 assert(attrib >= FRAG_ATTRIB_TEX0);
548 assert(attrib <= FRAG_ATTRIB_TEX7);
549 return attrib - FRAG_ATTRIB_TEX0 + VERT_ATTRIB_TEX0;
550 }
551 }
552
553
554 static struct ureg register_input( struct texenv_fragment_program *p, GLuint input )
555 {
556 if (p->state->inputs_available & (1<<input)) {
557 p->program->Base.InputsRead |= (1 << input);
558 return make_ureg(PROGRAM_INPUT, input);
559 }
560 else {
561 GLuint idx = frag_to_vert_attrib( input );
562 return register_param3( p, STATE_INTERNAL, STATE_CURRENT_ATTRIB, idx );
563 }
564 }
565
566
567 static void emit_arg( struct prog_src_register *reg,
568 struct ureg ureg )
569 {
570 reg->File = ureg.file;
571 reg->Index = ureg.idx;
572 reg->Swizzle = ureg.swz;
573 reg->NegateBase = ureg.negatebase ? 0xf : 0x0;
574 reg->Abs = ureg.abs;
575 reg->NegateAbs = ureg.negateabs;
576 }
577
578 static void emit_dst( struct prog_dst_register *dst,
579 struct ureg ureg, GLuint mask )
580 {
581 dst->File = ureg.file;
582 dst->Index = ureg.idx;
583 dst->WriteMask = mask;
584 dst->CondMask = COND_TR; /* always pass cond test */
585 dst->CondSwizzle = SWIZZLE_NOOP;
586 }
587
588 static struct prog_instruction *
589 emit_op(struct texenv_fragment_program *p,
590 enum prog_opcode op,
591 struct ureg dest,
592 GLuint mask,
593 GLboolean saturate,
594 struct ureg src0,
595 struct ureg src1,
596 struct ureg src2 )
597 {
598 GLuint nr = p->program->Base.NumInstructions++;
599 struct prog_instruction *inst = &p->program->Base.Instructions[nr];
600
601 assert(nr < MAX_INSTRUCTIONS);
602
603 _mesa_init_instructions(inst, 1);
604 inst->Opcode = op;
605
606 emit_arg( &inst->SrcReg[0], src0 );
607 emit_arg( &inst->SrcReg[1], src1 );
608 emit_arg( &inst->SrcReg[2], src2 );
609
610 inst->SaturateMode = saturate ? SATURATE_ZERO_ONE : SATURATE_OFF;
611
612 emit_dst( &inst->DstReg, dest, mask );
613
614 #if 0
615 /* Accounting for indirection tracking:
616 */
617 if (dest.file == PROGRAM_TEMPORARY)
618 p->temps_output |= 1 << dest.idx;
619 #endif
620
621 return inst;
622 }
623
624
625 static struct ureg emit_arith( struct texenv_fragment_program *p,
626 enum prog_opcode op,
627 struct ureg dest,
628 GLuint mask,
629 GLboolean saturate,
630 struct ureg src0,
631 struct ureg src1,
632 struct ureg src2 )
633 {
634 emit_op(p, op, dest, mask, saturate, src0, src1, src2);
635
636 /* Accounting for indirection tracking:
637 */
638 if (src0.file == PROGRAM_TEMPORARY)
639 p->alu_temps |= 1 << src0.idx;
640
641 if (!is_undef(src1) && src1.file == PROGRAM_TEMPORARY)
642 p->alu_temps |= 1 << src1.idx;
643
644 if (!is_undef(src2) && src2.file == PROGRAM_TEMPORARY)
645 p->alu_temps |= 1 << src2.idx;
646
647 if (dest.file == PROGRAM_TEMPORARY)
648 p->alu_temps |= 1 << dest.idx;
649
650 p->program->Base.NumAluInstructions++;
651 return dest;
652 }
653
654 static struct ureg emit_texld( struct texenv_fragment_program *p,
655 enum prog_opcode op,
656 struct ureg dest,
657 GLuint destmask,
658 GLuint tex_unit,
659 GLuint tex_idx,
660 struct ureg coord )
661 {
662 struct prog_instruction *inst = emit_op( p, op,
663 dest, destmask,
664 GL_FALSE, /* don't saturate? */
665 coord, /* arg 0? */
666 undef,
667 undef);
668
669 inst->TexSrcTarget = tex_idx;
670 inst->TexSrcUnit = tex_unit;
671
672 p->program->Base.NumTexInstructions++;
673
674 /* Accounting for indirection tracking:
675 */
676 reserve_temp(p, dest);
677
678 /* Is this a texture indirection?
679 */
680 if ((coord.file == PROGRAM_TEMPORARY &&
681 (p->temps_output & (1<<coord.idx))) ||
682 (dest.file == PROGRAM_TEMPORARY &&
683 (p->alu_temps & (1<<dest.idx)))) {
684 p->program->Base.NumTexIndirections++;
685 p->temps_output = 1<<coord.idx;
686 p->alu_temps = 0;
687 assert(0); /* KW: texture env crossbar */
688 }
689
690 return dest;
691 }
692
693
694 static struct ureg register_const4f( struct texenv_fragment_program *p,
695 GLfloat s0,
696 GLfloat s1,
697 GLfloat s2,
698 GLfloat s3)
699 {
700 GLfloat values[4];
701 GLuint idx, swizzle;
702 struct ureg r;
703 values[0] = s0;
704 values[1] = s1;
705 values[2] = s2;
706 values[3] = s3;
707 idx = _mesa_add_unnamed_constant( p->program->Base.Parameters, values, 4,
708 &swizzle );
709 r = make_ureg(PROGRAM_CONSTANT, idx);
710 r.swz = swizzle;
711 return r;
712 }
713
714 #define register_scalar_const(p, s0) register_const4f(p, s0, s0, s0, s0)
715 #define register_const1f(p, s0) register_const4f(p, s0, 0, 0, 1)
716 #define register_const2f(p, s0, s1) register_const4f(p, s0, s1, 0, 1)
717 #define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1)
718
719
720 static struct ureg get_one( struct texenv_fragment_program *p )
721 {
722 if (is_undef(p->one))
723 p->one = register_scalar_const(p, 1.0);
724 return p->one;
725 }
726
727 static struct ureg get_half( struct texenv_fragment_program *p )
728 {
729 if (is_undef(p->half))
730 p->half = register_scalar_const(p, 0.5);
731 return p->half;
732 }
733
734 static struct ureg get_zero( struct texenv_fragment_program *p )
735 {
736 if (is_undef(p->zero))
737 p->zero = register_scalar_const(p, 0.0);
738 return p->zero;
739 }
740
741
742 static void program_error( struct texenv_fragment_program *p, const char *msg )
743 {
744 _mesa_problem(NULL, msg);
745 p->error = 1;
746 }
747
748 static struct ureg get_source( struct texenv_fragment_program *p,
749 GLuint src, GLuint unit )
750 {
751 switch (src) {
752 case SRC_TEXTURE:
753 assert(!is_undef(p->src_texture[unit]));
754 return p->src_texture[unit];
755
756 case SRC_TEXTURE0:
757 case SRC_TEXTURE1:
758 case SRC_TEXTURE2:
759 case SRC_TEXTURE3:
760 case SRC_TEXTURE4:
761 case SRC_TEXTURE5:
762 case SRC_TEXTURE6:
763 case SRC_TEXTURE7:
764 assert(!is_undef(p->src_texture[src - SRC_TEXTURE0]));
765 return p->src_texture[src - SRC_TEXTURE0];
766
767 case SRC_CONSTANT:
768 return register_param2(p, STATE_TEXENV_COLOR, unit);
769
770 case SRC_PRIMARY_COLOR:
771 return register_input(p, FRAG_ATTRIB_COL0);
772
773 case SRC_PREVIOUS:
774 default:
775 if (is_undef(p->src_previous))
776 return register_input(p, FRAG_ATTRIB_COL0);
777 else
778 return p->src_previous;
779 }
780 }
781
782 static struct ureg emit_combine_source( struct texenv_fragment_program *p,
783 GLuint mask,
784 GLuint unit,
785 GLuint source,
786 GLuint operand )
787 {
788 struct ureg arg, src, one;
789
790 src = get_source(p, source, unit);
791
792 switch (operand) {
793 case OPR_ONE_MINUS_SRC_COLOR:
794 /* Get unused tmp,
795 * Emit tmp = 1.0 - arg.xyzw
796 */
797 arg = get_temp( p );
798 one = get_one( p );
799 return emit_arith( p, OPCODE_SUB, arg, mask, 0, one, src, undef);
800
801 case OPR_SRC_ALPHA:
802 if (mask == WRITEMASK_W)
803 return src;
804 else
805 return swizzle1( src, SWIZZLE_W );
806 case OPR_ONE_MINUS_SRC_ALPHA:
807 /* Get unused tmp,
808 * Emit tmp = 1.0 - arg.wwww
809 */
810 arg = get_temp(p);
811 one = get_one(p);
812 return emit_arith(p, OPCODE_SUB, arg, mask, 0,
813 one, swizzle1(src, SWIZZLE_W), undef);
814 case OPR_ZERO:
815 return get_zero(p);
816 case OPR_ONE:
817 return get_one(p);
818 case OPR_SRC_COLOR:
819 default:
820 return src;
821 }
822 }
823
824 static GLboolean args_match( struct state_key *key, GLuint unit )
825 {
826 GLuint i, nr = key->unit[unit].NumArgsRGB;
827
828 for (i = 0 ; i < nr ; i++) {
829 if (key->unit[unit].OptA[i].Source != key->unit[unit].OptRGB[i].Source)
830 return GL_FALSE;
831
832 switch(key->unit[unit].OptA[i].Operand) {
833 case OPR_SRC_ALPHA:
834 switch(key->unit[unit].OptRGB[i].Operand) {
835 case OPR_SRC_COLOR:
836 case OPR_SRC_ALPHA:
837 break;
838 default:
839 return GL_FALSE;
840 }
841 break;
842 case OPR_ONE_MINUS_SRC_ALPHA:
843 switch(key->unit[unit].OptRGB[i].Operand) {
844 case OPR_ONE_MINUS_SRC_COLOR:
845 case OPR_ONE_MINUS_SRC_ALPHA:
846 break;
847 default:
848 return GL_FALSE;
849 }
850 break;
851 default:
852 return GL_FALSE; /* impossible */
853 }
854 }
855
856 return GL_TRUE;
857 }
858
859 static struct ureg emit_combine( struct texenv_fragment_program *p,
860 struct ureg dest,
861 GLuint mask,
862 GLboolean saturate,
863 GLuint unit,
864 GLuint nr,
865 GLuint mode,
866 const struct mode_opt *opt)
867 {
868 struct ureg src[3];
869 struct ureg tmp, half;
870 GLuint i;
871
872 tmp = undef; /* silence warning (bug 5318) */
873
874 for (i = 0; i < nr; i++)
875 src[i] = emit_combine_source( p, mask, unit, opt[i].Source, opt[i].Operand );
876
877 switch (mode) {
878 case MODE_REPLACE:
879 if (mask == WRITEMASK_XYZW && !saturate)
880 return src[0];
881 else
882 return emit_arith( p, OPCODE_MOV, dest, mask, saturate, src[0], undef, undef );
883 case MODE_MODULATE:
884 return emit_arith( p, OPCODE_MUL, dest, mask, saturate,
885 src[0], src[1], undef );
886 case MODE_ADD:
887 return emit_arith( p, OPCODE_ADD, dest, mask, saturate,
888 src[0], src[1], undef );
889 case MODE_ADD_SIGNED:
890 /* tmp = arg0 + arg1
891 * result = tmp - .5
892 */
893 half = get_half(p);
894 tmp = get_temp( p );
895 emit_arith( p, OPCODE_ADD, tmp, mask, 0, src[0], src[1], undef );
896 emit_arith( p, OPCODE_SUB, dest, mask, saturate, tmp, half, undef );
897 return dest;
898 case MODE_INTERPOLATE:
899 /* Arg0 * (Arg2) + Arg1 * (1-Arg2) -- note arguments are reordered:
900 */
901 return emit_arith( p, OPCODE_LRP, dest, mask, saturate, src[2], src[0], src[1] );
902
903 case MODE_SUBTRACT:
904 return emit_arith( p, OPCODE_SUB, dest, mask, saturate, src[0], src[1], undef );
905
906 case MODE_DOT3_RGBA:
907 case MODE_DOT3_RGBA_EXT:
908 case MODE_DOT3_RGB_EXT:
909 case MODE_DOT3_RGB: {
910 struct ureg tmp0 = get_temp( p );
911 struct ureg tmp1 = get_temp( p );
912 struct ureg neg1 = register_scalar_const(p, -1);
913 struct ureg two = register_scalar_const(p, 2);
914
915 /* tmp0 = 2*src0 - 1
916 * tmp1 = 2*src1 - 1
917 *
918 * dst = tmp0 dot3 tmp1
919 */
920 emit_arith( p, OPCODE_MAD, tmp0, WRITEMASK_XYZW, 0,
921 two, src[0], neg1);
922
923 if (_mesa_memcmp(&src[0], &src[1], sizeof(struct ureg)) == 0)
924 tmp1 = tmp0;
925 else
926 emit_arith( p, OPCODE_MAD, tmp1, WRITEMASK_XYZW, 0,
927 two, src[1], neg1);
928 emit_arith( p, OPCODE_DP3, dest, mask, saturate, tmp0, tmp1, undef);
929 return dest;
930 }
931 case MODE_MODULATE_ADD_ATI:
932 /* Arg0 * Arg2 + Arg1 */
933 return emit_arith( p, OPCODE_MAD, dest, mask, saturate,
934 src[0], src[2], src[1] );
935 case MODE_MODULATE_SIGNED_ADD_ATI: {
936 /* Arg0 * Arg2 + Arg1 - 0.5 */
937 struct ureg tmp0 = get_temp(p);
938 half = get_half(p);
939 emit_arith( p, OPCODE_MAD, tmp0, mask, 0, src[0], src[2], src[1] );
940 emit_arith( p, OPCODE_SUB, dest, mask, saturate, tmp0, half, undef );
941 return dest;
942 }
943 case MODE_MODULATE_SUBTRACT_ATI:
944 /* Arg0 * Arg2 - Arg1 */
945 emit_arith( p, OPCODE_MAD, dest, mask, 0, src[0], src[2], negate(src[1]) );
946 return dest;
947 default:
948 return src[0];
949 }
950 }
951
952
953 /**
954 * Generate instructions for one texture unit's env/combiner mode.
955 */
956 static struct ureg
957 emit_texenv(struct texenv_fragment_program *p, GLuint unit)
958 {
959 struct state_key *key = p->state;
960 GLboolean saturate = (unit < p->last_tex_stage);
961 GLuint rgb_shift, alpha_shift;
962 struct ureg out, shift;
963 struct ureg dest;
964
965 if (!key->unit[unit].enabled) {
966 return get_source(p, SRC_PREVIOUS, 0);
967 }
968
969 switch (key->unit[unit].ModeRGB) {
970 case MODE_DOT3_RGB_EXT:
971 alpha_shift = key->unit[unit].ScaleShiftA;
972 rgb_shift = 0;
973 break;
974 case MODE_DOT3_RGBA_EXT:
975 alpha_shift = 0;
976 rgb_shift = 0;
977 break;
978 default:
979 rgb_shift = key->unit[unit].ScaleShiftRGB;
980 alpha_shift = key->unit[unit].ScaleShiftA;
981 break;
982 }
983
984 /* If this is the very last calculation, emit direct to output reg:
985 */
986 if (key->separate_specular ||
987 unit != p->last_tex_stage ||
988 alpha_shift ||
989 rgb_shift)
990 dest = get_temp( p );
991 else
992 dest = make_ureg(PROGRAM_OUTPUT, FRAG_RESULT_COLR);
993
994 /* Emit the RGB and A combine ops
995 */
996 if (key->unit[unit].ModeRGB == key->unit[unit].ModeA &&
997 args_match(key, unit)) {
998 out = emit_combine( p, dest, WRITEMASK_XYZW, saturate,
999 unit,
1000 key->unit[unit].NumArgsRGB,
1001 key->unit[unit].ModeRGB,
1002 key->unit[unit].OptRGB);
1003 }
1004 else if (key->unit[unit].ModeRGB == MODE_DOT3_RGBA_EXT ||
1005 key->unit[unit].ModeRGB == MODE_DOT3_RGBA) {
1006
1007 out = emit_combine( p, dest, WRITEMASK_XYZW, saturate,
1008 unit,
1009 key->unit[unit].NumArgsRGB,
1010 key->unit[unit].ModeRGB,
1011 key->unit[unit].OptRGB);
1012 }
1013 else {
1014 /* Need to do something to stop from re-emitting identical
1015 * argument calculations here:
1016 */
1017 out = emit_combine( p, dest, WRITEMASK_XYZ, saturate,
1018 unit,
1019 key->unit[unit].NumArgsRGB,
1020 key->unit[unit].ModeRGB,
1021 key->unit[unit].OptRGB);
1022 out = emit_combine( p, dest, WRITEMASK_W, saturate,
1023 unit,
1024 key->unit[unit].NumArgsA,
1025 key->unit[unit].ModeA,
1026 key->unit[unit].OptA);
1027 }
1028
1029 /* Deal with the final shift:
1030 */
1031 if (alpha_shift || rgb_shift) {
1032 if (rgb_shift == alpha_shift) {
1033 shift = register_scalar_const(p, (GLfloat)(1<<rgb_shift));
1034 }
1035 else {
1036 shift = register_const4f(p,
1037 (GLfloat)(1<<rgb_shift),
1038 (GLfloat)(1<<rgb_shift),
1039 (GLfloat)(1<<rgb_shift),
1040 (GLfloat)(1<<alpha_shift));
1041 }
1042 return emit_arith( p, OPCODE_MUL, dest, WRITEMASK_XYZW,
1043 saturate, out, shift, undef );
1044 }
1045 else
1046 return out;
1047 }
1048
1049
1050 /**
1051 * Generate instruction for getting a texture source term.
1052 */
1053 static void load_texture( struct texenv_fragment_program *p, GLuint unit )
1054 {
1055 if (is_undef(p->src_texture[unit])) {
1056 GLuint dim = p->state->unit[unit].source_index;
1057 struct ureg texcoord = register_input(p, FRAG_ATTRIB_TEX0+unit);
1058 struct ureg tmp = get_tex_temp( p );
1059
1060 if (dim == TEXTURE_UNKNOWN_INDEX)
1061 program_error(p, "TexSrcBit");
1062
1063 /* TODO: Use D0_MASK_XY where possible.
1064 */
1065 if (p->state->unit[unit].enabled) {
1066 p->src_texture[unit] = emit_texld( p, OPCODE_TXP,
1067 tmp, WRITEMASK_XYZW,
1068 unit, dim, texcoord );
1069 p->program->Base.SamplersUsed |= (1 << unit);
1070 /* This identity mapping should already be in place
1071 * (see _mesa_init_program_struct()) but let's be safe.
1072 */
1073 p->program->Base.SamplerUnits[unit] = unit;
1074 }
1075 else
1076 p->src_texture[unit] = get_zero(p);
1077 }
1078 }
1079
1080 static GLboolean load_texenv_source( struct texenv_fragment_program *p,
1081 GLuint src, GLuint unit )
1082 {
1083 switch (src) {
1084 case SRC_TEXTURE:
1085 load_texture(p, unit);
1086 break;
1087
1088 case SRC_TEXTURE0:
1089 case SRC_TEXTURE1:
1090 case SRC_TEXTURE2:
1091 case SRC_TEXTURE3:
1092 case SRC_TEXTURE4:
1093 case SRC_TEXTURE5:
1094 case SRC_TEXTURE6:
1095 case SRC_TEXTURE7:
1096 load_texture(p, src - SRC_TEXTURE0);
1097 break;
1098
1099 default:
1100 break;
1101 }
1102
1103 return GL_TRUE;
1104 }
1105
1106
1107 /**
1108 * Generate instructions for loading all texture source terms.
1109 */
1110 static GLboolean
1111 load_texunit_sources( struct texenv_fragment_program *p, int unit )
1112 {
1113 struct state_key *key = p->state;
1114 GLuint i;
1115
1116 for (i = 0; i < key->unit[unit].NumArgsRGB; i++) {
1117 load_texenv_source( p, key->unit[unit].OptRGB[i].Source, unit);
1118 }
1119
1120 for (i = 0; i < key->unit[unit].NumArgsA; i++) {
1121 load_texenv_source( p, key->unit[unit].OptA[i].Source, unit );
1122 }
1123
1124 return GL_TRUE;
1125 }
1126
1127
1128 /**
1129 * Generate a new fragment program which implements the context's
1130 * current texture env/combine mode.
1131 */
1132 static void
1133 create_new_program(GLcontext *ctx, struct state_key *key,
1134 struct gl_fragment_program *program)
1135 {
1136 struct prog_instruction instBuffer[MAX_INSTRUCTIONS];
1137 struct texenv_fragment_program p;
1138 GLuint unit;
1139 struct ureg cf, out;
1140
1141 _mesa_memset(&p, 0, sizeof(p));
1142 p.ctx = ctx;
1143 p.state = key;
1144 p.program = program;
1145
1146 /* During code generation, use locally-allocated instruction buffer,
1147 * then alloc dynamic storage below.
1148 */
1149 p.program->Base.Instructions = instBuffer;
1150 p.program->Base.Target = GL_FRAGMENT_PROGRAM_ARB;
1151 p.program->Base.NumTexIndirections = 1; /* correct? */
1152 p.program->Base.NumTexInstructions = 0;
1153 p.program->Base.NumAluInstructions = 0;
1154 p.program->Base.String = NULL;
1155 p.program->Base.NumInstructions =
1156 p.program->Base.NumTemporaries =
1157 p.program->Base.NumParameters =
1158 p.program->Base.NumAttributes = p.program->Base.NumAddressRegs = 0;
1159 p.program->Base.Parameters = _mesa_new_parameter_list();
1160
1161 p.program->Base.InputsRead = 0;
1162 p.program->Base.OutputsWritten = 1 << FRAG_RESULT_COLR;
1163
1164 for (unit = 0; unit < MAX_TEXTURE_UNITS; unit++)
1165 p.src_texture[unit] = undef;
1166
1167 p.src_previous = undef;
1168 p.half = undef;
1169 p.zero = undef;
1170 p.one = undef;
1171
1172 p.last_tex_stage = 0;
1173 release_temps(ctx, &p);
1174
1175 if (key->enabled_units) {
1176 /* First pass - to support texture_env_crossbar, first identify
1177 * all referenced texture sources and emit texld instructions
1178 * for each:
1179 */
1180 for (unit = 0 ; unit < ctx->Const.MaxTextureUnits ; unit++)
1181 if (key->unit[unit].enabled) {
1182 load_texunit_sources( &p, unit );
1183 p.last_tex_stage = unit;
1184 }
1185
1186 /* Second pass - emit combine instructions to build final color:
1187 */
1188 for (unit = 0 ; unit < ctx->Const.MaxTextureUnits; unit++)
1189 if (key->enabled_units & (1<<unit)) {
1190 p.src_previous = emit_texenv( &p, unit );
1191 reserve_temp(&p, p.src_previous); /* don't re-use this temp reg */
1192 release_temps(ctx, &p); /* release all temps */
1193 }
1194 }
1195
1196 cf = get_source( &p, SRC_PREVIOUS, 0 );
1197 out = make_ureg( PROGRAM_OUTPUT, FRAG_RESULT_COLR );
1198
1199 if (key->separate_specular) {
1200 /* Emit specular add.
1201 */
1202 struct ureg s = register_input(&p, FRAG_ATTRIB_COL1);
1203 emit_arith( &p, OPCODE_ADD, out, WRITEMASK_XYZ, 0, cf, s, undef );
1204 emit_arith( &p, OPCODE_MOV, out, WRITEMASK_W, 0, cf, undef, undef );
1205 }
1206 else if (_mesa_memcmp(&cf, &out, sizeof(cf)) != 0) {
1207 /* Will wind up in here if no texture enabled or a couple of
1208 * other scenarios (GL_REPLACE for instance).
1209 */
1210 emit_arith( &p, OPCODE_MOV, out, WRITEMASK_XYZW, 0, cf, undef, undef );
1211 }
1212
1213 /* Finish up:
1214 */
1215 emit_arith( &p, OPCODE_END, undef, WRITEMASK_XYZW, 0, undef, undef, undef);
1216
1217 if (key->fog_enabled) {
1218 /* Pull fog mode from GLcontext, the value in the state key is
1219 * a reduced value and not what is expected in FogOption
1220 */
1221 p.program->FogOption = ctx->Fog.Mode;
1222 p.program->Base.InputsRead |= FRAG_BIT_FOGC; /* XXX new */
1223 } else
1224 p.program->FogOption = GL_NONE;
1225
1226 if (p.program->Base.NumTexIndirections > ctx->Const.FragmentProgram.MaxTexIndirections)
1227 program_error(&p, "Exceeded max nr indirect texture lookups");
1228
1229 if (p.program->Base.NumTexInstructions > ctx->Const.FragmentProgram.MaxTexInstructions)
1230 program_error(&p, "Exceeded max TEX instructions");
1231
1232 if (p.program->Base.NumAluInstructions > ctx->Const.FragmentProgram.MaxAluInstructions)
1233 program_error(&p, "Exceeded max ALU instructions");
1234
1235 ASSERT(p.program->Base.NumInstructions <= MAX_INSTRUCTIONS);
1236
1237 /* Allocate final instruction array */
1238 p.program->Base.Instructions
1239 = _mesa_alloc_instructions(p.program->Base.NumInstructions);
1240 if (!p.program->Base.Instructions) {
1241 _mesa_error(ctx, GL_OUT_OF_MEMORY,
1242 "generating tex env program");
1243 return;
1244 }
1245 _mesa_copy_instructions(p.program->Base.Instructions, instBuffer,
1246 p.program->Base.NumInstructions);
1247
1248 if (p.program->FogOption) {
1249 _mesa_append_fog_code(ctx, p.program);
1250 p.program->FogOption = GL_NONE;
1251 }
1252
1253
1254 /* Notify driver the fragment program has (actually) changed.
1255 */
1256 if (ctx->Driver.ProgramStringNotify) {
1257 ctx->Driver.ProgramStringNotify( ctx, GL_FRAGMENT_PROGRAM_ARB,
1258 &p.program->Base );
1259 }
1260
1261 if (DISASSEM) {
1262 _mesa_print_program(&p.program->Base);
1263 _mesa_printf("\n");
1264 }
1265 }
1266
1267
1268 /**
1269 * Return a fragment program which implements the current
1270 * fixed-function texture, fog and color-sum operations.
1271 */
1272 struct gl_fragment_program *
1273 _mesa_get_fixed_func_fragment_program(GLcontext *ctx)
1274 {
1275 struct gl_fragment_program *prog;
1276 struct state_key key;
1277
1278 make_state_key(ctx, &key);
1279
1280 prog = (struct gl_fragment_program *)
1281 _mesa_search_program_cache(ctx->FragmentProgram.Cache,
1282 &key, sizeof(key));
1283
1284 if (!prog) {
1285 prog = (struct gl_fragment_program *)
1286 ctx->Driver.NewProgram(ctx, GL_FRAGMENT_PROGRAM_ARB, 0);
1287
1288 create_new_program(ctx, &key, prog);
1289
1290 _mesa_program_cache_insert(ctx, ctx->FragmentProgram.Cache,
1291 &key, sizeof(key), &prog->Base);
1292 }
1293
1294 return prog;
1295 }
1296
1297
1298
1299 /**
1300 * If _MaintainTexEnvProgram is set we'll generate a fragment program that
1301 * implements the current texture env/combine mode.
1302 * This function generates that program and puts it into effect.
1303 */
1304 void
1305 _mesa_UpdateTexEnvProgram( GLcontext *ctx )
1306 {
1307 const struct gl_fragment_program *prev = ctx->FragmentProgram._Current;
1308
1309 ASSERT(ctx->FragmentProgram._MaintainTexEnvProgram);
1310
1311 /* If a conventional fragment program/shader isn't in effect... */
1312 if (!ctx->FragmentProgram._Enabled &&
1313 (!ctx->Shader.CurrentProgram ||
1314 !ctx->Shader.CurrentProgram->FragmentProgram) ) {
1315
1316 ctx->FragmentProgram._Current
1317 = ctx->FragmentProgram._TexEnvProgram
1318 = _mesa_get_fixed_func_fragment_program(ctx);
1319 }
1320
1321 /* Tell the driver about the change. Could define a new target for
1322 * this?
1323 */
1324 if (ctx->FragmentProgram._Current != prev && ctx->Driver.BindProgram) {
1325 ctx->Driver.BindProgram(ctx, GL_FRAGMENT_PROGRAM_ARB,
1326 (struct gl_program *) ctx->FragmentProgram._Current);
1327 }
1328 }