mesa: shrink texenvprogram state key struct
[mesa.git] / src / mesa / main / texenvprogram.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include "glheader.h"
29 #include "macros.h"
30 #include "enums.h"
31 #include "shader/prog_parameter.h"
32 #include "shader/prog_cache.h"
33 #include "shader/prog_instruction.h"
34 #include "shader/prog_print.h"
35 #include "shader/prog_statevars.h"
36 #include "shader/programopt.h"
37 #include "texenvprogram.h"
38
39 /**
40 * Up to nine instructions per tex unit, plus fog, specular color.
41 */
42 #define MAX_INSTRUCTIONS ((MAX_TEXTURE_UNITS * 9) + 12)
43
44 #define DISASSEM (MESA_VERBOSE & VERBOSE_DISASSEM)
45
46 struct mode_opt {
47 GLubyte Source:4;
48 GLubyte Operand:3;
49 };
50
51 struct state_key {
52 GLuint nr_enabled_units:8;
53 GLuint enabled_units:8;
54 GLuint separate_specular:1;
55 GLuint fog_enabled:1;
56 GLuint fog_mode:2;
57 GLuint inputs_available:12;
58
59 struct {
60 GLuint enabled:1;
61 GLuint source_index:3; /* one of TEXTURE_1D/2D/3D/CUBE/RECT_INDEX */
62 GLuint ScaleShiftRGB:2;
63 GLuint ScaleShiftA:2;
64
65 GLuint NumArgsRGB:2;
66 GLuint ModeRGB:4;
67 GLuint NumArgsA:2;
68 GLuint ModeA:4;
69
70 struct mode_opt OptRGB[3];
71 struct mode_opt OptA[3];
72 } unit[8];
73 };
74
75 #define FOG_LINEAR 0
76 #define FOG_EXP 1
77 #define FOG_EXP2 2
78 #define FOG_UNKNOWN 3
79
80 static GLuint translate_fog_mode( GLenum mode )
81 {
82 switch (mode) {
83 case GL_LINEAR: return FOG_LINEAR;
84 case GL_EXP: return FOG_EXP;
85 case GL_EXP2: return FOG_EXP2;
86 default: return FOG_UNKNOWN;
87 }
88 }
89
90 #define OPR_SRC_COLOR 0
91 #define OPR_ONE_MINUS_SRC_COLOR 1
92 #define OPR_SRC_ALPHA 2
93 #define OPR_ONE_MINUS_SRC_ALPHA 3
94 #define OPR_ZERO 4
95 #define OPR_ONE 5
96 #define OPR_UNKNOWN 7
97
98 static GLuint translate_operand( GLenum operand )
99 {
100 switch (operand) {
101 case GL_SRC_COLOR: return OPR_SRC_COLOR;
102 case GL_ONE_MINUS_SRC_COLOR: return OPR_ONE_MINUS_SRC_COLOR;
103 case GL_SRC_ALPHA: return OPR_SRC_ALPHA;
104 case GL_ONE_MINUS_SRC_ALPHA: return OPR_ONE_MINUS_SRC_ALPHA;
105 case GL_ZERO: return OPR_ZERO;
106 case GL_ONE: return OPR_ONE;
107 default: return OPR_UNKNOWN;
108 }
109 }
110
111 #define SRC_TEXTURE 0
112 #define SRC_TEXTURE0 1
113 #define SRC_TEXTURE1 2
114 #define SRC_TEXTURE2 3
115 #define SRC_TEXTURE3 4
116 #define SRC_TEXTURE4 5
117 #define SRC_TEXTURE5 6
118 #define SRC_TEXTURE6 7
119 #define SRC_TEXTURE7 8
120 #define SRC_CONSTANT 9
121 #define SRC_PRIMARY_COLOR 10
122 #define SRC_PREVIOUS 11
123 #define SRC_UNKNOWN 15
124
125 static GLuint translate_source( GLenum src )
126 {
127 switch (src) {
128 case GL_TEXTURE: return SRC_TEXTURE;
129 case GL_TEXTURE0:
130 case GL_TEXTURE1:
131 case GL_TEXTURE2:
132 case GL_TEXTURE3:
133 case GL_TEXTURE4:
134 case GL_TEXTURE5:
135 case GL_TEXTURE6:
136 case GL_TEXTURE7: return SRC_TEXTURE0 + (src - GL_TEXTURE0);
137 case GL_CONSTANT: return SRC_CONSTANT;
138 case GL_PRIMARY_COLOR: return SRC_PRIMARY_COLOR;
139 case GL_PREVIOUS: return SRC_PREVIOUS;
140 default: return SRC_UNKNOWN;
141 }
142 }
143
144 #define MODE_REPLACE 0
145 #define MODE_MODULATE 1
146 #define MODE_ADD 2
147 #define MODE_ADD_SIGNED 3
148 #define MODE_INTERPOLATE 4
149 #define MODE_SUBTRACT 5
150 #define MODE_DOT3_RGB 6
151 #define MODE_DOT3_RGB_EXT 7
152 #define MODE_DOT3_RGBA 8
153 #define MODE_DOT3_RGBA_EXT 9
154 #define MODE_MODULATE_ADD_ATI 10
155 #define MODE_MODULATE_SIGNED_ADD_ATI 11
156 #define MODE_MODULATE_SUBTRACT_ATI 12
157 #define MODE_UNKNOWN 15
158
159 static GLuint translate_mode( GLenum mode )
160 {
161 switch (mode) {
162 case GL_REPLACE: return MODE_REPLACE;
163 case GL_MODULATE: return MODE_MODULATE;
164 case GL_ADD: return MODE_ADD;
165 case GL_ADD_SIGNED: return MODE_ADD_SIGNED;
166 case GL_INTERPOLATE: return MODE_INTERPOLATE;
167 case GL_SUBTRACT: return MODE_SUBTRACT;
168 case GL_DOT3_RGB: return MODE_DOT3_RGB;
169 case GL_DOT3_RGB_EXT: return MODE_DOT3_RGB_EXT;
170 case GL_DOT3_RGBA: return MODE_DOT3_RGBA;
171 case GL_DOT3_RGBA_EXT: return MODE_DOT3_RGBA_EXT;
172 case GL_MODULATE_ADD_ATI: return MODE_MODULATE_ADD_ATI;
173 case GL_MODULATE_SIGNED_ADD_ATI: return MODE_MODULATE_SIGNED_ADD_ATI;
174 case GL_MODULATE_SUBTRACT_ATI: return MODE_MODULATE_SUBTRACT_ATI;
175 default: return MODE_UNKNOWN;
176 }
177 }
178
179 #define TEXTURE_UNKNOWN_INDEX 7
180 static GLuint translate_tex_src_bit( GLbitfield bit )
181 {
182 switch (bit) {
183 case TEXTURE_1D_BIT: return TEXTURE_1D_INDEX;
184 case TEXTURE_2D_BIT: return TEXTURE_2D_INDEX;
185 case TEXTURE_RECT_BIT: return TEXTURE_RECT_INDEX;
186 case TEXTURE_3D_BIT: return TEXTURE_3D_INDEX;
187 case TEXTURE_CUBE_BIT: return TEXTURE_CUBE_INDEX;
188 default: return TEXTURE_UNKNOWN_INDEX;
189 }
190 }
191
192 /**
193 * Examine current texture environment state and generate a unique
194 * key to identify it.
195 */
196 static void make_state_key( GLcontext *ctx, struct state_key *key )
197 {
198 GLuint i, j;
199
200 memset(key, 0, sizeof(*key));
201
202 for (i=0;i<MAX_TEXTURE_UNITS;i++) {
203 const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
204
205 if (!texUnit->_ReallyEnabled)
206 continue;
207
208 key->unit[i].enabled = 1;
209 key->enabled_units |= (1<<i);
210
211 key->unit[i].source_index =
212 translate_tex_src_bit(texUnit->_ReallyEnabled);
213
214 key->unit[i].NumArgsRGB = texUnit->_CurrentCombine->_NumArgsRGB;
215 key->unit[i].NumArgsA = texUnit->_CurrentCombine->_NumArgsA;
216
217 key->unit[i].ModeRGB =
218 translate_mode(texUnit->_CurrentCombine->ModeRGB);
219 key->unit[i].ModeA =
220 translate_mode(texUnit->_CurrentCombine->ModeA);
221
222 key->unit[i].ScaleShiftRGB = texUnit->_CurrentCombine->ScaleShiftRGB;
223 key->unit[i].ScaleShiftA = texUnit->_CurrentCombine->ScaleShiftA;
224
225 for (j=0;j<3;j++) {
226 key->unit[i].OptRGB[j].Operand =
227 translate_operand(texUnit->_CurrentCombine->OperandRGB[j]);
228 key->unit[i].OptA[j].Operand =
229 translate_operand(texUnit->_CurrentCombine->OperandA[j]);
230 key->unit[i].OptRGB[j].Source =
231 translate_source(texUnit->_CurrentCombine->SourceRGB[j]);
232 key->unit[i].OptA[j].Source =
233 translate_source(texUnit->_CurrentCombine->SourceA[j]);
234 }
235 }
236
237 if (ctx->_TriangleCaps & DD_SEPARATE_SPECULAR)
238 key->separate_specular = 1;
239
240 if (ctx->Fog.Enabled) {
241 key->fog_enabled = 1;
242 key->fog_mode = translate_fog_mode(ctx->Fog.Mode);
243 }
244 }
245
246 /* Use uregs to represent registers internally, translate to Mesa's
247 * expected formats on emit.
248 *
249 * NOTE: These are passed by value extensively in this file rather
250 * than as usual by pointer reference. If this disturbs you, try
251 * remembering they are just 32bits in size.
252 *
253 * GCC is smart enough to deal with these dword-sized structures in
254 * much the same way as if I had defined them as dwords and was using
255 * macros to access and set the fields. This is much nicer and easier
256 * to evolve.
257 */
258 struct ureg {
259 GLuint file:4;
260 GLuint idx:8;
261 GLuint negatebase:1;
262 GLuint abs:1;
263 GLuint negateabs:1;
264 GLuint swz:12;
265 GLuint pad:5;
266 };
267
268 static const struct ureg undef = {
269 PROGRAM_UNDEFINED,
270 ~0,
271 0,
272 0,
273 0,
274 0,
275 0
276 };
277
278
279 /* State used to build the fragment program:
280 */
281 struct texenv_fragment_program {
282 struct gl_fragment_program *program;
283 GLcontext *ctx;
284 struct state_key *state;
285
286 GLbitfield alu_temps; /* Track texture indirections, see spec. */
287 GLbitfield temps_output; /* Track texture indirections, see spec. */
288 GLbitfield temp_in_use; /* Tracks temporary regs which are in use. */
289 GLboolean error;
290
291 struct ureg src_texture[MAX_TEXTURE_UNITS];
292 /* Reg containing each texture unit's sampled texture color,
293 * else undef.
294 */
295
296 struct ureg src_previous; /* Reg containing color from previous
297 * stage. May need to be decl'd.
298 */
299
300 GLuint last_tex_stage; /* Number of last enabled texture unit */
301
302 struct ureg half;
303 struct ureg one;
304 struct ureg zero;
305 };
306
307
308
309 static struct ureg make_ureg(GLuint file, GLuint idx)
310 {
311 struct ureg reg;
312 reg.file = file;
313 reg.idx = idx;
314 reg.negatebase = 0;
315 reg.abs = 0;
316 reg.negateabs = 0;
317 reg.swz = SWIZZLE_NOOP;
318 reg.pad = 0;
319 return reg;
320 }
321
322 static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w )
323 {
324 reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x),
325 GET_SWZ(reg.swz, y),
326 GET_SWZ(reg.swz, z),
327 GET_SWZ(reg.swz, w));
328
329 return reg;
330 }
331
332 static struct ureg swizzle1( struct ureg reg, int x )
333 {
334 return swizzle(reg, x, x, x, x);
335 }
336
337 static struct ureg negate( struct ureg reg )
338 {
339 reg.negatebase ^= 1;
340 return reg;
341 }
342
343 static GLboolean is_undef( struct ureg reg )
344 {
345 return reg.file == PROGRAM_UNDEFINED;
346 }
347
348
349 static struct ureg get_temp( struct texenv_fragment_program *p )
350 {
351 GLint bit;
352
353 /* First try and reuse temps which have been used already:
354 */
355 bit = _mesa_ffs( ~p->temp_in_use & p->alu_temps );
356
357 /* Then any unused temporary:
358 */
359 if (!bit)
360 bit = _mesa_ffs( ~p->temp_in_use );
361
362 if (!bit) {
363 _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
364 _mesa_exit(1);
365 }
366
367 if ((GLuint) bit > p->program->Base.NumTemporaries)
368 p->program->Base.NumTemporaries = bit;
369
370 p->temp_in_use |= 1<<(bit-1);
371 return make_ureg(PROGRAM_TEMPORARY, (bit-1));
372 }
373
374 static struct ureg get_tex_temp( struct texenv_fragment_program *p )
375 {
376 int bit;
377
378 /* First try to find available temp not previously used (to avoid
379 * starting a new texture indirection). According to the spec, the
380 * ~p->temps_output isn't necessary, but will keep it there for
381 * now:
382 */
383 bit = _mesa_ffs( ~p->temp_in_use & ~p->alu_temps & ~p->temps_output );
384
385 /* Then any unused temporary:
386 */
387 if (!bit)
388 bit = _mesa_ffs( ~p->temp_in_use );
389
390 if (!bit) {
391 _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
392 _mesa_exit(1);
393 }
394
395 if ((GLuint) bit > p->program->Base.NumTemporaries)
396 p->program->Base.NumTemporaries = bit;
397
398 p->temp_in_use |= 1<<(bit-1);
399 return make_ureg(PROGRAM_TEMPORARY, (bit-1));
400 }
401
402
403 /** Mark a temp reg as being no longer allocatable. */
404 static void reserve_temp( struct texenv_fragment_program *p, struct ureg r )
405 {
406 if (r.file == PROGRAM_TEMPORARY)
407 p->temps_output |= (1 << r.idx);
408 }
409
410
411 static void release_temps(GLcontext *ctx, struct texenv_fragment_program *p )
412 {
413 GLuint max_temp = ctx->Const.FragmentProgram.MaxTemps;
414
415 /* KW: To support tex_env_crossbar, don't release the registers in
416 * temps_output.
417 */
418 if (max_temp >= sizeof(int) * 8)
419 p->temp_in_use = p->temps_output;
420 else
421 p->temp_in_use = ~((1<<max_temp)-1) | p->temps_output;
422 }
423
424
425 static struct ureg register_param5( struct texenv_fragment_program *p,
426 GLint s0,
427 GLint s1,
428 GLint s2,
429 GLint s3,
430 GLint s4)
431 {
432 gl_state_index tokens[STATE_LENGTH];
433 GLuint idx;
434 tokens[0] = s0;
435 tokens[1] = s1;
436 tokens[2] = s2;
437 tokens[3] = s3;
438 tokens[4] = s4;
439 idx = _mesa_add_state_reference( p->program->Base.Parameters, tokens );
440 return make_ureg(PROGRAM_STATE_VAR, idx);
441 }
442
443
444 #define register_param1(p,s0) register_param5(p,s0,0,0,0,0)
445 #define register_param2(p,s0,s1) register_param5(p,s0,s1,0,0,0)
446 #define register_param3(p,s0,s1,s2) register_param5(p,s0,s1,s2,0,0)
447 #define register_param4(p,s0,s1,s2,s3) register_param5(p,s0,s1,s2,s3,0)
448
449
450 static struct ureg register_input( struct texenv_fragment_program *p, GLuint input )
451 {
452 p->program->Base.InputsRead |= (1 << input);
453 return make_ureg(PROGRAM_INPUT, input);
454 }
455
456
457 static void emit_arg( struct prog_src_register *reg,
458 struct ureg ureg )
459 {
460 reg->File = ureg.file;
461 reg->Index = ureg.idx;
462 reg->Swizzle = ureg.swz;
463 reg->NegateBase = ureg.negatebase ? 0xf : 0x0;
464 reg->Abs = ureg.abs;
465 reg->NegateAbs = ureg.negateabs;
466 }
467
468 static void emit_dst( struct prog_dst_register *dst,
469 struct ureg ureg, GLuint mask )
470 {
471 dst->File = ureg.file;
472 dst->Index = ureg.idx;
473 dst->WriteMask = mask;
474 dst->CondMask = COND_TR; /* always pass cond test */
475 dst->CondSwizzle = SWIZZLE_NOOP;
476 }
477
478 static struct prog_instruction *
479 emit_op(struct texenv_fragment_program *p,
480 enum prog_opcode op,
481 struct ureg dest,
482 GLuint mask,
483 GLboolean saturate,
484 struct ureg src0,
485 struct ureg src1,
486 struct ureg src2 )
487 {
488 GLuint nr = p->program->Base.NumInstructions++;
489 struct prog_instruction *inst = &p->program->Base.Instructions[nr];
490
491 assert(nr < MAX_INSTRUCTIONS);
492
493 _mesa_init_instructions(inst, 1);
494 inst->Opcode = op;
495
496 emit_arg( &inst->SrcReg[0], src0 );
497 emit_arg( &inst->SrcReg[1], src1 );
498 emit_arg( &inst->SrcReg[2], src2 );
499
500 inst->SaturateMode = saturate ? SATURATE_ZERO_ONE : SATURATE_OFF;
501
502 emit_dst( &inst->DstReg, dest, mask );
503
504 #if 0
505 /* Accounting for indirection tracking:
506 */
507 if (dest.file == PROGRAM_TEMPORARY)
508 p->temps_output |= 1 << dest.idx;
509 #endif
510
511 return inst;
512 }
513
514
515 static struct ureg emit_arith( struct texenv_fragment_program *p,
516 enum prog_opcode op,
517 struct ureg dest,
518 GLuint mask,
519 GLboolean saturate,
520 struct ureg src0,
521 struct ureg src1,
522 struct ureg src2 )
523 {
524 emit_op(p, op, dest, mask, saturate, src0, src1, src2);
525
526 /* Accounting for indirection tracking:
527 */
528 if (src0.file == PROGRAM_TEMPORARY)
529 p->alu_temps |= 1 << src0.idx;
530
531 if (!is_undef(src1) && src1.file == PROGRAM_TEMPORARY)
532 p->alu_temps |= 1 << src1.idx;
533
534 if (!is_undef(src2) && src2.file == PROGRAM_TEMPORARY)
535 p->alu_temps |= 1 << src2.idx;
536
537 if (dest.file == PROGRAM_TEMPORARY)
538 p->alu_temps |= 1 << dest.idx;
539
540 p->program->Base.NumAluInstructions++;
541 return dest;
542 }
543
544 static struct ureg emit_texld( struct texenv_fragment_program *p,
545 enum prog_opcode op,
546 struct ureg dest,
547 GLuint destmask,
548 GLuint tex_unit,
549 GLuint tex_idx,
550 struct ureg coord )
551 {
552 struct prog_instruction *inst = emit_op( p, op,
553 dest, destmask,
554 GL_FALSE, /* don't saturate? */
555 coord, /* arg 0? */
556 undef,
557 undef);
558
559 inst->TexSrcTarget = tex_idx;
560 inst->TexSrcUnit = tex_unit;
561
562 p->program->Base.NumTexInstructions++;
563
564 /* Accounting for indirection tracking:
565 */
566 reserve_temp(p, dest);
567
568 /* Is this a texture indirection?
569 */
570 if ((coord.file == PROGRAM_TEMPORARY &&
571 (p->temps_output & (1<<coord.idx))) ||
572 (dest.file == PROGRAM_TEMPORARY &&
573 (p->alu_temps & (1<<dest.idx)))) {
574 p->program->Base.NumTexIndirections++;
575 p->temps_output = 1<<coord.idx;
576 p->alu_temps = 0;
577 assert(0); /* KW: texture env crossbar */
578 }
579
580 return dest;
581 }
582
583
584 static struct ureg register_const4f( struct texenv_fragment_program *p,
585 GLfloat s0,
586 GLfloat s1,
587 GLfloat s2,
588 GLfloat s3)
589 {
590 GLfloat values[4];
591 GLuint idx, swizzle;
592 struct ureg r;
593 values[0] = s0;
594 values[1] = s1;
595 values[2] = s2;
596 values[3] = s3;
597 idx = _mesa_add_unnamed_constant( p->program->Base.Parameters, values, 4,
598 &swizzle );
599 r = make_ureg(PROGRAM_CONSTANT, idx);
600 r.swz = swizzle;
601 return r;
602 }
603
604 #define register_scalar_const(p, s0) register_const4f(p, s0, s0, s0, s0)
605 #define register_const1f(p, s0) register_const4f(p, s0, 0, 0, 1)
606 #define register_const2f(p, s0, s1) register_const4f(p, s0, s1, 0, 1)
607 #define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1)
608
609
610 static struct ureg get_one( struct texenv_fragment_program *p )
611 {
612 if (is_undef(p->one))
613 p->one = register_scalar_const(p, 1.0);
614 return p->one;
615 }
616
617 static struct ureg get_half( struct texenv_fragment_program *p )
618 {
619 if (is_undef(p->half))
620 p->half = register_scalar_const(p, 0.5);
621 return p->half;
622 }
623
624 static struct ureg get_zero( struct texenv_fragment_program *p )
625 {
626 if (is_undef(p->zero))
627 p->zero = register_scalar_const(p, 0.0);
628 return p->zero;
629 }
630
631
632 static void program_error( struct texenv_fragment_program *p, const char *msg )
633 {
634 _mesa_problem(NULL, msg);
635 p->error = 1;
636 }
637
638 static struct ureg get_source( struct texenv_fragment_program *p,
639 GLuint src, GLuint unit )
640 {
641 switch (src) {
642 case SRC_TEXTURE:
643 assert(!is_undef(p->src_texture[unit]));
644 return p->src_texture[unit];
645
646 case SRC_TEXTURE0:
647 case SRC_TEXTURE1:
648 case SRC_TEXTURE2:
649 case SRC_TEXTURE3:
650 case SRC_TEXTURE4:
651 case SRC_TEXTURE5:
652 case SRC_TEXTURE6:
653 case SRC_TEXTURE7:
654 assert(!is_undef(p->src_texture[src - SRC_TEXTURE0]));
655 return p->src_texture[src - SRC_TEXTURE0];
656
657 case SRC_CONSTANT:
658 return register_param2(p, STATE_TEXENV_COLOR, unit);
659
660 case SRC_PRIMARY_COLOR:
661 return register_input(p, FRAG_ATTRIB_COL0);
662
663 case SRC_PREVIOUS:
664 default:
665 if (is_undef(p->src_previous))
666 return register_input(p, FRAG_ATTRIB_COL0);
667 else
668 return p->src_previous;
669 }
670 }
671
672 static struct ureg emit_combine_source( struct texenv_fragment_program *p,
673 GLuint mask,
674 GLuint unit,
675 GLuint source,
676 GLuint operand )
677 {
678 struct ureg arg, src, one;
679
680 src = get_source(p, source, unit);
681
682 switch (operand) {
683 case OPR_ONE_MINUS_SRC_COLOR:
684 /* Get unused tmp,
685 * Emit tmp = 1.0 - arg.xyzw
686 */
687 arg = get_temp( p );
688 one = get_one( p );
689 return emit_arith( p, OPCODE_SUB, arg, mask, 0, one, src, undef);
690
691 case OPR_SRC_ALPHA:
692 if (mask == WRITEMASK_W)
693 return src;
694 else
695 return swizzle1( src, SWIZZLE_W );
696 case OPR_ONE_MINUS_SRC_ALPHA:
697 /* Get unused tmp,
698 * Emit tmp = 1.0 - arg.wwww
699 */
700 arg = get_temp(p);
701 one = get_one(p);
702 return emit_arith(p, OPCODE_SUB, arg, mask, 0,
703 one, swizzle1(src, SWIZZLE_W), undef);
704 case OPR_ZERO:
705 return get_zero(p);
706 case OPR_ONE:
707 return get_one(p);
708 case OPR_SRC_COLOR:
709 default:
710 return src;
711 }
712 }
713
714 static GLboolean args_match( struct state_key *key, GLuint unit )
715 {
716 GLuint i, nr = key->unit[unit].NumArgsRGB;
717
718 for (i = 0 ; i < nr ; i++) {
719 if (key->unit[unit].OptA[i].Source != key->unit[unit].OptRGB[i].Source)
720 return GL_FALSE;
721
722 switch(key->unit[unit].OptA[i].Operand) {
723 case OPR_SRC_ALPHA:
724 switch(key->unit[unit].OptRGB[i].Operand) {
725 case OPR_SRC_COLOR:
726 case OPR_SRC_ALPHA:
727 break;
728 default:
729 return GL_FALSE;
730 }
731 break;
732 case OPR_ONE_MINUS_SRC_ALPHA:
733 switch(key->unit[unit].OptRGB[i].Operand) {
734 case OPR_ONE_MINUS_SRC_COLOR:
735 case OPR_ONE_MINUS_SRC_ALPHA:
736 break;
737 default:
738 return GL_FALSE;
739 }
740 break;
741 default:
742 return GL_FALSE; /* impossible */
743 }
744 }
745
746 return GL_TRUE;
747 }
748
749 static struct ureg emit_combine( struct texenv_fragment_program *p,
750 struct ureg dest,
751 GLuint mask,
752 GLboolean saturate,
753 GLuint unit,
754 GLuint nr,
755 GLuint mode,
756 const struct mode_opt *opt)
757 {
758 struct ureg src[3];
759 struct ureg tmp, half;
760 GLuint i;
761
762 tmp = undef; /* silence warning (bug 5318) */
763
764 for (i = 0; i < nr; i++)
765 src[i] = emit_combine_source( p, mask, unit, opt[i].Source, opt[i].Operand );
766
767 switch (mode) {
768 case MODE_REPLACE:
769 if (mask == WRITEMASK_XYZW && !saturate)
770 return src[0];
771 else
772 return emit_arith( p, OPCODE_MOV, dest, mask, saturate, src[0], undef, undef );
773 case MODE_MODULATE:
774 return emit_arith( p, OPCODE_MUL, dest, mask, saturate,
775 src[0], src[1], undef );
776 case MODE_ADD:
777 return emit_arith( p, OPCODE_ADD, dest, mask, saturate,
778 src[0], src[1], undef );
779 case MODE_ADD_SIGNED:
780 /* tmp = arg0 + arg1
781 * result = tmp - .5
782 */
783 half = get_half(p);
784 tmp = get_temp( p );
785 emit_arith( p, OPCODE_ADD, tmp, mask, 0, src[0], src[1], undef );
786 emit_arith( p, OPCODE_SUB, dest, mask, saturate, tmp, half, undef );
787 return dest;
788 case MODE_INTERPOLATE:
789 /* Arg0 * (Arg2) + Arg1 * (1-Arg2) -- note arguments are reordered:
790 */
791 return emit_arith( p, OPCODE_LRP, dest, mask, saturate, src[2], src[0], src[1] );
792
793 case MODE_SUBTRACT:
794 return emit_arith( p, OPCODE_SUB, dest, mask, saturate, src[0], src[1], undef );
795
796 case MODE_DOT3_RGBA:
797 case MODE_DOT3_RGBA_EXT:
798 case MODE_DOT3_RGB_EXT:
799 case MODE_DOT3_RGB: {
800 struct ureg tmp0 = get_temp( p );
801 struct ureg tmp1 = get_temp( p );
802 struct ureg neg1 = register_scalar_const(p, -1);
803 struct ureg two = register_scalar_const(p, 2);
804
805 /* tmp0 = 2*src0 - 1
806 * tmp1 = 2*src1 - 1
807 *
808 * dst = tmp0 dot3 tmp1
809 */
810 emit_arith( p, OPCODE_MAD, tmp0, WRITEMASK_XYZW, 0,
811 two, src[0], neg1);
812
813 if (_mesa_memcmp(&src[0], &src[1], sizeof(struct ureg)) == 0)
814 tmp1 = tmp0;
815 else
816 emit_arith( p, OPCODE_MAD, tmp1, WRITEMASK_XYZW, 0,
817 two, src[1], neg1);
818 emit_arith( p, OPCODE_DP3, dest, mask, saturate, tmp0, tmp1, undef);
819 return dest;
820 }
821 case MODE_MODULATE_ADD_ATI:
822 /* Arg0 * Arg2 + Arg1 */
823 return emit_arith( p, OPCODE_MAD, dest, mask, saturate,
824 src[0], src[2], src[1] );
825 case MODE_MODULATE_SIGNED_ADD_ATI: {
826 /* Arg0 * Arg2 + Arg1 - 0.5 */
827 struct ureg tmp0 = get_temp(p);
828 half = get_half(p);
829 emit_arith( p, OPCODE_MAD, tmp0, mask, 0, src[0], src[2], src[1] );
830 emit_arith( p, OPCODE_SUB, dest, mask, saturate, tmp0, half, undef );
831 return dest;
832 }
833 case MODE_MODULATE_SUBTRACT_ATI:
834 /* Arg0 * Arg2 - Arg1 */
835 emit_arith( p, OPCODE_MAD, dest, mask, 0, src[0], src[2], negate(src[1]) );
836 return dest;
837 default:
838 return src[0];
839 }
840 }
841
842
843 /**
844 * Generate instructions for one texture unit's env/combiner mode.
845 */
846 static struct ureg
847 emit_texenv(struct texenv_fragment_program *p, GLuint unit)
848 {
849 struct state_key *key = p->state;
850 GLboolean saturate = (unit < p->last_tex_stage);
851 GLuint rgb_shift, alpha_shift;
852 struct ureg out, shift;
853 struct ureg dest;
854
855 if (!key->unit[unit].enabled) {
856 return get_source(p, SRC_PREVIOUS, 0);
857 }
858
859 switch (key->unit[unit].ModeRGB) {
860 case MODE_DOT3_RGB_EXT:
861 alpha_shift = key->unit[unit].ScaleShiftA;
862 rgb_shift = 0;
863 break;
864 case MODE_DOT3_RGBA_EXT:
865 alpha_shift = 0;
866 rgb_shift = 0;
867 break;
868 default:
869 rgb_shift = key->unit[unit].ScaleShiftRGB;
870 alpha_shift = key->unit[unit].ScaleShiftA;
871 break;
872 }
873
874 /* If this is the very last calculation, emit direct to output reg:
875 */
876 if (key->separate_specular ||
877 unit != p->last_tex_stage ||
878 alpha_shift ||
879 rgb_shift)
880 dest = get_temp( p );
881 else
882 dest = make_ureg(PROGRAM_OUTPUT, FRAG_RESULT_COLR);
883
884 /* Emit the RGB and A combine ops
885 */
886 if (key->unit[unit].ModeRGB == key->unit[unit].ModeA &&
887 args_match(key, unit)) {
888 out = emit_combine( p, dest, WRITEMASK_XYZW, saturate,
889 unit,
890 key->unit[unit].NumArgsRGB,
891 key->unit[unit].ModeRGB,
892 key->unit[unit].OptRGB);
893 }
894 else if (key->unit[unit].ModeRGB == MODE_DOT3_RGBA_EXT ||
895 key->unit[unit].ModeRGB == MODE_DOT3_RGBA) {
896
897 out = emit_combine( p, dest, WRITEMASK_XYZW, saturate,
898 unit,
899 key->unit[unit].NumArgsRGB,
900 key->unit[unit].ModeRGB,
901 key->unit[unit].OptRGB);
902 }
903 else {
904 /* Need to do something to stop from re-emitting identical
905 * argument calculations here:
906 */
907 out = emit_combine( p, dest, WRITEMASK_XYZ, saturate,
908 unit,
909 key->unit[unit].NumArgsRGB,
910 key->unit[unit].ModeRGB,
911 key->unit[unit].OptRGB);
912 out = emit_combine( p, dest, WRITEMASK_W, saturate,
913 unit,
914 key->unit[unit].NumArgsA,
915 key->unit[unit].ModeA,
916 key->unit[unit].OptA);
917 }
918
919 /* Deal with the final shift:
920 */
921 if (alpha_shift || rgb_shift) {
922 if (rgb_shift == alpha_shift) {
923 shift = register_scalar_const(p, (GLfloat)(1<<rgb_shift));
924 }
925 else {
926 shift = register_const4f(p,
927 (GLfloat)(1<<rgb_shift),
928 (GLfloat)(1<<rgb_shift),
929 (GLfloat)(1<<rgb_shift),
930 (GLfloat)(1<<alpha_shift));
931 }
932 return emit_arith( p, OPCODE_MUL, dest, WRITEMASK_XYZW,
933 saturate, out, shift, undef );
934 }
935 else
936 return out;
937 }
938
939
940 /**
941 * Generate instruction for getting a texture source term.
942 */
943 static void load_texture( struct texenv_fragment_program *p, GLuint unit )
944 {
945 if (is_undef(p->src_texture[unit])) {
946 GLuint dim = p->state->unit[unit].source_index;
947 struct ureg texcoord = register_input(p, FRAG_ATTRIB_TEX0+unit);
948 struct ureg tmp = get_tex_temp( p );
949
950 if (dim == TEXTURE_UNKNOWN_INDEX)
951 program_error(p, "TexSrcBit");
952
953 /* TODO: Use D0_MASK_XY where possible.
954 */
955 if (p->state->unit[unit].enabled) {
956 p->src_texture[unit] = emit_texld( p, OPCODE_TXP,
957 tmp, WRITEMASK_XYZW,
958 unit, dim, texcoord );
959 p->program->Base.SamplersUsed |= (1 << unit);
960 /* This identity mapping should already be in place
961 * (see _mesa_init_program_struct()) but let's be safe.
962 */
963 p->program->Base.SamplerUnits[unit] = unit;
964 }
965 else
966 p->src_texture[unit] = get_zero(p);
967 }
968 }
969
970 static GLboolean load_texenv_source( struct texenv_fragment_program *p,
971 GLuint src, GLuint unit )
972 {
973 switch (src) {
974 case SRC_TEXTURE:
975 load_texture(p, unit);
976 break;
977
978 case SRC_TEXTURE0:
979 case SRC_TEXTURE1:
980 case SRC_TEXTURE2:
981 case SRC_TEXTURE3:
982 case SRC_TEXTURE4:
983 case SRC_TEXTURE5:
984 case SRC_TEXTURE6:
985 case SRC_TEXTURE7:
986 load_texture(p, src - SRC_TEXTURE0);
987 break;
988
989 default:
990 break;
991 }
992
993 return GL_TRUE;
994 }
995
996
997 /**
998 * Generate instructions for loading all texture source terms.
999 */
1000 static GLboolean
1001 load_texunit_sources( struct texenv_fragment_program *p, int unit )
1002 {
1003 struct state_key *key = p->state;
1004 GLuint i;
1005
1006 for (i = 0; i < key->unit[unit].NumArgsRGB; i++) {
1007 load_texenv_source( p, key->unit[unit].OptRGB[i].Source, unit);
1008 }
1009
1010 for (i = 0; i < key->unit[unit].NumArgsA; i++) {
1011 load_texenv_source( p, key->unit[unit].OptA[i].Source, unit );
1012 }
1013
1014 return GL_TRUE;
1015 }
1016
1017
1018 /**
1019 * Generate a new fragment program which implements the context's
1020 * current texture env/combine mode.
1021 */
1022 static void
1023 create_new_program(GLcontext *ctx, struct state_key *key,
1024 struct gl_fragment_program *program)
1025 {
1026 struct prog_instruction instBuffer[MAX_INSTRUCTIONS];
1027 struct texenv_fragment_program p;
1028 GLuint unit;
1029 struct ureg cf, out;
1030
1031 _mesa_memset(&p, 0, sizeof(p));
1032 p.ctx = ctx;
1033 p.state = key;
1034 p.program = program;
1035
1036 /* During code generation, use locally-allocated instruction buffer,
1037 * then alloc dynamic storage below.
1038 */
1039 p.program->Base.Instructions = instBuffer;
1040 p.program->Base.Target = GL_FRAGMENT_PROGRAM_ARB;
1041 p.program->Base.NumTexIndirections = 1; /* correct? */
1042 p.program->Base.NumTexInstructions = 0;
1043 p.program->Base.NumAluInstructions = 0;
1044 p.program->Base.String = NULL;
1045 p.program->Base.NumInstructions =
1046 p.program->Base.NumTemporaries =
1047 p.program->Base.NumParameters =
1048 p.program->Base.NumAttributes = p.program->Base.NumAddressRegs = 0;
1049 p.program->Base.Parameters = _mesa_new_parameter_list();
1050
1051 p.program->Base.InputsRead = 0;
1052 p.program->Base.OutputsWritten = 1 << FRAG_RESULT_COLR;
1053
1054 for (unit = 0; unit < MAX_TEXTURE_UNITS; unit++)
1055 p.src_texture[unit] = undef;
1056
1057 p.src_previous = undef;
1058 p.half = undef;
1059 p.zero = undef;
1060 p.one = undef;
1061
1062 p.last_tex_stage = 0;
1063 release_temps(ctx, &p);
1064
1065 if (key->enabled_units) {
1066 /* First pass - to support texture_env_crossbar, first identify
1067 * all referenced texture sources and emit texld instructions
1068 * for each:
1069 */
1070 for (unit = 0 ; unit < ctx->Const.MaxTextureUnits ; unit++)
1071 if (key->unit[unit].enabled) {
1072 load_texunit_sources( &p, unit );
1073 p.last_tex_stage = unit;
1074 }
1075
1076 /* Second pass - emit combine instructions to build final color:
1077 */
1078 for (unit = 0 ; unit < ctx->Const.MaxTextureUnits; unit++)
1079 if (key->enabled_units & (1<<unit)) {
1080 p.src_previous = emit_texenv( &p, unit );
1081 reserve_temp(&p, p.src_previous); /* don't re-use this temp reg */
1082 release_temps(ctx, &p); /* release all temps */
1083 }
1084 }
1085
1086 cf = get_source( &p, SRC_PREVIOUS, 0 );
1087 out = make_ureg( PROGRAM_OUTPUT, FRAG_RESULT_COLR );
1088
1089 if (key->separate_specular) {
1090 /* Emit specular add.
1091 */
1092 struct ureg s = register_input(&p, FRAG_ATTRIB_COL1);
1093 emit_arith( &p, OPCODE_ADD, out, WRITEMASK_XYZ, 0, cf, s, undef );
1094 emit_arith( &p, OPCODE_MOV, out, WRITEMASK_W, 0, cf, undef, undef );
1095 }
1096 else if (_mesa_memcmp(&cf, &out, sizeof(cf)) != 0) {
1097 /* Will wind up in here if no texture enabled or a couple of
1098 * other scenarios (GL_REPLACE for instance).
1099 */
1100 emit_arith( &p, OPCODE_MOV, out, WRITEMASK_XYZW, 0, cf, undef, undef );
1101 }
1102
1103 /* Finish up:
1104 */
1105 emit_arith( &p, OPCODE_END, undef, WRITEMASK_XYZW, 0, undef, undef, undef);
1106
1107 if (key->fog_enabled) {
1108 /* Pull fog mode from GLcontext, the value in the state key is
1109 * a reduced value and not what is expected in FogOption
1110 */
1111 p.program->FogOption = ctx->Fog.Mode;
1112 p.program->Base.InputsRead |= FRAG_BIT_FOGC; /* XXX new */
1113 } else
1114 p.program->FogOption = GL_NONE;
1115
1116 if (p.program->Base.NumTexIndirections > ctx->Const.FragmentProgram.MaxTexIndirections)
1117 program_error(&p, "Exceeded max nr indirect texture lookups");
1118
1119 if (p.program->Base.NumTexInstructions > ctx->Const.FragmentProgram.MaxTexInstructions)
1120 program_error(&p, "Exceeded max TEX instructions");
1121
1122 if (p.program->Base.NumAluInstructions > ctx->Const.FragmentProgram.MaxAluInstructions)
1123 program_error(&p, "Exceeded max ALU instructions");
1124
1125 ASSERT(p.program->Base.NumInstructions <= MAX_INSTRUCTIONS);
1126
1127 /* Allocate final instruction array */
1128 p.program->Base.Instructions
1129 = _mesa_alloc_instructions(p.program->Base.NumInstructions);
1130 if (!p.program->Base.Instructions) {
1131 _mesa_error(ctx, GL_OUT_OF_MEMORY,
1132 "generating tex env program");
1133 return;
1134 }
1135 _mesa_copy_instructions(p.program->Base.Instructions, instBuffer,
1136 p.program->Base.NumInstructions);
1137
1138 if (p.program->FogOption) {
1139 _mesa_append_fog_code(ctx, p.program);
1140 p.program->FogOption = GL_NONE;
1141 }
1142
1143
1144 /* Notify driver the fragment program has (actually) changed.
1145 */
1146 if (ctx->Driver.ProgramStringNotify) {
1147 ctx->Driver.ProgramStringNotify( ctx, GL_FRAGMENT_PROGRAM_ARB,
1148 &p.program->Base );
1149 }
1150
1151 if (DISASSEM) {
1152 _mesa_print_program(&p.program->Base);
1153 _mesa_printf("\n");
1154 }
1155 }
1156
1157
1158 /**
1159 * Return a fragment program which implements the current
1160 * fixed-function texture, fog and color-sum operations.
1161 */
1162 struct gl_fragment_program *
1163 _mesa_get_fixed_func_fragment_program(GLcontext *ctx)
1164 {
1165 struct gl_fragment_program *prog;
1166 struct state_key key;
1167
1168 make_state_key(ctx, &key);
1169
1170 prog = (struct gl_fragment_program *)
1171 _mesa_search_program_cache(ctx->FragmentProgram.Cache,
1172 &key, sizeof(key));
1173
1174 if (!prog) {
1175 prog = (struct gl_fragment_program *)
1176 ctx->Driver.NewProgram(ctx, GL_FRAGMENT_PROGRAM_ARB, 0);
1177
1178 create_new_program(ctx, &key, prog);
1179
1180 _mesa_program_cache_insert(ctx, ctx->FragmentProgram.Cache,
1181 &key, sizeof(key), &prog->Base);
1182 }
1183
1184 return prog;
1185 }
1186
1187
1188
1189 /**
1190 * If _MaintainTexEnvProgram is set we'll generate a fragment program that
1191 * implements the current texture env/combine mode.
1192 * This function generates that program and puts it into effect.
1193 */
1194 void
1195 _mesa_UpdateTexEnvProgram( GLcontext *ctx )
1196 {
1197 const struct gl_fragment_program *prev = ctx->FragmentProgram._Current;
1198
1199 ASSERT(ctx->FragmentProgram._MaintainTexEnvProgram);
1200
1201 /* If a conventional fragment program/shader isn't in effect... */
1202 if (!ctx->FragmentProgram._Enabled &&
1203 (!ctx->Shader.CurrentProgram ||
1204 !ctx->Shader.CurrentProgram->FragmentProgram) ) {
1205
1206 ctx->FragmentProgram._Current
1207 = ctx->FragmentProgram._TexEnvProgram
1208 = _mesa_get_fixed_func_fragment_program(ctx);
1209 }
1210
1211 /* Tell the driver about the change. Could define a new target for
1212 * this?
1213 */
1214 if (ctx->FragmentProgram._Current != prev && ctx->Driver.BindProgram) {
1215 ctx->Driver.BindProgram(ctx, GL_FRAGMENT_PROGRAM_ARB,
1216 (struct gl_program *) ctx->FragmentProgram._Current);
1217 }
1218 }