mesa: new _mesa_set_vp_override() function for driver-override of vertex program
[mesa.git] / src / mesa / main / texenvprogram.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include "glheader.h"
29 #include "macros.h"
30 #include "enums.h"
31 #include "shader/prog_parameter.h"
32 #include "shader/prog_cache.h"
33 #include "shader/prog_instruction.h"
34 #include "shader/prog_print.h"
35 #include "shader/prog_statevars.h"
36 #include "shader/programopt.h"
37 #include "texenvprogram.h"
38
39 /**
40 * Up to nine instructions per tex unit, plus fog, specular color.
41 */
42 #define MAX_INSTRUCTIONS ((MAX_TEXTURE_UNITS * 9) + 12)
43
44 #define DISASSEM (MESA_VERBOSE & VERBOSE_DISASSEM)
45
46 struct mode_opt {
47 GLubyte Source:4;
48 GLubyte Operand:3;
49 };
50
51 struct state_key {
52 GLuint nr_enabled_units:8;
53 GLuint enabled_units:8;
54 GLuint separate_specular:1;
55 GLuint fog_enabled:1;
56 GLuint fog_mode:2;
57 GLuint inputs_available:12;
58
59 struct {
60 GLuint enabled:1;
61 GLuint source_index:3; /* one of TEXTURE_1D/2D/3D/CUBE/RECT_INDEX */
62 GLuint ScaleShiftRGB:2;
63 GLuint ScaleShiftA:2;
64
65 GLuint NumArgsRGB:2;
66 GLuint ModeRGB:4;
67 GLuint NumArgsA:2;
68 GLuint ModeA:4;
69
70 struct mode_opt OptRGB[3];
71 struct mode_opt OptA[3];
72 } unit[8];
73 };
74
75 #define FOG_LINEAR 0
76 #define FOG_EXP 1
77 #define FOG_EXP2 2
78 #define FOG_UNKNOWN 3
79
80 static GLuint translate_fog_mode( GLenum mode )
81 {
82 switch (mode) {
83 case GL_LINEAR: return FOG_LINEAR;
84 case GL_EXP: return FOG_EXP;
85 case GL_EXP2: return FOG_EXP2;
86 default: return FOG_UNKNOWN;
87 }
88 }
89
90 #define OPR_SRC_COLOR 0
91 #define OPR_ONE_MINUS_SRC_COLOR 1
92 #define OPR_SRC_ALPHA 2
93 #define OPR_ONE_MINUS_SRC_ALPHA 3
94 #define OPR_ZERO 4
95 #define OPR_ONE 5
96 #define OPR_UNKNOWN 7
97
98 static GLuint translate_operand( GLenum operand )
99 {
100 switch (operand) {
101 case GL_SRC_COLOR: return OPR_SRC_COLOR;
102 case GL_ONE_MINUS_SRC_COLOR: return OPR_ONE_MINUS_SRC_COLOR;
103 case GL_SRC_ALPHA: return OPR_SRC_ALPHA;
104 case GL_ONE_MINUS_SRC_ALPHA: return OPR_ONE_MINUS_SRC_ALPHA;
105 case GL_ZERO: return OPR_ZERO;
106 case GL_ONE: return OPR_ONE;
107 default: return OPR_UNKNOWN;
108 }
109 }
110
111 #define SRC_TEXTURE 0
112 #define SRC_TEXTURE0 1
113 #define SRC_TEXTURE1 2
114 #define SRC_TEXTURE2 3
115 #define SRC_TEXTURE3 4
116 #define SRC_TEXTURE4 5
117 #define SRC_TEXTURE5 6
118 #define SRC_TEXTURE6 7
119 #define SRC_TEXTURE7 8
120 #define SRC_CONSTANT 9
121 #define SRC_PRIMARY_COLOR 10
122 #define SRC_PREVIOUS 11
123 #define SRC_UNKNOWN 15
124
125 static GLuint translate_source( GLenum src )
126 {
127 switch (src) {
128 case GL_TEXTURE: return SRC_TEXTURE;
129 case GL_TEXTURE0:
130 case GL_TEXTURE1:
131 case GL_TEXTURE2:
132 case GL_TEXTURE3:
133 case GL_TEXTURE4:
134 case GL_TEXTURE5:
135 case GL_TEXTURE6:
136 case GL_TEXTURE7: return SRC_TEXTURE0 + (src - GL_TEXTURE0);
137 case GL_CONSTANT: return SRC_CONSTANT;
138 case GL_PRIMARY_COLOR: return SRC_PRIMARY_COLOR;
139 case GL_PREVIOUS: return SRC_PREVIOUS;
140 default: return SRC_UNKNOWN;
141 }
142 }
143
144 #define MODE_REPLACE 0
145 #define MODE_MODULATE 1
146 #define MODE_ADD 2
147 #define MODE_ADD_SIGNED 3
148 #define MODE_INTERPOLATE 4
149 #define MODE_SUBTRACT 5
150 #define MODE_DOT3_RGB 6
151 #define MODE_DOT3_RGB_EXT 7
152 #define MODE_DOT3_RGBA 8
153 #define MODE_DOT3_RGBA_EXT 9
154 #define MODE_MODULATE_ADD_ATI 10
155 #define MODE_MODULATE_SIGNED_ADD_ATI 11
156 #define MODE_MODULATE_SUBTRACT_ATI 12
157 #define MODE_UNKNOWN 15
158
159 static GLuint translate_mode( GLenum mode )
160 {
161 switch (mode) {
162 case GL_REPLACE: return MODE_REPLACE;
163 case GL_MODULATE: return MODE_MODULATE;
164 case GL_ADD: return MODE_ADD;
165 case GL_ADD_SIGNED: return MODE_ADD_SIGNED;
166 case GL_INTERPOLATE: return MODE_INTERPOLATE;
167 case GL_SUBTRACT: return MODE_SUBTRACT;
168 case GL_DOT3_RGB: return MODE_DOT3_RGB;
169 case GL_DOT3_RGB_EXT: return MODE_DOT3_RGB_EXT;
170 case GL_DOT3_RGBA: return MODE_DOT3_RGBA;
171 case GL_DOT3_RGBA_EXT: return MODE_DOT3_RGBA_EXT;
172 case GL_MODULATE_ADD_ATI: return MODE_MODULATE_ADD_ATI;
173 case GL_MODULATE_SIGNED_ADD_ATI: return MODE_MODULATE_SIGNED_ADD_ATI;
174 case GL_MODULATE_SUBTRACT_ATI: return MODE_MODULATE_SUBTRACT_ATI;
175 default: return MODE_UNKNOWN;
176 }
177 }
178
179 #define TEXTURE_UNKNOWN_INDEX 7
180 static GLuint translate_tex_src_bit( GLbitfield bit )
181 {
182 switch (bit) {
183 case TEXTURE_1D_BIT: return TEXTURE_1D_INDEX;
184 case TEXTURE_2D_BIT: return TEXTURE_2D_INDEX;
185 case TEXTURE_RECT_BIT: return TEXTURE_RECT_INDEX;
186 case TEXTURE_3D_BIT: return TEXTURE_3D_INDEX;
187 case TEXTURE_CUBE_BIT: return TEXTURE_CUBE_INDEX;
188 default: return TEXTURE_UNKNOWN_INDEX;
189 }
190 }
191
192 #define VERT_BIT_TEX_ANY (0xff << VERT_ATTRIB_TEX0)
193 #define VERT_RESULT_TEX_ANY (0xff << VERT_RESULT_TEX0)
194
195 /**
196 * Identify all possible varying inputs. The fragment program will
197 * never reference non-varying inputs, but will track them via state
198 * constants instead.
199 *
200 * This function figures out all the inputs that the fragment program
201 * has access to. The bitmask is later reduced to just those which
202 * are actually referenced.
203 */
204 static GLbitfield get_fp_input_mask( GLcontext *ctx )
205 {
206 GLbitfield fp_inputs = 0x0;
207
208 if (ctx->VertexProgram._Overriden) {
209 /* Somebody's messing with the vertex program and we don't have
210 * a clue what's happening. Assume that it could be producing
211 * all possible outputs.
212 */
213 fp_inputs = ~0;
214 }
215 else if (ctx->RenderMode == GL_FEEDBACK) {
216 fp_inputs = (FRAG_BIT_COL0 | FRAG_BIT_TEX0);
217 }
218 else if (!ctx->VertexProgram._Enabled ||
219 !ctx->VertexProgram._Current) {
220
221 /* Fixed function logic */
222 GLbitfield varying_inputs = ctx->varying_vp_inputs;
223
224 /* First look at what values may be computed by the generated
225 * vertex program:
226 */
227 if (ctx->Light.Enabled) {
228 fp_inputs |= FRAG_BIT_COL0;
229
230 if (ctx->_TriangleCaps & DD_SEPARATE_SPECULAR)
231 fp_inputs |= FRAG_BIT_COL1;
232 }
233
234 fp_inputs |= (ctx->Texture._TexGenEnabled |
235 ctx->Texture._TexMatEnabled) << FRAG_ATTRIB_TEX0;
236
237 /* Then look at what might be varying as a result of enabled
238 * arrays, etc:
239 */
240 if (varying_inputs & VERT_BIT_COLOR0) fp_inputs |= FRAG_BIT_COL0;
241 if (varying_inputs & VERT_BIT_COLOR1) fp_inputs |= FRAG_BIT_COL1;
242
243 fp_inputs |= (((varying_inputs & VERT_BIT_TEX_ANY) >> VERT_ATTRIB_TEX0)
244 << FRAG_ATTRIB_TEX0);
245
246 }
247 else {
248 /* calculate from vp->outputs */
249 GLbitfield vp_outputs = ctx->VertexProgram._Current->Base.OutputsWritten;
250
251 if (vp_outputs & (1 << VERT_RESULT_COL0)) fp_inputs |= FRAG_BIT_COL0;
252 if (vp_outputs & (1 << VERT_RESULT_COL1)) fp_inputs |= FRAG_BIT_COL1;
253
254 fp_inputs |= (((vp_outputs & VERT_RESULT_TEX_ANY) >> VERT_RESULT_TEX0)
255 << FRAG_ATTRIB_TEX0);
256 }
257
258 return fp_inputs;
259 }
260
261
262 /**
263 * Examine current texture environment state and generate a unique
264 * key to identify it.
265 */
266 static void make_state_key( GLcontext *ctx, struct state_key *key )
267 {
268 GLuint i, j;
269 GLbitfield inputs_referenced = FRAG_BIT_COL0;
270 GLbitfield inputs_available = get_fp_input_mask( ctx );
271
272 memset(key, 0, sizeof(*key));
273
274 for (i=0;i<MAX_TEXTURE_UNITS;i++) {
275 const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
276
277 if (!texUnit->_ReallyEnabled)
278 continue;
279
280 key->unit[i].enabled = 1;
281 key->enabled_units |= (1<<i);
282 key->nr_enabled_units = i+1;
283 inputs_referenced |= FRAG_BIT_TEX(i);
284
285 key->unit[i].source_index =
286 translate_tex_src_bit(texUnit->_ReallyEnabled);
287
288 key->unit[i].NumArgsRGB = texUnit->_CurrentCombine->_NumArgsRGB;
289 key->unit[i].NumArgsA = texUnit->_CurrentCombine->_NumArgsA;
290
291 key->unit[i].ModeRGB =
292 translate_mode(texUnit->_CurrentCombine->ModeRGB);
293 key->unit[i].ModeA =
294 translate_mode(texUnit->_CurrentCombine->ModeA);
295
296 key->unit[i].ScaleShiftRGB = texUnit->_CurrentCombine->ScaleShiftRGB;
297 key->unit[i].ScaleShiftA = texUnit->_CurrentCombine->ScaleShiftA;
298
299 for (j=0;j<3;j++) {
300 key->unit[i].OptRGB[j].Operand =
301 translate_operand(texUnit->_CurrentCombine->OperandRGB[j]);
302 key->unit[i].OptA[j].Operand =
303 translate_operand(texUnit->_CurrentCombine->OperandA[j]);
304 key->unit[i].OptRGB[j].Source =
305 translate_source(texUnit->_CurrentCombine->SourceRGB[j]);
306 key->unit[i].OptA[j].Source =
307 translate_source(texUnit->_CurrentCombine->SourceA[j]);
308 }
309 }
310
311 if (ctx->_TriangleCaps & DD_SEPARATE_SPECULAR) {
312 key->separate_specular = 1;
313 inputs_referenced |= FRAG_BIT_COL1;
314 }
315
316 if (ctx->Fog.Enabled) {
317 key->fog_enabled = 1;
318 key->fog_mode = translate_fog_mode(ctx->Fog.Mode);
319 inputs_referenced |= FRAG_BIT_FOGC; /* maybe */
320 }
321
322 key->inputs_available = (inputs_available & inputs_referenced);
323 }
324
325 /**
326 * Use uregs to represent registers internally, translate to Mesa's
327 * expected formats on emit.
328 *
329 * NOTE: These are passed by value extensively in this file rather
330 * than as usual by pointer reference. If this disturbs you, try
331 * remembering they are just 32bits in size.
332 *
333 * GCC is smart enough to deal with these dword-sized structures in
334 * much the same way as if I had defined them as dwords and was using
335 * macros to access and set the fields. This is much nicer and easier
336 * to evolve.
337 */
338 struct ureg {
339 GLuint file:4;
340 GLuint idx:8;
341 GLuint negatebase:1;
342 GLuint abs:1;
343 GLuint negateabs:1;
344 GLuint swz:12;
345 GLuint pad:5;
346 };
347
348 static const struct ureg undef = {
349 PROGRAM_UNDEFINED,
350 ~0,
351 0,
352 0,
353 0,
354 0,
355 0
356 };
357
358
359 /** State used to build the fragment program:
360 */
361 struct texenv_fragment_program {
362 struct gl_fragment_program *program;
363 GLcontext *ctx;
364 struct state_key *state;
365
366 GLbitfield alu_temps; /**< Track texture indirections, see spec. */
367 GLbitfield temps_output; /**< Track texture indirections, see spec. */
368 GLbitfield temp_in_use; /**< Tracks temporary regs which are in use. */
369 GLboolean error;
370
371 struct ureg src_texture[MAX_TEXTURE_UNITS];
372 /* Reg containing each texture unit's sampled texture color,
373 * else undef.
374 */
375
376 struct ureg src_previous; /**< Reg containing color from previous
377 * stage. May need to be decl'd.
378 */
379
380 GLuint last_tex_stage; /**< Number of last enabled texture unit */
381
382 struct ureg half;
383 struct ureg one;
384 struct ureg zero;
385 };
386
387
388
389 static struct ureg make_ureg(GLuint file, GLuint idx)
390 {
391 struct ureg reg;
392 reg.file = file;
393 reg.idx = idx;
394 reg.negatebase = 0;
395 reg.abs = 0;
396 reg.negateabs = 0;
397 reg.swz = SWIZZLE_NOOP;
398 reg.pad = 0;
399 return reg;
400 }
401
402 static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w )
403 {
404 reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x),
405 GET_SWZ(reg.swz, y),
406 GET_SWZ(reg.swz, z),
407 GET_SWZ(reg.swz, w));
408
409 return reg;
410 }
411
412 static struct ureg swizzle1( struct ureg reg, int x )
413 {
414 return swizzle(reg, x, x, x, x);
415 }
416
417 static struct ureg negate( struct ureg reg )
418 {
419 reg.negatebase ^= 1;
420 return reg;
421 }
422
423 static GLboolean is_undef( struct ureg reg )
424 {
425 return reg.file == PROGRAM_UNDEFINED;
426 }
427
428
429 static struct ureg get_temp( struct texenv_fragment_program *p )
430 {
431 GLint bit;
432
433 /* First try and reuse temps which have been used already:
434 */
435 bit = _mesa_ffs( ~p->temp_in_use & p->alu_temps );
436
437 /* Then any unused temporary:
438 */
439 if (!bit)
440 bit = _mesa_ffs( ~p->temp_in_use );
441
442 if (!bit) {
443 _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
444 _mesa_exit(1);
445 }
446
447 if ((GLuint) bit > p->program->Base.NumTemporaries)
448 p->program->Base.NumTemporaries = bit;
449
450 p->temp_in_use |= 1<<(bit-1);
451 return make_ureg(PROGRAM_TEMPORARY, (bit-1));
452 }
453
454 static struct ureg get_tex_temp( struct texenv_fragment_program *p )
455 {
456 int bit;
457
458 /* First try to find available temp not previously used (to avoid
459 * starting a new texture indirection). According to the spec, the
460 * ~p->temps_output isn't necessary, but will keep it there for
461 * now:
462 */
463 bit = _mesa_ffs( ~p->temp_in_use & ~p->alu_temps & ~p->temps_output );
464
465 /* Then any unused temporary:
466 */
467 if (!bit)
468 bit = _mesa_ffs( ~p->temp_in_use );
469
470 if (!bit) {
471 _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
472 _mesa_exit(1);
473 }
474
475 if ((GLuint) bit > p->program->Base.NumTemporaries)
476 p->program->Base.NumTemporaries = bit;
477
478 p->temp_in_use |= 1<<(bit-1);
479 return make_ureg(PROGRAM_TEMPORARY, (bit-1));
480 }
481
482
483 /** Mark a temp reg as being no longer allocatable. */
484 static void reserve_temp( struct texenv_fragment_program *p, struct ureg r )
485 {
486 if (r.file == PROGRAM_TEMPORARY)
487 p->temps_output |= (1 << r.idx);
488 }
489
490
491 static void release_temps(GLcontext *ctx, struct texenv_fragment_program *p )
492 {
493 GLuint max_temp = ctx->Const.FragmentProgram.MaxTemps;
494
495 /* KW: To support tex_env_crossbar, don't release the registers in
496 * temps_output.
497 */
498 if (max_temp >= sizeof(int) * 8)
499 p->temp_in_use = p->temps_output;
500 else
501 p->temp_in_use = ~((1<<max_temp)-1) | p->temps_output;
502 }
503
504
505 static struct ureg register_param5( struct texenv_fragment_program *p,
506 GLint s0,
507 GLint s1,
508 GLint s2,
509 GLint s3,
510 GLint s4)
511 {
512 gl_state_index tokens[STATE_LENGTH];
513 GLuint idx;
514 tokens[0] = s0;
515 tokens[1] = s1;
516 tokens[2] = s2;
517 tokens[3] = s3;
518 tokens[4] = s4;
519 idx = _mesa_add_state_reference( p->program->Base.Parameters, tokens );
520 return make_ureg(PROGRAM_STATE_VAR, idx);
521 }
522
523
524 #define register_param1(p,s0) register_param5(p,s0,0,0,0,0)
525 #define register_param2(p,s0,s1) register_param5(p,s0,s1,0,0,0)
526 #define register_param3(p,s0,s1,s2) register_param5(p,s0,s1,s2,0,0)
527 #define register_param4(p,s0,s1,s2,s3) register_param5(p,s0,s1,s2,s3,0)
528
529 static GLuint frag_to_vert_attrib( GLuint attrib )
530 {
531 switch (attrib) {
532 case FRAG_ATTRIB_COL0: return VERT_ATTRIB_COLOR0;
533 case FRAG_ATTRIB_COL1: return VERT_ATTRIB_COLOR1;
534 default:
535 assert(attrib >= FRAG_ATTRIB_TEX0);
536 assert(attrib <= FRAG_ATTRIB_TEX7);
537 return attrib - FRAG_ATTRIB_TEX0 + VERT_ATTRIB_TEX0;
538 }
539 }
540
541
542 static struct ureg register_input( struct texenv_fragment_program *p, GLuint input )
543 {
544 if (p->state->inputs_available & (1<<input)) {
545 p->program->Base.InputsRead |= (1 << input);
546 return make_ureg(PROGRAM_INPUT, input);
547 }
548 else {
549 GLuint idx = frag_to_vert_attrib( input );
550 return register_param3( p, STATE_INTERNAL, STATE_CURRENT_ATTRIB, idx );
551 }
552 }
553
554
555 static void emit_arg( struct prog_src_register *reg,
556 struct ureg ureg )
557 {
558 reg->File = ureg.file;
559 reg->Index = ureg.idx;
560 reg->Swizzle = ureg.swz;
561 reg->NegateBase = ureg.negatebase ? 0xf : 0x0;
562 reg->Abs = ureg.abs;
563 reg->NegateAbs = ureg.negateabs;
564 }
565
566 static void emit_dst( struct prog_dst_register *dst,
567 struct ureg ureg, GLuint mask )
568 {
569 dst->File = ureg.file;
570 dst->Index = ureg.idx;
571 dst->WriteMask = mask;
572 dst->CondMask = COND_TR; /* always pass cond test */
573 dst->CondSwizzle = SWIZZLE_NOOP;
574 }
575
576 static struct prog_instruction *
577 emit_op(struct texenv_fragment_program *p,
578 enum prog_opcode op,
579 struct ureg dest,
580 GLuint mask,
581 GLboolean saturate,
582 struct ureg src0,
583 struct ureg src1,
584 struct ureg src2 )
585 {
586 GLuint nr = p->program->Base.NumInstructions++;
587 struct prog_instruction *inst = &p->program->Base.Instructions[nr];
588
589 assert(nr < MAX_INSTRUCTIONS);
590
591 _mesa_init_instructions(inst, 1);
592 inst->Opcode = op;
593
594 emit_arg( &inst->SrcReg[0], src0 );
595 emit_arg( &inst->SrcReg[1], src1 );
596 emit_arg( &inst->SrcReg[2], src2 );
597
598 inst->SaturateMode = saturate ? SATURATE_ZERO_ONE : SATURATE_OFF;
599
600 emit_dst( &inst->DstReg, dest, mask );
601
602 #if 0
603 /* Accounting for indirection tracking:
604 */
605 if (dest.file == PROGRAM_TEMPORARY)
606 p->temps_output |= 1 << dest.idx;
607 #endif
608
609 return inst;
610 }
611
612
613 static struct ureg emit_arith( struct texenv_fragment_program *p,
614 enum prog_opcode op,
615 struct ureg dest,
616 GLuint mask,
617 GLboolean saturate,
618 struct ureg src0,
619 struct ureg src1,
620 struct ureg src2 )
621 {
622 emit_op(p, op, dest, mask, saturate, src0, src1, src2);
623
624 /* Accounting for indirection tracking:
625 */
626 if (src0.file == PROGRAM_TEMPORARY)
627 p->alu_temps |= 1 << src0.idx;
628
629 if (!is_undef(src1) && src1.file == PROGRAM_TEMPORARY)
630 p->alu_temps |= 1 << src1.idx;
631
632 if (!is_undef(src2) && src2.file == PROGRAM_TEMPORARY)
633 p->alu_temps |= 1 << src2.idx;
634
635 if (dest.file == PROGRAM_TEMPORARY)
636 p->alu_temps |= 1 << dest.idx;
637
638 p->program->Base.NumAluInstructions++;
639 return dest;
640 }
641
642 static struct ureg emit_texld( struct texenv_fragment_program *p,
643 enum prog_opcode op,
644 struct ureg dest,
645 GLuint destmask,
646 GLuint tex_unit,
647 GLuint tex_idx,
648 struct ureg coord )
649 {
650 struct prog_instruction *inst = emit_op( p, op,
651 dest, destmask,
652 GL_FALSE, /* don't saturate? */
653 coord, /* arg 0? */
654 undef,
655 undef);
656
657 inst->TexSrcTarget = tex_idx;
658 inst->TexSrcUnit = tex_unit;
659
660 p->program->Base.NumTexInstructions++;
661
662 /* Accounting for indirection tracking:
663 */
664 reserve_temp(p, dest);
665
666 /* Is this a texture indirection?
667 */
668 if ((coord.file == PROGRAM_TEMPORARY &&
669 (p->temps_output & (1<<coord.idx))) ||
670 (dest.file == PROGRAM_TEMPORARY &&
671 (p->alu_temps & (1<<dest.idx)))) {
672 p->program->Base.NumTexIndirections++;
673 p->temps_output = 1<<coord.idx;
674 p->alu_temps = 0;
675 assert(0); /* KW: texture env crossbar */
676 }
677
678 return dest;
679 }
680
681
682 static struct ureg register_const4f( struct texenv_fragment_program *p,
683 GLfloat s0,
684 GLfloat s1,
685 GLfloat s2,
686 GLfloat s3)
687 {
688 GLfloat values[4];
689 GLuint idx, swizzle;
690 struct ureg r;
691 values[0] = s0;
692 values[1] = s1;
693 values[2] = s2;
694 values[3] = s3;
695 idx = _mesa_add_unnamed_constant( p->program->Base.Parameters, values, 4,
696 &swizzle );
697 r = make_ureg(PROGRAM_CONSTANT, idx);
698 r.swz = swizzle;
699 return r;
700 }
701
702 #define register_scalar_const(p, s0) register_const4f(p, s0, s0, s0, s0)
703 #define register_const1f(p, s0) register_const4f(p, s0, 0, 0, 1)
704 #define register_const2f(p, s0, s1) register_const4f(p, s0, s1, 0, 1)
705 #define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1)
706
707
708 static struct ureg get_one( struct texenv_fragment_program *p )
709 {
710 if (is_undef(p->one))
711 p->one = register_scalar_const(p, 1.0);
712 return p->one;
713 }
714
715 static struct ureg get_half( struct texenv_fragment_program *p )
716 {
717 if (is_undef(p->half))
718 p->half = register_scalar_const(p, 0.5);
719 return p->half;
720 }
721
722 static struct ureg get_zero( struct texenv_fragment_program *p )
723 {
724 if (is_undef(p->zero))
725 p->zero = register_scalar_const(p, 0.0);
726 return p->zero;
727 }
728
729
730 static void program_error( struct texenv_fragment_program *p, const char *msg )
731 {
732 _mesa_problem(NULL, msg);
733 p->error = 1;
734 }
735
736 static struct ureg get_source( struct texenv_fragment_program *p,
737 GLuint src, GLuint unit )
738 {
739 switch (src) {
740 case SRC_TEXTURE:
741 assert(!is_undef(p->src_texture[unit]));
742 return p->src_texture[unit];
743
744 case SRC_TEXTURE0:
745 case SRC_TEXTURE1:
746 case SRC_TEXTURE2:
747 case SRC_TEXTURE3:
748 case SRC_TEXTURE4:
749 case SRC_TEXTURE5:
750 case SRC_TEXTURE6:
751 case SRC_TEXTURE7:
752 assert(!is_undef(p->src_texture[src - SRC_TEXTURE0]));
753 return p->src_texture[src - SRC_TEXTURE0];
754
755 case SRC_CONSTANT:
756 return register_param2(p, STATE_TEXENV_COLOR, unit);
757
758 case SRC_PRIMARY_COLOR:
759 return register_input(p, FRAG_ATTRIB_COL0);
760
761 case SRC_PREVIOUS:
762 default:
763 if (is_undef(p->src_previous))
764 return register_input(p, FRAG_ATTRIB_COL0);
765 else
766 return p->src_previous;
767 }
768 }
769
770 static struct ureg emit_combine_source( struct texenv_fragment_program *p,
771 GLuint mask,
772 GLuint unit,
773 GLuint source,
774 GLuint operand )
775 {
776 struct ureg arg, src, one;
777
778 src = get_source(p, source, unit);
779
780 switch (operand) {
781 case OPR_ONE_MINUS_SRC_COLOR:
782 /* Get unused tmp,
783 * Emit tmp = 1.0 - arg.xyzw
784 */
785 arg = get_temp( p );
786 one = get_one( p );
787 return emit_arith( p, OPCODE_SUB, arg, mask, 0, one, src, undef);
788
789 case OPR_SRC_ALPHA:
790 if (mask == WRITEMASK_W)
791 return src;
792 else
793 return swizzle1( src, SWIZZLE_W );
794 case OPR_ONE_MINUS_SRC_ALPHA:
795 /* Get unused tmp,
796 * Emit tmp = 1.0 - arg.wwww
797 */
798 arg = get_temp(p);
799 one = get_one(p);
800 return emit_arith(p, OPCODE_SUB, arg, mask, 0,
801 one, swizzle1(src, SWIZZLE_W), undef);
802 case OPR_ZERO:
803 return get_zero(p);
804 case OPR_ONE:
805 return get_one(p);
806 case OPR_SRC_COLOR:
807 default:
808 return src;
809 }
810 }
811
812 static GLboolean args_match( struct state_key *key, GLuint unit )
813 {
814 GLuint i, nr = key->unit[unit].NumArgsRGB;
815
816 for (i = 0 ; i < nr ; i++) {
817 if (key->unit[unit].OptA[i].Source != key->unit[unit].OptRGB[i].Source)
818 return GL_FALSE;
819
820 switch(key->unit[unit].OptA[i].Operand) {
821 case OPR_SRC_ALPHA:
822 switch(key->unit[unit].OptRGB[i].Operand) {
823 case OPR_SRC_COLOR:
824 case OPR_SRC_ALPHA:
825 break;
826 default:
827 return GL_FALSE;
828 }
829 break;
830 case OPR_ONE_MINUS_SRC_ALPHA:
831 switch(key->unit[unit].OptRGB[i].Operand) {
832 case OPR_ONE_MINUS_SRC_COLOR:
833 case OPR_ONE_MINUS_SRC_ALPHA:
834 break;
835 default:
836 return GL_FALSE;
837 }
838 break;
839 default:
840 return GL_FALSE; /* impossible */
841 }
842 }
843
844 return GL_TRUE;
845 }
846
847 static struct ureg emit_combine( struct texenv_fragment_program *p,
848 struct ureg dest,
849 GLuint mask,
850 GLboolean saturate,
851 GLuint unit,
852 GLuint nr,
853 GLuint mode,
854 const struct mode_opt *opt)
855 {
856 struct ureg src[3];
857 struct ureg tmp, half;
858 GLuint i;
859
860 tmp = undef; /* silence warning (bug 5318) */
861
862 for (i = 0; i < nr; i++)
863 src[i] = emit_combine_source( p, mask, unit, opt[i].Source, opt[i].Operand );
864
865 switch (mode) {
866 case MODE_REPLACE:
867 if (mask == WRITEMASK_XYZW && !saturate)
868 return src[0];
869 else
870 return emit_arith( p, OPCODE_MOV, dest, mask, saturate, src[0], undef, undef );
871 case MODE_MODULATE:
872 return emit_arith( p, OPCODE_MUL, dest, mask, saturate,
873 src[0], src[1], undef );
874 case MODE_ADD:
875 return emit_arith( p, OPCODE_ADD, dest, mask, saturate,
876 src[0], src[1], undef );
877 case MODE_ADD_SIGNED:
878 /* tmp = arg0 + arg1
879 * result = tmp - .5
880 */
881 half = get_half(p);
882 tmp = get_temp( p );
883 emit_arith( p, OPCODE_ADD, tmp, mask, 0, src[0], src[1], undef );
884 emit_arith( p, OPCODE_SUB, dest, mask, saturate, tmp, half, undef );
885 return dest;
886 case MODE_INTERPOLATE:
887 /* Arg0 * (Arg2) + Arg1 * (1-Arg2) -- note arguments are reordered:
888 */
889 return emit_arith( p, OPCODE_LRP, dest, mask, saturate, src[2], src[0], src[1] );
890
891 case MODE_SUBTRACT:
892 return emit_arith( p, OPCODE_SUB, dest, mask, saturate, src[0], src[1], undef );
893
894 case MODE_DOT3_RGBA:
895 case MODE_DOT3_RGBA_EXT:
896 case MODE_DOT3_RGB_EXT:
897 case MODE_DOT3_RGB: {
898 struct ureg tmp0 = get_temp( p );
899 struct ureg tmp1 = get_temp( p );
900 struct ureg neg1 = register_scalar_const(p, -1);
901 struct ureg two = register_scalar_const(p, 2);
902
903 /* tmp0 = 2*src0 - 1
904 * tmp1 = 2*src1 - 1
905 *
906 * dst = tmp0 dot3 tmp1
907 */
908 emit_arith( p, OPCODE_MAD, tmp0, WRITEMASK_XYZW, 0,
909 two, src[0], neg1);
910
911 if (_mesa_memcmp(&src[0], &src[1], sizeof(struct ureg)) == 0)
912 tmp1 = tmp0;
913 else
914 emit_arith( p, OPCODE_MAD, tmp1, WRITEMASK_XYZW, 0,
915 two, src[1], neg1);
916 emit_arith( p, OPCODE_DP3, dest, mask, saturate, tmp0, tmp1, undef);
917 return dest;
918 }
919 case MODE_MODULATE_ADD_ATI:
920 /* Arg0 * Arg2 + Arg1 */
921 return emit_arith( p, OPCODE_MAD, dest, mask, saturate,
922 src[0], src[2], src[1] );
923 case MODE_MODULATE_SIGNED_ADD_ATI: {
924 /* Arg0 * Arg2 + Arg1 - 0.5 */
925 struct ureg tmp0 = get_temp(p);
926 half = get_half(p);
927 emit_arith( p, OPCODE_MAD, tmp0, mask, 0, src[0], src[2], src[1] );
928 emit_arith( p, OPCODE_SUB, dest, mask, saturate, tmp0, half, undef );
929 return dest;
930 }
931 case MODE_MODULATE_SUBTRACT_ATI:
932 /* Arg0 * Arg2 - Arg1 */
933 emit_arith( p, OPCODE_MAD, dest, mask, 0, src[0], src[2], negate(src[1]) );
934 return dest;
935 default:
936 return src[0];
937 }
938 }
939
940
941 /**
942 * Generate instructions for one texture unit's env/combiner mode.
943 */
944 static struct ureg
945 emit_texenv(struct texenv_fragment_program *p, GLuint unit)
946 {
947 struct state_key *key = p->state;
948 GLboolean saturate = (unit < p->last_tex_stage);
949 GLuint rgb_shift, alpha_shift;
950 struct ureg out, shift;
951 struct ureg dest;
952
953 if (!key->unit[unit].enabled) {
954 return get_source(p, SRC_PREVIOUS, 0);
955 }
956
957 switch (key->unit[unit].ModeRGB) {
958 case MODE_DOT3_RGB_EXT:
959 alpha_shift = key->unit[unit].ScaleShiftA;
960 rgb_shift = 0;
961 break;
962 case MODE_DOT3_RGBA_EXT:
963 alpha_shift = 0;
964 rgb_shift = 0;
965 break;
966 default:
967 rgb_shift = key->unit[unit].ScaleShiftRGB;
968 alpha_shift = key->unit[unit].ScaleShiftA;
969 break;
970 }
971
972 /* If this is the very last calculation, emit direct to output reg:
973 */
974 if (key->separate_specular ||
975 unit != p->last_tex_stage ||
976 alpha_shift ||
977 rgb_shift)
978 dest = get_temp( p );
979 else
980 dest = make_ureg(PROGRAM_OUTPUT, FRAG_RESULT_COLR);
981
982 /* Emit the RGB and A combine ops
983 */
984 if (key->unit[unit].ModeRGB == key->unit[unit].ModeA &&
985 args_match(key, unit)) {
986 out = emit_combine( p, dest, WRITEMASK_XYZW, saturate,
987 unit,
988 key->unit[unit].NumArgsRGB,
989 key->unit[unit].ModeRGB,
990 key->unit[unit].OptRGB);
991 }
992 else if (key->unit[unit].ModeRGB == MODE_DOT3_RGBA_EXT ||
993 key->unit[unit].ModeRGB == MODE_DOT3_RGBA) {
994
995 out = emit_combine( p, dest, WRITEMASK_XYZW, saturate,
996 unit,
997 key->unit[unit].NumArgsRGB,
998 key->unit[unit].ModeRGB,
999 key->unit[unit].OptRGB);
1000 }
1001 else {
1002 /* Need to do something to stop from re-emitting identical
1003 * argument calculations here:
1004 */
1005 out = emit_combine( p, dest, WRITEMASK_XYZ, saturate,
1006 unit,
1007 key->unit[unit].NumArgsRGB,
1008 key->unit[unit].ModeRGB,
1009 key->unit[unit].OptRGB);
1010 out = emit_combine( p, dest, WRITEMASK_W, saturate,
1011 unit,
1012 key->unit[unit].NumArgsA,
1013 key->unit[unit].ModeA,
1014 key->unit[unit].OptA);
1015 }
1016
1017 /* Deal with the final shift:
1018 */
1019 if (alpha_shift || rgb_shift) {
1020 if (rgb_shift == alpha_shift) {
1021 shift = register_scalar_const(p, (GLfloat)(1<<rgb_shift));
1022 }
1023 else {
1024 shift = register_const4f(p,
1025 (GLfloat)(1<<rgb_shift),
1026 (GLfloat)(1<<rgb_shift),
1027 (GLfloat)(1<<rgb_shift),
1028 (GLfloat)(1<<alpha_shift));
1029 }
1030 return emit_arith( p, OPCODE_MUL, dest, WRITEMASK_XYZW,
1031 saturate, out, shift, undef );
1032 }
1033 else
1034 return out;
1035 }
1036
1037
1038 /**
1039 * Generate instruction for getting a texture source term.
1040 */
1041 static void load_texture( struct texenv_fragment_program *p, GLuint unit )
1042 {
1043 if (is_undef(p->src_texture[unit])) {
1044 GLuint dim = p->state->unit[unit].source_index;
1045 struct ureg texcoord = register_input(p, FRAG_ATTRIB_TEX0+unit);
1046 struct ureg tmp = get_tex_temp( p );
1047
1048 if (dim == TEXTURE_UNKNOWN_INDEX)
1049 program_error(p, "TexSrcBit");
1050
1051 /* TODO: Use D0_MASK_XY where possible.
1052 */
1053 if (p->state->unit[unit].enabled) {
1054 p->src_texture[unit] = emit_texld( p, OPCODE_TXP,
1055 tmp, WRITEMASK_XYZW,
1056 unit, dim, texcoord );
1057 p->program->Base.SamplersUsed |= (1 << unit);
1058 /* This identity mapping should already be in place
1059 * (see _mesa_init_program_struct()) but let's be safe.
1060 */
1061 p->program->Base.SamplerUnits[unit] = unit;
1062 }
1063 else
1064 p->src_texture[unit] = get_zero(p);
1065 }
1066 }
1067
1068 static GLboolean load_texenv_source( struct texenv_fragment_program *p,
1069 GLuint src, GLuint unit )
1070 {
1071 switch (src) {
1072 case SRC_TEXTURE:
1073 load_texture(p, unit);
1074 break;
1075
1076 case SRC_TEXTURE0:
1077 case SRC_TEXTURE1:
1078 case SRC_TEXTURE2:
1079 case SRC_TEXTURE3:
1080 case SRC_TEXTURE4:
1081 case SRC_TEXTURE5:
1082 case SRC_TEXTURE6:
1083 case SRC_TEXTURE7:
1084 load_texture(p, src - SRC_TEXTURE0);
1085 break;
1086
1087 default:
1088 break;
1089 }
1090
1091 return GL_TRUE;
1092 }
1093
1094
1095 /**
1096 * Generate instructions for loading all texture source terms.
1097 */
1098 static GLboolean
1099 load_texunit_sources( struct texenv_fragment_program *p, int unit )
1100 {
1101 struct state_key *key = p->state;
1102 GLuint i;
1103
1104 for (i = 0; i < key->unit[unit].NumArgsRGB; i++) {
1105 load_texenv_source( p, key->unit[unit].OptRGB[i].Source, unit);
1106 }
1107
1108 for (i = 0; i < key->unit[unit].NumArgsA; i++) {
1109 load_texenv_source( p, key->unit[unit].OptA[i].Source, unit );
1110 }
1111
1112 return GL_TRUE;
1113 }
1114
1115
1116 /**
1117 * Generate a new fragment program which implements the context's
1118 * current texture env/combine mode.
1119 */
1120 static void
1121 create_new_program(GLcontext *ctx, struct state_key *key,
1122 struct gl_fragment_program *program)
1123 {
1124 struct prog_instruction instBuffer[MAX_INSTRUCTIONS];
1125 struct texenv_fragment_program p;
1126 GLuint unit;
1127 struct ureg cf, out;
1128
1129 _mesa_memset(&p, 0, sizeof(p));
1130 p.ctx = ctx;
1131 p.state = key;
1132 p.program = program;
1133
1134 /* During code generation, use locally-allocated instruction buffer,
1135 * then alloc dynamic storage below.
1136 */
1137 p.program->Base.Instructions = instBuffer;
1138 p.program->Base.Target = GL_FRAGMENT_PROGRAM_ARB;
1139 p.program->Base.NumTexIndirections = 1; /* correct? */
1140 p.program->Base.NumTexInstructions = 0;
1141 p.program->Base.NumAluInstructions = 0;
1142 p.program->Base.String = NULL;
1143 p.program->Base.NumInstructions =
1144 p.program->Base.NumTemporaries =
1145 p.program->Base.NumParameters =
1146 p.program->Base.NumAttributes = p.program->Base.NumAddressRegs = 0;
1147 p.program->Base.Parameters = _mesa_new_parameter_list();
1148
1149 p.program->Base.InputsRead = 0;
1150 p.program->Base.OutputsWritten = 1 << FRAG_RESULT_COLR;
1151
1152 for (unit = 0; unit < MAX_TEXTURE_UNITS; unit++)
1153 p.src_texture[unit] = undef;
1154
1155 p.src_previous = undef;
1156 p.half = undef;
1157 p.zero = undef;
1158 p.one = undef;
1159
1160 p.last_tex_stage = 0;
1161 release_temps(ctx, &p);
1162
1163 if (key->enabled_units) {
1164 /* First pass - to support texture_env_crossbar, first identify
1165 * all referenced texture sources and emit texld instructions
1166 * for each:
1167 */
1168 for (unit = 0 ; unit < ctx->Const.MaxTextureUnits ; unit++)
1169 if (key->unit[unit].enabled) {
1170 load_texunit_sources( &p, unit );
1171 p.last_tex_stage = unit;
1172 }
1173
1174 /* Second pass - emit combine instructions to build final color:
1175 */
1176 for (unit = 0 ; unit < ctx->Const.MaxTextureUnits; unit++)
1177 if (key->enabled_units & (1<<unit)) {
1178 p.src_previous = emit_texenv( &p, unit );
1179 reserve_temp(&p, p.src_previous); /* don't re-use this temp reg */
1180 release_temps(ctx, &p); /* release all temps */
1181 }
1182 }
1183
1184 cf = get_source( &p, SRC_PREVIOUS, 0 );
1185 out = make_ureg( PROGRAM_OUTPUT, FRAG_RESULT_COLR );
1186
1187 if (key->separate_specular) {
1188 /* Emit specular add.
1189 */
1190 struct ureg s = register_input(&p, FRAG_ATTRIB_COL1);
1191 emit_arith( &p, OPCODE_ADD, out, WRITEMASK_XYZ, 0, cf, s, undef );
1192 emit_arith( &p, OPCODE_MOV, out, WRITEMASK_W, 0, cf, undef, undef );
1193 }
1194 else if (_mesa_memcmp(&cf, &out, sizeof(cf)) != 0) {
1195 /* Will wind up in here if no texture enabled or a couple of
1196 * other scenarios (GL_REPLACE for instance).
1197 */
1198 emit_arith( &p, OPCODE_MOV, out, WRITEMASK_XYZW, 0, cf, undef, undef );
1199 }
1200
1201 /* Finish up:
1202 */
1203 emit_arith( &p, OPCODE_END, undef, WRITEMASK_XYZW, 0, undef, undef, undef);
1204
1205 if (key->fog_enabled) {
1206 /* Pull fog mode from GLcontext, the value in the state key is
1207 * a reduced value and not what is expected in FogOption
1208 */
1209 p.program->FogOption = ctx->Fog.Mode;
1210 p.program->Base.InputsRead |= FRAG_BIT_FOGC; /* XXX new */
1211 } else
1212 p.program->FogOption = GL_NONE;
1213
1214 if (p.program->Base.NumTexIndirections > ctx->Const.FragmentProgram.MaxTexIndirections)
1215 program_error(&p, "Exceeded max nr indirect texture lookups");
1216
1217 if (p.program->Base.NumTexInstructions > ctx->Const.FragmentProgram.MaxTexInstructions)
1218 program_error(&p, "Exceeded max TEX instructions");
1219
1220 if (p.program->Base.NumAluInstructions > ctx->Const.FragmentProgram.MaxAluInstructions)
1221 program_error(&p, "Exceeded max ALU instructions");
1222
1223 ASSERT(p.program->Base.NumInstructions <= MAX_INSTRUCTIONS);
1224
1225 /* Allocate final instruction array */
1226 p.program->Base.Instructions
1227 = _mesa_alloc_instructions(p.program->Base.NumInstructions);
1228 if (!p.program->Base.Instructions) {
1229 _mesa_error(ctx, GL_OUT_OF_MEMORY,
1230 "generating tex env program");
1231 return;
1232 }
1233 _mesa_copy_instructions(p.program->Base.Instructions, instBuffer,
1234 p.program->Base.NumInstructions);
1235
1236 if (p.program->FogOption) {
1237 _mesa_append_fog_code(ctx, p.program);
1238 p.program->FogOption = GL_NONE;
1239 }
1240
1241
1242 /* Notify driver the fragment program has (actually) changed.
1243 */
1244 if (ctx->Driver.ProgramStringNotify) {
1245 ctx->Driver.ProgramStringNotify( ctx, GL_FRAGMENT_PROGRAM_ARB,
1246 &p.program->Base );
1247 }
1248
1249 if (DISASSEM) {
1250 _mesa_print_program(&p.program->Base);
1251 _mesa_printf("\n");
1252 }
1253 }
1254
1255
1256 /**
1257 * Return a fragment program which implements the current
1258 * fixed-function texture, fog and color-sum operations.
1259 */
1260 struct gl_fragment_program *
1261 _mesa_get_fixed_func_fragment_program(GLcontext *ctx)
1262 {
1263 struct gl_fragment_program *prog;
1264 struct state_key key;
1265
1266 make_state_key(ctx, &key);
1267
1268 prog = (struct gl_fragment_program *)
1269 _mesa_search_program_cache(ctx->FragmentProgram.Cache,
1270 &key, sizeof(key));
1271
1272 if (!prog) {
1273 prog = (struct gl_fragment_program *)
1274 ctx->Driver.NewProgram(ctx, GL_FRAGMENT_PROGRAM_ARB, 0);
1275
1276 create_new_program(ctx, &key, prog);
1277
1278 _mesa_program_cache_insert(ctx, ctx->FragmentProgram.Cache,
1279 &key, sizeof(key), &prog->Base);
1280 }
1281
1282 return prog;
1283 }
1284
1285
1286
1287 /**
1288 * If _MaintainTexEnvProgram is set we'll generate a fragment program that
1289 * implements the current texture env/combine mode.
1290 * This function generates that program and puts it into effect.
1291 */
1292 void
1293 _mesa_UpdateTexEnvProgram( GLcontext *ctx )
1294 {
1295 const struct gl_fragment_program *prev = ctx->FragmentProgram._Current;
1296
1297 ASSERT(ctx->FragmentProgram._MaintainTexEnvProgram);
1298
1299 /* If a conventional fragment program/shader isn't in effect... */
1300 if (!ctx->FragmentProgram._Enabled &&
1301 (!ctx->Shader.CurrentProgram ||
1302 !ctx->Shader.CurrentProgram->FragmentProgram) ) {
1303
1304 ctx->FragmentProgram._Current
1305 = ctx->FragmentProgram._TexEnvProgram
1306 = _mesa_get_fixed_func_fragment_program(ctx);
1307 }
1308
1309 /* Tell the driver about the change. Could define a new target for
1310 * this?
1311 */
1312 if (ctx->FragmentProgram._Current != prev && ctx->Driver.BindProgram) {
1313 ctx->Driver.BindProgram(ctx, GL_FRAGMENT_PROGRAM_ARB,
1314 (struct gl_program *) ctx->FragmentProgram._Current);
1315 }
1316 }