Merge commit 'origin/master' into gallium-0.2
[mesa.git] / src / mesa / main / texenvprogram.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include "glheader.h"
29 #include "macros.h"
30 #include "enums.h"
31 #include "shader/program.h"
32 #include "shader/prog_parameter.h"
33 #include "shader/prog_cache.h"
34 #include "shader/prog_instruction.h"
35 #include "shader/prog_print.h"
36 #include "shader/prog_statevars.h"
37 #include "shader/programopt.h"
38 #include "texenvprogram.h"
39
40
41 struct texenvprog_cache_item
42 {
43 GLuint hash;
44 void *key;
45 struct gl_fragment_program *data;
46 struct texenvprog_cache_item *next;
47 };
48
49
50 /**
51 * Up to nine instructions per tex unit, plus fog, specular color.
52 */
53 #define MAX_INSTRUCTIONS ((MAX_TEXTURE_UNITS * 9) + 12)
54
55 #define DISASSEM (MESA_VERBOSE & VERBOSE_DISASSEM)
56
57 struct mode_opt {
58 GLubyte Source:4;
59 GLubyte Operand:3;
60 };
61
62 struct state_key {
63 GLuint nr_enabled_units:8;
64 GLuint enabled_units:8;
65 GLuint separate_specular:1;
66 GLuint fog_enabled:1;
67 GLuint fog_mode:2;
68 GLuint inputs_available:12;
69
70 struct {
71 GLuint enabled:1;
72 GLuint source_index:3; /* one of TEXTURE_1D/2D/3D/CUBE/RECT_INDEX */
73 GLuint shadow:1;
74 GLuint ScaleShiftRGB:2;
75 GLuint ScaleShiftA:2;
76
77 GLuint NumArgsRGB:2;
78 GLuint ModeRGB:4;
79 GLuint NumArgsA:2;
80 GLuint ModeA:4;
81
82 struct mode_opt OptRGB[3];
83 struct mode_opt OptA[3];
84 } unit[8];
85 };
86
87 #define FOG_LINEAR 0
88 #define FOG_EXP 1
89 #define FOG_EXP2 2
90 #define FOG_UNKNOWN 3
91
92 static GLuint translate_fog_mode( GLenum mode )
93 {
94 switch (mode) {
95 case GL_LINEAR: return FOG_LINEAR;
96 case GL_EXP: return FOG_EXP;
97 case GL_EXP2: return FOG_EXP2;
98 default: return FOG_UNKNOWN;
99 }
100 }
101
102 #define OPR_SRC_COLOR 0
103 #define OPR_ONE_MINUS_SRC_COLOR 1
104 #define OPR_SRC_ALPHA 2
105 #define OPR_ONE_MINUS_SRC_ALPHA 3
106 #define OPR_ZERO 4
107 #define OPR_ONE 5
108 #define OPR_UNKNOWN 7
109
110 static GLuint translate_operand( GLenum operand )
111 {
112 switch (operand) {
113 case GL_SRC_COLOR: return OPR_SRC_COLOR;
114 case GL_ONE_MINUS_SRC_COLOR: return OPR_ONE_MINUS_SRC_COLOR;
115 case GL_SRC_ALPHA: return OPR_SRC_ALPHA;
116 case GL_ONE_MINUS_SRC_ALPHA: return OPR_ONE_MINUS_SRC_ALPHA;
117 case GL_ZERO: return OPR_ZERO;
118 case GL_ONE: return OPR_ONE;
119 default: return OPR_UNKNOWN;
120 }
121 }
122
123 #define SRC_TEXTURE 0
124 #define SRC_TEXTURE0 1
125 #define SRC_TEXTURE1 2
126 #define SRC_TEXTURE2 3
127 #define SRC_TEXTURE3 4
128 #define SRC_TEXTURE4 5
129 #define SRC_TEXTURE5 6
130 #define SRC_TEXTURE6 7
131 #define SRC_TEXTURE7 8
132 #define SRC_CONSTANT 9
133 #define SRC_PRIMARY_COLOR 10
134 #define SRC_PREVIOUS 11
135 #define SRC_UNKNOWN 15
136
137 static GLuint translate_source( GLenum src )
138 {
139 switch (src) {
140 case GL_TEXTURE: return SRC_TEXTURE;
141 case GL_TEXTURE0:
142 case GL_TEXTURE1:
143 case GL_TEXTURE2:
144 case GL_TEXTURE3:
145 case GL_TEXTURE4:
146 case GL_TEXTURE5:
147 case GL_TEXTURE6:
148 case GL_TEXTURE7: return SRC_TEXTURE0 + (src - GL_TEXTURE0);
149 case GL_CONSTANT: return SRC_CONSTANT;
150 case GL_PRIMARY_COLOR: return SRC_PRIMARY_COLOR;
151 case GL_PREVIOUS: return SRC_PREVIOUS;
152 default: return SRC_UNKNOWN;
153 }
154 }
155
156 #define MODE_REPLACE 0
157 #define MODE_MODULATE 1
158 #define MODE_ADD 2
159 #define MODE_ADD_SIGNED 3
160 #define MODE_INTERPOLATE 4
161 #define MODE_SUBTRACT 5
162 #define MODE_DOT3_RGB 6
163 #define MODE_DOT3_RGB_EXT 7
164 #define MODE_DOT3_RGBA 8
165 #define MODE_DOT3_RGBA_EXT 9
166 #define MODE_MODULATE_ADD_ATI 10
167 #define MODE_MODULATE_SIGNED_ADD_ATI 11
168 #define MODE_MODULATE_SUBTRACT_ATI 12
169 #define MODE_UNKNOWN 15
170
171 static GLuint translate_mode( GLenum mode )
172 {
173 switch (mode) {
174 case GL_REPLACE: return MODE_REPLACE;
175 case GL_MODULATE: return MODE_MODULATE;
176 case GL_ADD: return MODE_ADD;
177 case GL_ADD_SIGNED: return MODE_ADD_SIGNED;
178 case GL_INTERPOLATE: return MODE_INTERPOLATE;
179 case GL_SUBTRACT: return MODE_SUBTRACT;
180 case GL_DOT3_RGB: return MODE_DOT3_RGB;
181 case GL_DOT3_RGB_EXT: return MODE_DOT3_RGB_EXT;
182 case GL_DOT3_RGBA: return MODE_DOT3_RGBA;
183 case GL_DOT3_RGBA_EXT: return MODE_DOT3_RGBA_EXT;
184 case GL_MODULATE_ADD_ATI: return MODE_MODULATE_ADD_ATI;
185 case GL_MODULATE_SIGNED_ADD_ATI: return MODE_MODULATE_SIGNED_ADD_ATI;
186 case GL_MODULATE_SUBTRACT_ATI: return MODE_MODULATE_SUBTRACT_ATI;
187 default: return MODE_UNKNOWN;
188 }
189 }
190
191 #define TEXTURE_UNKNOWN_INDEX 7
192 static GLuint translate_tex_src_bit( GLbitfield bit )
193 {
194 switch (bit) {
195 case TEXTURE_1D_BIT: return TEXTURE_1D_INDEX;
196 case TEXTURE_2D_BIT: return TEXTURE_2D_INDEX;
197 case TEXTURE_RECT_BIT: return TEXTURE_RECT_INDEX;
198 case TEXTURE_3D_BIT: return TEXTURE_3D_INDEX;
199 case TEXTURE_CUBE_BIT: return TEXTURE_CUBE_INDEX;
200 default: return TEXTURE_UNKNOWN_INDEX;
201 }
202 }
203
204 #define VERT_BIT_TEX_ANY (0xff << VERT_ATTRIB_TEX0)
205 #define VERT_RESULT_TEX_ANY (0xff << VERT_RESULT_TEX0)
206
207 /**
208 * Identify all possible varying inputs. The fragment program will
209 * never reference non-varying inputs, but will track them via state
210 * constants instead.
211 *
212 * This function figures out all the inputs that the fragment program
213 * has access to. The bitmask is later reduced to just those which
214 * are actually referenced.
215 */
216 static GLbitfield get_fp_input_mask( GLcontext *ctx )
217 {
218 GLbitfield fp_inputs = 0x0;
219
220 if (ctx->VertexProgram._Overriden) {
221 /* Somebody's messing with the vertex program and we don't have
222 * a clue what's happening. Assume that it could be producing
223 * all possible outputs.
224 */
225 fp_inputs = ~0;
226 }
227 else if (ctx->RenderMode == GL_FEEDBACK) {
228 fp_inputs = (FRAG_BIT_COL0 | FRAG_BIT_TEX0);
229 }
230 else if (!ctx->VertexProgram._Enabled ||
231 !ctx->VertexProgram._Current) {
232
233 /* Fixed function logic */
234 GLbitfield varying_inputs = ctx->varying_vp_inputs;
235
236 /* First look at what values may be computed by the generated
237 * vertex program:
238 */
239 if (ctx->Light.Enabled) {
240 fp_inputs |= FRAG_BIT_COL0;
241
242 if (ctx->_TriangleCaps & DD_SEPARATE_SPECULAR)
243 fp_inputs |= FRAG_BIT_COL1;
244 }
245
246 fp_inputs |= (ctx->Texture._TexGenEnabled |
247 ctx->Texture._TexMatEnabled) << FRAG_ATTRIB_TEX0;
248
249 /* Then look at what might be varying as a result of enabled
250 * arrays, etc:
251 */
252 if (varying_inputs & VERT_BIT_COLOR0) fp_inputs |= FRAG_BIT_COL0;
253 if (varying_inputs & VERT_BIT_COLOR1) fp_inputs |= FRAG_BIT_COL1;
254
255 fp_inputs |= (((varying_inputs & VERT_BIT_TEX_ANY) >> VERT_ATTRIB_TEX0)
256 << FRAG_ATTRIB_TEX0);
257
258 }
259 else {
260 /* calculate from vp->outputs */
261 GLbitfield vp_outputs = ctx->VertexProgram._Current->Base.OutputsWritten;
262
263 if (vp_outputs & (1 << VERT_RESULT_COL0)) fp_inputs |= FRAG_BIT_COL0;
264 if (vp_outputs & (1 << VERT_RESULT_COL1)) fp_inputs |= FRAG_BIT_COL1;
265
266 fp_inputs |= (((vp_outputs & VERT_RESULT_TEX_ANY) >> VERT_RESULT_TEX0)
267 << FRAG_ATTRIB_TEX0);
268 }
269
270 return fp_inputs;
271 }
272
273
274 /**
275 * Examine current texture environment state and generate a unique
276 * key to identify it.
277 */
278 static void make_state_key( GLcontext *ctx, struct state_key *key )
279 {
280 GLuint i, j;
281 GLbitfield inputs_referenced = FRAG_BIT_COL0;
282 GLbitfield inputs_available = get_fp_input_mask( ctx );
283
284 memset(key, 0, sizeof(*key));
285
286 for (i=0;i<MAX_TEXTURE_UNITS;i++) {
287 const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
288
289 if (!texUnit->_ReallyEnabled || !texUnit->Enabled)
290 continue;
291
292 key->unit[i].enabled = 1;
293 key->enabled_units |= (1<<i);
294 key->nr_enabled_units = i+1;
295 inputs_referenced |= FRAG_BIT_TEX(i);
296
297 key->unit[i].source_index =
298 translate_tex_src_bit(texUnit->_ReallyEnabled);
299 key->unit[i].shadow = texUnit->_Current->CompareMode == GL_COMPARE_R_TO_TEXTURE;
300
301 key->unit[i].NumArgsRGB = texUnit->_CurrentCombine->_NumArgsRGB;
302 key->unit[i].NumArgsA = texUnit->_CurrentCombine->_NumArgsA;
303
304 key->unit[i].ModeRGB =
305 translate_mode(texUnit->_CurrentCombine->ModeRGB);
306 key->unit[i].ModeA =
307 translate_mode(texUnit->_CurrentCombine->ModeA);
308
309 key->unit[i].ScaleShiftRGB = texUnit->_CurrentCombine->ScaleShiftRGB;
310 key->unit[i].ScaleShiftA = texUnit->_CurrentCombine->ScaleShiftA;
311
312 for (j=0;j<3;j++) {
313 key->unit[i].OptRGB[j].Operand =
314 translate_operand(texUnit->_CurrentCombine->OperandRGB[j]);
315 key->unit[i].OptA[j].Operand =
316 translate_operand(texUnit->_CurrentCombine->OperandA[j]);
317 key->unit[i].OptRGB[j].Source =
318 translate_source(texUnit->_CurrentCombine->SourceRGB[j]);
319 key->unit[i].OptA[j].Source =
320 translate_source(texUnit->_CurrentCombine->SourceA[j]);
321 }
322 }
323
324 if (ctx->_TriangleCaps & DD_SEPARATE_SPECULAR) {
325 key->separate_specular = 1;
326 inputs_referenced |= FRAG_BIT_COL1;
327 }
328
329 if (ctx->Fog.Enabled) {
330 key->fog_enabled = 1;
331 key->fog_mode = translate_fog_mode(ctx->Fog.Mode);
332 inputs_referenced |= FRAG_BIT_FOGC; /* maybe */
333 }
334
335 key->inputs_available = (inputs_available & inputs_referenced);
336 }
337
338 /**
339 * Use uregs to represent registers internally, translate to Mesa's
340 * expected formats on emit.
341 *
342 * NOTE: These are passed by value extensively in this file rather
343 * than as usual by pointer reference. If this disturbs you, try
344 * remembering they are just 32bits in size.
345 *
346 * GCC is smart enough to deal with these dword-sized structures in
347 * much the same way as if I had defined them as dwords and was using
348 * macros to access and set the fields. This is much nicer and easier
349 * to evolve.
350 */
351 struct ureg {
352 GLuint file:4;
353 GLuint idx:8;
354 GLuint negatebase:1;
355 GLuint abs:1;
356 GLuint negateabs:1;
357 GLuint swz:12;
358 GLuint pad:5;
359 };
360
361 static const struct ureg undef = {
362 PROGRAM_UNDEFINED,
363 ~0,
364 0,
365 0,
366 0,
367 0,
368 0
369 };
370
371
372 /** State used to build the fragment program:
373 */
374 struct texenv_fragment_program {
375 struct gl_fragment_program *program;
376 GLcontext *ctx;
377 struct state_key *state;
378
379 GLbitfield alu_temps; /**< Track texture indirections, see spec. */
380 GLbitfield temps_output; /**< Track texture indirections, see spec. */
381 GLbitfield temp_in_use; /**< Tracks temporary regs which are in use. */
382 GLboolean error;
383
384 struct ureg src_texture[MAX_TEXTURE_UNITS];
385 /* Reg containing each texture unit's sampled texture color,
386 * else undef.
387 */
388
389 struct ureg src_previous; /**< Reg containing color from previous
390 * stage. May need to be decl'd.
391 */
392
393 GLuint last_tex_stage; /**< Number of last enabled texture unit */
394
395 struct ureg half;
396 struct ureg one;
397 struct ureg zero;
398 };
399
400
401
402 static struct ureg make_ureg(GLuint file, GLuint idx)
403 {
404 struct ureg reg;
405 reg.file = file;
406 reg.idx = idx;
407 reg.negatebase = 0;
408 reg.abs = 0;
409 reg.negateabs = 0;
410 reg.swz = SWIZZLE_NOOP;
411 reg.pad = 0;
412 return reg;
413 }
414
415 static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w )
416 {
417 reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x),
418 GET_SWZ(reg.swz, y),
419 GET_SWZ(reg.swz, z),
420 GET_SWZ(reg.swz, w));
421
422 return reg;
423 }
424
425 static struct ureg swizzle1( struct ureg reg, int x )
426 {
427 return swizzle(reg, x, x, x, x);
428 }
429
430 static struct ureg negate( struct ureg reg )
431 {
432 reg.negatebase ^= 1;
433 return reg;
434 }
435
436 static GLboolean is_undef( struct ureg reg )
437 {
438 return reg.file == PROGRAM_UNDEFINED;
439 }
440
441
442 static struct ureg get_temp( struct texenv_fragment_program *p )
443 {
444 GLint bit;
445
446 /* First try and reuse temps which have been used already:
447 */
448 bit = _mesa_ffs( ~p->temp_in_use & p->alu_temps );
449
450 /* Then any unused temporary:
451 */
452 if (!bit)
453 bit = _mesa_ffs( ~p->temp_in_use );
454
455 if (!bit) {
456 _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
457 _mesa_exit(1);
458 }
459
460 if ((GLuint) bit > p->program->Base.NumTemporaries)
461 p->program->Base.NumTemporaries = bit;
462
463 p->temp_in_use |= 1<<(bit-1);
464 return make_ureg(PROGRAM_TEMPORARY, (bit-1));
465 }
466
467 static struct ureg get_tex_temp( struct texenv_fragment_program *p )
468 {
469 int bit;
470
471 /* First try to find available temp not previously used (to avoid
472 * starting a new texture indirection). According to the spec, the
473 * ~p->temps_output isn't necessary, but will keep it there for
474 * now:
475 */
476 bit = _mesa_ffs( ~p->temp_in_use & ~p->alu_temps & ~p->temps_output );
477
478 /* Then any unused temporary:
479 */
480 if (!bit)
481 bit = _mesa_ffs( ~p->temp_in_use );
482
483 if (!bit) {
484 _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
485 _mesa_exit(1);
486 }
487
488 if ((GLuint) bit > p->program->Base.NumTemporaries)
489 p->program->Base.NumTemporaries = bit;
490
491 p->temp_in_use |= 1<<(bit-1);
492 return make_ureg(PROGRAM_TEMPORARY, (bit-1));
493 }
494
495
496 /** Mark a temp reg as being no longer allocatable. */
497 static void reserve_temp( struct texenv_fragment_program *p, struct ureg r )
498 {
499 if (r.file == PROGRAM_TEMPORARY)
500 p->temps_output |= (1 << r.idx);
501 }
502
503
504 static void release_temps(GLcontext *ctx, struct texenv_fragment_program *p )
505 {
506 GLuint max_temp = ctx->Const.FragmentProgram.MaxTemps;
507
508 /* KW: To support tex_env_crossbar, don't release the registers in
509 * temps_output.
510 */
511 if (max_temp >= sizeof(int) * 8)
512 p->temp_in_use = p->temps_output;
513 else
514 p->temp_in_use = ~((1<<max_temp)-1) | p->temps_output;
515 }
516
517
518 static struct ureg register_param5( struct texenv_fragment_program *p,
519 GLint s0,
520 GLint s1,
521 GLint s2,
522 GLint s3,
523 GLint s4)
524 {
525 gl_state_index tokens[STATE_LENGTH];
526 GLuint idx;
527 tokens[0] = s0;
528 tokens[1] = s1;
529 tokens[2] = s2;
530 tokens[3] = s3;
531 tokens[4] = s4;
532 idx = _mesa_add_state_reference( p->program->Base.Parameters, tokens );
533 return make_ureg(PROGRAM_STATE_VAR, idx);
534 }
535
536
537 #define register_param1(p,s0) register_param5(p,s0,0,0,0,0)
538 #define register_param2(p,s0,s1) register_param5(p,s0,s1,0,0,0)
539 #define register_param3(p,s0,s1,s2) register_param5(p,s0,s1,s2,0,0)
540 #define register_param4(p,s0,s1,s2,s3) register_param5(p,s0,s1,s2,s3,0)
541
542 static GLuint frag_to_vert_attrib( GLuint attrib )
543 {
544 switch (attrib) {
545 case FRAG_ATTRIB_COL0: return VERT_ATTRIB_COLOR0;
546 case FRAG_ATTRIB_COL1: return VERT_ATTRIB_COLOR1;
547 default:
548 assert(attrib >= FRAG_ATTRIB_TEX0);
549 assert(attrib <= FRAG_ATTRIB_TEX7);
550 return attrib - FRAG_ATTRIB_TEX0 + VERT_ATTRIB_TEX0;
551 }
552 }
553
554
555 static struct ureg register_input( struct texenv_fragment_program *p, GLuint input )
556 {
557 if (p->state->inputs_available & (1<<input)) {
558 p->program->Base.InputsRead |= (1 << input);
559 return make_ureg(PROGRAM_INPUT, input);
560 }
561 else {
562 GLuint idx = frag_to_vert_attrib( input );
563 return register_param3( p, STATE_INTERNAL, STATE_CURRENT_ATTRIB, idx );
564 }
565 }
566
567
568 static void emit_arg( struct prog_src_register *reg,
569 struct ureg ureg )
570 {
571 reg->File = ureg.file;
572 reg->Index = ureg.idx;
573 reg->Swizzle = ureg.swz;
574 reg->NegateBase = ureg.negatebase ? 0xf : 0x0;
575 reg->Abs = ureg.abs;
576 reg->NegateAbs = ureg.negateabs;
577 }
578
579 static void emit_dst( struct prog_dst_register *dst,
580 struct ureg ureg, GLuint mask )
581 {
582 dst->File = ureg.file;
583 dst->Index = ureg.idx;
584 dst->WriteMask = mask;
585 dst->CondMask = COND_TR; /* always pass cond test */
586 dst->CondSwizzle = SWIZZLE_NOOP;
587 }
588
589 static struct prog_instruction *
590 emit_op(struct texenv_fragment_program *p,
591 enum prog_opcode op,
592 struct ureg dest,
593 GLuint mask,
594 GLboolean saturate,
595 struct ureg src0,
596 struct ureg src1,
597 struct ureg src2 )
598 {
599 GLuint nr = p->program->Base.NumInstructions++;
600 struct prog_instruction *inst = &p->program->Base.Instructions[nr];
601
602 assert(nr < MAX_INSTRUCTIONS);
603
604 _mesa_init_instructions(inst, 1);
605 inst->Opcode = op;
606
607 emit_arg( &inst->SrcReg[0], src0 );
608 emit_arg( &inst->SrcReg[1], src1 );
609 emit_arg( &inst->SrcReg[2], src2 );
610
611 inst->SaturateMode = saturate ? SATURATE_ZERO_ONE : SATURATE_OFF;
612
613 emit_dst( &inst->DstReg, dest, mask );
614
615 #if 0
616 /* Accounting for indirection tracking:
617 */
618 if (dest.file == PROGRAM_TEMPORARY)
619 p->temps_output |= 1 << dest.idx;
620 #endif
621
622 return inst;
623 }
624
625
626 static struct ureg emit_arith( struct texenv_fragment_program *p,
627 enum prog_opcode op,
628 struct ureg dest,
629 GLuint mask,
630 GLboolean saturate,
631 struct ureg src0,
632 struct ureg src1,
633 struct ureg src2 )
634 {
635 emit_op(p, op, dest, mask, saturate, src0, src1, src2);
636
637 /* Accounting for indirection tracking:
638 */
639 if (src0.file == PROGRAM_TEMPORARY)
640 p->alu_temps |= 1 << src0.idx;
641
642 if (!is_undef(src1) && src1.file == PROGRAM_TEMPORARY)
643 p->alu_temps |= 1 << src1.idx;
644
645 if (!is_undef(src2) && src2.file == PROGRAM_TEMPORARY)
646 p->alu_temps |= 1 << src2.idx;
647
648 if (dest.file == PROGRAM_TEMPORARY)
649 p->alu_temps |= 1 << dest.idx;
650
651 p->program->Base.NumAluInstructions++;
652 return dest;
653 }
654
655 static struct ureg emit_texld( struct texenv_fragment_program *p,
656 enum prog_opcode op,
657 struct ureg dest,
658 GLuint destmask,
659 GLuint tex_unit,
660 GLuint tex_idx,
661 struct ureg coord )
662 {
663 struct prog_instruction *inst = emit_op( p, op,
664 dest, destmask,
665 GL_FALSE, /* don't saturate? */
666 coord, /* arg 0? */
667 undef,
668 undef);
669
670 inst->TexSrcTarget = tex_idx;
671 inst->TexSrcUnit = tex_unit;
672
673 p->program->Base.NumTexInstructions++;
674
675 /* Accounting for indirection tracking:
676 */
677 reserve_temp(p, dest);
678
679 /* Is this a texture indirection?
680 */
681 if ((coord.file == PROGRAM_TEMPORARY &&
682 (p->temps_output & (1<<coord.idx))) ||
683 (dest.file == PROGRAM_TEMPORARY &&
684 (p->alu_temps & (1<<dest.idx)))) {
685 p->program->Base.NumTexIndirections++;
686 p->temps_output = 1<<coord.idx;
687 p->alu_temps = 0;
688 assert(0); /* KW: texture env crossbar */
689 }
690
691 return dest;
692 }
693
694
695 static struct ureg register_const4f( struct texenv_fragment_program *p,
696 GLfloat s0,
697 GLfloat s1,
698 GLfloat s2,
699 GLfloat s3)
700 {
701 GLfloat values[4];
702 GLuint idx, swizzle;
703 struct ureg r;
704 values[0] = s0;
705 values[1] = s1;
706 values[2] = s2;
707 values[3] = s3;
708 idx = _mesa_add_unnamed_constant( p->program->Base.Parameters, values, 4,
709 &swizzle );
710 r = make_ureg(PROGRAM_CONSTANT, idx);
711 r.swz = swizzle;
712 return r;
713 }
714
715 #define register_scalar_const(p, s0) register_const4f(p, s0, s0, s0, s0)
716 #define register_const1f(p, s0) register_const4f(p, s0, 0, 0, 1)
717 #define register_const2f(p, s0, s1) register_const4f(p, s0, s1, 0, 1)
718 #define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1)
719
720
721 static struct ureg get_one( struct texenv_fragment_program *p )
722 {
723 if (is_undef(p->one))
724 p->one = register_scalar_const(p, 1.0);
725 return p->one;
726 }
727
728 static struct ureg get_half( struct texenv_fragment_program *p )
729 {
730 if (is_undef(p->half))
731 p->half = register_scalar_const(p, 0.5);
732 return p->half;
733 }
734
735 static struct ureg get_zero( struct texenv_fragment_program *p )
736 {
737 if (is_undef(p->zero))
738 p->zero = register_scalar_const(p, 0.0);
739 return p->zero;
740 }
741
742
743 static void program_error( struct texenv_fragment_program *p, const char *msg )
744 {
745 _mesa_problem(NULL, msg);
746 p->error = 1;
747 }
748
749 static struct ureg get_source( struct texenv_fragment_program *p,
750 GLuint src, GLuint unit )
751 {
752 switch (src) {
753 case SRC_TEXTURE:
754 assert(!is_undef(p->src_texture[unit]));
755 return p->src_texture[unit];
756
757 case SRC_TEXTURE0:
758 case SRC_TEXTURE1:
759 case SRC_TEXTURE2:
760 case SRC_TEXTURE3:
761 case SRC_TEXTURE4:
762 case SRC_TEXTURE5:
763 case SRC_TEXTURE6:
764 case SRC_TEXTURE7:
765 assert(!is_undef(p->src_texture[src - SRC_TEXTURE0]));
766 return p->src_texture[src - SRC_TEXTURE0];
767
768 case SRC_CONSTANT:
769 return register_param2(p, STATE_TEXENV_COLOR, unit);
770
771 case SRC_PRIMARY_COLOR:
772 return register_input(p, FRAG_ATTRIB_COL0);
773
774 case SRC_PREVIOUS:
775 default:
776 if (is_undef(p->src_previous))
777 return register_input(p, FRAG_ATTRIB_COL0);
778 else
779 return p->src_previous;
780 }
781 }
782
783 static struct ureg emit_combine_source( struct texenv_fragment_program *p,
784 GLuint mask,
785 GLuint unit,
786 GLuint source,
787 GLuint operand )
788 {
789 struct ureg arg, src, one;
790
791 src = get_source(p, source, unit);
792
793 switch (operand) {
794 case OPR_ONE_MINUS_SRC_COLOR:
795 /* Get unused tmp,
796 * Emit tmp = 1.0 - arg.xyzw
797 */
798 arg = get_temp( p );
799 one = get_one( p );
800 return emit_arith( p, OPCODE_SUB, arg, mask, 0, one, src, undef);
801
802 case OPR_SRC_ALPHA:
803 if (mask == WRITEMASK_W)
804 return src;
805 else
806 return swizzle1( src, SWIZZLE_W );
807 case OPR_ONE_MINUS_SRC_ALPHA:
808 /* Get unused tmp,
809 * Emit tmp = 1.0 - arg.wwww
810 */
811 arg = get_temp(p);
812 one = get_one(p);
813 return emit_arith(p, OPCODE_SUB, arg, mask, 0,
814 one, swizzle1(src, SWIZZLE_W), undef);
815 case OPR_ZERO:
816 return get_zero(p);
817 case OPR_ONE:
818 return get_one(p);
819 case OPR_SRC_COLOR:
820 default:
821 return src;
822 }
823 }
824
825 static GLboolean args_match( struct state_key *key, GLuint unit )
826 {
827 GLuint i, nr = key->unit[unit].NumArgsRGB;
828
829 for (i = 0 ; i < nr ; i++) {
830 if (key->unit[unit].OptA[i].Source != key->unit[unit].OptRGB[i].Source)
831 return GL_FALSE;
832
833 switch(key->unit[unit].OptA[i].Operand) {
834 case OPR_SRC_ALPHA:
835 switch(key->unit[unit].OptRGB[i].Operand) {
836 case OPR_SRC_COLOR:
837 case OPR_SRC_ALPHA:
838 break;
839 default:
840 return GL_FALSE;
841 }
842 break;
843 case OPR_ONE_MINUS_SRC_ALPHA:
844 switch(key->unit[unit].OptRGB[i].Operand) {
845 case OPR_ONE_MINUS_SRC_COLOR:
846 case OPR_ONE_MINUS_SRC_ALPHA:
847 break;
848 default:
849 return GL_FALSE;
850 }
851 break;
852 default:
853 return GL_FALSE; /* impossible */
854 }
855 }
856
857 return GL_TRUE;
858 }
859
860 static struct ureg emit_combine( struct texenv_fragment_program *p,
861 struct ureg dest,
862 GLuint mask,
863 GLboolean saturate,
864 GLuint unit,
865 GLuint nr,
866 GLuint mode,
867 const struct mode_opt *opt)
868 {
869 struct ureg src[3];
870 struct ureg tmp, half;
871 GLuint i;
872
873 tmp = undef; /* silence warning (bug 5318) */
874
875 for (i = 0; i < nr; i++)
876 src[i] = emit_combine_source( p, mask, unit, opt[i].Source, opt[i].Operand );
877
878 switch (mode) {
879 case MODE_REPLACE:
880 if (mask == WRITEMASK_XYZW && !saturate)
881 return src[0];
882 else
883 return emit_arith( p, OPCODE_MOV, dest, mask, saturate, src[0], undef, undef );
884 case MODE_MODULATE:
885 return emit_arith( p, OPCODE_MUL, dest, mask, saturate,
886 src[0], src[1], undef );
887 case MODE_ADD:
888 return emit_arith( p, OPCODE_ADD, dest, mask, saturate,
889 src[0], src[1], undef );
890 case MODE_ADD_SIGNED:
891 /* tmp = arg0 + arg1
892 * result = tmp - .5
893 */
894 half = get_half(p);
895 tmp = get_temp( p );
896 emit_arith( p, OPCODE_ADD, tmp, mask, 0, src[0], src[1], undef );
897 emit_arith( p, OPCODE_SUB, dest, mask, saturate, tmp, half, undef );
898 return dest;
899 case MODE_INTERPOLATE:
900 /* Arg0 * (Arg2) + Arg1 * (1-Arg2) -- note arguments are reordered:
901 */
902 return emit_arith( p, OPCODE_LRP, dest, mask, saturate, src[2], src[0], src[1] );
903
904 case MODE_SUBTRACT:
905 return emit_arith( p, OPCODE_SUB, dest, mask, saturate, src[0], src[1], undef );
906
907 case MODE_DOT3_RGBA:
908 case MODE_DOT3_RGBA_EXT:
909 case MODE_DOT3_RGB_EXT:
910 case MODE_DOT3_RGB: {
911 struct ureg tmp0 = get_temp( p );
912 struct ureg tmp1 = get_temp( p );
913 struct ureg neg1 = register_scalar_const(p, -1);
914 struct ureg two = register_scalar_const(p, 2);
915
916 /* tmp0 = 2*src0 - 1
917 * tmp1 = 2*src1 - 1
918 *
919 * dst = tmp0 dot3 tmp1
920 */
921 emit_arith( p, OPCODE_MAD, tmp0, WRITEMASK_XYZW, 0,
922 two, src[0], neg1);
923
924 if (_mesa_memcmp(&src[0], &src[1], sizeof(struct ureg)) == 0)
925 tmp1 = tmp0;
926 else
927 emit_arith( p, OPCODE_MAD, tmp1, WRITEMASK_XYZW, 0,
928 two, src[1], neg1);
929 emit_arith( p, OPCODE_DP3, dest, mask, saturate, tmp0, tmp1, undef);
930 return dest;
931 }
932 case MODE_MODULATE_ADD_ATI:
933 /* Arg0 * Arg2 + Arg1 */
934 return emit_arith( p, OPCODE_MAD, dest, mask, saturate,
935 src[0], src[2], src[1] );
936 case MODE_MODULATE_SIGNED_ADD_ATI: {
937 /* Arg0 * Arg2 + Arg1 - 0.5 */
938 struct ureg tmp0 = get_temp(p);
939 half = get_half(p);
940 emit_arith( p, OPCODE_MAD, tmp0, mask, 0, src[0], src[2], src[1] );
941 emit_arith( p, OPCODE_SUB, dest, mask, saturate, tmp0, half, undef );
942 return dest;
943 }
944 case MODE_MODULATE_SUBTRACT_ATI:
945 /* Arg0 * Arg2 - Arg1 */
946 emit_arith( p, OPCODE_MAD, dest, mask, 0, src[0], src[2], negate(src[1]) );
947 return dest;
948 default:
949 return src[0];
950 }
951 }
952
953
954 /**
955 * Generate instructions for one texture unit's env/combiner mode.
956 */
957 static struct ureg
958 emit_texenv(struct texenv_fragment_program *p, GLuint unit)
959 {
960 struct state_key *key = p->state;
961 GLboolean saturate = (unit < p->last_tex_stage);
962 GLuint rgb_shift, alpha_shift;
963 struct ureg out, shift;
964 struct ureg dest;
965
966 if (!key->unit[unit].enabled) {
967 return get_source(p, SRC_PREVIOUS, 0);
968 }
969
970 switch (key->unit[unit].ModeRGB) {
971 case MODE_DOT3_RGB_EXT:
972 alpha_shift = key->unit[unit].ScaleShiftA;
973 rgb_shift = 0;
974 break;
975 case MODE_DOT3_RGBA_EXT:
976 alpha_shift = 0;
977 rgb_shift = 0;
978 break;
979 default:
980 rgb_shift = key->unit[unit].ScaleShiftRGB;
981 alpha_shift = key->unit[unit].ScaleShiftA;
982 break;
983 }
984
985 /* If this is the very last calculation, emit direct to output reg:
986 */
987 if (key->separate_specular ||
988 unit != p->last_tex_stage ||
989 alpha_shift ||
990 rgb_shift)
991 dest = get_temp( p );
992 else
993 dest = make_ureg(PROGRAM_OUTPUT, FRAG_RESULT_COLR);
994
995 /* Emit the RGB and A combine ops
996 */
997 if (key->unit[unit].ModeRGB == key->unit[unit].ModeA &&
998 args_match(key, unit)) {
999 out = emit_combine( p, dest, WRITEMASK_XYZW, saturate,
1000 unit,
1001 key->unit[unit].NumArgsRGB,
1002 key->unit[unit].ModeRGB,
1003 key->unit[unit].OptRGB);
1004 }
1005 else if (key->unit[unit].ModeRGB == MODE_DOT3_RGBA_EXT ||
1006 key->unit[unit].ModeRGB == MODE_DOT3_RGBA) {
1007
1008 out = emit_combine( p, dest, WRITEMASK_XYZW, saturate,
1009 unit,
1010 key->unit[unit].NumArgsRGB,
1011 key->unit[unit].ModeRGB,
1012 key->unit[unit].OptRGB);
1013 }
1014 else {
1015 /* Need to do something to stop from re-emitting identical
1016 * argument calculations here:
1017 */
1018 out = emit_combine( p, dest, WRITEMASK_XYZ, saturate,
1019 unit,
1020 key->unit[unit].NumArgsRGB,
1021 key->unit[unit].ModeRGB,
1022 key->unit[unit].OptRGB);
1023 out = emit_combine( p, dest, WRITEMASK_W, saturate,
1024 unit,
1025 key->unit[unit].NumArgsA,
1026 key->unit[unit].ModeA,
1027 key->unit[unit].OptA);
1028 }
1029
1030 /* Deal with the final shift:
1031 */
1032 if (alpha_shift || rgb_shift) {
1033 if (rgb_shift == alpha_shift) {
1034 shift = register_scalar_const(p, (GLfloat)(1<<rgb_shift));
1035 }
1036 else {
1037 shift = register_const4f(p,
1038 (GLfloat)(1<<rgb_shift),
1039 (GLfloat)(1<<rgb_shift),
1040 (GLfloat)(1<<rgb_shift),
1041 (GLfloat)(1<<alpha_shift));
1042 }
1043 return emit_arith( p, OPCODE_MUL, dest, WRITEMASK_XYZW,
1044 saturate, out, shift, undef );
1045 }
1046 else
1047 return out;
1048 }
1049
1050
1051 /**
1052 * Generate instruction for getting a texture source term.
1053 */
1054 static void load_texture( struct texenv_fragment_program *p, GLuint unit )
1055 {
1056 if (is_undef(p->src_texture[unit])) {
1057 GLuint dim = p->state->unit[unit].source_index;
1058 struct ureg texcoord = register_input(p, FRAG_ATTRIB_TEX0+unit);
1059 struct ureg tmp = get_tex_temp( p );
1060
1061 if (dim == TEXTURE_UNKNOWN_INDEX)
1062 program_error(p, "TexSrcBit");
1063
1064 /* TODO: Use D0_MASK_XY where possible.
1065 */
1066 if (p->state->unit[unit].enabled) {
1067 p->src_texture[unit] = emit_texld( p, OPCODE_TXP,
1068 tmp, WRITEMASK_XYZW,
1069 unit, dim, texcoord );
1070
1071 if (p->state->unit[unit].shadow)
1072 p->program->Base.ShadowSamplers |= 1 << unit;
1073
1074 p->program->Base.SamplersUsed |= (1 << unit);
1075 /* This identity mapping should already be in place
1076 * (see _mesa_init_program_struct()) but let's be safe.
1077 */
1078 p->program->Base.SamplerUnits[unit] = unit;
1079 }
1080 else
1081 p->src_texture[unit] = get_zero(p);
1082 }
1083 }
1084
1085 static GLboolean load_texenv_source( struct texenv_fragment_program *p,
1086 GLuint src, GLuint unit )
1087 {
1088 switch (src) {
1089 case SRC_TEXTURE:
1090 load_texture(p, unit);
1091 break;
1092
1093 case SRC_TEXTURE0:
1094 case SRC_TEXTURE1:
1095 case SRC_TEXTURE2:
1096 case SRC_TEXTURE3:
1097 case SRC_TEXTURE4:
1098 case SRC_TEXTURE5:
1099 case SRC_TEXTURE6:
1100 case SRC_TEXTURE7:
1101 load_texture(p, src - SRC_TEXTURE0);
1102 break;
1103
1104 default:
1105 break;
1106 }
1107
1108 return GL_TRUE;
1109 }
1110
1111
1112 /**
1113 * Generate instructions for loading all texture source terms.
1114 */
1115 static GLboolean
1116 load_texunit_sources( struct texenv_fragment_program *p, int unit )
1117 {
1118 struct state_key *key = p->state;
1119 GLuint i;
1120
1121 for (i = 0; i < key->unit[unit].NumArgsRGB; i++) {
1122 load_texenv_source( p, key->unit[unit].OptRGB[i].Source, unit);
1123 }
1124
1125 for (i = 0; i < key->unit[unit].NumArgsA; i++) {
1126 load_texenv_source( p, key->unit[unit].OptA[i].Source, unit );
1127 }
1128
1129 return GL_TRUE;
1130 }
1131
1132
1133 /**
1134 * Generate a new fragment program which implements the context's
1135 * current texture env/combine mode.
1136 */
1137 static void
1138 create_new_program(GLcontext *ctx, struct state_key *key,
1139 struct gl_fragment_program *program)
1140 {
1141 struct prog_instruction instBuffer[MAX_INSTRUCTIONS];
1142 struct texenv_fragment_program p;
1143 GLuint unit;
1144 struct ureg cf, out;
1145
1146 _mesa_memset(&p, 0, sizeof(p));
1147 p.ctx = ctx;
1148 p.state = key;
1149 p.program = program;
1150
1151 /* During code generation, use locally-allocated instruction buffer,
1152 * then alloc dynamic storage below.
1153 */
1154 p.program->Base.Instructions = instBuffer;
1155 p.program->Base.Target = GL_FRAGMENT_PROGRAM_ARB;
1156 p.program->Base.NumTexIndirections = 1; /* correct? */
1157 p.program->Base.NumTexInstructions = 0;
1158 p.program->Base.NumAluInstructions = 0;
1159 p.program->Base.String = NULL;
1160 p.program->Base.NumInstructions =
1161 p.program->Base.NumTemporaries =
1162 p.program->Base.NumParameters =
1163 p.program->Base.NumAttributes = p.program->Base.NumAddressRegs = 0;
1164 p.program->Base.Parameters = _mesa_new_parameter_list();
1165
1166 p.program->Base.InputsRead = 0;
1167 p.program->Base.OutputsWritten = 1 << FRAG_RESULT_COLR;
1168
1169 for (unit = 0; unit < MAX_TEXTURE_UNITS; unit++)
1170 p.src_texture[unit] = undef;
1171
1172 p.src_previous = undef;
1173 p.half = undef;
1174 p.zero = undef;
1175 p.one = undef;
1176
1177 p.last_tex_stage = 0;
1178 release_temps(ctx, &p);
1179
1180 if (key->enabled_units) {
1181 /* First pass - to support texture_env_crossbar, first identify
1182 * all referenced texture sources and emit texld instructions
1183 * for each:
1184 */
1185 for (unit = 0 ; unit < ctx->Const.MaxTextureUnits ; unit++)
1186 if (key->unit[unit].enabled) {
1187 load_texunit_sources( &p, unit );
1188 p.last_tex_stage = unit;
1189 }
1190
1191 /* Second pass - emit combine instructions to build final color:
1192 */
1193 for (unit = 0 ; unit < ctx->Const.MaxTextureUnits; unit++)
1194 if (key->enabled_units & (1<<unit)) {
1195 p.src_previous = emit_texenv( &p, unit );
1196 reserve_temp(&p, p.src_previous); /* don't re-use this temp reg */
1197 release_temps(ctx, &p); /* release all temps */
1198 }
1199 }
1200
1201 cf = get_source( &p, SRC_PREVIOUS, 0 );
1202 out = make_ureg( PROGRAM_OUTPUT, FRAG_RESULT_COLR );
1203
1204 if (key->separate_specular) {
1205 /* Emit specular add.
1206 */
1207 struct ureg s = register_input(&p, FRAG_ATTRIB_COL1);
1208 emit_arith( &p, OPCODE_ADD, out, WRITEMASK_XYZ, 0, cf, s, undef );
1209 emit_arith( &p, OPCODE_MOV, out, WRITEMASK_W, 0, cf, undef, undef );
1210 }
1211 else if (_mesa_memcmp(&cf, &out, sizeof(cf)) != 0) {
1212 /* Will wind up in here if no texture enabled or a couple of
1213 * other scenarios (GL_REPLACE for instance).
1214 */
1215 emit_arith( &p, OPCODE_MOV, out, WRITEMASK_XYZW, 0, cf, undef, undef );
1216 }
1217
1218 /* Finish up:
1219 */
1220 emit_arith( &p, OPCODE_END, undef, WRITEMASK_XYZW, 0, undef, undef, undef);
1221
1222 if (key->fog_enabled) {
1223 /* Pull fog mode from GLcontext, the value in the state key is
1224 * a reduced value and not what is expected in FogOption
1225 */
1226 p.program->FogOption = ctx->Fog.Mode;
1227 p.program->Base.InputsRead |= FRAG_BIT_FOGC; /* XXX new */
1228 } else
1229 p.program->FogOption = GL_NONE;
1230
1231 if (p.program->Base.NumTexIndirections > ctx->Const.FragmentProgram.MaxTexIndirections)
1232 program_error(&p, "Exceeded max nr indirect texture lookups");
1233
1234 if (p.program->Base.NumTexInstructions > ctx->Const.FragmentProgram.MaxTexInstructions)
1235 program_error(&p, "Exceeded max TEX instructions");
1236
1237 if (p.program->Base.NumAluInstructions > ctx->Const.FragmentProgram.MaxAluInstructions)
1238 program_error(&p, "Exceeded max ALU instructions");
1239
1240 ASSERT(p.program->Base.NumInstructions <= MAX_INSTRUCTIONS);
1241
1242 /* Allocate final instruction array */
1243 p.program->Base.Instructions
1244 = _mesa_alloc_instructions(p.program->Base.NumInstructions);
1245 if (!p.program->Base.Instructions) {
1246 _mesa_error(ctx, GL_OUT_OF_MEMORY,
1247 "generating tex env program");
1248 return;
1249 }
1250 _mesa_copy_instructions(p.program->Base.Instructions, instBuffer,
1251 p.program->Base.NumInstructions);
1252
1253 if (p.program->FogOption) {
1254 _mesa_append_fog_code(ctx, p.program);
1255 p.program->FogOption = GL_NONE;
1256 }
1257
1258
1259 /* Notify driver the fragment program has (actually) changed.
1260 */
1261 if (ctx->Driver.ProgramStringNotify) {
1262 ctx->Driver.ProgramStringNotify( ctx, GL_FRAGMENT_PROGRAM_ARB,
1263 &p.program->Base );
1264 }
1265
1266 if (DISASSEM) {
1267 _mesa_print_program(&p.program->Base);
1268 _mesa_printf("\n");
1269 }
1270 }
1271
1272
1273 /**
1274 * Return a fragment program which implements the current
1275 * fixed-function texture, fog and color-sum operations.
1276 */
1277 struct gl_fragment_program *
1278 _mesa_get_fixed_func_fragment_program(GLcontext *ctx)
1279 {
1280 struct gl_fragment_program *prog;
1281 struct state_key key;
1282
1283 make_state_key(ctx, &key);
1284
1285 prog = (struct gl_fragment_program *)
1286 _mesa_search_program_cache(ctx->FragmentProgram.Cache,
1287 &key, sizeof(key));
1288
1289 if (!prog) {
1290 prog = (struct gl_fragment_program *)
1291 ctx->Driver.NewProgram(ctx, GL_FRAGMENT_PROGRAM_ARB, 0);
1292
1293 create_new_program(ctx, &key, prog);
1294
1295 _mesa_program_cache_insert(ctx, ctx->FragmentProgram.Cache,
1296 &key, sizeof(key), &prog->Base);
1297 }
1298
1299 return prog;
1300 }
1301
1302
1303
1304 /**
1305 * If _MaintainTexEnvProgram is set we'll generate a fragment program that
1306 * implements the current texture env/combine mode.
1307 * This function generates that program and puts it into effect.
1308 *
1309 * XXX: remove this function. currently only called by some drivers,
1310 * not by mesa core. We now handle this properly from inside mesa.
1311 */
1312 void
1313 _mesa_UpdateTexEnvProgram( GLcontext *ctx )
1314 {
1315 const struct gl_fragment_program *prev = ctx->FragmentProgram._Current;
1316
1317 ASSERT(ctx->FragmentProgram._MaintainTexEnvProgram);
1318
1319 /* If a conventional fragment program/shader isn't in effect... */
1320 if (!ctx->FragmentProgram._Enabled &&
1321 (!ctx->Shader.CurrentProgram ||
1322 !ctx->Shader.CurrentProgram->FragmentProgram) )
1323 {
1324 struct gl_fragment_program *newProg;
1325
1326 newProg = _mesa_get_fixed_func_fragment_program(ctx);
1327
1328 _mesa_reference_fragprog(ctx, &ctx->FragmentProgram._Current, newProg);
1329 _mesa_reference_fragprog(ctx, &ctx->FragmentProgram._TexEnvProgram, newProg);
1330 }
1331
1332 /* Tell the driver about the change. Could define a new target for
1333 * this?
1334 */
1335 if (ctx->FragmentProgram._Current != prev && ctx->Driver.BindProgram) {
1336 ctx->Driver.BindProgram(ctx, GL_FRAGMENT_PROGRAM_ARB,
1337 (struct gl_program *) ctx->FragmentProgram._Current);
1338 }
1339 }