mesa: change conditional to match the previous one
[mesa.git] / src / mesa / main / texenvprogram.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 * Copyright 2009 VMware, Inc. All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 #include "glheader.h"
30 #include "imports.h"
31 #include "shader/program.h"
32 #include "shader/prog_parameter.h"
33 #include "shader/prog_cache.h"
34 #include "shader/prog_instruction.h"
35 #include "shader/prog_print.h"
36 #include "shader/prog_statevars.h"
37 #include "shader/programopt.h"
38 #include "texenvprogram.h"
39
40
41 /*
42 * Note on texture units:
43 *
44 * The number of texture units supported by fixed-function fragment
45 * processing is MAX_TEXTURE_COORD_UNITS, not MAX_TEXTURE_IMAGE_UNITS.
46 * That's because there's a one-to-one correspondence between texture
47 * coordinates and samplers in fixed-function processing.
48 *
49 * Since fixed-function vertex processing is limited to MAX_TEXTURE_COORD_UNITS
50 * sets of texcoords, so is fixed-function fragment processing.
51 *
52 * We can safely use ctx->Const.MaxTextureUnits for loop bounds.
53 */
54
55
56 struct texenvprog_cache_item
57 {
58 GLuint hash;
59 void *key;
60 struct gl_fragment_program *data;
61 struct texenvprog_cache_item *next;
62 };
63
64 static GLboolean
65 texenv_doing_secondary_color(GLcontext *ctx)
66 {
67 if (ctx->Light.Enabled &&
68 (ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR))
69 return GL_TRUE;
70
71 if (ctx->Fog.ColorSumEnabled)
72 return GL_TRUE;
73
74 return GL_FALSE;
75 }
76
77 /**
78 * Up to nine instructions per tex unit, plus fog, specular color.
79 */
80 #define MAX_INSTRUCTIONS ((MAX_TEXTURE_COORD_UNITS * 9) + 12)
81
82 #define DISASSEM (MESA_VERBOSE & VERBOSE_DISASSEM)
83
84 struct mode_opt {
85 GLuint Source:4; /**< SRC_x */
86 GLuint Operand:3; /**< OPR_x */
87 };
88
89 struct state_key {
90 GLuint nr_enabled_units:8;
91 GLuint enabled_units:8;
92 GLuint separate_specular:1;
93 GLuint fog_enabled:1;
94 GLuint fog_mode:2; /**< FOG_x */
95 GLuint inputs_available:12;
96
97 struct {
98 GLuint enabled:1;
99 GLuint source_index:3; /**< TEXTURE_x_INDEX */
100 GLuint shadow:1;
101 GLuint ScaleShiftRGB:2;
102 GLuint ScaleShiftA:2;
103
104 GLuint NumArgsRGB:3; /**< up to MAX_COMBINER_TERMS */
105 GLuint ModeRGB:5; /**< MODE_x */
106 struct mode_opt OptRGB[MAX_COMBINER_TERMS];
107
108 GLuint NumArgsA:3; /**< up to MAX_COMBINER_TERMS */
109 GLuint ModeA:5; /**< MODE_x */
110 struct mode_opt OptA[MAX_COMBINER_TERMS];
111 } unit[MAX_TEXTURE_UNITS];
112 };
113
114 #define FOG_LINEAR 0
115 #define FOG_EXP 1
116 #define FOG_EXP2 2
117 #define FOG_UNKNOWN 3
118
119 static GLuint translate_fog_mode( GLenum mode )
120 {
121 switch (mode) {
122 case GL_LINEAR: return FOG_LINEAR;
123 case GL_EXP: return FOG_EXP;
124 case GL_EXP2: return FOG_EXP2;
125 default: return FOG_UNKNOWN;
126 }
127 }
128
129 #define OPR_SRC_COLOR 0
130 #define OPR_ONE_MINUS_SRC_COLOR 1
131 #define OPR_SRC_ALPHA 2
132 #define OPR_ONE_MINUS_SRC_ALPHA 3
133 #define OPR_ZERO 4
134 #define OPR_ONE 5
135 #define OPR_UNKNOWN 7
136
137 static GLuint translate_operand( GLenum operand )
138 {
139 switch (operand) {
140 case GL_SRC_COLOR: return OPR_SRC_COLOR;
141 case GL_ONE_MINUS_SRC_COLOR: return OPR_ONE_MINUS_SRC_COLOR;
142 case GL_SRC_ALPHA: return OPR_SRC_ALPHA;
143 case GL_ONE_MINUS_SRC_ALPHA: return OPR_ONE_MINUS_SRC_ALPHA;
144 case GL_ZERO: return OPR_ZERO;
145 case GL_ONE: return OPR_ONE;
146 default:
147 assert(0);
148 return OPR_UNKNOWN;
149 }
150 }
151
152 #define SRC_TEXTURE 0
153 #define SRC_TEXTURE0 1
154 #define SRC_TEXTURE1 2
155 #define SRC_TEXTURE2 3
156 #define SRC_TEXTURE3 4
157 #define SRC_TEXTURE4 5
158 #define SRC_TEXTURE5 6
159 #define SRC_TEXTURE6 7
160 #define SRC_TEXTURE7 8
161 #define SRC_CONSTANT 9
162 #define SRC_PRIMARY_COLOR 10
163 #define SRC_PREVIOUS 11
164 #define SRC_ZERO 12
165 #define SRC_UNKNOWN 15
166
167 static GLuint translate_source( GLenum src )
168 {
169 switch (src) {
170 case GL_TEXTURE: return SRC_TEXTURE;
171 case GL_TEXTURE0:
172 case GL_TEXTURE1:
173 case GL_TEXTURE2:
174 case GL_TEXTURE3:
175 case GL_TEXTURE4:
176 case GL_TEXTURE5:
177 case GL_TEXTURE6:
178 case GL_TEXTURE7: return SRC_TEXTURE0 + (src - GL_TEXTURE0);
179 case GL_CONSTANT: return SRC_CONSTANT;
180 case GL_PRIMARY_COLOR: return SRC_PRIMARY_COLOR;
181 case GL_PREVIOUS: return SRC_PREVIOUS;
182 case GL_ZERO:
183 return SRC_ZERO;
184 default:
185 assert(0);
186 return SRC_UNKNOWN;
187 }
188 }
189
190 #define MODE_REPLACE 0 /* r = a0 */
191 #define MODE_MODULATE 1 /* r = a0 * a1 */
192 #define MODE_ADD 2 /* r = a0 + a1 */
193 #define MODE_ADD_SIGNED 3 /* r = a0 + a1 - 0.5 */
194 #define MODE_INTERPOLATE 4 /* r = a0 * a2 + a1 * (1 - a2) */
195 #define MODE_SUBTRACT 5 /* r = a0 - a1 */
196 #define MODE_DOT3_RGB 6 /* r = a0 . a1 */
197 #define MODE_DOT3_RGB_EXT 7 /* r = a0 . a1 */
198 #define MODE_DOT3_RGBA 8 /* r = a0 . a1 */
199 #define MODE_DOT3_RGBA_EXT 9 /* r = a0 . a1 */
200 #define MODE_MODULATE_ADD_ATI 10 /* r = a0 * a2 + a1 */
201 #define MODE_MODULATE_SIGNED_ADD_ATI 11 /* r = a0 * a2 + a1 - 0.5 */
202 #define MODE_MODULATE_SUBTRACT_ATI 12 /* r = a0 * a2 - a1 */
203 #define MODE_ADD_PRODUCTS 13 /* r = a0 * a1 + a2 * a3 */
204 #define MODE_ADD_PRODUCTS_SIGNED 14 /* r = a0 * a1 + a2 * a3 - 0.5 */
205 #define MODE_BUMP_ENVMAP_ATI 15 /* special */
206 #define MODE_UNKNOWN 16
207
208 /**
209 * Translate GL combiner state into a MODE_x value
210 */
211 static GLuint translate_mode( GLenum envMode, GLenum mode )
212 {
213 switch (mode) {
214 case GL_REPLACE: return MODE_REPLACE;
215 case GL_MODULATE: return MODE_MODULATE;
216 case GL_ADD:
217 if (envMode == GL_COMBINE4_NV)
218 return MODE_ADD_PRODUCTS;
219 else
220 return MODE_ADD;
221 case GL_ADD_SIGNED:
222 if (envMode == GL_COMBINE4_NV)
223 return MODE_ADD_PRODUCTS_SIGNED;
224 else
225 return MODE_ADD_SIGNED;
226 case GL_INTERPOLATE: return MODE_INTERPOLATE;
227 case GL_SUBTRACT: return MODE_SUBTRACT;
228 case GL_DOT3_RGB: return MODE_DOT3_RGB;
229 case GL_DOT3_RGB_EXT: return MODE_DOT3_RGB_EXT;
230 case GL_DOT3_RGBA: return MODE_DOT3_RGBA;
231 case GL_DOT3_RGBA_EXT: return MODE_DOT3_RGBA_EXT;
232 case GL_MODULATE_ADD_ATI: return MODE_MODULATE_ADD_ATI;
233 case GL_MODULATE_SIGNED_ADD_ATI: return MODE_MODULATE_SIGNED_ADD_ATI;
234 case GL_MODULATE_SUBTRACT_ATI: return MODE_MODULATE_SUBTRACT_ATI;
235 case GL_BUMP_ENVMAP_ATI: return MODE_BUMP_ENVMAP_ATI;
236 default:
237 assert(0);
238 return MODE_UNKNOWN;
239 }
240 }
241
242
243 /**
244 * Translate TEXTURE_x_BIT to TEXTURE_x_INDEX.
245 */
246 static GLuint translate_tex_src_bit( GLbitfield bit )
247 {
248 ASSERT(bit);
249 return _mesa_ffs(bit) - 1;
250 }
251
252
253 #define VERT_BIT_TEX_ANY (0xff << VERT_ATTRIB_TEX0)
254 #define VERT_RESULT_TEX_ANY (0xff << VERT_RESULT_TEX0)
255
256 /**
257 * Identify all possible varying inputs. The fragment program will
258 * never reference non-varying inputs, but will track them via state
259 * constants instead.
260 *
261 * This function figures out all the inputs that the fragment program
262 * has access to. The bitmask is later reduced to just those which
263 * are actually referenced.
264 */
265 static GLbitfield get_fp_input_mask( GLcontext *ctx )
266 {
267 /* _NEW_PROGRAM */
268 const GLboolean vertexShader = (ctx->Shader.CurrentProgram &&
269 ctx->Shader.CurrentProgram->LinkStatus &&
270 ctx->Shader.CurrentProgram->VertexProgram);
271 const GLboolean vertexProgram = ctx->VertexProgram._Enabled;
272 GLbitfield fp_inputs = 0x0;
273
274 if (ctx->VertexProgram._Overriden) {
275 /* Somebody's messing with the vertex program and we don't have
276 * a clue what's happening. Assume that it could be producing
277 * all possible outputs.
278 */
279 fp_inputs = ~0;
280 }
281 else if (ctx->RenderMode == GL_FEEDBACK) {
282 /* _NEW_RENDERMODE */
283 fp_inputs = (FRAG_BIT_COL0 | FRAG_BIT_TEX0);
284 }
285 else if (!(vertexProgram || vertexShader) ||
286 !ctx->VertexProgram._Current) {
287 /* Fixed function vertex logic */
288 /* _NEW_ARRAY */
289 GLbitfield varying_inputs = ctx->varying_vp_inputs;
290
291 /* These get generated in the setup routine regardless of the
292 * vertex program:
293 */
294 /* _NEW_POINT */
295 if (ctx->Point.PointSprite)
296 varying_inputs |= FRAG_BITS_TEX_ANY;
297
298 /* First look at what values may be computed by the generated
299 * vertex program:
300 */
301 /* _NEW_LIGHT */
302 if (ctx->Light.Enabled) {
303 fp_inputs |= FRAG_BIT_COL0;
304
305 if (texenv_doing_secondary_color(ctx))
306 fp_inputs |= FRAG_BIT_COL1;
307 }
308
309 /* _NEW_TEXTURE */
310 fp_inputs |= (ctx->Texture._TexGenEnabled |
311 ctx->Texture._TexMatEnabled) << FRAG_ATTRIB_TEX0;
312
313 /* Then look at what might be varying as a result of enabled
314 * arrays, etc:
315 */
316 if (varying_inputs & VERT_BIT_COLOR0)
317 fp_inputs |= FRAG_BIT_COL0;
318 if (varying_inputs & VERT_BIT_COLOR1)
319 fp_inputs |= FRAG_BIT_COL1;
320
321 fp_inputs |= (((varying_inputs & VERT_BIT_TEX_ANY) >> VERT_ATTRIB_TEX0)
322 << FRAG_ATTRIB_TEX0);
323
324 }
325 else {
326 /* calculate from vp->outputs */
327 struct gl_vertex_program *vprog;
328 GLbitfield vp_outputs;
329
330 /* Choose GLSL vertex shader over ARB vertex program. Need this
331 * since vertex shader state validation comes after fragment state
332 * validation (see additional comments in state.c).
333 */
334 if (vertexShader)
335 vprog = ctx->Shader.CurrentProgram->VertexProgram;
336 else
337 vprog = ctx->VertexProgram.Current;
338
339 vp_outputs = vprog->Base.OutputsWritten;
340
341 /* These get generated in the setup routine regardless of the
342 * vertex program:
343 */
344 /* _NEW_POINT */
345 if (ctx->Point.PointSprite)
346 vp_outputs |= FRAG_BITS_TEX_ANY;
347
348 if (vp_outputs & (1 << VERT_RESULT_COL0))
349 fp_inputs |= FRAG_BIT_COL0;
350 if (vp_outputs & (1 << VERT_RESULT_COL1))
351 fp_inputs |= FRAG_BIT_COL1;
352
353 fp_inputs |= (((vp_outputs & VERT_RESULT_TEX_ANY) >> VERT_RESULT_TEX0)
354 << FRAG_ATTRIB_TEX0);
355 }
356
357 return fp_inputs;
358 }
359
360
361 /**
362 * Examine current texture environment state and generate a unique
363 * key to identify it.
364 */
365 static void make_state_key( GLcontext *ctx, struct state_key *key )
366 {
367 GLuint i, j;
368 GLbitfield inputs_referenced = FRAG_BIT_COL0;
369 const GLbitfield inputs_available = get_fp_input_mask( ctx );
370
371 memset(key, 0, sizeof(*key));
372
373 /* _NEW_TEXTURE */
374 for (i = 0; i < ctx->Const.MaxTextureUnits; i++) {
375 const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
376 const struct gl_texture_object *texObj = texUnit->_Current;
377 const struct gl_tex_env_combine_state *comb = texUnit->_CurrentCombine;
378 GLenum format;
379
380 if (!texUnit->_ReallyEnabled || !texUnit->Enabled)
381 continue;
382
383 format = texObj->Image[0][texObj->BaseLevel]->_BaseFormat;
384
385 key->unit[i].enabled = 1;
386 key->enabled_units |= (1<<i);
387 key->nr_enabled_units = i+1;
388 inputs_referenced |= FRAG_BIT_TEX(i);
389
390 key->unit[i].source_index =
391 translate_tex_src_bit(texUnit->_ReallyEnabled);
392
393 key->unit[i].shadow = ((texObj->CompareMode == GL_COMPARE_R_TO_TEXTURE) &&
394 ((format == GL_DEPTH_COMPONENT) ||
395 (format == GL_DEPTH_STENCIL_EXT)));
396
397 key->unit[i].NumArgsRGB = comb->_NumArgsRGB;
398 key->unit[i].NumArgsA = comb->_NumArgsA;
399
400 key->unit[i].ModeRGB =
401 translate_mode(texUnit->EnvMode, comb->ModeRGB);
402 key->unit[i].ModeA =
403 translate_mode(texUnit->EnvMode, comb->ModeA);
404
405 key->unit[i].ScaleShiftRGB = comb->ScaleShiftRGB;
406 key->unit[i].ScaleShiftA = comb->ScaleShiftA;
407
408 for (j = 0; j < MAX_COMBINER_TERMS; j++) {
409 key->unit[i].OptRGB[j].Operand = translate_operand(comb->OperandRGB[j]);
410 key->unit[i].OptA[j].Operand = translate_operand(comb->OperandA[j]);
411 key->unit[i].OptRGB[j].Source = translate_source(comb->SourceRGB[j]);
412 key->unit[i].OptA[j].Source = translate_source(comb->SourceA[j]);
413 }
414
415 if (key->unit[i].ModeRGB == MODE_BUMP_ENVMAP_ATI) {
416 /* requires some special translation */
417 key->unit[i].NumArgsRGB = 2;
418 key->unit[i].ScaleShiftRGB = 0;
419 key->unit[i].OptRGB[0].Operand = OPR_SRC_COLOR;
420 key->unit[i].OptRGB[0].Source = SRC_TEXTURE;
421 key->unit[i].OptRGB[1].Operand = OPR_SRC_COLOR;
422 key->unit[i].OptRGB[1].Source = texUnit->BumpTarget - GL_TEXTURE0 + SRC_TEXTURE0;
423 }
424 }
425
426 /* _NEW_LIGHT | _NEW_FOG */
427 if (texenv_doing_secondary_color(ctx)) {
428 key->separate_specular = 1;
429 inputs_referenced |= FRAG_BIT_COL1;
430 }
431
432 /* _NEW_FOG */
433 if (ctx->Fog.Enabled) {
434 key->fog_enabled = 1;
435 key->fog_mode = translate_fog_mode(ctx->Fog.Mode);
436 inputs_referenced |= FRAG_BIT_FOGC; /* maybe */
437 }
438
439 key->inputs_available = (inputs_available & inputs_referenced);
440 }
441
442 /**
443 * Use uregs to represent registers internally, translate to Mesa's
444 * expected formats on emit.
445 *
446 * NOTE: These are passed by value extensively in this file rather
447 * than as usual by pointer reference. If this disturbs you, try
448 * remembering they are just 32bits in size.
449 *
450 * GCC is smart enough to deal with these dword-sized structures in
451 * much the same way as if I had defined them as dwords and was using
452 * macros to access and set the fields. This is much nicer and easier
453 * to evolve.
454 */
455 struct ureg {
456 GLuint file:4;
457 GLuint idx:8;
458 GLuint negatebase:1;
459 GLuint swz:12;
460 GLuint pad:7;
461 };
462
463 static const struct ureg undef = {
464 PROGRAM_UNDEFINED,
465 ~0,
466 0,
467 0,
468 0
469 };
470
471
472 /** State used to build the fragment program:
473 */
474 struct texenv_fragment_program {
475 struct gl_fragment_program *program;
476 struct state_key *state;
477
478 GLbitfield alu_temps; /**< Track texture indirections, see spec. */
479 GLbitfield temps_output; /**< Track texture indirections, see spec. */
480 GLbitfield temp_in_use; /**< Tracks temporary regs which are in use. */
481 GLboolean error;
482
483 struct ureg src_texture[MAX_TEXTURE_COORD_UNITS];
484 /* Reg containing each texture unit's sampled texture color,
485 * else undef.
486 */
487
488 struct ureg texcoord_tex[MAX_TEXTURE_COORD_UNITS];
489 /* Reg containing texcoord for a texture unit,
490 * needed for bump mapping, else undef.
491 */
492
493 struct ureg src_previous; /**< Reg containing color from previous
494 * stage. May need to be decl'd.
495 */
496
497 GLuint last_tex_stage; /**< Number of last enabled texture unit */
498
499 struct ureg half;
500 struct ureg one;
501 struct ureg zero;
502 };
503
504
505
506 static struct ureg make_ureg(GLuint file, GLuint idx)
507 {
508 struct ureg reg;
509 reg.file = file;
510 reg.idx = idx;
511 reg.negatebase = 0;
512 reg.swz = SWIZZLE_NOOP;
513 reg.pad = 0;
514 return reg;
515 }
516
517 static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w )
518 {
519 reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x),
520 GET_SWZ(reg.swz, y),
521 GET_SWZ(reg.swz, z),
522 GET_SWZ(reg.swz, w));
523
524 return reg;
525 }
526
527 static struct ureg swizzle1( struct ureg reg, int x )
528 {
529 return swizzle(reg, x, x, x, x);
530 }
531
532 static struct ureg negate( struct ureg reg )
533 {
534 reg.negatebase ^= 1;
535 return reg;
536 }
537
538 static GLboolean is_undef( struct ureg reg )
539 {
540 return reg.file == PROGRAM_UNDEFINED;
541 }
542
543
544 static struct ureg get_temp( struct texenv_fragment_program *p )
545 {
546 GLint bit;
547
548 /* First try and reuse temps which have been used already:
549 */
550 bit = _mesa_ffs( ~p->temp_in_use & p->alu_temps );
551
552 /* Then any unused temporary:
553 */
554 if (!bit)
555 bit = _mesa_ffs( ~p->temp_in_use );
556
557 if (!bit) {
558 _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
559 _mesa_exit(1);
560 }
561
562 if ((GLuint) bit > p->program->Base.NumTemporaries)
563 p->program->Base.NumTemporaries = bit;
564
565 p->temp_in_use |= 1<<(bit-1);
566 return make_ureg(PROGRAM_TEMPORARY, (bit-1));
567 }
568
569 static struct ureg get_tex_temp( struct texenv_fragment_program *p )
570 {
571 int bit;
572
573 /* First try to find available temp not previously used (to avoid
574 * starting a new texture indirection). According to the spec, the
575 * ~p->temps_output isn't necessary, but will keep it there for
576 * now:
577 */
578 bit = _mesa_ffs( ~p->temp_in_use & ~p->alu_temps & ~p->temps_output );
579
580 /* Then any unused temporary:
581 */
582 if (!bit)
583 bit = _mesa_ffs( ~p->temp_in_use );
584
585 if (!bit) {
586 _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
587 _mesa_exit(1);
588 }
589
590 if ((GLuint) bit > p->program->Base.NumTemporaries)
591 p->program->Base.NumTemporaries = bit;
592
593 p->temp_in_use |= 1<<(bit-1);
594 return make_ureg(PROGRAM_TEMPORARY, (bit-1));
595 }
596
597
598 /** Mark a temp reg as being no longer allocatable. */
599 static void reserve_temp( struct texenv_fragment_program *p, struct ureg r )
600 {
601 if (r.file == PROGRAM_TEMPORARY)
602 p->temps_output |= (1 << r.idx);
603 }
604
605
606 static void release_temps(GLcontext *ctx, struct texenv_fragment_program *p )
607 {
608 GLuint max_temp = ctx->Const.FragmentProgram.MaxTemps;
609
610 /* KW: To support tex_env_crossbar, don't release the registers in
611 * temps_output.
612 */
613 if (max_temp >= sizeof(int) * 8)
614 p->temp_in_use = p->temps_output;
615 else
616 p->temp_in_use = ~((1<<max_temp)-1) | p->temps_output;
617 }
618
619
620 static struct ureg register_param5( struct texenv_fragment_program *p,
621 GLint s0,
622 GLint s1,
623 GLint s2,
624 GLint s3,
625 GLint s4)
626 {
627 gl_state_index tokens[STATE_LENGTH];
628 GLuint idx;
629 tokens[0] = s0;
630 tokens[1] = s1;
631 tokens[2] = s2;
632 tokens[3] = s3;
633 tokens[4] = s4;
634 idx = _mesa_add_state_reference( p->program->Base.Parameters, tokens );
635 return make_ureg(PROGRAM_STATE_VAR, idx);
636 }
637
638
639 #define register_param1(p,s0) register_param5(p,s0,0,0,0,0)
640 #define register_param2(p,s0,s1) register_param5(p,s0,s1,0,0,0)
641 #define register_param3(p,s0,s1,s2) register_param5(p,s0,s1,s2,0,0)
642 #define register_param4(p,s0,s1,s2,s3) register_param5(p,s0,s1,s2,s3,0)
643
644 static GLuint frag_to_vert_attrib( GLuint attrib )
645 {
646 switch (attrib) {
647 case FRAG_ATTRIB_COL0: return VERT_ATTRIB_COLOR0;
648 case FRAG_ATTRIB_COL1: return VERT_ATTRIB_COLOR1;
649 default:
650 assert(attrib >= FRAG_ATTRIB_TEX0);
651 assert(attrib <= FRAG_ATTRIB_TEX7);
652 return attrib - FRAG_ATTRIB_TEX0 + VERT_ATTRIB_TEX0;
653 }
654 }
655
656
657 static struct ureg register_input( struct texenv_fragment_program *p, GLuint input )
658 {
659 if (p->state->inputs_available & (1<<input)) {
660 p->program->Base.InputsRead |= (1 << input);
661 return make_ureg(PROGRAM_INPUT, input);
662 }
663 else {
664 GLuint idx = frag_to_vert_attrib( input );
665 return register_param3( p, STATE_INTERNAL, STATE_CURRENT_ATTRIB, idx );
666 }
667 }
668
669
670 static void emit_arg( struct prog_src_register *reg,
671 struct ureg ureg )
672 {
673 reg->File = ureg.file;
674 reg->Index = ureg.idx;
675 reg->Swizzle = ureg.swz;
676 reg->Negate = ureg.negatebase ? NEGATE_XYZW : NEGATE_NONE;
677 reg->Abs = GL_FALSE;
678 }
679
680 static void emit_dst( struct prog_dst_register *dst,
681 struct ureg ureg, GLuint mask )
682 {
683 dst->File = ureg.file;
684 dst->Index = ureg.idx;
685 dst->WriteMask = mask;
686 dst->CondMask = COND_TR; /* always pass cond test */
687 dst->CondSwizzle = SWIZZLE_NOOP;
688 }
689
690 static struct prog_instruction *
691 emit_op(struct texenv_fragment_program *p,
692 enum prog_opcode op,
693 struct ureg dest,
694 GLuint mask,
695 GLboolean saturate,
696 struct ureg src0,
697 struct ureg src1,
698 struct ureg src2 )
699 {
700 const GLuint nr = p->program->Base.NumInstructions++;
701 struct prog_instruction *inst = &p->program->Base.Instructions[nr];
702
703 assert(nr < MAX_INSTRUCTIONS);
704
705 _mesa_init_instructions(inst, 1);
706 inst->Opcode = op;
707
708 emit_arg( &inst->SrcReg[0], src0 );
709 emit_arg( &inst->SrcReg[1], src1 );
710 emit_arg( &inst->SrcReg[2], src2 );
711
712 inst->SaturateMode = saturate ? SATURATE_ZERO_ONE : SATURATE_OFF;
713
714 emit_dst( &inst->DstReg, dest, mask );
715
716 #if 0
717 /* Accounting for indirection tracking:
718 */
719 if (dest.file == PROGRAM_TEMPORARY)
720 p->temps_output |= 1 << dest.idx;
721 #endif
722
723 return inst;
724 }
725
726
727 static struct ureg emit_arith( struct texenv_fragment_program *p,
728 enum prog_opcode op,
729 struct ureg dest,
730 GLuint mask,
731 GLboolean saturate,
732 struct ureg src0,
733 struct ureg src1,
734 struct ureg src2 )
735 {
736 emit_op(p, op, dest, mask, saturate, src0, src1, src2);
737
738 /* Accounting for indirection tracking:
739 */
740 if (src0.file == PROGRAM_TEMPORARY)
741 p->alu_temps |= 1 << src0.idx;
742
743 if (!is_undef(src1) && src1.file == PROGRAM_TEMPORARY)
744 p->alu_temps |= 1 << src1.idx;
745
746 if (!is_undef(src2) && src2.file == PROGRAM_TEMPORARY)
747 p->alu_temps |= 1 << src2.idx;
748
749 if (dest.file == PROGRAM_TEMPORARY)
750 p->alu_temps |= 1 << dest.idx;
751
752 p->program->Base.NumAluInstructions++;
753 return dest;
754 }
755
756 static struct ureg emit_texld( struct texenv_fragment_program *p,
757 enum prog_opcode op,
758 struct ureg dest,
759 GLuint destmask,
760 GLuint tex_unit,
761 GLuint tex_idx,
762 GLuint tex_shadow,
763 struct ureg coord )
764 {
765 struct prog_instruction *inst = emit_op( p, op,
766 dest, destmask,
767 GL_FALSE, /* don't saturate? */
768 coord, /* arg 0? */
769 undef,
770 undef);
771
772 inst->TexSrcTarget = tex_idx;
773 inst->TexSrcUnit = tex_unit;
774 inst->TexShadow = tex_shadow;
775
776 p->program->Base.NumTexInstructions++;
777
778 /* Accounting for indirection tracking:
779 */
780 reserve_temp(p, dest);
781
782 #if 0
783 /* Is this a texture indirection?
784 */
785 if ((coord.file == PROGRAM_TEMPORARY &&
786 (p->temps_output & (1<<coord.idx))) ||
787 (dest.file == PROGRAM_TEMPORARY &&
788 (p->alu_temps & (1<<dest.idx)))) {
789 p->program->Base.NumTexIndirections++;
790 p->temps_output = 1<<coord.idx;
791 p->alu_temps = 0;
792 assert(0); /* KW: texture env crossbar */
793 }
794 #endif
795
796 return dest;
797 }
798
799
800 static struct ureg register_const4f( struct texenv_fragment_program *p,
801 GLfloat s0,
802 GLfloat s1,
803 GLfloat s2,
804 GLfloat s3)
805 {
806 GLfloat values[4];
807 GLuint idx, swizzle;
808 struct ureg r;
809 values[0] = s0;
810 values[1] = s1;
811 values[2] = s2;
812 values[3] = s3;
813 idx = _mesa_add_unnamed_constant( p->program->Base.Parameters, values, 4,
814 &swizzle );
815 r = make_ureg(PROGRAM_CONSTANT, idx);
816 r.swz = swizzle;
817 return r;
818 }
819
820 #define register_scalar_const(p, s0) register_const4f(p, s0, s0, s0, s0)
821 #define register_const1f(p, s0) register_const4f(p, s0, 0, 0, 1)
822 #define register_const2f(p, s0, s1) register_const4f(p, s0, s1, 0, 1)
823 #define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1)
824
825
826 static struct ureg get_one( struct texenv_fragment_program *p )
827 {
828 if (is_undef(p->one))
829 p->one = register_scalar_const(p, 1.0);
830 return p->one;
831 }
832
833 static struct ureg get_half( struct texenv_fragment_program *p )
834 {
835 if (is_undef(p->half))
836 p->half = register_scalar_const(p, 0.5);
837 return p->half;
838 }
839
840 static struct ureg get_zero( struct texenv_fragment_program *p )
841 {
842 if (is_undef(p->zero))
843 p->zero = register_scalar_const(p, 0.0);
844 return p->zero;
845 }
846
847
848 static void program_error( struct texenv_fragment_program *p, const char *msg )
849 {
850 _mesa_problem(NULL, msg);
851 p->error = 1;
852 }
853
854 static struct ureg get_source( struct texenv_fragment_program *p,
855 GLuint src, GLuint unit )
856 {
857 switch (src) {
858 case SRC_TEXTURE:
859 assert(!is_undef(p->src_texture[unit]));
860 return p->src_texture[unit];
861
862 case SRC_TEXTURE0:
863 case SRC_TEXTURE1:
864 case SRC_TEXTURE2:
865 case SRC_TEXTURE3:
866 case SRC_TEXTURE4:
867 case SRC_TEXTURE5:
868 case SRC_TEXTURE6:
869 case SRC_TEXTURE7:
870 assert(!is_undef(p->src_texture[src - SRC_TEXTURE0]));
871 return p->src_texture[src - SRC_TEXTURE0];
872
873 case SRC_CONSTANT:
874 return register_param2(p, STATE_TEXENV_COLOR, unit);
875
876 case SRC_PRIMARY_COLOR:
877 return register_input(p, FRAG_ATTRIB_COL0);
878
879 case SRC_ZERO:
880 return get_zero(p);
881
882 case SRC_PREVIOUS:
883 if (is_undef(p->src_previous))
884 return register_input(p, FRAG_ATTRIB_COL0);
885 else
886 return p->src_previous;
887
888 default:
889 assert(0);
890 return undef;
891 }
892 }
893
894 static struct ureg emit_combine_source( struct texenv_fragment_program *p,
895 GLuint mask,
896 GLuint unit,
897 GLuint source,
898 GLuint operand )
899 {
900 struct ureg arg, src, one;
901
902 src = get_source(p, source, unit);
903
904 switch (operand) {
905 case OPR_ONE_MINUS_SRC_COLOR:
906 /* Get unused tmp,
907 * Emit tmp = 1.0 - arg.xyzw
908 */
909 arg = get_temp( p );
910 one = get_one( p );
911 return emit_arith( p, OPCODE_SUB, arg, mask, 0, one, src, undef);
912
913 case OPR_SRC_ALPHA:
914 if (mask == WRITEMASK_W)
915 return src;
916 else
917 return swizzle1( src, SWIZZLE_W );
918 case OPR_ONE_MINUS_SRC_ALPHA:
919 /* Get unused tmp,
920 * Emit tmp = 1.0 - arg.wwww
921 */
922 arg = get_temp(p);
923 one = get_one(p);
924 return emit_arith(p, OPCODE_SUB, arg, mask, 0,
925 one, swizzle1(src, SWIZZLE_W), undef);
926 case OPR_ZERO:
927 return get_zero(p);
928 case OPR_ONE:
929 return get_one(p);
930 case OPR_SRC_COLOR:
931 return src;
932 default:
933 assert(0);
934 return src;
935 }
936 }
937
938 /**
939 * Check if the RGB and Alpha sources and operands match for the given
940 * texture unit's combinder state. When the RGB and A sources and
941 * operands match, we can emit fewer instructions.
942 */
943 static GLboolean args_match( const struct state_key *key, GLuint unit )
944 {
945 GLuint i, numArgs = key->unit[unit].NumArgsRGB;
946
947 for (i = 0 ; i < numArgs ; i++) {
948 if (key->unit[unit].OptA[i].Source != key->unit[unit].OptRGB[i].Source)
949 return GL_FALSE;
950
951 switch (key->unit[unit].OptA[i].Operand) {
952 case OPR_SRC_ALPHA:
953 switch (key->unit[unit].OptRGB[i].Operand) {
954 case OPR_SRC_COLOR:
955 case OPR_SRC_ALPHA:
956 break;
957 default:
958 return GL_FALSE;
959 }
960 break;
961 case OPR_ONE_MINUS_SRC_ALPHA:
962 switch (key->unit[unit].OptRGB[i].Operand) {
963 case OPR_ONE_MINUS_SRC_COLOR:
964 case OPR_ONE_MINUS_SRC_ALPHA:
965 break;
966 default:
967 return GL_FALSE;
968 }
969 break;
970 default:
971 return GL_FALSE; /* impossible */
972 }
973 }
974
975 return GL_TRUE;
976 }
977
978 static struct ureg emit_combine( struct texenv_fragment_program *p,
979 struct ureg dest,
980 GLuint mask,
981 GLboolean saturate,
982 GLuint unit,
983 GLuint nr,
984 GLuint mode,
985 const struct mode_opt *opt)
986 {
987 struct ureg src[MAX_COMBINER_TERMS];
988 struct ureg tmp, half;
989 GLuint i;
990
991 assert(nr <= MAX_COMBINER_TERMS);
992
993 tmp = undef; /* silence warning (bug 5318) */
994
995 for (i = 0; i < nr; i++)
996 src[i] = emit_combine_source( p, mask, unit, opt[i].Source, opt[i].Operand );
997
998 switch (mode) {
999 case MODE_REPLACE:
1000 if (mask == WRITEMASK_XYZW && !saturate)
1001 return src[0];
1002 else
1003 return emit_arith( p, OPCODE_MOV, dest, mask, saturate, src[0], undef, undef );
1004 case MODE_MODULATE:
1005 return emit_arith( p, OPCODE_MUL, dest, mask, saturate,
1006 src[0], src[1], undef );
1007 case MODE_ADD:
1008 return emit_arith( p, OPCODE_ADD, dest, mask, saturate,
1009 src[0], src[1], undef );
1010 case MODE_ADD_SIGNED:
1011 /* tmp = arg0 + arg1
1012 * result = tmp - .5
1013 */
1014 half = get_half(p);
1015 tmp = get_temp( p );
1016 emit_arith( p, OPCODE_ADD, tmp, mask, 0, src[0], src[1], undef );
1017 emit_arith( p, OPCODE_SUB, dest, mask, saturate, tmp, half, undef );
1018 return dest;
1019 case MODE_INTERPOLATE:
1020 /* Arg0 * (Arg2) + Arg1 * (1-Arg2) -- note arguments are reordered:
1021 */
1022 return emit_arith( p, OPCODE_LRP, dest, mask, saturate, src[2], src[0], src[1] );
1023
1024 case MODE_SUBTRACT:
1025 return emit_arith( p, OPCODE_SUB, dest, mask, saturate, src[0], src[1], undef );
1026
1027 case MODE_DOT3_RGBA:
1028 case MODE_DOT3_RGBA_EXT:
1029 case MODE_DOT3_RGB_EXT:
1030 case MODE_DOT3_RGB: {
1031 struct ureg tmp0 = get_temp( p );
1032 struct ureg tmp1 = get_temp( p );
1033 struct ureg neg1 = register_scalar_const(p, -1);
1034 struct ureg two = register_scalar_const(p, 2);
1035
1036 /* tmp0 = 2*src0 - 1
1037 * tmp1 = 2*src1 - 1
1038 *
1039 * dst = tmp0 dot3 tmp1
1040 */
1041 emit_arith( p, OPCODE_MAD, tmp0, WRITEMASK_XYZW, 0,
1042 two, src[0], neg1);
1043
1044 if (_mesa_memcmp(&src[0], &src[1], sizeof(struct ureg)) == 0)
1045 tmp1 = tmp0;
1046 else
1047 emit_arith( p, OPCODE_MAD, tmp1, WRITEMASK_XYZW, 0,
1048 two, src[1], neg1);
1049 emit_arith( p, OPCODE_DP3, dest, mask, saturate, tmp0, tmp1, undef);
1050 return dest;
1051 }
1052 case MODE_MODULATE_ADD_ATI:
1053 /* Arg0 * Arg2 + Arg1 */
1054 return emit_arith( p, OPCODE_MAD, dest, mask, saturate,
1055 src[0], src[2], src[1] );
1056 case MODE_MODULATE_SIGNED_ADD_ATI: {
1057 /* Arg0 * Arg2 + Arg1 - 0.5 */
1058 struct ureg tmp0 = get_temp(p);
1059 half = get_half(p);
1060 emit_arith( p, OPCODE_MAD, tmp0, mask, 0, src[0], src[2], src[1] );
1061 emit_arith( p, OPCODE_SUB, dest, mask, saturate, tmp0, half, undef );
1062 return dest;
1063 }
1064 case MODE_MODULATE_SUBTRACT_ATI:
1065 /* Arg0 * Arg2 - Arg1 */
1066 emit_arith( p, OPCODE_MAD, dest, mask, 0, src[0], src[2], negate(src[1]) );
1067 return dest;
1068 case MODE_ADD_PRODUCTS:
1069 /* Arg0 * Arg1 + Arg2 * Arg3 */
1070 {
1071 struct ureg tmp0 = get_temp(p);
1072 emit_arith( p, OPCODE_MUL, tmp0, mask, 0, src[0], src[1], undef );
1073 emit_arith( p, OPCODE_MAD, dest, mask, saturate, src[2], src[3], tmp0 );
1074 }
1075 return dest;
1076 case MODE_ADD_PRODUCTS_SIGNED:
1077 /* Arg0 * Arg1 + Arg2 * Arg3 - 0.5 */
1078 {
1079 struct ureg tmp0 = get_temp(p);
1080 half = get_half(p);
1081 emit_arith( p, OPCODE_MUL, tmp0, mask, 0, src[0], src[1], undef );
1082 emit_arith( p, OPCODE_MAD, tmp0, mask, 0, src[2], src[3], tmp0 );
1083 emit_arith( p, OPCODE_SUB, dest, mask, saturate, tmp0, half, undef );
1084 }
1085 return dest;
1086 case MODE_BUMP_ENVMAP_ATI:
1087 /* special - not handled here */
1088 assert(0);
1089 return src[0];
1090 default:
1091 assert(0);
1092 return src[0];
1093 }
1094 }
1095
1096
1097 /**
1098 * Generate instructions for one texture unit's env/combiner mode.
1099 */
1100 static struct ureg
1101 emit_texenv(struct texenv_fragment_program *p, GLuint unit)
1102 {
1103 const struct state_key *key = p->state;
1104 GLboolean saturate;
1105 GLuint rgb_shift, alpha_shift;
1106 struct ureg out, dest;
1107
1108 if (!key->unit[unit].enabled) {
1109 return get_source(p, SRC_PREVIOUS, 0);
1110 }
1111 if (key->unit[unit].ModeRGB == MODE_BUMP_ENVMAP_ATI) {
1112 /* this isn't really a env stage delivering a color and handled elsewhere */
1113 return get_source(p, SRC_PREVIOUS, 0);
1114 }
1115
1116 switch (key->unit[unit].ModeRGB) {
1117 case MODE_DOT3_RGB_EXT:
1118 alpha_shift = key->unit[unit].ScaleShiftA;
1119 rgb_shift = 0;
1120 break;
1121 case MODE_DOT3_RGBA_EXT:
1122 alpha_shift = 0;
1123 rgb_shift = 0;
1124 break;
1125 default:
1126 rgb_shift = key->unit[unit].ScaleShiftRGB;
1127 alpha_shift = key->unit[unit].ScaleShiftA;
1128 break;
1129 }
1130
1131 /* If we'll do rgb/alpha shifting don't saturate in emit_combine().
1132 * We don't want to clamp twice.
1133 */
1134 saturate = !(rgb_shift || alpha_shift);
1135
1136 /* If this is the very last calculation, emit direct to output reg:
1137 */
1138 if (key->separate_specular ||
1139 unit != p->last_tex_stage ||
1140 alpha_shift ||
1141 rgb_shift)
1142 dest = get_temp( p );
1143 else
1144 dest = make_ureg(PROGRAM_OUTPUT, FRAG_RESULT_COLOR);
1145
1146 /* Emit the RGB and A combine ops
1147 */
1148 if (key->unit[unit].ModeRGB == key->unit[unit].ModeA &&
1149 args_match(key, unit)) {
1150 out = emit_combine( p, dest, WRITEMASK_XYZW, saturate,
1151 unit,
1152 key->unit[unit].NumArgsRGB,
1153 key->unit[unit].ModeRGB,
1154 key->unit[unit].OptRGB);
1155 }
1156 else if (key->unit[unit].ModeRGB == MODE_DOT3_RGBA_EXT ||
1157 key->unit[unit].ModeRGB == MODE_DOT3_RGBA) {
1158 out = emit_combine( p, dest, WRITEMASK_XYZW, saturate,
1159 unit,
1160 key->unit[unit].NumArgsRGB,
1161 key->unit[unit].ModeRGB,
1162 key->unit[unit].OptRGB);
1163 }
1164 else {
1165 /* Need to do something to stop from re-emitting identical
1166 * argument calculations here:
1167 */
1168 out = emit_combine( p, dest, WRITEMASK_XYZ, saturate,
1169 unit,
1170 key->unit[unit].NumArgsRGB,
1171 key->unit[unit].ModeRGB,
1172 key->unit[unit].OptRGB);
1173 out = emit_combine( p, dest, WRITEMASK_W, saturate,
1174 unit,
1175 key->unit[unit].NumArgsA,
1176 key->unit[unit].ModeA,
1177 key->unit[unit].OptA);
1178 }
1179
1180 /* Deal with the final shift:
1181 */
1182 if (alpha_shift || rgb_shift) {
1183 struct ureg shift;
1184
1185 saturate = GL_TRUE; /* always saturate at this point */
1186
1187 if (rgb_shift == alpha_shift) {
1188 shift = register_scalar_const(p, (GLfloat)(1<<rgb_shift));
1189 }
1190 else {
1191 shift = register_const4f(p,
1192 (GLfloat)(1<<rgb_shift),
1193 (GLfloat)(1<<rgb_shift),
1194 (GLfloat)(1<<rgb_shift),
1195 (GLfloat)(1<<alpha_shift));
1196 }
1197 return emit_arith( p, OPCODE_MUL, dest, WRITEMASK_XYZW,
1198 saturate, out, shift, undef );
1199 }
1200 else
1201 return out;
1202 }
1203
1204
1205 /**
1206 * Generate instruction for getting a texture source term.
1207 */
1208 static void load_texture( struct texenv_fragment_program *p, GLuint unit )
1209 {
1210 if (is_undef(p->src_texture[unit])) {
1211 const GLuint texTarget = p->state->unit[unit].source_index;
1212 struct ureg texcoord;
1213 struct ureg tmp = get_tex_temp( p );
1214
1215 if (is_undef(p->texcoord_tex[unit])) {
1216 texcoord = register_input(p, FRAG_ATTRIB_TEX0+unit);
1217 }
1218 else {
1219 /* might want to reuse this reg for tex output actually */
1220 texcoord = p->texcoord_tex[unit];
1221 }
1222
1223 /* TODO: Use D0_MASK_XY where possible.
1224 */
1225 if (p->state->unit[unit].enabled) {
1226 GLboolean shadow = GL_FALSE;
1227
1228 if (p->state->unit[unit].shadow) {
1229 p->program->Base.ShadowSamplers |= 1 << unit;
1230 shadow = GL_TRUE;
1231 }
1232
1233 p->src_texture[unit] = emit_texld( p, OPCODE_TXP,
1234 tmp, WRITEMASK_XYZW,
1235 unit, texTarget, shadow,
1236 texcoord );
1237
1238 p->program->Base.SamplersUsed |= (1 << unit);
1239 /* This identity mapping should already be in place
1240 * (see _mesa_init_program_struct()) but let's be safe.
1241 */
1242 p->program->Base.SamplerUnits[unit] = unit;
1243 }
1244 else
1245 p->src_texture[unit] = get_zero(p);
1246 }
1247 }
1248
1249 static GLboolean load_texenv_source( struct texenv_fragment_program *p,
1250 GLuint src, GLuint unit )
1251 {
1252 switch (src) {
1253 case SRC_TEXTURE:
1254 load_texture(p, unit);
1255 break;
1256
1257 case SRC_TEXTURE0:
1258 case SRC_TEXTURE1:
1259 case SRC_TEXTURE2:
1260 case SRC_TEXTURE3:
1261 case SRC_TEXTURE4:
1262 case SRC_TEXTURE5:
1263 case SRC_TEXTURE6:
1264 case SRC_TEXTURE7:
1265 load_texture(p, src - SRC_TEXTURE0);
1266 break;
1267
1268 default:
1269 /* not a texture src - do nothing */
1270 break;
1271 }
1272
1273 return GL_TRUE;
1274 }
1275
1276
1277 /**
1278 * Generate instructions for loading all texture source terms.
1279 */
1280 static GLboolean
1281 load_texunit_sources( struct texenv_fragment_program *p, int unit )
1282 {
1283 const struct state_key *key = p->state;
1284 GLuint i;
1285
1286 for (i = 0; i < key->unit[unit].NumArgsRGB; i++) {
1287 load_texenv_source( p, key->unit[unit].OptRGB[i].Source, unit );
1288 }
1289
1290 for (i = 0; i < key->unit[unit].NumArgsA; i++) {
1291 load_texenv_source( p, key->unit[unit].OptA[i].Source, unit );
1292 }
1293
1294 return GL_TRUE;
1295 }
1296
1297 /**
1298 * Generate instructions for loading bump map textures.
1299 */
1300 static GLboolean
1301 load_texunit_bumpmap( struct texenv_fragment_program *p, int unit )
1302 {
1303 const struct state_key *key = p->state;
1304 GLuint bumpedUnitNr = key->unit[unit].OptRGB[1].Source - SRC_TEXTURE0;
1305 struct ureg texcDst, bumpMapRes;
1306 struct ureg constdudvcolor = register_const4f(p, 0.0, 0.0, 0.0, 1.0);
1307 struct ureg texcSrc = register_input(p, FRAG_ATTRIB_TEX0 + bumpedUnitNr);
1308 struct ureg rotMat0 = register_param3( p, STATE_INTERNAL, STATE_ROT_MATRIX_0, unit );
1309 struct ureg rotMat1 = register_param3( p, STATE_INTERNAL, STATE_ROT_MATRIX_1, unit );
1310
1311 load_texenv_source( p, unit + SRC_TEXTURE0, unit );
1312
1313 bumpMapRes = get_source(p, key->unit[unit].OptRGB[0].Source, unit);
1314 texcDst = get_tex_temp( p );
1315 p->texcoord_tex[bumpedUnitNr] = texcDst;
1316
1317 /* apply rot matrix and add coords to be available in next phase */
1318 /* dest = (Arg0.xxxx * rotMat0 + Arg1) + (Arg0.yyyy * rotMat1) */
1319 /* note only 2 coords are affected the rest are left unchanged (mul by 0) */
1320 emit_arith( p, OPCODE_MAD, texcDst, WRITEMASK_XYZW, 0,
1321 swizzle1(bumpMapRes, SWIZZLE_X), rotMat0, texcSrc );
1322 emit_arith( p, OPCODE_MAD, texcDst, WRITEMASK_XYZW, 0,
1323 swizzle1(bumpMapRes, SWIZZLE_Y), rotMat1, texcDst );
1324
1325 /* move 0,0,0,1 into bumpmap src if someone (crossbar) is foolish
1326 enough to access this later, should optimize away */
1327 emit_arith( p, OPCODE_MOV, bumpMapRes, WRITEMASK_XYZW, 0, constdudvcolor, undef, undef );
1328
1329 return GL_TRUE;
1330 }
1331
1332 /**
1333 * Generate a new fragment program which implements the context's
1334 * current texture env/combine mode.
1335 */
1336 static void
1337 create_new_program(GLcontext *ctx, struct state_key *key,
1338 struct gl_fragment_program *program)
1339 {
1340 struct prog_instruction instBuffer[MAX_INSTRUCTIONS];
1341 struct texenv_fragment_program p;
1342 GLuint unit;
1343 struct ureg cf, out;
1344
1345 _mesa_memset(&p, 0, sizeof(p));
1346 p.state = key;
1347 p.program = program;
1348
1349 /* During code generation, use locally-allocated instruction buffer,
1350 * then alloc dynamic storage below.
1351 */
1352 p.program->Base.Instructions = instBuffer;
1353 p.program->Base.Target = GL_FRAGMENT_PROGRAM_ARB;
1354 p.program->Base.NumTexIndirections = 1;
1355 p.program->Base.NumTexInstructions = 0;
1356 p.program->Base.NumAluInstructions = 0;
1357 p.program->Base.String = NULL;
1358 p.program->Base.NumInstructions =
1359 p.program->Base.NumTemporaries =
1360 p.program->Base.NumParameters =
1361 p.program->Base.NumAttributes = p.program->Base.NumAddressRegs = 0;
1362 p.program->Base.Parameters = _mesa_new_parameter_list();
1363
1364 p.program->Base.InputsRead = 0;
1365 p.program->Base.OutputsWritten = 1 << FRAG_RESULT_COLOR;
1366
1367 for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
1368 p.src_texture[unit] = undef;
1369 p.texcoord_tex[unit] = undef;
1370 }
1371
1372 p.src_previous = undef;
1373 p.half = undef;
1374 p.zero = undef;
1375 p.one = undef;
1376
1377 p.last_tex_stage = 0;
1378 release_temps(ctx, &p);
1379
1380 if (key->enabled_units) {
1381 GLboolean needbumpstage = GL_FALSE;
1382 /* Zeroth pass - bump map textures first */
1383 for (unit = 0 ; unit < ctx->Const.MaxTextureUnits ; unit++)
1384 if (key->unit[unit].enabled && key->unit[unit].ModeRGB == MODE_BUMP_ENVMAP_ATI) {
1385 needbumpstage = GL_TRUE;
1386 load_texunit_bumpmap( &p, unit );
1387 }
1388 if (needbumpstage)
1389 p.program->Base.NumTexIndirections++;
1390
1391 /* First pass - to support texture_env_crossbar, first identify
1392 * all referenced texture sources and emit texld instructions
1393 * for each:
1394 */
1395 for (unit = 0 ; unit < ctx->Const.MaxTextureUnits ; unit++)
1396 if (key->unit[unit].enabled) {
1397 load_texunit_sources( &p, unit );
1398 p.last_tex_stage = unit;
1399 }
1400
1401 /* Second pass - emit combine instructions to build final color:
1402 */
1403 for (unit = 0 ; unit < ctx->Const.MaxTextureUnits; unit++)
1404 if (key->unit[unit].enabled) {
1405 p.src_previous = emit_texenv( &p, unit );
1406 reserve_temp(&p, p.src_previous); /* don't re-use this temp reg */
1407 release_temps(ctx, &p); /* release all temps */
1408 }
1409 }
1410
1411 cf = get_source( &p, SRC_PREVIOUS, 0 );
1412 out = make_ureg( PROGRAM_OUTPUT, FRAG_RESULT_COLOR );
1413
1414 if (key->separate_specular) {
1415 /* Emit specular add.
1416 */
1417 struct ureg s = register_input(&p, FRAG_ATTRIB_COL1);
1418 emit_arith( &p, OPCODE_ADD, out, WRITEMASK_XYZ, 0, cf, s, undef );
1419 emit_arith( &p, OPCODE_MOV, out, WRITEMASK_W, 0, cf, undef, undef );
1420 }
1421 else if (_mesa_memcmp(&cf, &out, sizeof(cf)) != 0) {
1422 /* Will wind up in here if no texture enabled or a couple of
1423 * other scenarios (GL_REPLACE for instance).
1424 */
1425 emit_arith( &p, OPCODE_MOV, out, WRITEMASK_XYZW, 0, cf, undef, undef );
1426 }
1427
1428 /* Finish up:
1429 */
1430 emit_arith( &p, OPCODE_END, undef, WRITEMASK_XYZW, 0, undef, undef, undef);
1431
1432 if (key->fog_enabled) {
1433 /* Pull fog mode from GLcontext, the value in the state key is
1434 * a reduced value and not what is expected in FogOption
1435 */
1436 p.program->FogOption = ctx->Fog.Mode;
1437 p.program->Base.InputsRead |= FRAG_BIT_FOGC; /* XXX new */
1438 } else
1439 p.program->FogOption = GL_NONE;
1440
1441 if (p.program->Base.NumTexIndirections > ctx->Const.FragmentProgram.MaxTexIndirections)
1442 program_error(&p, "Exceeded max nr indirect texture lookups");
1443
1444 if (p.program->Base.NumTexInstructions > ctx->Const.FragmentProgram.MaxTexInstructions)
1445 program_error(&p, "Exceeded max TEX instructions");
1446
1447 if (p.program->Base.NumAluInstructions > ctx->Const.FragmentProgram.MaxAluInstructions)
1448 program_error(&p, "Exceeded max ALU instructions");
1449
1450 ASSERT(p.program->Base.NumInstructions <= MAX_INSTRUCTIONS);
1451
1452 /* Allocate final instruction array */
1453 p.program->Base.Instructions
1454 = _mesa_alloc_instructions(p.program->Base.NumInstructions);
1455 if (!p.program->Base.Instructions) {
1456 _mesa_error(ctx, GL_OUT_OF_MEMORY,
1457 "generating tex env program");
1458 return;
1459 }
1460 _mesa_copy_instructions(p.program->Base.Instructions, instBuffer,
1461 p.program->Base.NumInstructions);
1462
1463 if (p.program->FogOption) {
1464 _mesa_append_fog_code(ctx, p.program);
1465 p.program->FogOption = GL_NONE;
1466 }
1467
1468
1469 /* Notify driver the fragment program has (actually) changed.
1470 */
1471 if (ctx->Driver.ProgramStringNotify) {
1472 ctx->Driver.ProgramStringNotify( ctx, GL_FRAGMENT_PROGRAM_ARB,
1473 &p.program->Base );
1474 }
1475
1476 if (DISASSEM) {
1477 _mesa_print_program(&p.program->Base);
1478 _mesa_printf("\n");
1479 }
1480 }
1481
1482
1483 /**
1484 * Return a fragment program which implements the current
1485 * fixed-function texture, fog and color-sum operations.
1486 */
1487 struct gl_fragment_program *
1488 _mesa_get_fixed_func_fragment_program(GLcontext *ctx)
1489 {
1490 struct gl_fragment_program *prog;
1491 struct state_key key;
1492
1493 make_state_key(ctx, &key);
1494
1495 prog = (struct gl_fragment_program *)
1496 _mesa_search_program_cache(ctx->FragmentProgram.Cache,
1497 &key, sizeof(key));
1498
1499 if (!prog) {
1500 prog = (struct gl_fragment_program *)
1501 ctx->Driver.NewProgram(ctx, GL_FRAGMENT_PROGRAM_ARB, 0);
1502
1503 create_new_program(ctx, &key, prog);
1504
1505 _mesa_program_cache_insert(ctx, ctx->FragmentProgram.Cache,
1506 &key, sizeof(key), &prog->Base);
1507 }
1508
1509 return prog;
1510 }