Merge remote branch 'origin/master' into glsl2
[mesa.git] / src / mesa / main / texenvprogram.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 * Copyright 2009 VMware, Inc. All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 #include "glheader.h"
30 #include "imports.h"
31 #include "program/program.h"
32 #include "program/prog_parameter.h"
33 #include "program/prog_cache.h"
34 #include "program/prog_instruction.h"
35 #include "program/prog_print.h"
36 #include "program/prog_statevars.h"
37 #include "program/programopt.h"
38 #include "texenvprogram.h"
39
40
41 /*
42 * Note on texture units:
43 *
44 * The number of texture units supported by fixed-function fragment
45 * processing is MAX_TEXTURE_COORD_UNITS, not MAX_TEXTURE_IMAGE_UNITS.
46 * That's because there's a one-to-one correspondence between texture
47 * coordinates and samplers in fixed-function processing.
48 *
49 * Since fixed-function vertex processing is limited to MAX_TEXTURE_COORD_UNITS
50 * sets of texcoords, so is fixed-function fragment processing.
51 *
52 * We can safely use ctx->Const.MaxTextureUnits for loop bounds.
53 */
54
55
56 struct texenvprog_cache_item
57 {
58 GLuint hash;
59 void *key;
60 struct gl_fragment_program *data;
61 struct texenvprog_cache_item *next;
62 };
63
64 static GLboolean
65 texenv_doing_secondary_color(GLcontext *ctx)
66 {
67 if (ctx->Light.Enabled &&
68 (ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR))
69 return GL_TRUE;
70
71 if (ctx->Fog.ColorSumEnabled)
72 return GL_TRUE;
73
74 return GL_FALSE;
75 }
76
77 /**
78 * Up to nine instructions per tex unit, plus fog, specular color.
79 */
80 #define MAX_INSTRUCTIONS ((MAX_TEXTURE_COORD_UNITS * 9) + 12)
81
82 #define DISASSEM (MESA_VERBOSE & VERBOSE_DISASSEM)
83
84 struct mode_opt {
85 #ifdef __GNUC__
86 __extension__ GLubyte Source:4; /**< SRC_x */
87 __extension__ GLubyte Operand:3; /**< OPR_x */
88 #else
89 GLubyte Source; /**< SRC_x */
90 GLubyte Operand; /**< OPR_x */
91 #endif
92 };
93
94 struct state_key {
95 GLuint nr_enabled_units:8;
96 GLuint enabled_units:8;
97 GLuint separate_specular:1;
98 GLuint fog_enabled:1;
99 GLuint fog_mode:2; /**< FOG_x */
100 GLuint inputs_available:12;
101 GLuint num_draw_buffers:4;
102
103 /* NOTE: This array of structs must be last! (see "keySize" below) */
104 struct {
105 GLuint enabled:1;
106 GLuint source_index:3; /**< TEXTURE_x_INDEX */
107 GLuint shadow:1;
108 GLuint ScaleShiftRGB:2;
109 GLuint ScaleShiftA:2;
110
111 GLuint NumArgsRGB:3; /**< up to MAX_COMBINER_TERMS */
112 GLuint ModeRGB:5; /**< MODE_x */
113
114 GLuint NumArgsA:3; /**< up to MAX_COMBINER_TERMS */
115 GLuint ModeA:5; /**< MODE_x */
116
117 GLuint texture_cyl_wrap:1; /**< For gallium test/debug only */
118
119 struct mode_opt OptRGB[MAX_COMBINER_TERMS];
120 struct mode_opt OptA[MAX_COMBINER_TERMS];
121 } unit[MAX_TEXTURE_UNITS];
122 };
123
124 #define FOG_LINEAR 0
125 #define FOG_EXP 1
126 #define FOG_EXP2 2
127 #define FOG_UNKNOWN 3
128
129 static GLuint translate_fog_mode( GLenum mode )
130 {
131 switch (mode) {
132 case GL_LINEAR: return FOG_LINEAR;
133 case GL_EXP: return FOG_EXP;
134 case GL_EXP2: return FOG_EXP2;
135 default: return FOG_UNKNOWN;
136 }
137 }
138
139 #define OPR_SRC_COLOR 0
140 #define OPR_ONE_MINUS_SRC_COLOR 1
141 #define OPR_SRC_ALPHA 2
142 #define OPR_ONE_MINUS_SRC_ALPHA 3
143 #define OPR_ZERO 4
144 #define OPR_ONE 5
145 #define OPR_UNKNOWN 7
146
147 static GLuint translate_operand( GLenum operand )
148 {
149 switch (operand) {
150 case GL_SRC_COLOR: return OPR_SRC_COLOR;
151 case GL_ONE_MINUS_SRC_COLOR: return OPR_ONE_MINUS_SRC_COLOR;
152 case GL_SRC_ALPHA: return OPR_SRC_ALPHA;
153 case GL_ONE_MINUS_SRC_ALPHA: return OPR_ONE_MINUS_SRC_ALPHA;
154 case GL_ZERO: return OPR_ZERO;
155 case GL_ONE: return OPR_ONE;
156 default:
157 assert(0);
158 return OPR_UNKNOWN;
159 }
160 }
161
162 #define SRC_TEXTURE 0
163 #define SRC_TEXTURE0 1
164 #define SRC_TEXTURE1 2
165 #define SRC_TEXTURE2 3
166 #define SRC_TEXTURE3 4
167 #define SRC_TEXTURE4 5
168 #define SRC_TEXTURE5 6
169 #define SRC_TEXTURE6 7
170 #define SRC_TEXTURE7 8
171 #define SRC_CONSTANT 9
172 #define SRC_PRIMARY_COLOR 10
173 #define SRC_PREVIOUS 11
174 #define SRC_ZERO 12
175 #define SRC_UNKNOWN 15
176
177 static GLuint translate_source( GLenum src )
178 {
179 switch (src) {
180 case GL_TEXTURE: return SRC_TEXTURE;
181 case GL_TEXTURE0:
182 case GL_TEXTURE1:
183 case GL_TEXTURE2:
184 case GL_TEXTURE3:
185 case GL_TEXTURE4:
186 case GL_TEXTURE5:
187 case GL_TEXTURE6:
188 case GL_TEXTURE7: return SRC_TEXTURE0 + (src - GL_TEXTURE0);
189 case GL_CONSTANT: return SRC_CONSTANT;
190 case GL_PRIMARY_COLOR: return SRC_PRIMARY_COLOR;
191 case GL_PREVIOUS: return SRC_PREVIOUS;
192 case GL_ZERO:
193 return SRC_ZERO;
194 default:
195 assert(0);
196 return SRC_UNKNOWN;
197 }
198 }
199
200 #define MODE_REPLACE 0 /* r = a0 */
201 #define MODE_MODULATE 1 /* r = a0 * a1 */
202 #define MODE_ADD 2 /* r = a0 + a1 */
203 #define MODE_ADD_SIGNED 3 /* r = a0 + a1 - 0.5 */
204 #define MODE_INTERPOLATE 4 /* r = a0 * a2 + a1 * (1 - a2) */
205 #define MODE_SUBTRACT 5 /* r = a0 - a1 */
206 #define MODE_DOT3_RGB 6 /* r = a0 . a1 */
207 #define MODE_DOT3_RGB_EXT 7 /* r = a0 . a1 */
208 #define MODE_DOT3_RGBA 8 /* r = a0 . a1 */
209 #define MODE_DOT3_RGBA_EXT 9 /* r = a0 . a1 */
210 #define MODE_MODULATE_ADD_ATI 10 /* r = a0 * a2 + a1 */
211 #define MODE_MODULATE_SIGNED_ADD_ATI 11 /* r = a0 * a2 + a1 - 0.5 */
212 #define MODE_MODULATE_SUBTRACT_ATI 12 /* r = a0 * a2 - a1 */
213 #define MODE_ADD_PRODUCTS 13 /* r = a0 * a1 + a2 * a3 */
214 #define MODE_ADD_PRODUCTS_SIGNED 14 /* r = a0 * a1 + a2 * a3 - 0.5 */
215 #define MODE_BUMP_ENVMAP_ATI 15 /* special */
216 #define MODE_UNKNOWN 16
217
218 /**
219 * Translate GL combiner state into a MODE_x value
220 */
221 static GLuint translate_mode( GLenum envMode, GLenum mode )
222 {
223 switch (mode) {
224 case GL_REPLACE: return MODE_REPLACE;
225 case GL_MODULATE: return MODE_MODULATE;
226 case GL_ADD:
227 if (envMode == GL_COMBINE4_NV)
228 return MODE_ADD_PRODUCTS;
229 else
230 return MODE_ADD;
231 case GL_ADD_SIGNED:
232 if (envMode == GL_COMBINE4_NV)
233 return MODE_ADD_PRODUCTS_SIGNED;
234 else
235 return MODE_ADD_SIGNED;
236 case GL_INTERPOLATE: return MODE_INTERPOLATE;
237 case GL_SUBTRACT: return MODE_SUBTRACT;
238 case GL_DOT3_RGB: return MODE_DOT3_RGB;
239 case GL_DOT3_RGB_EXT: return MODE_DOT3_RGB_EXT;
240 case GL_DOT3_RGBA: return MODE_DOT3_RGBA;
241 case GL_DOT3_RGBA_EXT: return MODE_DOT3_RGBA_EXT;
242 case GL_MODULATE_ADD_ATI: return MODE_MODULATE_ADD_ATI;
243 case GL_MODULATE_SIGNED_ADD_ATI: return MODE_MODULATE_SIGNED_ADD_ATI;
244 case GL_MODULATE_SUBTRACT_ATI: return MODE_MODULATE_SUBTRACT_ATI;
245 case GL_BUMP_ENVMAP_ATI: return MODE_BUMP_ENVMAP_ATI;
246 default:
247 assert(0);
248 return MODE_UNKNOWN;
249 }
250 }
251
252
253 /**
254 * Do we need to clamp the results of the given texture env/combine mode?
255 * If the inputs to the mode are in [0,1] we don't always have to clamp
256 * the results.
257 */
258 static GLboolean
259 need_saturate( GLuint mode )
260 {
261 switch (mode) {
262 case MODE_REPLACE:
263 case MODE_MODULATE:
264 case MODE_INTERPOLATE:
265 return GL_FALSE;
266 case MODE_ADD:
267 case MODE_ADD_SIGNED:
268 case MODE_SUBTRACT:
269 case MODE_DOT3_RGB:
270 case MODE_DOT3_RGB_EXT:
271 case MODE_DOT3_RGBA:
272 case MODE_DOT3_RGBA_EXT:
273 case MODE_MODULATE_ADD_ATI:
274 case MODE_MODULATE_SIGNED_ADD_ATI:
275 case MODE_MODULATE_SUBTRACT_ATI:
276 case MODE_ADD_PRODUCTS:
277 case MODE_ADD_PRODUCTS_SIGNED:
278 case MODE_BUMP_ENVMAP_ATI:
279 return GL_TRUE;
280 default:
281 assert(0);
282 return GL_FALSE;
283 }
284 }
285
286
287
288 /**
289 * Translate TEXTURE_x_BIT to TEXTURE_x_INDEX.
290 */
291 static GLuint translate_tex_src_bit( GLbitfield bit )
292 {
293 ASSERT(bit);
294 return _mesa_ffs(bit) - 1;
295 }
296
297
298 #define VERT_BIT_TEX_ANY (0xff << VERT_ATTRIB_TEX0)
299 #define VERT_RESULT_TEX_ANY (0xff << VERT_RESULT_TEX0)
300
301 /**
302 * Identify all possible varying inputs. The fragment program will
303 * never reference non-varying inputs, but will track them via state
304 * constants instead.
305 *
306 * This function figures out all the inputs that the fragment program
307 * has access to. The bitmask is later reduced to just those which
308 * are actually referenced.
309 */
310 static GLbitfield get_fp_input_mask( GLcontext *ctx )
311 {
312 /* _NEW_PROGRAM */
313 const GLboolean vertexShader = (ctx->Shader.CurrentProgram &&
314 ctx->Shader.CurrentProgram->LinkStatus &&
315 ctx->Shader.CurrentProgram->VertexProgram);
316 const GLboolean vertexProgram = ctx->VertexProgram._Enabled;
317 GLbitfield fp_inputs = 0x0;
318
319 if (ctx->VertexProgram._Overriden) {
320 /* Somebody's messing with the vertex program and we don't have
321 * a clue what's happening. Assume that it could be producing
322 * all possible outputs.
323 */
324 fp_inputs = ~0;
325 }
326 else if (ctx->RenderMode == GL_FEEDBACK) {
327 /* _NEW_RENDERMODE */
328 fp_inputs = (FRAG_BIT_COL0 | FRAG_BIT_TEX0);
329 }
330 else if (!(vertexProgram || vertexShader) ||
331 !ctx->VertexProgram._Current) {
332 /* Fixed function vertex logic */
333 /* _NEW_ARRAY */
334 GLbitfield varying_inputs = ctx->varying_vp_inputs;
335
336 /* These get generated in the setup routine regardless of the
337 * vertex program:
338 */
339 /* _NEW_POINT */
340 if (ctx->Point.PointSprite)
341 varying_inputs |= FRAG_BITS_TEX_ANY;
342
343 /* First look at what values may be computed by the generated
344 * vertex program:
345 */
346 /* _NEW_LIGHT */
347 if (ctx->Light.Enabled) {
348 fp_inputs |= FRAG_BIT_COL0;
349
350 if (texenv_doing_secondary_color(ctx))
351 fp_inputs |= FRAG_BIT_COL1;
352 }
353
354 /* _NEW_TEXTURE */
355 fp_inputs |= (ctx->Texture._TexGenEnabled |
356 ctx->Texture._TexMatEnabled) << FRAG_ATTRIB_TEX0;
357
358 /* Then look at what might be varying as a result of enabled
359 * arrays, etc:
360 */
361 if (varying_inputs & VERT_BIT_COLOR0)
362 fp_inputs |= FRAG_BIT_COL0;
363 if (varying_inputs & VERT_BIT_COLOR1)
364 fp_inputs |= FRAG_BIT_COL1;
365
366 fp_inputs |= (((varying_inputs & VERT_BIT_TEX_ANY) >> VERT_ATTRIB_TEX0)
367 << FRAG_ATTRIB_TEX0);
368
369 }
370 else {
371 /* calculate from vp->outputs */
372 struct gl_vertex_program *vprog;
373 GLbitfield64 vp_outputs;
374
375 /* Choose GLSL vertex shader over ARB vertex program. Need this
376 * since vertex shader state validation comes after fragment state
377 * validation (see additional comments in state.c).
378 */
379 if (vertexShader)
380 vprog = ctx->Shader.CurrentProgram->VertexProgram;
381 else
382 vprog = ctx->VertexProgram.Current;
383
384 vp_outputs = vprog->Base.OutputsWritten;
385
386 /* These get generated in the setup routine regardless of the
387 * vertex program:
388 */
389 /* _NEW_POINT */
390 if (ctx->Point.PointSprite)
391 vp_outputs |= FRAG_BITS_TEX_ANY;
392
393 if (vp_outputs & (1 << VERT_RESULT_COL0))
394 fp_inputs |= FRAG_BIT_COL0;
395 if (vp_outputs & (1 << VERT_RESULT_COL1))
396 fp_inputs |= FRAG_BIT_COL1;
397
398 fp_inputs |= (((vp_outputs & VERT_RESULT_TEX_ANY) >> VERT_RESULT_TEX0)
399 << FRAG_ATTRIB_TEX0);
400 }
401
402 return fp_inputs;
403 }
404
405
406 /**
407 * Examine current texture environment state and generate a unique
408 * key to identify it.
409 */
410 static GLuint make_state_key( GLcontext *ctx, struct state_key *key )
411 {
412 GLuint i, j;
413 GLbitfield inputs_referenced = FRAG_BIT_COL0;
414 const GLbitfield inputs_available = get_fp_input_mask( ctx );
415 GLuint keySize;
416
417 memset(key, 0, sizeof(*key));
418
419 /* _NEW_TEXTURE */
420 for (i = 0; i < ctx->Const.MaxTextureUnits; i++) {
421 const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
422 const struct gl_texture_object *texObj = texUnit->_Current;
423 const struct gl_tex_env_combine_state *comb = texUnit->_CurrentCombine;
424 GLenum format;
425
426 if (!texUnit->_ReallyEnabled || !texUnit->Enabled)
427 continue;
428
429 format = texObj->Image[0][texObj->BaseLevel]->_BaseFormat;
430
431 key->unit[i].enabled = 1;
432 key->enabled_units |= (1<<i);
433 key->nr_enabled_units = i + 1;
434 inputs_referenced |= FRAG_BIT_TEX(i);
435
436 key->unit[i].source_index =
437 translate_tex_src_bit(texUnit->_ReallyEnabled);
438
439 key->unit[i].shadow = ((texObj->CompareMode == GL_COMPARE_R_TO_TEXTURE) &&
440 ((format == GL_DEPTH_COMPONENT) ||
441 (format == GL_DEPTH_STENCIL_EXT)));
442
443 key->unit[i].NumArgsRGB = comb->_NumArgsRGB;
444 key->unit[i].NumArgsA = comb->_NumArgsA;
445
446 key->unit[i].ModeRGB =
447 translate_mode(texUnit->EnvMode, comb->ModeRGB);
448 key->unit[i].ModeA =
449 translate_mode(texUnit->EnvMode, comb->ModeA);
450
451 key->unit[i].ScaleShiftRGB = comb->ScaleShiftRGB;
452 key->unit[i].ScaleShiftA = comb->ScaleShiftA;
453
454 for (j = 0; j < MAX_COMBINER_TERMS; j++) {
455 key->unit[i].OptRGB[j].Operand = translate_operand(comb->OperandRGB[j]);
456 key->unit[i].OptA[j].Operand = translate_operand(comb->OperandA[j]);
457 key->unit[i].OptRGB[j].Source = translate_source(comb->SourceRGB[j]);
458 key->unit[i].OptA[j].Source = translate_source(comb->SourceA[j]);
459 }
460
461 if (key->unit[i].ModeRGB == MODE_BUMP_ENVMAP_ATI) {
462 /* requires some special translation */
463 key->unit[i].NumArgsRGB = 2;
464 key->unit[i].ScaleShiftRGB = 0;
465 key->unit[i].OptRGB[0].Operand = OPR_SRC_COLOR;
466 key->unit[i].OptRGB[0].Source = SRC_TEXTURE;
467 key->unit[i].OptRGB[1].Operand = OPR_SRC_COLOR;
468 key->unit[i].OptRGB[1].Source = texUnit->BumpTarget - GL_TEXTURE0 + SRC_TEXTURE0;
469 }
470
471 /* this is a back-door for enabling cylindrical texture wrap mode */
472 if (texObj->Priority == 0.125)
473 key->unit[i].texture_cyl_wrap = 1;
474 }
475
476 /* _NEW_LIGHT | _NEW_FOG */
477 if (texenv_doing_secondary_color(ctx)) {
478 key->separate_specular = 1;
479 inputs_referenced |= FRAG_BIT_COL1;
480 }
481
482 /* _NEW_FOG */
483 if (ctx->Fog.Enabled) {
484 key->fog_enabled = 1;
485 key->fog_mode = translate_fog_mode(ctx->Fog.Mode);
486 inputs_referenced |= FRAG_BIT_FOGC; /* maybe */
487 }
488
489 /* _NEW_BUFFERS */
490 key->num_draw_buffers = ctx->DrawBuffer->_NumColorDrawBuffers;
491
492 key->inputs_available = (inputs_available & inputs_referenced);
493
494 /* compute size of state key, ignoring unused texture units */
495 keySize = sizeof(*key) - sizeof(key->unit)
496 + key->nr_enabled_units * sizeof(key->unit[0]);
497
498 return keySize;
499 }
500
501
502 /**
503 * Use uregs to represent registers internally, translate to Mesa's
504 * expected formats on emit.
505 *
506 * NOTE: These are passed by value extensively in this file rather
507 * than as usual by pointer reference. If this disturbs you, try
508 * remembering they are just 32bits in size.
509 *
510 * GCC is smart enough to deal with these dword-sized structures in
511 * much the same way as if I had defined them as dwords and was using
512 * macros to access and set the fields. This is much nicer and easier
513 * to evolve.
514 */
515 struct ureg {
516 GLuint file:4;
517 GLuint idx:8;
518 GLuint negatebase:1;
519 GLuint swz:12;
520 GLuint pad:7;
521 };
522
523 static const struct ureg undef = {
524 PROGRAM_UNDEFINED,
525 ~0,
526 0,
527 0,
528 0
529 };
530
531
532 /** State used to build the fragment program:
533 */
534 struct texenv_fragment_program {
535 struct gl_fragment_program *program;
536 struct state_key *state;
537
538 GLbitfield alu_temps; /**< Track texture indirections, see spec. */
539 GLbitfield temps_output; /**< Track texture indirections, see spec. */
540 GLbitfield temp_in_use; /**< Tracks temporary regs which are in use. */
541 GLboolean error;
542
543 struct ureg src_texture[MAX_TEXTURE_COORD_UNITS];
544 /* Reg containing each texture unit's sampled texture color,
545 * else undef.
546 */
547
548 struct ureg texcoord_tex[MAX_TEXTURE_COORD_UNITS];
549 /* Reg containing texcoord for a texture unit,
550 * needed for bump mapping, else undef.
551 */
552
553 struct ureg src_previous; /**< Reg containing color from previous
554 * stage. May need to be decl'd.
555 */
556
557 GLuint last_tex_stage; /**< Number of last enabled texture unit */
558
559 struct ureg half;
560 struct ureg one;
561 struct ureg zero;
562 };
563
564
565
566 static struct ureg make_ureg(GLuint file, GLuint idx)
567 {
568 struct ureg reg;
569 reg.file = file;
570 reg.idx = idx;
571 reg.negatebase = 0;
572 reg.swz = SWIZZLE_NOOP;
573 reg.pad = 0;
574 return reg;
575 }
576
577 static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w )
578 {
579 reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x),
580 GET_SWZ(reg.swz, y),
581 GET_SWZ(reg.swz, z),
582 GET_SWZ(reg.swz, w));
583
584 return reg;
585 }
586
587 static struct ureg swizzle1( struct ureg reg, int x )
588 {
589 return swizzle(reg, x, x, x, x);
590 }
591
592 static struct ureg negate( struct ureg reg )
593 {
594 reg.negatebase ^= 1;
595 return reg;
596 }
597
598 static GLboolean is_undef( struct ureg reg )
599 {
600 return reg.file == PROGRAM_UNDEFINED;
601 }
602
603
604 static struct ureg get_temp( struct texenv_fragment_program *p )
605 {
606 GLint bit;
607
608 /* First try and reuse temps which have been used already:
609 */
610 bit = _mesa_ffs( ~p->temp_in_use & p->alu_temps );
611
612 /* Then any unused temporary:
613 */
614 if (!bit)
615 bit = _mesa_ffs( ~p->temp_in_use );
616
617 if (!bit) {
618 _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
619 exit(1);
620 }
621
622 if ((GLuint) bit > p->program->Base.NumTemporaries)
623 p->program->Base.NumTemporaries = bit;
624
625 p->temp_in_use |= 1<<(bit-1);
626 return make_ureg(PROGRAM_TEMPORARY, (bit-1));
627 }
628
629 static struct ureg get_tex_temp( struct texenv_fragment_program *p )
630 {
631 int bit;
632
633 /* First try to find available temp not previously used (to avoid
634 * starting a new texture indirection). According to the spec, the
635 * ~p->temps_output isn't necessary, but will keep it there for
636 * now:
637 */
638 bit = _mesa_ffs( ~p->temp_in_use & ~p->alu_temps & ~p->temps_output );
639
640 /* Then any unused temporary:
641 */
642 if (!bit)
643 bit = _mesa_ffs( ~p->temp_in_use );
644
645 if (!bit) {
646 _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
647 exit(1);
648 }
649
650 if ((GLuint) bit > p->program->Base.NumTemporaries)
651 p->program->Base.NumTemporaries = bit;
652
653 p->temp_in_use |= 1<<(bit-1);
654 return make_ureg(PROGRAM_TEMPORARY, (bit-1));
655 }
656
657
658 /** Mark a temp reg as being no longer allocatable. */
659 static void reserve_temp( struct texenv_fragment_program *p, struct ureg r )
660 {
661 if (r.file == PROGRAM_TEMPORARY)
662 p->temps_output |= (1 << r.idx);
663 }
664
665
666 static void release_temps(GLcontext *ctx, struct texenv_fragment_program *p )
667 {
668 GLuint max_temp = ctx->Const.FragmentProgram.MaxTemps;
669
670 /* KW: To support tex_env_crossbar, don't release the registers in
671 * temps_output.
672 */
673 if (max_temp >= sizeof(int) * 8)
674 p->temp_in_use = p->temps_output;
675 else
676 p->temp_in_use = ~((1<<max_temp)-1) | p->temps_output;
677 }
678
679
680 static struct ureg register_param5( struct texenv_fragment_program *p,
681 GLint s0,
682 GLint s1,
683 GLint s2,
684 GLint s3,
685 GLint s4)
686 {
687 gl_state_index tokens[STATE_LENGTH];
688 GLuint idx;
689 tokens[0] = s0;
690 tokens[1] = s1;
691 tokens[2] = s2;
692 tokens[3] = s3;
693 tokens[4] = s4;
694 idx = _mesa_add_state_reference( p->program->Base.Parameters, tokens );
695 return make_ureg(PROGRAM_STATE_VAR, idx);
696 }
697
698
699 #define register_param1(p,s0) register_param5(p,s0,0,0,0,0)
700 #define register_param2(p,s0,s1) register_param5(p,s0,s1,0,0,0)
701 #define register_param3(p,s0,s1,s2) register_param5(p,s0,s1,s2,0,0)
702 #define register_param4(p,s0,s1,s2,s3) register_param5(p,s0,s1,s2,s3,0)
703
704 static GLuint frag_to_vert_attrib( GLuint attrib )
705 {
706 switch (attrib) {
707 case FRAG_ATTRIB_COL0: return VERT_ATTRIB_COLOR0;
708 case FRAG_ATTRIB_COL1: return VERT_ATTRIB_COLOR1;
709 default:
710 assert(attrib >= FRAG_ATTRIB_TEX0);
711 assert(attrib <= FRAG_ATTRIB_TEX7);
712 return attrib - FRAG_ATTRIB_TEX0 + VERT_ATTRIB_TEX0;
713 }
714 }
715
716
717 static struct ureg register_input( struct texenv_fragment_program *p, GLuint input )
718 {
719 if (p->state->inputs_available & (1<<input)) {
720 p->program->Base.InputsRead |= (1 << input);
721 return make_ureg(PROGRAM_INPUT, input);
722 }
723 else {
724 GLuint idx = frag_to_vert_attrib( input );
725 return register_param3( p, STATE_INTERNAL, STATE_CURRENT_ATTRIB, idx );
726 }
727 }
728
729
730 static void emit_arg( struct prog_src_register *reg,
731 struct ureg ureg )
732 {
733 reg->File = ureg.file;
734 reg->Index = ureg.idx;
735 reg->Swizzle = ureg.swz;
736 reg->Negate = ureg.negatebase ? NEGATE_XYZW : NEGATE_NONE;
737 reg->Abs = GL_FALSE;
738 }
739
740 static void emit_dst( struct prog_dst_register *dst,
741 struct ureg ureg, GLuint mask )
742 {
743 dst->File = ureg.file;
744 dst->Index = ureg.idx;
745 dst->WriteMask = mask;
746 dst->CondMask = COND_TR; /* always pass cond test */
747 dst->CondSwizzle = SWIZZLE_NOOP;
748 }
749
750 static struct prog_instruction *
751 emit_op(struct texenv_fragment_program *p,
752 enum prog_opcode op,
753 struct ureg dest,
754 GLuint mask,
755 GLboolean saturate,
756 struct ureg src0,
757 struct ureg src1,
758 struct ureg src2 )
759 {
760 const GLuint nr = p->program->Base.NumInstructions++;
761 struct prog_instruction *inst = &p->program->Base.Instructions[nr];
762
763 assert(nr < MAX_INSTRUCTIONS);
764
765 _mesa_init_instructions(inst, 1);
766 inst->Opcode = op;
767
768 emit_arg( &inst->SrcReg[0], src0 );
769 emit_arg( &inst->SrcReg[1], src1 );
770 emit_arg( &inst->SrcReg[2], src2 );
771
772 inst->SaturateMode = saturate ? SATURATE_ZERO_ONE : SATURATE_OFF;
773
774 emit_dst( &inst->DstReg, dest, mask );
775
776 #if 0
777 /* Accounting for indirection tracking:
778 */
779 if (dest.file == PROGRAM_TEMPORARY)
780 p->temps_output |= 1 << dest.idx;
781 #endif
782
783 return inst;
784 }
785
786
787 static struct ureg emit_arith( struct texenv_fragment_program *p,
788 enum prog_opcode op,
789 struct ureg dest,
790 GLuint mask,
791 GLboolean saturate,
792 struct ureg src0,
793 struct ureg src1,
794 struct ureg src2 )
795 {
796 emit_op(p, op, dest, mask, saturate, src0, src1, src2);
797
798 /* Accounting for indirection tracking:
799 */
800 if (src0.file == PROGRAM_TEMPORARY)
801 p->alu_temps |= 1 << src0.idx;
802
803 if (!is_undef(src1) && src1.file == PROGRAM_TEMPORARY)
804 p->alu_temps |= 1 << src1.idx;
805
806 if (!is_undef(src2) && src2.file == PROGRAM_TEMPORARY)
807 p->alu_temps |= 1 << src2.idx;
808
809 if (dest.file == PROGRAM_TEMPORARY)
810 p->alu_temps |= 1 << dest.idx;
811
812 p->program->Base.NumAluInstructions++;
813 return dest;
814 }
815
816 static struct ureg emit_texld( struct texenv_fragment_program *p,
817 enum prog_opcode op,
818 struct ureg dest,
819 GLuint destmask,
820 GLuint tex_unit,
821 GLuint tex_idx,
822 GLuint tex_shadow,
823 struct ureg coord )
824 {
825 struct prog_instruction *inst = emit_op( p, op,
826 dest, destmask,
827 GL_FALSE, /* don't saturate? */
828 coord, /* arg 0? */
829 undef,
830 undef);
831
832 inst->TexSrcTarget = tex_idx;
833 inst->TexSrcUnit = tex_unit;
834 inst->TexShadow = tex_shadow;
835
836 p->program->Base.NumTexInstructions++;
837
838 /* Accounting for indirection tracking:
839 */
840 reserve_temp(p, dest);
841
842 #if 0
843 /* Is this a texture indirection?
844 */
845 if ((coord.file == PROGRAM_TEMPORARY &&
846 (p->temps_output & (1<<coord.idx))) ||
847 (dest.file == PROGRAM_TEMPORARY &&
848 (p->alu_temps & (1<<dest.idx)))) {
849 p->program->Base.NumTexIndirections++;
850 p->temps_output = 1<<coord.idx;
851 p->alu_temps = 0;
852 assert(0); /* KW: texture env crossbar */
853 }
854 #endif
855
856 return dest;
857 }
858
859
860 static struct ureg register_const4f( struct texenv_fragment_program *p,
861 GLfloat s0,
862 GLfloat s1,
863 GLfloat s2,
864 GLfloat s3)
865 {
866 GLfloat values[4];
867 GLuint idx, swizzle;
868 struct ureg r;
869 values[0] = s0;
870 values[1] = s1;
871 values[2] = s2;
872 values[3] = s3;
873 idx = _mesa_add_unnamed_constant( p->program->Base.Parameters, values, 4,
874 &swizzle );
875 r = make_ureg(PROGRAM_CONSTANT, idx);
876 r.swz = swizzle;
877 return r;
878 }
879
880 #define register_scalar_const(p, s0) register_const4f(p, s0, s0, s0, s0)
881 #define register_const1f(p, s0) register_const4f(p, s0, 0, 0, 1)
882 #define register_const2f(p, s0, s1) register_const4f(p, s0, s1, 0, 1)
883 #define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1)
884
885
886 static struct ureg get_one( struct texenv_fragment_program *p )
887 {
888 if (is_undef(p->one))
889 p->one = register_scalar_const(p, 1.0);
890 return p->one;
891 }
892
893 static struct ureg get_half( struct texenv_fragment_program *p )
894 {
895 if (is_undef(p->half))
896 p->half = register_scalar_const(p, 0.5);
897 return p->half;
898 }
899
900 static struct ureg get_zero( struct texenv_fragment_program *p )
901 {
902 if (is_undef(p->zero))
903 p->zero = register_scalar_const(p, 0.0);
904 return p->zero;
905 }
906
907
908 static void program_error( struct texenv_fragment_program *p, const char *msg )
909 {
910 _mesa_problem(NULL, msg);
911 p->error = 1;
912 }
913
914 static struct ureg get_source( struct texenv_fragment_program *p,
915 GLuint src, GLuint unit )
916 {
917 switch (src) {
918 case SRC_TEXTURE:
919 assert(!is_undef(p->src_texture[unit]));
920 return p->src_texture[unit];
921
922 case SRC_TEXTURE0:
923 case SRC_TEXTURE1:
924 case SRC_TEXTURE2:
925 case SRC_TEXTURE3:
926 case SRC_TEXTURE4:
927 case SRC_TEXTURE5:
928 case SRC_TEXTURE6:
929 case SRC_TEXTURE7:
930 assert(!is_undef(p->src_texture[src - SRC_TEXTURE0]));
931 return p->src_texture[src - SRC_TEXTURE0];
932
933 case SRC_CONSTANT:
934 return register_param2(p, STATE_TEXENV_COLOR, unit);
935
936 case SRC_PRIMARY_COLOR:
937 return register_input(p, FRAG_ATTRIB_COL0);
938
939 case SRC_ZERO:
940 return get_zero(p);
941
942 case SRC_PREVIOUS:
943 if (is_undef(p->src_previous))
944 return register_input(p, FRAG_ATTRIB_COL0);
945 else
946 return p->src_previous;
947
948 default:
949 assert(0);
950 return undef;
951 }
952 }
953
954 static struct ureg emit_combine_source( struct texenv_fragment_program *p,
955 GLuint mask,
956 GLuint unit,
957 GLuint source,
958 GLuint operand )
959 {
960 struct ureg arg, src, one;
961
962 src = get_source(p, source, unit);
963
964 switch (operand) {
965 case OPR_ONE_MINUS_SRC_COLOR:
966 /* Get unused tmp,
967 * Emit tmp = 1.0 - arg.xyzw
968 */
969 arg = get_temp( p );
970 one = get_one( p );
971 return emit_arith( p, OPCODE_SUB, arg, mask, 0, one, src, undef);
972
973 case OPR_SRC_ALPHA:
974 if (mask == WRITEMASK_W)
975 return src;
976 else
977 return swizzle1( src, SWIZZLE_W );
978 case OPR_ONE_MINUS_SRC_ALPHA:
979 /* Get unused tmp,
980 * Emit tmp = 1.0 - arg.wwww
981 */
982 arg = get_temp(p);
983 one = get_one(p);
984 return emit_arith(p, OPCODE_SUB, arg, mask, 0,
985 one, swizzle1(src, SWIZZLE_W), undef);
986 case OPR_ZERO:
987 return get_zero(p);
988 case OPR_ONE:
989 return get_one(p);
990 case OPR_SRC_COLOR:
991 return src;
992 default:
993 assert(0);
994 return src;
995 }
996 }
997
998 /**
999 * Check if the RGB and Alpha sources and operands match for the given
1000 * texture unit's combinder state. When the RGB and A sources and
1001 * operands match, we can emit fewer instructions.
1002 */
1003 static GLboolean args_match( const struct state_key *key, GLuint unit )
1004 {
1005 GLuint i, numArgs = key->unit[unit].NumArgsRGB;
1006
1007 for (i = 0; i < numArgs; i++) {
1008 if (key->unit[unit].OptA[i].Source != key->unit[unit].OptRGB[i].Source)
1009 return GL_FALSE;
1010
1011 switch (key->unit[unit].OptA[i].Operand) {
1012 case OPR_SRC_ALPHA:
1013 switch (key->unit[unit].OptRGB[i].Operand) {
1014 case OPR_SRC_COLOR:
1015 case OPR_SRC_ALPHA:
1016 break;
1017 default:
1018 return GL_FALSE;
1019 }
1020 break;
1021 case OPR_ONE_MINUS_SRC_ALPHA:
1022 switch (key->unit[unit].OptRGB[i].Operand) {
1023 case OPR_ONE_MINUS_SRC_COLOR:
1024 case OPR_ONE_MINUS_SRC_ALPHA:
1025 break;
1026 default:
1027 return GL_FALSE;
1028 }
1029 break;
1030 default:
1031 return GL_FALSE; /* impossible */
1032 }
1033 }
1034
1035 return GL_TRUE;
1036 }
1037
1038 static struct ureg emit_combine( struct texenv_fragment_program *p,
1039 struct ureg dest,
1040 GLuint mask,
1041 GLboolean saturate,
1042 GLuint unit,
1043 GLuint nr,
1044 GLuint mode,
1045 const struct mode_opt *opt)
1046 {
1047 struct ureg src[MAX_COMBINER_TERMS];
1048 struct ureg tmp, half;
1049 GLuint i;
1050
1051 assert(nr <= MAX_COMBINER_TERMS);
1052
1053 for (i = 0; i < nr; i++)
1054 src[i] = emit_combine_source( p, mask, unit, opt[i].Source, opt[i].Operand );
1055
1056 switch (mode) {
1057 case MODE_REPLACE:
1058 if (mask == WRITEMASK_XYZW && !saturate)
1059 return src[0];
1060 else
1061 return emit_arith( p, OPCODE_MOV, dest, mask, saturate, src[0], undef, undef );
1062 case MODE_MODULATE:
1063 return emit_arith( p, OPCODE_MUL, dest, mask, saturate,
1064 src[0], src[1], undef );
1065 case MODE_ADD:
1066 return emit_arith( p, OPCODE_ADD, dest, mask, saturate,
1067 src[0], src[1], undef );
1068 case MODE_ADD_SIGNED:
1069 /* tmp = arg0 + arg1
1070 * result = tmp - .5
1071 */
1072 half = get_half(p);
1073 tmp = get_temp( p );
1074 emit_arith( p, OPCODE_ADD, tmp, mask, 0, src[0], src[1], undef );
1075 emit_arith( p, OPCODE_SUB, dest, mask, saturate, tmp, half, undef );
1076 return dest;
1077 case MODE_INTERPOLATE:
1078 /* Arg0 * (Arg2) + Arg1 * (1-Arg2) -- note arguments are reordered:
1079 */
1080 return emit_arith( p, OPCODE_LRP, dest, mask, saturate, src[2], src[0], src[1] );
1081
1082 case MODE_SUBTRACT:
1083 return emit_arith( p, OPCODE_SUB, dest, mask, saturate, src[0], src[1], undef );
1084
1085 case MODE_DOT3_RGBA:
1086 case MODE_DOT3_RGBA_EXT:
1087 case MODE_DOT3_RGB_EXT:
1088 case MODE_DOT3_RGB: {
1089 struct ureg tmp0 = get_temp( p );
1090 struct ureg tmp1 = get_temp( p );
1091 struct ureg neg1 = register_scalar_const(p, -1);
1092 struct ureg two = register_scalar_const(p, 2);
1093
1094 /* tmp0 = 2*src0 - 1
1095 * tmp1 = 2*src1 - 1
1096 *
1097 * dst = tmp0 dot3 tmp1
1098 */
1099 emit_arith( p, OPCODE_MAD, tmp0, WRITEMASK_XYZW, 0,
1100 two, src[0], neg1);
1101
1102 if (memcmp(&src[0], &src[1], sizeof(struct ureg)) == 0)
1103 tmp1 = tmp0;
1104 else
1105 emit_arith( p, OPCODE_MAD, tmp1, WRITEMASK_XYZW, 0,
1106 two, src[1], neg1);
1107 emit_arith( p, OPCODE_DP3, dest, mask, saturate, tmp0, tmp1, undef);
1108 return dest;
1109 }
1110 case MODE_MODULATE_ADD_ATI:
1111 /* Arg0 * Arg2 + Arg1 */
1112 return emit_arith( p, OPCODE_MAD, dest, mask, saturate,
1113 src[0], src[2], src[1] );
1114 case MODE_MODULATE_SIGNED_ADD_ATI: {
1115 /* Arg0 * Arg2 + Arg1 - 0.5 */
1116 struct ureg tmp0 = get_temp(p);
1117 half = get_half(p);
1118 emit_arith( p, OPCODE_MAD, tmp0, mask, 0, src[0], src[2], src[1] );
1119 emit_arith( p, OPCODE_SUB, dest, mask, saturate, tmp0, half, undef );
1120 return dest;
1121 }
1122 case MODE_MODULATE_SUBTRACT_ATI:
1123 /* Arg0 * Arg2 - Arg1 */
1124 emit_arith( p, OPCODE_MAD, dest, mask, 0, src[0], src[2], negate(src[1]) );
1125 return dest;
1126 case MODE_ADD_PRODUCTS:
1127 /* Arg0 * Arg1 + Arg2 * Arg3 */
1128 {
1129 struct ureg tmp0 = get_temp(p);
1130 emit_arith( p, OPCODE_MUL, tmp0, mask, 0, src[0], src[1], undef );
1131 emit_arith( p, OPCODE_MAD, dest, mask, saturate, src[2], src[3], tmp0 );
1132 }
1133 return dest;
1134 case MODE_ADD_PRODUCTS_SIGNED:
1135 /* Arg0 * Arg1 + Arg2 * Arg3 - 0.5 */
1136 {
1137 struct ureg tmp0 = get_temp(p);
1138 half = get_half(p);
1139 emit_arith( p, OPCODE_MUL, tmp0, mask, 0, src[0], src[1], undef );
1140 emit_arith( p, OPCODE_MAD, tmp0, mask, 0, src[2], src[3], tmp0 );
1141 emit_arith( p, OPCODE_SUB, dest, mask, saturate, tmp0, half, undef );
1142 }
1143 return dest;
1144 case MODE_BUMP_ENVMAP_ATI:
1145 /* special - not handled here */
1146 assert(0);
1147 return src[0];
1148 default:
1149 assert(0);
1150 return src[0];
1151 }
1152 }
1153
1154
1155 /**
1156 * Generate instructions for one texture unit's env/combiner mode.
1157 */
1158 static struct ureg
1159 emit_texenv(struct texenv_fragment_program *p, GLuint unit)
1160 {
1161 const struct state_key *key = p->state;
1162 GLboolean rgb_saturate, alpha_saturate;
1163 GLuint rgb_shift, alpha_shift;
1164 struct ureg out, dest;
1165
1166 if (!key->unit[unit].enabled) {
1167 return get_source(p, SRC_PREVIOUS, 0);
1168 }
1169 if (key->unit[unit].ModeRGB == MODE_BUMP_ENVMAP_ATI) {
1170 /* this isn't really a env stage delivering a color and handled elsewhere */
1171 return get_source(p, SRC_PREVIOUS, 0);
1172 }
1173
1174 switch (key->unit[unit].ModeRGB) {
1175 case MODE_DOT3_RGB_EXT:
1176 alpha_shift = key->unit[unit].ScaleShiftA;
1177 rgb_shift = 0;
1178 break;
1179 case MODE_DOT3_RGBA_EXT:
1180 alpha_shift = 0;
1181 rgb_shift = 0;
1182 break;
1183 default:
1184 rgb_shift = key->unit[unit].ScaleShiftRGB;
1185 alpha_shift = key->unit[unit].ScaleShiftA;
1186 break;
1187 }
1188
1189 /* If we'll do rgb/alpha shifting don't saturate in emit_combine().
1190 * We don't want to clamp twice.
1191 */
1192 if (rgb_shift)
1193 rgb_saturate = GL_FALSE; /* saturate after rgb shift */
1194 else if (need_saturate(key->unit[unit].ModeRGB))
1195 rgb_saturate = GL_TRUE;
1196 else
1197 rgb_saturate = GL_FALSE;
1198
1199 if (alpha_shift)
1200 alpha_saturate = GL_FALSE; /* saturate after alpha shift */
1201 else if (need_saturate(key->unit[unit].ModeA))
1202 alpha_saturate = GL_TRUE;
1203 else
1204 alpha_saturate = GL_FALSE;
1205
1206 /* If this is the very last calculation (and various other conditions
1207 * are met), emit directly to the color output register. Otherwise,
1208 * emit to a temporary register.
1209 */
1210 if (key->separate_specular ||
1211 unit != p->last_tex_stage ||
1212 alpha_shift ||
1213 key->num_draw_buffers != 1 ||
1214 rgb_shift)
1215 dest = get_temp( p );
1216 else
1217 dest = make_ureg(PROGRAM_OUTPUT, FRAG_RESULT_COLOR);
1218
1219 /* Emit the RGB and A combine ops
1220 */
1221 if (key->unit[unit].ModeRGB == key->unit[unit].ModeA &&
1222 args_match(key, unit)) {
1223 out = emit_combine( p, dest, WRITEMASK_XYZW, rgb_saturate,
1224 unit,
1225 key->unit[unit].NumArgsRGB,
1226 key->unit[unit].ModeRGB,
1227 key->unit[unit].OptRGB);
1228 }
1229 else if (key->unit[unit].ModeRGB == MODE_DOT3_RGBA_EXT ||
1230 key->unit[unit].ModeRGB == MODE_DOT3_RGBA) {
1231 out = emit_combine( p, dest, WRITEMASK_XYZW, rgb_saturate,
1232 unit,
1233 key->unit[unit].NumArgsRGB,
1234 key->unit[unit].ModeRGB,
1235 key->unit[unit].OptRGB);
1236 }
1237 else {
1238 /* Need to do something to stop from re-emitting identical
1239 * argument calculations here:
1240 */
1241 out = emit_combine( p, dest, WRITEMASK_XYZ, rgb_saturate,
1242 unit,
1243 key->unit[unit].NumArgsRGB,
1244 key->unit[unit].ModeRGB,
1245 key->unit[unit].OptRGB);
1246 out = emit_combine( p, dest, WRITEMASK_W, alpha_saturate,
1247 unit,
1248 key->unit[unit].NumArgsA,
1249 key->unit[unit].ModeA,
1250 key->unit[unit].OptA);
1251 }
1252
1253 /* Deal with the final shift:
1254 */
1255 if (alpha_shift || rgb_shift) {
1256 struct ureg shift;
1257 GLboolean saturate = GL_TRUE; /* always saturate at this point */
1258
1259 if (rgb_shift == alpha_shift) {
1260 shift = register_scalar_const(p, (GLfloat)(1<<rgb_shift));
1261 }
1262 else {
1263 shift = register_const4f(p,
1264 (GLfloat)(1<<rgb_shift),
1265 (GLfloat)(1<<rgb_shift),
1266 (GLfloat)(1<<rgb_shift),
1267 (GLfloat)(1<<alpha_shift));
1268 }
1269 return emit_arith( p, OPCODE_MUL, dest, WRITEMASK_XYZW,
1270 saturate, out, shift, undef );
1271 }
1272 else
1273 return out;
1274 }
1275
1276
1277 /**
1278 * Generate instruction for getting a texture source term.
1279 */
1280 static void load_texture( struct texenv_fragment_program *p, GLuint unit )
1281 {
1282 if (is_undef(p->src_texture[unit])) {
1283 const GLuint texTarget = p->state->unit[unit].source_index;
1284 struct ureg texcoord;
1285 struct ureg tmp = get_tex_temp( p );
1286
1287 if (is_undef(p->texcoord_tex[unit])) {
1288 texcoord = register_input(p, FRAG_ATTRIB_TEX0+unit);
1289 }
1290 else {
1291 /* might want to reuse this reg for tex output actually */
1292 texcoord = p->texcoord_tex[unit];
1293 }
1294
1295 /* TODO: Use D0_MASK_XY where possible.
1296 */
1297 if (p->state->unit[unit].enabled) {
1298 GLboolean shadow = GL_FALSE;
1299
1300 if (p->state->unit[unit].shadow) {
1301 p->program->Base.ShadowSamplers |= 1 << unit;
1302 shadow = GL_TRUE;
1303 }
1304
1305 p->src_texture[unit] = emit_texld( p, OPCODE_TXP,
1306 tmp, WRITEMASK_XYZW,
1307 unit, texTarget, shadow,
1308 texcoord );
1309
1310 p->program->Base.SamplersUsed |= (1 << unit);
1311 /* This identity mapping should already be in place
1312 * (see _mesa_init_program_struct()) but let's be safe.
1313 */
1314 p->program->Base.SamplerUnits[unit] = unit;
1315 }
1316 else
1317 p->src_texture[unit] = get_zero(p);
1318
1319 if (p->state->unit[unit].texture_cyl_wrap) {
1320 /* set flag which is checked by Mesa->Gallium program translation */
1321 p->program->Base.InputFlags[0] |= PROG_PARAM_BIT_CYL_WRAP;
1322 }
1323
1324 }
1325 }
1326
1327 static GLboolean load_texenv_source( struct texenv_fragment_program *p,
1328 GLuint src, GLuint unit )
1329 {
1330 switch (src) {
1331 case SRC_TEXTURE:
1332 load_texture(p, unit);
1333 break;
1334
1335 case SRC_TEXTURE0:
1336 case SRC_TEXTURE1:
1337 case SRC_TEXTURE2:
1338 case SRC_TEXTURE3:
1339 case SRC_TEXTURE4:
1340 case SRC_TEXTURE5:
1341 case SRC_TEXTURE6:
1342 case SRC_TEXTURE7:
1343 load_texture(p, src - SRC_TEXTURE0);
1344 break;
1345
1346 default:
1347 /* not a texture src - do nothing */
1348 break;
1349 }
1350
1351 return GL_TRUE;
1352 }
1353
1354
1355 /**
1356 * Generate instructions for loading all texture source terms.
1357 */
1358 static GLboolean
1359 load_texunit_sources( struct texenv_fragment_program *p, GLuint unit )
1360 {
1361 const struct state_key *key = p->state;
1362 GLuint i;
1363
1364 for (i = 0; i < key->unit[unit].NumArgsRGB; i++) {
1365 load_texenv_source( p, key->unit[unit].OptRGB[i].Source, unit );
1366 }
1367
1368 for (i = 0; i < key->unit[unit].NumArgsA; i++) {
1369 load_texenv_source( p, key->unit[unit].OptA[i].Source, unit );
1370 }
1371
1372 return GL_TRUE;
1373 }
1374
1375 /**
1376 * Generate instructions for loading bump map textures.
1377 */
1378 static GLboolean
1379 load_texunit_bumpmap( struct texenv_fragment_program *p, GLuint unit )
1380 {
1381 const struct state_key *key = p->state;
1382 GLuint bumpedUnitNr = key->unit[unit].OptRGB[1].Source - SRC_TEXTURE0;
1383 struct ureg texcDst, bumpMapRes;
1384 struct ureg constdudvcolor = register_const4f(p, 0.0, 0.0, 0.0, 1.0);
1385 struct ureg texcSrc = register_input(p, FRAG_ATTRIB_TEX0 + bumpedUnitNr);
1386 struct ureg rotMat0 = register_param3( p, STATE_INTERNAL, STATE_ROT_MATRIX_0, unit );
1387 struct ureg rotMat1 = register_param3( p, STATE_INTERNAL, STATE_ROT_MATRIX_1, unit );
1388
1389 load_texenv_source( p, unit + SRC_TEXTURE0, unit );
1390
1391 bumpMapRes = get_source(p, key->unit[unit].OptRGB[0].Source, unit);
1392 texcDst = get_tex_temp( p );
1393 p->texcoord_tex[bumpedUnitNr] = texcDst;
1394
1395 /* Apply rot matrix and add coords to be available in next phase.
1396 * dest = (Arg0.xxxx * rotMat0 + Arg1) + (Arg0.yyyy * rotMat1)
1397 * note only 2 coords are affected the rest are left unchanged (mul by 0)
1398 */
1399 emit_arith( p, OPCODE_MAD, texcDst, WRITEMASK_XYZW, 0,
1400 swizzle1(bumpMapRes, SWIZZLE_X), rotMat0, texcSrc );
1401 emit_arith( p, OPCODE_MAD, texcDst, WRITEMASK_XYZW, 0,
1402 swizzle1(bumpMapRes, SWIZZLE_Y), rotMat1, texcDst );
1403
1404 /* Move 0,0,0,1 into bumpmap src if someone (crossbar) is foolish
1405 * enough to access this later, should optimize away.
1406 */
1407 emit_arith( p, OPCODE_MOV, bumpMapRes, WRITEMASK_XYZW, 0,
1408 constdudvcolor, undef, undef );
1409
1410 return GL_TRUE;
1411 }
1412
1413 /**
1414 * Generate a new fragment program which implements the context's
1415 * current texture env/combine mode.
1416 */
1417 static void
1418 create_new_program(GLcontext *ctx, struct state_key *key,
1419 struct gl_fragment_program *program)
1420 {
1421 struct prog_instruction instBuffer[MAX_INSTRUCTIONS];
1422 struct texenv_fragment_program p;
1423 GLuint unit;
1424 struct ureg cf, out;
1425 int i;
1426
1427 memset(&p, 0, sizeof(p));
1428 p.state = key;
1429 p.program = program;
1430
1431 /* During code generation, use locally-allocated instruction buffer,
1432 * then alloc dynamic storage below.
1433 */
1434 p.program->Base.Instructions = instBuffer;
1435 p.program->Base.Target = GL_FRAGMENT_PROGRAM_ARB;
1436 p.program->Base.String = NULL;
1437 p.program->Base.NumTexIndirections = 1; /* is this right? */
1438 p.program->Base.NumTexInstructions = 0;
1439 p.program->Base.NumAluInstructions = 0;
1440 p.program->Base.NumInstructions = 0;
1441 p.program->Base.NumTemporaries = 0;
1442 p.program->Base.NumParameters = 0;
1443 p.program->Base.NumAttributes = 0;
1444 p.program->Base.NumAddressRegs = 0;
1445 p.program->Base.Parameters = _mesa_new_parameter_list();
1446 p.program->Base.InputsRead = 0x0;
1447
1448 if (key->num_draw_buffers == 1)
1449 p.program->Base.OutputsWritten = 1 << FRAG_RESULT_COLOR;
1450 else {
1451 for (i = 0; i < key->num_draw_buffers; i++)
1452 p.program->Base.OutputsWritten |= (1 << (FRAG_RESULT_DATA0 + i));
1453 }
1454
1455 for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
1456 p.src_texture[unit] = undef;
1457 p.texcoord_tex[unit] = undef;
1458 }
1459
1460 p.src_previous = undef;
1461 p.half = undef;
1462 p.zero = undef;
1463 p.one = undef;
1464
1465 p.last_tex_stage = 0;
1466 release_temps(ctx, &p);
1467
1468 if (key->enabled_units) {
1469 GLboolean needbumpstage = GL_FALSE;
1470
1471 /* Zeroth pass - bump map textures first */
1472 for (unit = 0; unit < key->nr_enabled_units; unit++)
1473 if (key->unit[unit].enabled &&
1474 key->unit[unit].ModeRGB == MODE_BUMP_ENVMAP_ATI) {
1475 needbumpstage = GL_TRUE;
1476 load_texunit_bumpmap( &p, unit );
1477 }
1478 if (needbumpstage)
1479 p.program->Base.NumTexIndirections++;
1480
1481 /* First pass - to support texture_env_crossbar, first identify
1482 * all referenced texture sources and emit texld instructions
1483 * for each:
1484 */
1485 for (unit = 0; unit < key->nr_enabled_units; unit++)
1486 if (key->unit[unit].enabled) {
1487 load_texunit_sources( &p, unit );
1488 p.last_tex_stage = unit;
1489 }
1490
1491 /* Second pass - emit combine instructions to build final color:
1492 */
1493 for (unit = 0; unit < key->nr_enabled_units; unit++)
1494 if (key->unit[unit].enabled) {
1495 p.src_previous = emit_texenv( &p, unit );
1496 reserve_temp(&p, p.src_previous); /* don't re-use this temp reg */
1497 release_temps(ctx, &p); /* release all temps */
1498 }
1499 }
1500
1501 cf = get_source( &p, SRC_PREVIOUS, 0 );
1502
1503 for (i = 0; i < key->num_draw_buffers; i++) {
1504 if (key->num_draw_buffers == 1)
1505 out = make_ureg( PROGRAM_OUTPUT, FRAG_RESULT_COLOR );
1506 else {
1507 out = make_ureg( PROGRAM_OUTPUT, FRAG_RESULT_DATA0 + i );
1508 }
1509
1510 if (key->separate_specular) {
1511 /* Emit specular add.
1512 */
1513 struct ureg s = register_input(&p, FRAG_ATTRIB_COL1);
1514 emit_arith( &p, OPCODE_ADD, out, WRITEMASK_XYZ, 0, cf, s, undef );
1515 emit_arith( &p, OPCODE_MOV, out, WRITEMASK_W, 0, cf, undef, undef );
1516 }
1517 else if (memcmp(&cf, &out, sizeof(cf)) != 0) {
1518 /* Will wind up in here if no texture enabled or a couple of
1519 * other scenarios (GL_REPLACE for instance).
1520 */
1521 emit_arith( &p, OPCODE_MOV, out, WRITEMASK_XYZW, 0, cf, undef, undef );
1522 }
1523 }
1524 /* Finish up:
1525 */
1526 emit_arith( &p, OPCODE_END, undef, WRITEMASK_XYZW, 0, undef, undef, undef);
1527
1528 if (key->fog_enabled) {
1529 /* Pull fog mode from GLcontext, the value in the state key is
1530 * a reduced value and not what is expected in FogOption
1531 */
1532 p.program->FogOption = ctx->Fog.Mode;
1533 p.program->Base.InputsRead |= FRAG_BIT_FOGC;
1534 }
1535 else {
1536 p.program->FogOption = GL_NONE;
1537 }
1538
1539 if (p.program->Base.NumTexIndirections > ctx->Const.FragmentProgram.MaxTexIndirections)
1540 program_error(&p, "Exceeded max nr indirect texture lookups");
1541
1542 if (p.program->Base.NumTexInstructions > ctx->Const.FragmentProgram.MaxTexInstructions)
1543 program_error(&p, "Exceeded max TEX instructions");
1544
1545 if (p.program->Base.NumAluInstructions > ctx->Const.FragmentProgram.MaxAluInstructions)
1546 program_error(&p, "Exceeded max ALU instructions");
1547
1548 ASSERT(p.program->Base.NumInstructions <= MAX_INSTRUCTIONS);
1549
1550 /* Allocate final instruction array */
1551 p.program->Base.Instructions
1552 = _mesa_alloc_instructions(p.program->Base.NumInstructions);
1553 if (!p.program->Base.Instructions) {
1554 _mesa_error(ctx, GL_OUT_OF_MEMORY,
1555 "generating tex env program");
1556 return;
1557 }
1558 _mesa_copy_instructions(p.program->Base.Instructions, instBuffer,
1559 p.program->Base.NumInstructions);
1560
1561 if (p.program->FogOption) {
1562 _mesa_append_fog_code(ctx, p.program);
1563 p.program->FogOption = GL_NONE;
1564 }
1565
1566
1567 /* Notify driver the fragment program has (actually) changed.
1568 */
1569 if (ctx->Driver.ProgramStringNotify) {
1570 GLboolean ok = ctx->Driver.ProgramStringNotify(ctx,
1571 GL_FRAGMENT_PROGRAM_ARB,
1572 &p.program->Base);
1573 /* Driver should be able to handle any texenv programs as long as
1574 * the driver correctly reported max number of texture units correctly,
1575 * etc.
1576 */
1577 ASSERT(ok);
1578 (void) ok; /* silence unused var warning */
1579 }
1580
1581 if (DISASSEM) {
1582 _mesa_print_program(&p.program->Base);
1583 printf("\n");
1584 }
1585 }
1586
1587
1588 /**
1589 * Return a fragment program which implements the current
1590 * fixed-function texture, fog and color-sum operations.
1591 */
1592 struct gl_fragment_program *
1593 _mesa_get_fixed_func_fragment_program(GLcontext *ctx)
1594 {
1595 struct gl_fragment_program *prog;
1596 struct state_key key;
1597 GLuint keySize;
1598
1599 keySize = make_state_key(ctx, &key);
1600
1601 prog = (struct gl_fragment_program *)
1602 _mesa_search_program_cache(ctx->FragmentProgram.Cache,
1603 &key, keySize);
1604
1605 if (!prog) {
1606 prog = (struct gl_fragment_program *)
1607 ctx->Driver.NewProgram(ctx, GL_FRAGMENT_PROGRAM_ARB, 0);
1608
1609 create_new_program(ctx, &key, prog);
1610
1611 _mesa_program_cache_insert(ctx, ctx->FragmentProgram.Cache,
1612 &key, keySize, &prog->Base);
1613 }
1614
1615 return prog;
1616 }