mesa: remove unused ureg:negateabs field
[mesa.git] / src / mesa / main / texenvprogram.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 * Copyright 2009 VMware, Inc. All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 #include "glheader.h"
30 #include "macros.h"
31 #include "enums.h"
32 #include "shader/program.h"
33 #include "shader/prog_parameter.h"
34 #include "shader/prog_cache.h"
35 #include "shader/prog_instruction.h"
36 #include "shader/prog_print.h"
37 #include "shader/prog_statevars.h"
38 #include "shader/programopt.h"
39 #include "texenvprogram.h"
40
41
42 /*
43 * Note on texture units:
44 *
45 * The number of texture units supported by fixed-function fragment
46 * processing is MAX_TEXTURE_COORD_UNITS, not MAX_TEXTURE_IMAGE_UNITS.
47 * That's because there's a one-to-one correspondence between texture
48 * coordinates and samplers in fixed-function processing.
49 *
50 * Since fixed-function vertex processing is limited to MAX_TEXTURE_COORD_UNITS
51 * sets of texcoords, so is fixed-function fragment processing.
52 *
53 * We can safely use ctx->Const.MaxTextureUnits for loop bounds.
54 */
55
56
57 struct texenvprog_cache_item
58 {
59 GLuint hash;
60 void *key;
61 struct gl_fragment_program *data;
62 struct texenvprog_cache_item *next;
63 };
64
65 static GLboolean
66 texenv_doing_secondary_color(GLcontext *ctx)
67 {
68 if (ctx->Light.Enabled &&
69 (ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR))
70 return GL_TRUE;
71
72 if (ctx->Fog.ColorSumEnabled)
73 return GL_TRUE;
74
75 return GL_FALSE;
76 }
77
78 /**
79 * Up to nine instructions per tex unit, plus fog, specular color.
80 */
81 #define MAX_INSTRUCTIONS ((MAX_TEXTURE_COORD_UNITS * 9) + 12)
82
83 #define DISASSEM (MESA_VERBOSE & VERBOSE_DISASSEM)
84
85 struct mode_opt {
86 GLuint Source:4; /**< SRC_x */
87 GLuint Operand:3; /**< OPR_x */
88 };
89
90 struct state_key {
91 GLuint nr_enabled_units:8;
92 GLuint enabled_units:8;
93 GLuint separate_specular:1;
94 GLuint fog_enabled:1;
95 GLuint fog_mode:2; /**< FOG_x */
96 GLuint inputs_available:12;
97
98 struct {
99 GLuint enabled:1;
100 GLuint source_index:3; /**< TEXTURE_x_INDEX */
101 GLuint shadow:1;
102 GLuint ScaleShiftRGB:2;
103 GLuint ScaleShiftA:2;
104
105 GLuint NumArgsRGB:3; /**< up to MAX_COMBINER_TERMS */
106 GLuint ModeRGB:5; /**< MODE_x */
107 struct mode_opt OptRGB[MAX_COMBINER_TERMS];
108
109 GLuint NumArgsA:3; /**< up to MAX_COMBINER_TERMS */
110 GLuint ModeA:5; /**< MODE_x */
111 struct mode_opt OptA[MAX_COMBINER_TERMS];
112 } unit[MAX_TEXTURE_UNITS];
113 };
114
115 #define FOG_LINEAR 0
116 #define FOG_EXP 1
117 #define FOG_EXP2 2
118 #define FOG_UNKNOWN 3
119
120 static GLuint translate_fog_mode( GLenum mode )
121 {
122 switch (mode) {
123 case GL_LINEAR: return FOG_LINEAR;
124 case GL_EXP: return FOG_EXP;
125 case GL_EXP2: return FOG_EXP2;
126 default: return FOG_UNKNOWN;
127 }
128 }
129
130 #define OPR_SRC_COLOR 0
131 #define OPR_ONE_MINUS_SRC_COLOR 1
132 #define OPR_SRC_ALPHA 2
133 #define OPR_ONE_MINUS_SRC_ALPHA 3
134 #define OPR_ZERO 4
135 #define OPR_ONE 5
136 #define OPR_UNKNOWN 7
137
138 static GLuint translate_operand( GLenum operand )
139 {
140 switch (operand) {
141 case GL_SRC_COLOR: return OPR_SRC_COLOR;
142 case GL_ONE_MINUS_SRC_COLOR: return OPR_ONE_MINUS_SRC_COLOR;
143 case GL_SRC_ALPHA: return OPR_SRC_ALPHA;
144 case GL_ONE_MINUS_SRC_ALPHA: return OPR_ONE_MINUS_SRC_ALPHA;
145 case GL_ZERO: return OPR_ZERO;
146 case GL_ONE: return OPR_ONE;
147 default:
148 assert(0);
149 return OPR_UNKNOWN;
150 }
151 }
152
153 #define SRC_TEXTURE 0
154 #define SRC_TEXTURE0 1
155 #define SRC_TEXTURE1 2
156 #define SRC_TEXTURE2 3
157 #define SRC_TEXTURE3 4
158 #define SRC_TEXTURE4 5
159 #define SRC_TEXTURE5 6
160 #define SRC_TEXTURE6 7
161 #define SRC_TEXTURE7 8
162 #define SRC_CONSTANT 9
163 #define SRC_PRIMARY_COLOR 10
164 #define SRC_PREVIOUS 11
165 #define SRC_ZERO 12
166 #define SRC_UNKNOWN 15
167
168 static GLuint translate_source( GLenum src )
169 {
170 switch (src) {
171 case GL_TEXTURE: return SRC_TEXTURE;
172 case GL_TEXTURE0:
173 case GL_TEXTURE1:
174 case GL_TEXTURE2:
175 case GL_TEXTURE3:
176 case GL_TEXTURE4:
177 case GL_TEXTURE5:
178 case GL_TEXTURE6:
179 case GL_TEXTURE7: return SRC_TEXTURE0 + (src - GL_TEXTURE0);
180 case GL_CONSTANT: return SRC_CONSTANT;
181 case GL_PRIMARY_COLOR: return SRC_PRIMARY_COLOR;
182 case GL_PREVIOUS: return SRC_PREVIOUS;
183 case GL_ZERO:
184 return SRC_ZERO;
185 default:
186 assert(0);
187 return SRC_UNKNOWN;
188 }
189 }
190
191 #define MODE_REPLACE 0 /* r = a0 */
192 #define MODE_MODULATE 1 /* r = a0 * a1 */
193 #define MODE_ADD 2 /* r = a0 + a1 */
194 #define MODE_ADD_SIGNED 3 /* r = a0 + a1 - 0.5 */
195 #define MODE_INTERPOLATE 4 /* r = a0 * a2 + a1 * (1 - a2) */
196 #define MODE_SUBTRACT 5 /* r = a0 - a1 */
197 #define MODE_DOT3_RGB 6 /* r = a0 . a1 */
198 #define MODE_DOT3_RGB_EXT 7 /* r = a0 . a1 */
199 #define MODE_DOT3_RGBA 8 /* r = a0 . a1 */
200 #define MODE_DOT3_RGBA_EXT 9 /* r = a0 . a1 */
201 #define MODE_MODULATE_ADD_ATI 10 /* r = a0 * a2 + a1 */
202 #define MODE_MODULATE_SIGNED_ADD_ATI 11 /* r = a0 * a2 + a1 - 0.5 */
203 #define MODE_MODULATE_SUBTRACT_ATI 12 /* r = a0 * a2 - a1 */
204 #define MODE_ADD_PRODUCTS 13 /* r = a0 * a1 + a2 * a3 */
205 #define MODE_ADD_PRODUCTS_SIGNED 14 /* r = a0 * a1 + a2 * a3 - 0.5 */
206 #define MODE_BUMP_ENVMAP_ATI 15 /* special */
207 #define MODE_UNKNOWN 16
208
209 /**
210 * Translate GL combiner state into a MODE_x value
211 */
212 static GLuint translate_mode( GLenum envMode, GLenum mode )
213 {
214 switch (mode) {
215 case GL_REPLACE: return MODE_REPLACE;
216 case GL_MODULATE: return MODE_MODULATE;
217 case GL_ADD:
218 if (envMode == GL_COMBINE4_NV)
219 return MODE_ADD_PRODUCTS;
220 else
221 return MODE_ADD;
222 case GL_ADD_SIGNED:
223 if (envMode == GL_COMBINE4_NV)
224 return MODE_ADD_PRODUCTS_SIGNED;
225 else
226 return MODE_ADD_SIGNED;
227 case GL_INTERPOLATE: return MODE_INTERPOLATE;
228 case GL_SUBTRACT: return MODE_SUBTRACT;
229 case GL_DOT3_RGB: return MODE_DOT3_RGB;
230 case GL_DOT3_RGB_EXT: return MODE_DOT3_RGB_EXT;
231 case GL_DOT3_RGBA: return MODE_DOT3_RGBA;
232 case GL_DOT3_RGBA_EXT: return MODE_DOT3_RGBA_EXT;
233 case GL_MODULATE_ADD_ATI: return MODE_MODULATE_ADD_ATI;
234 case GL_MODULATE_SIGNED_ADD_ATI: return MODE_MODULATE_SIGNED_ADD_ATI;
235 case GL_MODULATE_SUBTRACT_ATI: return MODE_MODULATE_SUBTRACT_ATI;
236 case GL_BUMP_ENVMAP_ATI: return MODE_BUMP_ENVMAP_ATI;
237 default:
238 assert(0);
239 return MODE_UNKNOWN;
240 }
241 }
242
243
244 /**
245 * Translate TEXTURE_x_BIT to TEXTURE_x_INDEX.
246 */
247 static GLuint translate_tex_src_bit( GLbitfield bit )
248 {
249 ASSERT(bit);
250 return _mesa_ffs(bit) - 1;
251 }
252
253
254 #define VERT_BIT_TEX_ANY (0xff << VERT_ATTRIB_TEX0)
255 #define VERT_RESULT_TEX_ANY (0xff << VERT_RESULT_TEX0)
256
257 /**
258 * Identify all possible varying inputs. The fragment program will
259 * never reference non-varying inputs, but will track them via state
260 * constants instead.
261 *
262 * This function figures out all the inputs that the fragment program
263 * has access to. The bitmask is later reduced to just those which
264 * are actually referenced.
265 */
266 static GLbitfield get_fp_input_mask( GLcontext *ctx )
267 {
268 /* _NEW_PROGRAM */
269 const GLboolean vertexShader = (ctx->Shader.CurrentProgram &&
270 ctx->Shader.CurrentProgram->LinkStatus &&
271 ctx->Shader.CurrentProgram->VertexProgram);
272 const GLboolean vertexProgram = ctx->VertexProgram._Enabled;
273 GLbitfield fp_inputs = 0x0;
274
275 if (ctx->VertexProgram._Overriden) {
276 /* Somebody's messing with the vertex program and we don't have
277 * a clue what's happening. Assume that it could be producing
278 * all possible outputs.
279 */
280 fp_inputs = ~0;
281 }
282 else if (ctx->RenderMode == GL_FEEDBACK) {
283 /* _NEW_RENDERMODE */
284 fp_inputs = (FRAG_BIT_COL0 | FRAG_BIT_TEX0);
285 }
286 else if (!(vertexProgram || vertexShader) ||
287 !ctx->VertexProgram._Current) {
288 /* Fixed function vertex logic */
289 /* _NEW_ARRAY */
290 GLbitfield varying_inputs = ctx->varying_vp_inputs;
291
292 /* These get generated in the setup routine regardless of the
293 * vertex program:
294 */
295 /* _NEW_POINT */
296 if (ctx->Point.PointSprite)
297 varying_inputs |= FRAG_BITS_TEX_ANY;
298
299 /* First look at what values may be computed by the generated
300 * vertex program:
301 */
302 /* _NEW_LIGHT */
303 if (ctx->Light.Enabled) {
304 fp_inputs |= FRAG_BIT_COL0;
305
306 if (texenv_doing_secondary_color(ctx))
307 fp_inputs |= FRAG_BIT_COL1;
308 }
309
310 /* _NEW_TEXTURE */
311 fp_inputs |= (ctx->Texture._TexGenEnabled |
312 ctx->Texture._TexMatEnabled) << FRAG_ATTRIB_TEX0;
313
314 /* Then look at what might be varying as a result of enabled
315 * arrays, etc:
316 */
317 if (varying_inputs & VERT_BIT_COLOR0)
318 fp_inputs |= FRAG_BIT_COL0;
319 if (varying_inputs & VERT_BIT_COLOR1)
320 fp_inputs |= FRAG_BIT_COL1;
321
322 fp_inputs |= (((varying_inputs & VERT_BIT_TEX_ANY) >> VERT_ATTRIB_TEX0)
323 << FRAG_ATTRIB_TEX0);
324
325 }
326 else {
327 /* calculate from vp->outputs */
328 struct gl_vertex_program *vprog;
329 GLbitfield vp_outputs;
330
331 /* Choose GLSL vertex shader over ARB vertex program. Need this
332 * since vertex shader state validation comes after fragment state
333 * validation (see additional comments in state.c).
334 */
335 if (vertexShader)
336 vprog = ctx->Shader.CurrentProgram->VertexProgram;
337 else
338 vprog = ctx->VertexProgram.Current;
339
340 vp_outputs = vprog->Base.OutputsWritten;
341
342 /* These get generated in the setup routine regardless of the
343 * vertex program:
344 */
345 /* _NEW_POINT */
346 if (ctx->Point.PointSprite)
347 vp_outputs |= FRAG_BITS_TEX_ANY;
348
349 if (vp_outputs & (1 << VERT_RESULT_COL0))
350 fp_inputs |= FRAG_BIT_COL0;
351 if (vp_outputs & (1 << VERT_RESULT_COL1))
352 fp_inputs |= FRAG_BIT_COL1;
353
354 fp_inputs |= (((vp_outputs & VERT_RESULT_TEX_ANY) >> VERT_RESULT_TEX0)
355 << FRAG_ATTRIB_TEX0);
356 }
357
358 return fp_inputs;
359 }
360
361
362 /**
363 * Examine current texture environment state and generate a unique
364 * key to identify it.
365 */
366 static void make_state_key( GLcontext *ctx, struct state_key *key )
367 {
368 GLuint i, j;
369 GLbitfield inputs_referenced = FRAG_BIT_COL0;
370 const GLbitfield inputs_available = get_fp_input_mask( ctx );
371
372 memset(key, 0, sizeof(*key));
373
374 /* _NEW_TEXTURE */
375 for (i = 0; i < ctx->Const.MaxTextureUnits; i++) {
376 const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
377 const struct gl_texture_object *texObj = texUnit->_Current;
378 const struct gl_tex_env_combine_state *comb = texUnit->_CurrentCombine;
379 GLenum format;
380
381 if (!texUnit->_ReallyEnabled || !texUnit->Enabled)
382 continue;
383
384 format = texObj->Image[0][texObj->BaseLevel]->_BaseFormat;
385
386 key->unit[i].enabled = 1;
387 key->enabled_units |= (1<<i);
388 key->nr_enabled_units = i+1;
389 inputs_referenced |= FRAG_BIT_TEX(i);
390
391 key->unit[i].source_index =
392 translate_tex_src_bit(texUnit->_ReallyEnabled);
393
394 key->unit[i].shadow = ((texObj->CompareMode == GL_COMPARE_R_TO_TEXTURE) &&
395 ((format == GL_DEPTH_COMPONENT) ||
396 (format == GL_DEPTH_STENCIL_EXT)));
397
398 key->unit[i].NumArgsRGB = comb->_NumArgsRGB;
399 key->unit[i].NumArgsA = comb->_NumArgsA;
400
401 key->unit[i].ModeRGB =
402 translate_mode(texUnit->EnvMode, comb->ModeRGB);
403 key->unit[i].ModeA =
404 translate_mode(texUnit->EnvMode, comb->ModeA);
405
406 key->unit[i].ScaleShiftRGB = comb->ScaleShiftRGB;
407 key->unit[i].ScaleShiftA = comb->ScaleShiftA;
408
409 for (j = 0; j < MAX_COMBINER_TERMS; j++) {
410 key->unit[i].OptRGB[j].Operand = translate_operand(comb->OperandRGB[j]);
411 key->unit[i].OptA[j].Operand = translate_operand(comb->OperandA[j]);
412 key->unit[i].OptRGB[j].Source = translate_source(comb->SourceRGB[j]);
413 key->unit[i].OptA[j].Source = translate_source(comb->SourceA[j]);
414 }
415
416 if (key->unit[i].ModeRGB == MODE_BUMP_ENVMAP_ATI) {
417 /* requires some special translation */
418 key->unit[i].NumArgsRGB = 2;
419 key->unit[i].ScaleShiftRGB = 0;
420 key->unit[i].OptRGB[0].Operand = OPR_SRC_COLOR;
421 key->unit[i].OptRGB[0].Source = SRC_TEXTURE;
422 key->unit[i].OptRGB[1].Operand = OPR_SRC_COLOR;
423 key->unit[i].OptRGB[1].Source = texUnit->BumpTarget - GL_TEXTURE0 + SRC_TEXTURE0;
424 }
425 }
426
427 /* _NEW_LIGHT | _NEW_FOG */
428 if (texenv_doing_secondary_color(ctx)) {
429 key->separate_specular = 1;
430 inputs_referenced |= FRAG_BIT_COL1;
431 }
432
433 /* _NEW_FOG */
434 if (ctx->Fog.Enabled) {
435 key->fog_enabled = 1;
436 key->fog_mode = translate_fog_mode(ctx->Fog.Mode);
437 inputs_referenced |= FRAG_BIT_FOGC; /* maybe */
438 }
439
440 key->inputs_available = (inputs_available & inputs_referenced);
441 }
442
443 /**
444 * Use uregs to represent registers internally, translate to Mesa's
445 * expected formats on emit.
446 *
447 * NOTE: These are passed by value extensively in this file rather
448 * than as usual by pointer reference. If this disturbs you, try
449 * remembering they are just 32bits in size.
450 *
451 * GCC is smart enough to deal with these dword-sized structures in
452 * much the same way as if I had defined them as dwords and was using
453 * macros to access and set the fields. This is much nicer and easier
454 * to evolve.
455 */
456 struct ureg {
457 GLuint file:4;
458 GLuint idx:8;
459 GLuint negatebase:1;
460 GLuint abs:1;
461 GLuint swz:12;
462 GLuint pad:6;
463 };
464
465 static const struct ureg undef = {
466 PROGRAM_UNDEFINED,
467 ~0,
468 0,
469 0,
470 0,
471 0
472 };
473
474
475 /** State used to build the fragment program:
476 */
477 struct texenv_fragment_program {
478 struct gl_fragment_program *program;
479 GLcontext *ctx;
480 struct state_key *state;
481
482 GLbitfield alu_temps; /**< Track texture indirections, see spec. */
483 GLbitfield temps_output; /**< Track texture indirections, see spec. */
484 GLbitfield temp_in_use; /**< Tracks temporary regs which are in use. */
485 GLboolean error;
486
487 struct ureg src_texture[MAX_TEXTURE_COORD_UNITS];
488 /* Reg containing each texture unit's sampled texture color,
489 * else undef.
490 */
491
492 struct ureg texcoord_tex[MAX_TEXTURE_COORD_UNITS];
493 /* Reg containing texcoord for a texture unit,
494 * needed for bump mapping, else undef.
495 */
496
497 struct ureg src_previous; /**< Reg containing color from previous
498 * stage. May need to be decl'd.
499 */
500
501 GLuint last_tex_stage; /**< Number of last enabled texture unit */
502
503 struct ureg half;
504 struct ureg one;
505 struct ureg zero;
506 };
507
508
509
510 static struct ureg make_ureg(GLuint file, GLuint idx)
511 {
512 struct ureg reg;
513 reg.file = file;
514 reg.idx = idx;
515 reg.negatebase = 0;
516 reg.abs = 0;
517 reg.swz = SWIZZLE_NOOP;
518 reg.pad = 0;
519 return reg;
520 }
521
522 static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w )
523 {
524 reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x),
525 GET_SWZ(reg.swz, y),
526 GET_SWZ(reg.swz, z),
527 GET_SWZ(reg.swz, w));
528
529 return reg;
530 }
531
532 static struct ureg swizzle1( struct ureg reg, int x )
533 {
534 return swizzle(reg, x, x, x, x);
535 }
536
537 static struct ureg negate( struct ureg reg )
538 {
539 reg.negatebase ^= 1;
540 return reg;
541 }
542
543 static GLboolean is_undef( struct ureg reg )
544 {
545 return reg.file == PROGRAM_UNDEFINED;
546 }
547
548
549 static struct ureg get_temp( struct texenv_fragment_program *p )
550 {
551 GLint bit;
552
553 /* First try and reuse temps which have been used already:
554 */
555 bit = _mesa_ffs( ~p->temp_in_use & p->alu_temps );
556
557 /* Then any unused temporary:
558 */
559 if (!bit)
560 bit = _mesa_ffs( ~p->temp_in_use );
561
562 if (!bit) {
563 _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
564 _mesa_exit(1);
565 }
566
567 if ((GLuint) bit > p->program->Base.NumTemporaries)
568 p->program->Base.NumTemporaries = bit;
569
570 p->temp_in_use |= 1<<(bit-1);
571 return make_ureg(PROGRAM_TEMPORARY, (bit-1));
572 }
573
574 static struct ureg get_tex_temp( struct texenv_fragment_program *p )
575 {
576 int bit;
577
578 /* First try to find available temp not previously used (to avoid
579 * starting a new texture indirection). According to the spec, the
580 * ~p->temps_output isn't necessary, but will keep it there for
581 * now:
582 */
583 bit = _mesa_ffs( ~p->temp_in_use & ~p->alu_temps & ~p->temps_output );
584
585 /* Then any unused temporary:
586 */
587 if (!bit)
588 bit = _mesa_ffs( ~p->temp_in_use );
589
590 if (!bit) {
591 _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
592 _mesa_exit(1);
593 }
594
595 if ((GLuint) bit > p->program->Base.NumTemporaries)
596 p->program->Base.NumTemporaries = bit;
597
598 p->temp_in_use |= 1<<(bit-1);
599 return make_ureg(PROGRAM_TEMPORARY, (bit-1));
600 }
601
602
603 /** Mark a temp reg as being no longer allocatable. */
604 static void reserve_temp( struct texenv_fragment_program *p, struct ureg r )
605 {
606 if (r.file == PROGRAM_TEMPORARY)
607 p->temps_output |= (1 << r.idx);
608 }
609
610
611 static void release_temps(GLcontext *ctx, struct texenv_fragment_program *p )
612 {
613 GLuint max_temp = ctx->Const.FragmentProgram.MaxTemps;
614
615 /* KW: To support tex_env_crossbar, don't release the registers in
616 * temps_output.
617 */
618 if (max_temp >= sizeof(int) * 8)
619 p->temp_in_use = p->temps_output;
620 else
621 p->temp_in_use = ~((1<<max_temp)-1) | p->temps_output;
622 }
623
624
625 static struct ureg register_param5( struct texenv_fragment_program *p,
626 GLint s0,
627 GLint s1,
628 GLint s2,
629 GLint s3,
630 GLint s4)
631 {
632 gl_state_index tokens[STATE_LENGTH];
633 GLuint idx;
634 tokens[0] = s0;
635 tokens[1] = s1;
636 tokens[2] = s2;
637 tokens[3] = s3;
638 tokens[4] = s4;
639 idx = _mesa_add_state_reference( p->program->Base.Parameters, tokens );
640 return make_ureg(PROGRAM_STATE_VAR, idx);
641 }
642
643
644 #define register_param1(p,s0) register_param5(p,s0,0,0,0,0)
645 #define register_param2(p,s0,s1) register_param5(p,s0,s1,0,0,0)
646 #define register_param3(p,s0,s1,s2) register_param5(p,s0,s1,s2,0,0)
647 #define register_param4(p,s0,s1,s2,s3) register_param5(p,s0,s1,s2,s3,0)
648
649 static GLuint frag_to_vert_attrib( GLuint attrib )
650 {
651 switch (attrib) {
652 case FRAG_ATTRIB_COL0: return VERT_ATTRIB_COLOR0;
653 case FRAG_ATTRIB_COL1: return VERT_ATTRIB_COLOR1;
654 default:
655 assert(attrib >= FRAG_ATTRIB_TEX0);
656 assert(attrib <= FRAG_ATTRIB_TEX7);
657 return attrib - FRAG_ATTRIB_TEX0 + VERT_ATTRIB_TEX0;
658 }
659 }
660
661
662 static struct ureg register_input( struct texenv_fragment_program *p, GLuint input )
663 {
664 if (p->state->inputs_available & (1<<input)) {
665 p->program->Base.InputsRead |= (1 << input);
666 return make_ureg(PROGRAM_INPUT, input);
667 }
668 else {
669 GLuint idx = frag_to_vert_attrib( input );
670 return register_param3( p, STATE_INTERNAL, STATE_CURRENT_ATTRIB, idx );
671 }
672 }
673
674
675 static void emit_arg( struct prog_src_register *reg,
676 struct ureg ureg )
677 {
678 reg->File = ureg.file;
679 reg->Index = ureg.idx;
680 reg->Swizzle = ureg.swz;
681 reg->Negate = ureg.negatebase ? NEGATE_XYZW : NEGATE_NONE;
682 reg->Abs = ureg.abs;
683 }
684
685 static void emit_dst( struct prog_dst_register *dst,
686 struct ureg ureg, GLuint mask )
687 {
688 dst->File = ureg.file;
689 dst->Index = ureg.idx;
690 dst->WriteMask = mask;
691 dst->CondMask = COND_TR; /* always pass cond test */
692 dst->CondSwizzle = SWIZZLE_NOOP;
693 }
694
695 static struct prog_instruction *
696 emit_op(struct texenv_fragment_program *p,
697 enum prog_opcode op,
698 struct ureg dest,
699 GLuint mask,
700 GLboolean saturate,
701 struct ureg src0,
702 struct ureg src1,
703 struct ureg src2 )
704 {
705 const GLuint nr = p->program->Base.NumInstructions++;
706 struct prog_instruction *inst = &p->program->Base.Instructions[nr];
707
708 assert(nr < MAX_INSTRUCTIONS);
709
710 _mesa_init_instructions(inst, 1);
711 inst->Opcode = op;
712
713 emit_arg( &inst->SrcReg[0], src0 );
714 emit_arg( &inst->SrcReg[1], src1 );
715 emit_arg( &inst->SrcReg[2], src2 );
716
717 inst->SaturateMode = saturate ? SATURATE_ZERO_ONE : SATURATE_OFF;
718
719 emit_dst( &inst->DstReg, dest, mask );
720
721 #if 0
722 /* Accounting for indirection tracking:
723 */
724 if (dest.file == PROGRAM_TEMPORARY)
725 p->temps_output |= 1 << dest.idx;
726 #endif
727
728 return inst;
729 }
730
731
732 static struct ureg emit_arith( struct texenv_fragment_program *p,
733 enum prog_opcode op,
734 struct ureg dest,
735 GLuint mask,
736 GLboolean saturate,
737 struct ureg src0,
738 struct ureg src1,
739 struct ureg src2 )
740 {
741 emit_op(p, op, dest, mask, saturate, src0, src1, src2);
742
743 /* Accounting for indirection tracking:
744 */
745 if (src0.file == PROGRAM_TEMPORARY)
746 p->alu_temps |= 1 << src0.idx;
747
748 if (!is_undef(src1) && src1.file == PROGRAM_TEMPORARY)
749 p->alu_temps |= 1 << src1.idx;
750
751 if (!is_undef(src2) && src2.file == PROGRAM_TEMPORARY)
752 p->alu_temps |= 1 << src2.idx;
753
754 if (dest.file == PROGRAM_TEMPORARY)
755 p->alu_temps |= 1 << dest.idx;
756
757 p->program->Base.NumAluInstructions++;
758 return dest;
759 }
760
761 static struct ureg emit_texld( struct texenv_fragment_program *p,
762 enum prog_opcode op,
763 struct ureg dest,
764 GLuint destmask,
765 GLuint tex_unit,
766 GLuint tex_idx,
767 GLuint tex_shadow,
768 struct ureg coord )
769 {
770 struct prog_instruction *inst = emit_op( p, op,
771 dest, destmask,
772 GL_FALSE, /* don't saturate? */
773 coord, /* arg 0? */
774 undef,
775 undef);
776
777 inst->TexSrcTarget = tex_idx;
778 inst->TexSrcUnit = tex_unit;
779 inst->TexShadow = tex_shadow;
780
781 p->program->Base.NumTexInstructions++;
782
783 /* Accounting for indirection tracking:
784 */
785 reserve_temp(p, dest);
786
787 #if 0
788 /* Is this a texture indirection?
789 */
790 if ((coord.file == PROGRAM_TEMPORARY &&
791 (p->temps_output & (1<<coord.idx))) ||
792 (dest.file == PROGRAM_TEMPORARY &&
793 (p->alu_temps & (1<<dest.idx)))) {
794 p->program->Base.NumTexIndirections++;
795 p->temps_output = 1<<coord.idx;
796 p->alu_temps = 0;
797 assert(0); /* KW: texture env crossbar */
798 }
799 #endif
800
801 return dest;
802 }
803
804
805 static struct ureg register_const4f( struct texenv_fragment_program *p,
806 GLfloat s0,
807 GLfloat s1,
808 GLfloat s2,
809 GLfloat s3)
810 {
811 GLfloat values[4];
812 GLuint idx, swizzle;
813 struct ureg r;
814 values[0] = s0;
815 values[1] = s1;
816 values[2] = s2;
817 values[3] = s3;
818 idx = _mesa_add_unnamed_constant( p->program->Base.Parameters, values, 4,
819 &swizzle );
820 r = make_ureg(PROGRAM_CONSTANT, idx);
821 r.swz = swizzle;
822 return r;
823 }
824
825 #define register_scalar_const(p, s0) register_const4f(p, s0, s0, s0, s0)
826 #define register_const1f(p, s0) register_const4f(p, s0, 0, 0, 1)
827 #define register_const2f(p, s0, s1) register_const4f(p, s0, s1, 0, 1)
828 #define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1)
829
830
831 static struct ureg get_one( struct texenv_fragment_program *p )
832 {
833 if (is_undef(p->one))
834 p->one = register_scalar_const(p, 1.0);
835 return p->one;
836 }
837
838 static struct ureg get_half( struct texenv_fragment_program *p )
839 {
840 if (is_undef(p->half))
841 p->half = register_scalar_const(p, 0.5);
842 return p->half;
843 }
844
845 static struct ureg get_zero( struct texenv_fragment_program *p )
846 {
847 if (is_undef(p->zero))
848 p->zero = register_scalar_const(p, 0.0);
849 return p->zero;
850 }
851
852
853 static void program_error( struct texenv_fragment_program *p, const char *msg )
854 {
855 _mesa_problem(NULL, msg);
856 p->error = 1;
857 }
858
859 static struct ureg get_source( struct texenv_fragment_program *p,
860 GLuint src, GLuint unit )
861 {
862 switch (src) {
863 case SRC_TEXTURE:
864 assert(!is_undef(p->src_texture[unit]));
865 return p->src_texture[unit];
866
867 case SRC_TEXTURE0:
868 case SRC_TEXTURE1:
869 case SRC_TEXTURE2:
870 case SRC_TEXTURE3:
871 case SRC_TEXTURE4:
872 case SRC_TEXTURE5:
873 case SRC_TEXTURE6:
874 case SRC_TEXTURE7:
875 assert(!is_undef(p->src_texture[src - SRC_TEXTURE0]));
876 return p->src_texture[src - SRC_TEXTURE0];
877
878 case SRC_CONSTANT:
879 return register_param2(p, STATE_TEXENV_COLOR, unit);
880
881 case SRC_PRIMARY_COLOR:
882 return register_input(p, FRAG_ATTRIB_COL0);
883
884 case SRC_ZERO:
885 return get_zero(p);
886
887 case SRC_PREVIOUS:
888 if (is_undef(p->src_previous))
889 return register_input(p, FRAG_ATTRIB_COL0);
890 else
891 return p->src_previous;
892
893 default:
894 assert(0);
895 return undef;
896 }
897 }
898
899 static struct ureg emit_combine_source( struct texenv_fragment_program *p,
900 GLuint mask,
901 GLuint unit,
902 GLuint source,
903 GLuint operand )
904 {
905 struct ureg arg, src, one;
906
907 src = get_source(p, source, unit);
908
909 switch (operand) {
910 case OPR_ONE_MINUS_SRC_COLOR:
911 /* Get unused tmp,
912 * Emit tmp = 1.0 - arg.xyzw
913 */
914 arg = get_temp( p );
915 one = get_one( p );
916 return emit_arith( p, OPCODE_SUB, arg, mask, 0, one, src, undef);
917
918 case OPR_SRC_ALPHA:
919 if (mask == WRITEMASK_W)
920 return src;
921 else
922 return swizzle1( src, SWIZZLE_W );
923 case OPR_ONE_MINUS_SRC_ALPHA:
924 /* Get unused tmp,
925 * Emit tmp = 1.0 - arg.wwww
926 */
927 arg = get_temp(p);
928 one = get_one(p);
929 return emit_arith(p, OPCODE_SUB, arg, mask, 0,
930 one, swizzle1(src, SWIZZLE_W), undef);
931 case OPR_ZERO:
932 return get_zero(p);
933 case OPR_ONE:
934 return get_one(p);
935 case OPR_SRC_COLOR:
936 return src;
937 default:
938 assert(0);
939 return src;
940 }
941 }
942
943 /**
944 * Check if the RGB and Alpha sources and operands match for the given
945 * texture unit's combinder state. When the RGB and A sources and
946 * operands match, we can emit fewer instructions.
947 */
948 static GLboolean args_match( const struct state_key *key, GLuint unit )
949 {
950 GLuint i, numArgs = key->unit[unit].NumArgsRGB;
951
952 for (i = 0 ; i < numArgs ; i++) {
953 if (key->unit[unit].OptA[i].Source != key->unit[unit].OptRGB[i].Source)
954 return GL_FALSE;
955
956 switch (key->unit[unit].OptA[i].Operand) {
957 case OPR_SRC_ALPHA:
958 switch (key->unit[unit].OptRGB[i].Operand) {
959 case OPR_SRC_COLOR:
960 case OPR_SRC_ALPHA:
961 break;
962 default:
963 return GL_FALSE;
964 }
965 break;
966 case OPR_ONE_MINUS_SRC_ALPHA:
967 switch (key->unit[unit].OptRGB[i].Operand) {
968 case OPR_ONE_MINUS_SRC_COLOR:
969 case OPR_ONE_MINUS_SRC_ALPHA:
970 break;
971 default:
972 return GL_FALSE;
973 }
974 break;
975 default:
976 return GL_FALSE; /* impossible */
977 }
978 }
979
980 return GL_TRUE;
981 }
982
983 static struct ureg emit_combine( struct texenv_fragment_program *p,
984 struct ureg dest,
985 GLuint mask,
986 GLboolean saturate,
987 GLuint unit,
988 GLuint nr,
989 GLuint mode,
990 const struct mode_opt *opt)
991 {
992 struct ureg src[MAX_COMBINER_TERMS];
993 struct ureg tmp, half;
994 GLuint i;
995
996 assert(nr <= MAX_COMBINER_TERMS);
997
998 tmp = undef; /* silence warning (bug 5318) */
999
1000 for (i = 0; i < nr; i++)
1001 src[i] = emit_combine_source( p, mask, unit, opt[i].Source, opt[i].Operand );
1002
1003 switch (mode) {
1004 case MODE_REPLACE:
1005 if (mask == WRITEMASK_XYZW && !saturate)
1006 return src[0];
1007 else
1008 return emit_arith( p, OPCODE_MOV, dest, mask, saturate, src[0], undef, undef );
1009 case MODE_MODULATE:
1010 return emit_arith( p, OPCODE_MUL, dest, mask, saturate,
1011 src[0], src[1], undef );
1012 case MODE_ADD:
1013 return emit_arith( p, OPCODE_ADD, dest, mask, saturate,
1014 src[0], src[1], undef );
1015 case MODE_ADD_SIGNED:
1016 /* tmp = arg0 + arg1
1017 * result = tmp - .5
1018 */
1019 half = get_half(p);
1020 tmp = get_temp( p );
1021 emit_arith( p, OPCODE_ADD, tmp, mask, 0, src[0], src[1], undef );
1022 emit_arith( p, OPCODE_SUB, dest, mask, saturate, tmp, half, undef );
1023 return dest;
1024 case MODE_INTERPOLATE:
1025 /* Arg0 * (Arg2) + Arg1 * (1-Arg2) -- note arguments are reordered:
1026 */
1027 return emit_arith( p, OPCODE_LRP, dest, mask, saturate, src[2], src[0], src[1] );
1028
1029 case MODE_SUBTRACT:
1030 return emit_arith( p, OPCODE_SUB, dest, mask, saturate, src[0], src[1], undef );
1031
1032 case MODE_DOT3_RGBA:
1033 case MODE_DOT3_RGBA_EXT:
1034 case MODE_DOT3_RGB_EXT:
1035 case MODE_DOT3_RGB: {
1036 struct ureg tmp0 = get_temp( p );
1037 struct ureg tmp1 = get_temp( p );
1038 struct ureg neg1 = register_scalar_const(p, -1);
1039 struct ureg two = register_scalar_const(p, 2);
1040
1041 /* tmp0 = 2*src0 - 1
1042 * tmp1 = 2*src1 - 1
1043 *
1044 * dst = tmp0 dot3 tmp1
1045 */
1046 emit_arith( p, OPCODE_MAD, tmp0, WRITEMASK_XYZW, 0,
1047 two, src[0], neg1);
1048
1049 if (_mesa_memcmp(&src[0], &src[1], sizeof(struct ureg)) == 0)
1050 tmp1 = tmp0;
1051 else
1052 emit_arith( p, OPCODE_MAD, tmp1, WRITEMASK_XYZW, 0,
1053 two, src[1], neg1);
1054 emit_arith( p, OPCODE_DP3, dest, mask, saturate, tmp0, tmp1, undef);
1055 return dest;
1056 }
1057 case MODE_MODULATE_ADD_ATI:
1058 /* Arg0 * Arg2 + Arg1 */
1059 return emit_arith( p, OPCODE_MAD, dest, mask, saturate,
1060 src[0], src[2], src[1] );
1061 case MODE_MODULATE_SIGNED_ADD_ATI: {
1062 /* Arg0 * Arg2 + Arg1 - 0.5 */
1063 struct ureg tmp0 = get_temp(p);
1064 half = get_half(p);
1065 emit_arith( p, OPCODE_MAD, tmp0, mask, 0, src[0], src[2], src[1] );
1066 emit_arith( p, OPCODE_SUB, dest, mask, saturate, tmp0, half, undef );
1067 return dest;
1068 }
1069 case MODE_MODULATE_SUBTRACT_ATI:
1070 /* Arg0 * Arg2 - Arg1 */
1071 emit_arith( p, OPCODE_MAD, dest, mask, 0, src[0], src[2], negate(src[1]) );
1072 return dest;
1073 case MODE_ADD_PRODUCTS:
1074 /* Arg0 * Arg1 + Arg2 * Arg3 */
1075 {
1076 struct ureg tmp0 = get_temp(p);
1077 emit_arith( p, OPCODE_MUL, tmp0, mask, 0, src[0], src[1], undef );
1078 emit_arith( p, OPCODE_MAD, dest, mask, saturate, src[2], src[3], tmp0 );
1079 }
1080 return dest;
1081 case MODE_ADD_PRODUCTS_SIGNED:
1082 /* Arg0 * Arg1 + Arg2 * Arg3 - 0.5 */
1083 {
1084 struct ureg tmp0 = get_temp(p);
1085 half = get_half(p);
1086 emit_arith( p, OPCODE_MUL, tmp0, mask, 0, src[0], src[1], undef );
1087 emit_arith( p, OPCODE_MAD, tmp0, mask, 0, src[2], src[3], tmp0 );
1088 emit_arith( p, OPCODE_SUB, dest, mask, saturate, tmp0, half, undef );
1089 }
1090 return dest;
1091 case MODE_BUMP_ENVMAP_ATI:
1092 /* special - not handled here */
1093 assert(0);
1094 return src[0];
1095 default:
1096 assert(0);
1097 return src[0];
1098 }
1099 }
1100
1101
1102 /**
1103 * Generate instructions for one texture unit's env/combiner mode.
1104 */
1105 static struct ureg
1106 emit_texenv(struct texenv_fragment_program *p, GLuint unit)
1107 {
1108 const struct state_key *key = p->state;
1109 GLboolean saturate;
1110 GLuint rgb_shift, alpha_shift;
1111 struct ureg out, dest;
1112
1113 if (!key->unit[unit].enabled) {
1114 return get_source(p, SRC_PREVIOUS, 0);
1115 }
1116 if (key->unit[unit].ModeRGB == MODE_BUMP_ENVMAP_ATI) {
1117 /* this isn't really a env stage delivering a color and handled elsewhere */
1118 return get_source(p, SRC_PREVIOUS, 0);
1119 }
1120
1121 switch (key->unit[unit].ModeRGB) {
1122 case MODE_DOT3_RGB_EXT:
1123 alpha_shift = key->unit[unit].ScaleShiftA;
1124 rgb_shift = 0;
1125 break;
1126 case MODE_DOT3_RGBA_EXT:
1127 alpha_shift = 0;
1128 rgb_shift = 0;
1129 break;
1130 default:
1131 rgb_shift = key->unit[unit].ScaleShiftRGB;
1132 alpha_shift = key->unit[unit].ScaleShiftA;
1133 break;
1134 }
1135
1136 /* If we'll do rgb/alpha shifting don't saturate in emit_combine().
1137 * We don't want to clamp twice.
1138 */
1139 saturate = !(rgb_shift || alpha_shift);
1140
1141 /* If this is the very last calculation, emit direct to output reg:
1142 */
1143 if (key->separate_specular ||
1144 unit != p->last_tex_stage ||
1145 alpha_shift ||
1146 rgb_shift)
1147 dest = get_temp( p );
1148 else
1149 dest = make_ureg(PROGRAM_OUTPUT, FRAG_RESULT_COLOR);
1150
1151 /* Emit the RGB and A combine ops
1152 */
1153 if (key->unit[unit].ModeRGB == key->unit[unit].ModeA &&
1154 args_match(key, unit)) {
1155 out = emit_combine( p, dest, WRITEMASK_XYZW, saturate,
1156 unit,
1157 key->unit[unit].NumArgsRGB,
1158 key->unit[unit].ModeRGB,
1159 key->unit[unit].OptRGB);
1160 }
1161 else if (key->unit[unit].ModeRGB == MODE_DOT3_RGBA_EXT ||
1162 key->unit[unit].ModeRGB == MODE_DOT3_RGBA) {
1163 out = emit_combine( p, dest, WRITEMASK_XYZW, saturate,
1164 unit,
1165 key->unit[unit].NumArgsRGB,
1166 key->unit[unit].ModeRGB,
1167 key->unit[unit].OptRGB);
1168 }
1169 else {
1170 /* Need to do something to stop from re-emitting identical
1171 * argument calculations here:
1172 */
1173 out = emit_combine( p, dest, WRITEMASK_XYZ, saturate,
1174 unit,
1175 key->unit[unit].NumArgsRGB,
1176 key->unit[unit].ModeRGB,
1177 key->unit[unit].OptRGB);
1178 out = emit_combine( p, dest, WRITEMASK_W, saturate,
1179 unit,
1180 key->unit[unit].NumArgsA,
1181 key->unit[unit].ModeA,
1182 key->unit[unit].OptA);
1183 }
1184
1185 /* Deal with the final shift:
1186 */
1187 if (alpha_shift || rgb_shift) {
1188 struct ureg shift;
1189
1190 saturate = GL_TRUE; /* always saturate at this point */
1191
1192 if (rgb_shift == alpha_shift) {
1193 shift = register_scalar_const(p, (GLfloat)(1<<rgb_shift));
1194 }
1195 else {
1196 shift = register_const4f(p,
1197 (GLfloat)(1<<rgb_shift),
1198 (GLfloat)(1<<rgb_shift),
1199 (GLfloat)(1<<rgb_shift),
1200 (GLfloat)(1<<alpha_shift));
1201 }
1202 return emit_arith( p, OPCODE_MUL, dest, WRITEMASK_XYZW,
1203 saturate, out, shift, undef );
1204 }
1205 else
1206 return out;
1207 }
1208
1209
1210 /**
1211 * Generate instruction for getting a texture source term.
1212 */
1213 static void load_texture( struct texenv_fragment_program *p, GLuint unit )
1214 {
1215 if (is_undef(p->src_texture[unit])) {
1216 const GLuint texTarget = p->state->unit[unit].source_index;
1217 struct ureg texcoord;
1218 struct ureg tmp = get_tex_temp( p );
1219
1220 if (is_undef(p->texcoord_tex[unit])) {
1221 texcoord = register_input(p, FRAG_ATTRIB_TEX0+unit);
1222 }
1223 else {
1224 /* might want to reuse this reg for tex output actually */
1225 texcoord = p->texcoord_tex[unit];
1226 }
1227
1228 /* TODO: Use D0_MASK_XY where possible.
1229 */
1230 if (p->state->unit[unit].enabled) {
1231 GLboolean shadow = GL_FALSE;
1232
1233 if (p->state->unit[unit].shadow) {
1234 p->program->Base.ShadowSamplers |= 1 << unit;
1235 shadow = GL_TRUE;
1236 }
1237
1238 p->src_texture[unit] = emit_texld( p, OPCODE_TXP,
1239 tmp, WRITEMASK_XYZW,
1240 unit, texTarget, shadow,
1241 texcoord );
1242
1243 p->program->Base.SamplersUsed |= (1 << unit);
1244 /* This identity mapping should already be in place
1245 * (see _mesa_init_program_struct()) but let's be safe.
1246 */
1247 p->program->Base.SamplerUnits[unit] = unit;
1248 }
1249 else
1250 p->src_texture[unit] = get_zero(p);
1251 }
1252 }
1253
1254 static GLboolean load_texenv_source( struct texenv_fragment_program *p,
1255 GLuint src, GLuint unit )
1256 {
1257 switch (src) {
1258 case SRC_TEXTURE:
1259 load_texture(p, unit);
1260 break;
1261
1262 case SRC_TEXTURE0:
1263 case SRC_TEXTURE1:
1264 case SRC_TEXTURE2:
1265 case SRC_TEXTURE3:
1266 case SRC_TEXTURE4:
1267 case SRC_TEXTURE5:
1268 case SRC_TEXTURE6:
1269 case SRC_TEXTURE7:
1270 load_texture(p, src - SRC_TEXTURE0);
1271 break;
1272
1273 default:
1274 /* not a texture src - do nothing */
1275 break;
1276 }
1277
1278 return GL_TRUE;
1279 }
1280
1281
1282 /**
1283 * Generate instructions for loading all texture source terms.
1284 */
1285 static GLboolean
1286 load_texunit_sources( struct texenv_fragment_program *p, int unit )
1287 {
1288 const struct state_key *key = p->state;
1289 GLuint i;
1290
1291 for (i = 0; i < key->unit[unit].NumArgsRGB; i++) {
1292 load_texenv_source( p, key->unit[unit].OptRGB[i].Source, unit );
1293 }
1294
1295 for (i = 0; i < key->unit[unit].NumArgsA; i++) {
1296 load_texenv_source( p, key->unit[unit].OptA[i].Source, unit );
1297 }
1298
1299 return GL_TRUE;
1300 }
1301
1302 /**
1303 * Generate instructions for loading bump map textures.
1304 */
1305 static GLboolean
1306 load_texunit_bumpmap( struct texenv_fragment_program *p, int unit )
1307 {
1308 const struct state_key *key = p->state;
1309 GLuint bumpedUnitNr = key->unit[unit].OptRGB[1].Source - SRC_TEXTURE0;
1310 struct ureg texcDst, bumpMapRes;
1311 struct ureg constdudvcolor = register_const4f(p, 0.0, 0.0, 0.0, 1.0);
1312 struct ureg texcSrc = register_input(p, FRAG_ATTRIB_TEX0 + bumpedUnitNr);
1313 struct ureg rotMat0 = register_param3( p, STATE_INTERNAL, STATE_ROT_MATRIX_0, unit );
1314 struct ureg rotMat1 = register_param3( p, STATE_INTERNAL, STATE_ROT_MATRIX_1, unit );
1315
1316 load_texenv_source( p, unit + SRC_TEXTURE0, unit );
1317
1318 bumpMapRes = get_source(p, key->unit[unit].OptRGB[0].Source, unit);
1319 texcDst = get_tex_temp( p );
1320 p->texcoord_tex[bumpedUnitNr] = texcDst;
1321
1322 /* apply rot matrix and add coords to be available in next phase */
1323 /* dest = (Arg0.xxxx * rotMat0 + Arg1) + (Arg0.yyyy * rotMat1) */
1324 /* note only 2 coords are affected the rest are left unchanged (mul by 0) */
1325 emit_arith( p, OPCODE_MAD, texcDst, WRITEMASK_XYZW, 0,
1326 swizzle1(bumpMapRes, SWIZZLE_X), rotMat0, texcSrc );
1327 emit_arith( p, OPCODE_MAD, texcDst, WRITEMASK_XYZW, 0,
1328 swizzle1(bumpMapRes, SWIZZLE_Y), rotMat1, texcDst );
1329
1330 /* move 0,0,0,1 into bumpmap src if someone (crossbar) is foolish
1331 enough to access this later, should optimize away */
1332 emit_arith( p, OPCODE_MOV, bumpMapRes, WRITEMASK_XYZW, 0, constdudvcolor, undef, undef );
1333
1334 return GL_TRUE;
1335 }
1336
1337 /**
1338 * Generate a new fragment program which implements the context's
1339 * current texture env/combine mode.
1340 */
1341 static void
1342 create_new_program(GLcontext *ctx, struct state_key *key,
1343 struct gl_fragment_program *program)
1344 {
1345 struct prog_instruction instBuffer[MAX_INSTRUCTIONS];
1346 struct texenv_fragment_program p;
1347 GLuint unit;
1348 struct ureg cf, out;
1349
1350 _mesa_memset(&p, 0, sizeof(p));
1351 p.ctx = ctx;
1352 p.state = key;
1353 p.program = program;
1354
1355 /* During code generation, use locally-allocated instruction buffer,
1356 * then alloc dynamic storage below.
1357 */
1358 p.program->Base.Instructions = instBuffer;
1359 p.program->Base.Target = GL_FRAGMENT_PROGRAM_ARB;
1360 p.program->Base.NumTexIndirections = 1;
1361 p.program->Base.NumTexInstructions = 0;
1362 p.program->Base.NumAluInstructions = 0;
1363 p.program->Base.String = NULL;
1364 p.program->Base.NumInstructions =
1365 p.program->Base.NumTemporaries =
1366 p.program->Base.NumParameters =
1367 p.program->Base.NumAttributes = p.program->Base.NumAddressRegs = 0;
1368 p.program->Base.Parameters = _mesa_new_parameter_list();
1369
1370 p.program->Base.InputsRead = 0;
1371 p.program->Base.OutputsWritten = 1 << FRAG_RESULT_COLOR;
1372
1373 for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
1374 p.src_texture[unit] = undef;
1375 p.texcoord_tex[unit] = undef;
1376 }
1377
1378 p.src_previous = undef;
1379 p.half = undef;
1380 p.zero = undef;
1381 p.one = undef;
1382
1383 p.last_tex_stage = 0;
1384 release_temps(ctx, &p);
1385
1386 if (key->enabled_units) {
1387 GLboolean needbumpstage = GL_FALSE;
1388 /* Zeroth pass - bump map textures first */
1389 for (unit = 0 ; unit < ctx->Const.MaxTextureUnits ; unit++)
1390 if (key->unit[unit].enabled && key->unit[unit].ModeRGB == MODE_BUMP_ENVMAP_ATI) {
1391 needbumpstage = GL_TRUE;
1392 load_texunit_bumpmap( &p, unit );
1393 }
1394 if (needbumpstage)
1395 p.program->Base.NumTexIndirections++;
1396
1397 /* First pass - to support texture_env_crossbar, first identify
1398 * all referenced texture sources and emit texld instructions
1399 * for each:
1400 */
1401 for (unit = 0 ; unit < ctx->Const.MaxTextureUnits ; unit++)
1402 if (key->unit[unit].enabled) {
1403 load_texunit_sources( &p, unit );
1404 p.last_tex_stage = unit;
1405 }
1406
1407 /* Second pass - emit combine instructions to build final color:
1408 */
1409 for (unit = 0 ; unit < ctx->Const.MaxTextureUnits; unit++)
1410 if (key->enabled_units & (1<<unit)) {
1411 p.src_previous = emit_texenv( &p, unit );
1412 reserve_temp(&p, p.src_previous); /* don't re-use this temp reg */
1413 release_temps(ctx, &p); /* release all temps */
1414 }
1415 }
1416
1417 cf = get_source( &p, SRC_PREVIOUS, 0 );
1418 out = make_ureg( PROGRAM_OUTPUT, FRAG_RESULT_COLOR );
1419
1420 if (key->separate_specular) {
1421 /* Emit specular add.
1422 */
1423 struct ureg s = register_input(&p, FRAG_ATTRIB_COL1);
1424 emit_arith( &p, OPCODE_ADD, out, WRITEMASK_XYZ, 0, cf, s, undef );
1425 emit_arith( &p, OPCODE_MOV, out, WRITEMASK_W, 0, cf, undef, undef );
1426 }
1427 else if (_mesa_memcmp(&cf, &out, sizeof(cf)) != 0) {
1428 /* Will wind up in here if no texture enabled or a couple of
1429 * other scenarios (GL_REPLACE for instance).
1430 */
1431 emit_arith( &p, OPCODE_MOV, out, WRITEMASK_XYZW, 0, cf, undef, undef );
1432 }
1433
1434 /* Finish up:
1435 */
1436 emit_arith( &p, OPCODE_END, undef, WRITEMASK_XYZW, 0, undef, undef, undef);
1437
1438 if (key->fog_enabled) {
1439 /* Pull fog mode from GLcontext, the value in the state key is
1440 * a reduced value and not what is expected in FogOption
1441 */
1442 p.program->FogOption = ctx->Fog.Mode;
1443 p.program->Base.InputsRead |= FRAG_BIT_FOGC; /* XXX new */
1444 } else
1445 p.program->FogOption = GL_NONE;
1446
1447 if (p.program->Base.NumTexIndirections > ctx->Const.FragmentProgram.MaxTexIndirections)
1448 program_error(&p, "Exceeded max nr indirect texture lookups");
1449
1450 if (p.program->Base.NumTexInstructions > ctx->Const.FragmentProgram.MaxTexInstructions)
1451 program_error(&p, "Exceeded max TEX instructions");
1452
1453 if (p.program->Base.NumAluInstructions > ctx->Const.FragmentProgram.MaxAluInstructions)
1454 program_error(&p, "Exceeded max ALU instructions");
1455
1456 ASSERT(p.program->Base.NumInstructions <= MAX_INSTRUCTIONS);
1457
1458 /* Allocate final instruction array */
1459 p.program->Base.Instructions
1460 = _mesa_alloc_instructions(p.program->Base.NumInstructions);
1461 if (!p.program->Base.Instructions) {
1462 _mesa_error(ctx, GL_OUT_OF_MEMORY,
1463 "generating tex env program");
1464 return;
1465 }
1466 _mesa_copy_instructions(p.program->Base.Instructions, instBuffer,
1467 p.program->Base.NumInstructions);
1468
1469 if (p.program->FogOption) {
1470 _mesa_append_fog_code(ctx, p.program);
1471 p.program->FogOption = GL_NONE;
1472 }
1473
1474
1475 /* Notify driver the fragment program has (actually) changed.
1476 */
1477 if (ctx->Driver.ProgramStringNotify) {
1478 ctx->Driver.ProgramStringNotify( ctx, GL_FRAGMENT_PROGRAM_ARB,
1479 &p.program->Base );
1480 }
1481
1482 if (DISASSEM) {
1483 _mesa_print_program(&p.program->Base);
1484 _mesa_printf("\n");
1485 }
1486 }
1487
1488
1489 /**
1490 * Return a fragment program which implements the current
1491 * fixed-function texture, fog and color-sum operations.
1492 */
1493 struct gl_fragment_program *
1494 _mesa_get_fixed_func_fragment_program(GLcontext *ctx)
1495 {
1496 struct gl_fragment_program *prog;
1497 struct state_key key;
1498
1499 make_state_key(ctx, &key);
1500
1501 prog = (struct gl_fragment_program *)
1502 _mesa_search_program_cache(ctx->FragmentProgram.Cache,
1503 &key, sizeof(key));
1504
1505 if (!prog) {
1506 prog = (struct gl_fragment_program *)
1507 ctx->Driver.NewProgram(ctx, GL_FRAGMENT_PROGRAM_ARB, 0);
1508
1509 create_new_program(ctx, &key, prog);
1510
1511 _mesa_program_cache_insert(ctx, ctx->FragmentProgram.Cache,
1512 &key, sizeof(key), &prog->Base);
1513 }
1514
1515 return prog;
1516 }