mesa: replace 8 with MAX_TEXTURE_UNITS
[mesa.git] / src / mesa / main / texenvprogram.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 * Copyright 2009 VMware, Inc. All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 #include "glheader.h"
30 #include "macros.h"
31 #include "enums.h"
32 #include "shader/program.h"
33 #include "shader/prog_parameter.h"
34 #include "shader/prog_cache.h"
35 #include "shader/prog_instruction.h"
36 #include "shader/prog_print.h"
37 #include "shader/prog_statevars.h"
38 #include "shader/programopt.h"
39 #include "texenvprogram.h"
40
41
42 /*
43 * Note on texture units:
44 *
45 * The number of texture units supported by fixed-function fragment
46 * processing is MAX_TEXTURE_COORD_UNITS, not MAX_TEXTURE_IMAGE_UNITS.
47 * That's because there's a one-to-one correspondence between texture
48 * coordinates and samplers in fixed-function processing.
49 *
50 * Since fixed-function vertex processing is limited to MAX_TEXTURE_COORD_UNITS
51 * sets of texcoords, so is fixed-function fragment processing.
52 *
53 * We can safely use ctx->Const.MaxTextureUnits for loop bounds.
54 */
55
56
57 struct texenvprog_cache_item
58 {
59 GLuint hash;
60 void *key;
61 struct gl_fragment_program *data;
62 struct texenvprog_cache_item *next;
63 };
64
65 static GLboolean
66 texenv_doing_secondary_color(GLcontext *ctx)
67 {
68 if (ctx->Light.Enabled &&
69 (ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR))
70 return GL_TRUE;
71
72 if (ctx->Fog.ColorSumEnabled)
73 return GL_TRUE;
74
75 return GL_FALSE;
76 }
77
78 /**
79 * Up to nine instructions per tex unit, plus fog, specular color.
80 */
81 #define MAX_INSTRUCTIONS ((MAX_TEXTURE_COORD_UNITS * 9) + 12)
82
83 #define DISASSEM (MESA_VERBOSE & VERBOSE_DISASSEM)
84
85 struct mode_opt {
86 GLuint Source:4;
87 GLuint Operand:3;
88 };
89
90 struct state_key {
91 GLuint nr_enabled_units:8;
92 GLuint enabled_units:8;
93 GLuint separate_specular:1;
94 GLuint fog_enabled:1;
95 GLuint fog_mode:2;
96 GLuint inputs_available:12;
97
98 struct {
99 GLuint enabled:1;
100 GLuint source_index:3; /* one of TEXTURE_1D/2D/3D/CUBE/RECT_INDEX */
101 GLuint shadow:1;
102 GLuint ScaleShiftRGB:2;
103 GLuint ScaleShiftA:2;
104
105 GLuint NumArgsRGB:3;
106 GLuint ModeRGB:5;
107 struct mode_opt OptRGB[MAX_COMBINER_TERMS];
108
109 GLuint NumArgsA:3;
110 GLuint ModeA:5;
111 struct mode_opt OptA[MAX_COMBINER_TERMS];
112 } unit[MAX_TEXTURE_UNITS];
113 };
114
115 #define FOG_LINEAR 0
116 #define FOG_EXP 1
117 #define FOG_EXP2 2
118 #define FOG_UNKNOWN 3
119
120 static GLuint translate_fog_mode( GLenum mode )
121 {
122 switch (mode) {
123 case GL_LINEAR: return FOG_LINEAR;
124 case GL_EXP: return FOG_EXP;
125 case GL_EXP2: return FOG_EXP2;
126 default: return FOG_UNKNOWN;
127 }
128 }
129
130 #define OPR_SRC_COLOR 0
131 #define OPR_ONE_MINUS_SRC_COLOR 1
132 #define OPR_SRC_ALPHA 2
133 #define OPR_ONE_MINUS_SRC_ALPHA 3
134 #define OPR_ZERO 4
135 #define OPR_ONE 5
136 #define OPR_UNKNOWN 7
137
138 static GLuint translate_operand( GLenum operand )
139 {
140 switch (operand) {
141 case GL_SRC_COLOR: return OPR_SRC_COLOR;
142 case GL_ONE_MINUS_SRC_COLOR: return OPR_ONE_MINUS_SRC_COLOR;
143 case GL_SRC_ALPHA: return OPR_SRC_ALPHA;
144 case GL_ONE_MINUS_SRC_ALPHA: return OPR_ONE_MINUS_SRC_ALPHA;
145 case GL_ZERO: return OPR_ZERO;
146 case GL_ONE: return OPR_ONE;
147 default:
148 assert(0);
149 return OPR_UNKNOWN;
150 }
151 }
152
153 #define SRC_TEXTURE 0
154 #define SRC_TEXTURE0 1
155 #define SRC_TEXTURE1 2
156 #define SRC_TEXTURE2 3
157 #define SRC_TEXTURE3 4
158 #define SRC_TEXTURE4 5
159 #define SRC_TEXTURE5 6
160 #define SRC_TEXTURE6 7
161 #define SRC_TEXTURE7 8
162 #define SRC_CONSTANT 9
163 #define SRC_PRIMARY_COLOR 10
164 #define SRC_PREVIOUS 11
165 #define SRC_ZERO 12
166 #define SRC_UNKNOWN 15
167
168 static GLuint translate_source( GLenum src )
169 {
170 switch (src) {
171 case GL_TEXTURE: return SRC_TEXTURE;
172 case GL_TEXTURE0:
173 case GL_TEXTURE1:
174 case GL_TEXTURE2:
175 case GL_TEXTURE3:
176 case GL_TEXTURE4:
177 case GL_TEXTURE5:
178 case GL_TEXTURE6:
179 case GL_TEXTURE7: return SRC_TEXTURE0 + (src - GL_TEXTURE0);
180 case GL_CONSTANT: return SRC_CONSTANT;
181 case GL_PRIMARY_COLOR: return SRC_PRIMARY_COLOR;
182 case GL_PREVIOUS: return SRC_PREVIOUS;
183 case GL_ZERO:
184 return SRC_ZERO;
185 default:
186 assert(0);
187 return SRC_UNKNOWN;
188 }
189 }
190
191 #define MODE_REPLACE 0 /* r = a0 */
192 #define MODE_MODULATE 1 /* r = a0 * a1 */
193 #define MODE_ADD 2 /* r = a0 + a1 */
194 #define MODE_ADD_SIGNED 3 /* r = a0 + a1 - 0.5 */
195 #define MODE_INTERPOLATE 4 /* r = a0 * a2 + a1 * (1 - a2) */
196 #define MODE_SUBTRACT 5 /* r = a0 - a1 */
197 #define MODE_DOT3_RGB 6 /* r = a0 . a1 */
198 #define MODE_DOT3_RGB_EXT 7 /* r = a0 . a1 */
199 #define MODE_DOT3_RGBA 8 /* r = a0 . a1 */
200 #define MODE_DOT3_RGBA_EXT 9 /* r = a0 . a1 */
201 #define MODE_MODULATE_ADD_ATI 10 /* r = a0 * a2 + a1 */
202 #define MODE_MODULATE_SIGNED_ADD_ATI 11 /* r = a0 * a2 + a1 - 0.5 */
203 #define MODE_MODULATE_SUBTRACT_ATI 12 /* r = a0 * a2 - a1 */
204 #define MODE_ADD_PRODUCTS 13 /* r = a0 * a1 + a2 * a3 */
205 #define MODE_ADD_PRODUCTS_SIGNED 14 /* r = a0 * a1 + a2 * a3 - 0.5 */
206 #define MODE_BUMP_ENVMAP_ATI 15 /* special */
207 #define MODE_UNKNOWN 16
208
209 /**
210 * Translate GL combiner state into a MODE_x value
211 */
212 static GLuint translate_mode( GLenum envMode, GLenum mode )
213 {
214 switch (mode) {
215 case GL_REPLACE: return MODE_REPLACE;
216 case GL_MODULATE: return MODE_MODULATE;
217 case GL_ADD:
218 if (envMode == GL_COMBINE4_NV)
219 return MODE_ADD_PRODUCTS;
220 else
221 return MODE_ADD;
222 case GL_ADD_SIGNED:
223 if (envMode == GL_COMBINE4_NV)
224 return MODE_ADD_PRODUCTS_SIGNED;
225 else
226 return MODE_ADD_SIGNED;
227 case GL_INTERPOLATE: return MODE_INTERPOLATE;
228 case GL_SUBTRACT: return MODE_SUBTRACT;
229 case GL_DOT3_RGB: return MODE_DOT3_RGB;
230 case GL_DOT3_RGB_EXT: return MODE_DOT3_RGB_EXT;
231 case GL_DOT3_RGBA: return MODE_DOT3_RGBA;
232 case GL_DOT3_RGBA_EXT: return MODE_DOT3_RGBA_EXT;
233 case GL_MODULATE_ADD_ATI: return MODE_MODULATE_ADD_ATI;
234 case GL_MODULATE_SIGNED_ADD_ATI: return MODE_MODULATE_SIGNED_ADD_ATI;
235 case GL_MODULATE_SUBTRACT_ATI: return MODE_MODULATE_SUBTRACT_ATI;
236 case GL_BUMP_ENVMAP_ATI: return MODE_BUMP_ENVMAP_ATI;
237 default:
238 assert(0);
239 return MODE_UNKNOWN;
240 }
241 }
242
243 #define TEXTURE_UNKNOWN_INDEX 7
244 static GLuint translate_tex_src_bit( GLbitfield bit )
245 {
246 /* make sure number of switch cases is correct */
247 assert(NUM_TEXTURE_TARGETS == 7);
248 switch (bit) {
249 case TEXTURE_1D_BIT: return TEXTURE_1D_INDEX;
250 case TEXTURE_2D_BIT: return TEXTURE_2D_INDEX;
251 case TEXTURE_RECT_BIT: return TEXTURE_RECT_INDEX;
252 case TEXTURE_3D_BIT: return TEXTURE_3D_INDEX;
253 case TEXTURE_CUBE_BIT: return TEXTURE_CUBE_INDEX;
254 case TEXTURE_1D_ARRAY_BIT: return TEXTURE_1D_ARRAY_INDEX;
255 case TEXTURE_2D_ARRAY_BIT: return TEXTURE_2D_ARRAY_INDEX;
256 default:
257 assert(0);
258 return TEXTURE_UNKNOWN_INDEX;
259 }
260 }
261
262 #define VERT_BIT_TEX_ANY (0xff << VERT_ATTRIB_TEX0)
263 #define VERT_RESULT_TEX_ANY (0xff << VERT_RESULT_TEX0)
264
265 /**
266 * Identify all possible varying inputs. The fragment program will
267 * never reference non-varying inputs, but will track them via state
268 * constants instead.
269 *
270 * This function figures out all the inputs that the fragment program
271 * has access to. The bitmask is later reduced to just those which
272 * are actually referenced.
273 */
274 static GLbitfield get_fp_input_mask( GLcontext *ctx )
275 {
276 /* _NEW_PROGRAM */
277 const GLboolean vertexShader = (ctx->Shader.CurrentProgram &&
278 ctx->Shader.CurrentProgram->LinkStatus &&
279 ctx->Shader.CurrentProgram->VertexProgram);
280 const GLboolean vertexProgram = ctx->VertexProgram._Enabled;
281 GLbitfield fp_inputs = 0x0;
282
283 if (ctx->VertexProgram._Overriden) {
284 /* Somebody's messing with the vertex program and we don't have
285 * a clue what's happening. Assume that it could be producing
286 * all possible outputs.
287 */
288 fp_inputs = ~0;
289 }
290 else if (ctx->RenderMode == GL_FEEDBACK) {
291 /* _NEW_RENDERMODE */
292 fp_inputs = (FRAG_BIT_COL0 | FRAG_BIT_TEX0);
293 }
294 else if (!(vertexProgram || vertexShader) ||
295 !ctx->VertexProgram._Current) {
296 /* Fixed function vertex logic */
297 /* _NEW_ARRAY */
298 GLbitfield varying_inputs = ctx->varying_vp_inputs;
299
300 /* These get generated in the setup routine regardless of the
301 * vertex program:
302 */
303 /* _NEW_POINT */
304 if (ctx->Point.PointSprite)
305 varying_inputs |= FRAG_BITS_TEX_ANY;
306
307 /* First look at what values may be computed by the generated
308 * vertex program:
309 */
310 /* _NEW_LIGHT */
311 if (ctx->Light.Enabled) {
312 fp_inputs |= FRAG_BIT_COL0;
313
314 if (texenv_doing_secondary_color(ctx))
315 fp_inputs |= FRAG_BIT_COL1;
316 }
317
318 /* _NEW_TEXTURE */
319 fp_inputs |= (ctx->Texture._TexGenEnabled |
320 ctx->Texture._TexMatEnabled) << FRAG_ATTRIB_TEX0;
321
322 /* Then look at what might be varying as a result of enabled
323 * arrays, etc:
324 */
325 if (varying_inputs & VERT_BIT_COLOR0)
326 fp_inputs |= FRAG_BIT_COL0;
327 if (varying_inputs & VERT_BIT_COLOR1)
328 fp_inputs |= FRAG_BIT_COL1;
329
330 fp_inputs |= (((varying_inputs & VERT_BIT_TEX_ANY) >> VERT_ATTRIB_TEX0)
331 << FRAG_ATTRIB_TEX0);
332
333 }
334 else {
335 /* calculate from vp->outputs */
336 struct gl_vertex_program *vprog;
337 GLbitfield vp_outputs;
338
339 /* Choose GLSL vertex shader over ARB vertex program. Need this
340 * since vertex shader state validation comes after fragment state
341 * validation (see additional comments in state.c).
342 */
343 if (vertexShader)
344 vprog = ctx->Shader.CurrentProgram->VertexProgram;
345 else
346 vprog = ctx->VertexProgram.Current;
347
348 vp_outputs = vprog->Base.OutputsWritten;
349
350 /* These get generated in the setup routine regardless of the
351 * vertex program:
352 */
353 /* _NEW_POINT */
354 if (ctx->Point.PointSprite)
355 vp_outputs |= FRAG_BITS_TEX_ANY;
356
357 if (vp_outputs & (1 << VERT_RESULT_COL0))
358 fp_inputs |= FRAG_BIT_COL0;
359 if (vp_outputs & (1 << VERT_RESULT_COL1))
360 fp_inputs |= FRAG_BIT_COL1;
361
362 fp_inputs |= (((vp_outputs & VERT_RESULT_TEX_ANY) >> VERT_RESULT_TEX0)
363 << FRAG_ATTRIB_TEX0);
364 }
365
366 return fp_inputs;
367 }
368
369
370 /**
371 * Examine current texture environment state and generate a unique
372 * key to identify it.
373 */
374 static void make_state_key( GLcontext *ctx, struct state_key *key )
375 {
376 GLuint i, j;
377 GLbitfield inputs_referenced = FRAG_BIT_COL0;
378 GLbitfield inputs_available = get_fp_input_mask( ctx );
379
380 memset(key, 0, sizeof(*key));
381
382 /* _NEW_TEXTURE */
383 for (i = 0; i < ctx->Const.MaxTextureUnits; i++) {
384 const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
385 GLenum format;
386
387 if (!texUnit->_ReallyEnabled || !texUnit->Enabled)
388 continue;
389
390 format = texUnit->_Current->Image[0][texUnit->_Current->BaseLevel]->_BaseFormat;
391
392 key->unit[i].enabled = 1;
393 key->enabled_units |= (1<<i);
394 key->nr_enabled_units = i+1;
395 inputs_referenced |= FRAG_BIT_TEX(i);
396
397 key->unit[i].source_index =
398 translate_tex_src_bit(texUnit->_ReallyEnabled);
399 key->unit[i].shadow = ((texUnit->_Current->CompareMode == GL_COMPARE_R_TO_TEXTURE) &&
400 ((format == GL_DEPTH_COMPONENT) ||
401 (format == GL_DEPTH_STENCIL_EXT)));
402
403 key->unit[i].NumArgsRGB = texUnit->_CurrentCombine->_NumArgsRGB;
404 key->unit[i].NumArgsA = texUnit->_CurrentCombine->_NumArgsA;
405
406 key->unit[i].ModeRGB =
407 translate_mode(texUnit->EnvMode, texUnit->_CurrentCombine->ModeRGB);
408 key->unit[i].ModeA =
409 translate_mode(texUnit->EnvMode, texUnit->_CurrentCombine->ModeA);
410
411 key->unit[i].ScaleShiftRGB = texUnit->_CurrentCombine->ScaleShiftRGB;
412 key->unit[i].ScaleShiftA = texUnit->_CurrentCombine->ScaleShiftA;
413
414 for (j = 0; j < MAX_COMBINER_TERMS; j++) {
415 key->unit[i].OptRGB[j].Operand =
416 translate_operand(texUnit->_CurrentCombine->OperandRGB[j]);
417 key->unit[i].OptA[j].Operand =
418 translate_operand(texUnit->_CurrentCombine->OperandA[j]);
419 key->unit[i].OptRGB[j].Source =
420 translate_source(texUnit->_CurrentCombine->SourceRGB[j]);
421 key->unit[i].OptA[j].Source =
422 translate_source(texUnit->_CurrentCombine->SourceA[j]);
423 }
424
425 if (key->unit[i].ModeRGB == MODE_BUMP_ENVMAP_ATI) {
426 /* requires some special translation */
427 key->unit[i].NumArgsRGB = 2;
428 key->unit[i].ScaleShiftRGB = 0;
429 key->unit[i].OptRGB[0].Operand = OPR_SRC_COLOR;
430 key->unit[i].OptRGB[0].Source = SRC_TEXTURE;
431 key->unit[i].OptRGB[1].Operand = OPR_SRC_COLOR;
432 key->unit[i].OptRGB[1].Source = texUnit->BumpTarget - GL_TEXTURE0 + SRC_TEXTURE0;
433 }
434 }
435
436 /* _NEW_LIGHT | _NEW_FOG */
437 if (texenv_doing_secondary_color(ctx)) {
438 key->separate_specular = 1;
439 inputs_referenced |= FRAG_BIT_COL1;
440 }
441
442 /* _NEW_FOG */
443 if (ctx->Fog.Enabled) {
444 key->fog_enabled = 1;
445 key->fog_mode = translate_fog_mode(ctx->Fog.Mode);
446 inputs_referenced |= FRAG_BIT_FOGC; /* maybe */
447 }
448
449 key->inputs_available = (inputs_available & inputs_referenced);
450 }
451
452 /**
453 * Use uregs to represent registers internally, translate to Mesa's
454 * expected formats on emit.
455 *
456 * NOTE: These are passed by value extensively in this file rather
457 * than as usual by pointer reference. If this disturbs you, try
458 * remembering they are just 32bits in size.
459 *
460 * GCC is smart enough to deal with these dword-sized structures in
461 * much the same way as if I had defined them as dwords and was using
462 * macros to access and set the fields. This is much nicer and easier
463 * to evolve.
464 */
465 struct ureg {
466 GLuint file:4;
467 GLuint idx:8;
468 GLuint negatebase:1;
469 GLuint abs:1;
470 GLuint negateabs:1;
471 GLuint swz:12;
472 GLuint pad:5;
473 };
474
475 static const struct ureg undef = {
476 PROGRAM_UNDEFINED,
477 ~0,
478 0,
479 0,
480 0,
481 0,
482 0
483 };
484
485
486 /** State used to build the fragment program:
487 */
488 struct texenv_fragment_program {
489 struct gl_fragment_program *program;
490 GLcontext *ctx;
491 struct state_key *state;
492
493 GLbitfield alu_temps; /**< Track texture indirections, see spec. */
494 GLbitfield temps_output; /**< Track texture indirections, see spec. */
495 GLbitfield temp_in_use; /**< Tracks temporary regs which are in use. */
496 GLboolean error;
497
498 struct ureg src_texture[MAX_TEXTURE_COORD_UNITS];
499 /* Reg containing each texture unit's sampled texture color,
500 * else undef.
501 */
502
503 struct ureg texcoord_tex[MAX_TEXTURE_COORD_UNITS];
504 /* Reg containing texcoord for a texture unit,
505 * needed for bump mapping, else undef.
506 */
507
508 struct ureg src_previous; /**< Reg containing color from previous
509 * stage. May need to be decl'd.
510 */
511
512 GLuint last_tex_stage; /**< Number of last enabled texture unit */
513
514 struct ureg half;
515 struct ureg one;
516 struct ureg zero;
517 };
518
519
520
521 static struct ureg make_ureg(GLuint file, GLuint idx)
522 {
523 struct ureg reg;
524 reg.file = file;
525 reg.idx = idx;
526 reg.negatebase = 0;
527 reg.abs = 0;
528 reg.negateabs = 0;
529 reg.swz = SWIZZLE_NOOP;
530 reg.pad = 0;
531 return reg;
532 }
533
534 static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w )
535 {
536 reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x),
537 GET_SWZ(reg.swz, y),
538 GET_SWZ(reg.swz, z),
539 GET_SWZ(reg.swz, w));
540
541 return reg;
542 }
543
544 static struct ureg swizzle1( struct ureg reg, int x )
545 {
546 return swizzle(reg, x, x, x, x);
547 }
548
549 static struct ureg negate( struct ureg reg )
550 {
551 reg.negatebase ^= 1;
552 return reg;
553 }
554
555 static GLboolean is_undef( struct ureg reg )
556 {
557 return reg.file == PROGRAM_UNDEFINED;
558 }
559
560
561 static struct ureg get_temp( struct texenv_fragment_program *p )
562 {
563 GLint bit;
564
565 /* First try and reuse temps which have been used already:
566 */
567 bit = _mesa_ffs( ~p->temp_in_use & p->alu_temps );
568
569 /* Then any unused temporary:
570 */
571 if (!bit)
572 bit = _mesa_ffs( ~p->temp_in_use );
573
574 if (!bit) {
575 _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
576 _mesa_exit(1);
577 }
578
579 if ((GLuint) bit > p->program->Base.NumTemporaries)
580 p->program->Base.NumTemporaries = bit;
581
582 p->temp_in_use |= 1<<(bit-1);
583 return make_ureg(PROGRAM_TEMPORARY, (bit-1));
584 }
585
586 static struct ureg get_tex_temp( struct texenv_fragment_program *p )
587 {
588 int bit;
589
590 /* First try to find available temp not previously used (to avoid
591 * starting a new texture indirection). According to the spec, the
592 * ~p->temps_output isn't necessary, but will keep it there for
593 * now:
594 */
595 bit = _mesa_ffs( ~p->temp_in_use & ~p->alu_temps & ~p->temps_output );
596
597 /* Then any unused temporary:
598 */
599 if (!bit)
600 bit = _mesa_ffs( ~p->temp_in_use );
601
602 if (!bit) {
603 _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
604 _mesa_exit(1);
605 }
606
607 if ((GLuint) bit > p->program->Base.NumTemporaries)
608 p->program->Base.NumTemporaries = bit;
609
610 p->temp_in_use |= 1<<(bit-1);
611 return make_ureg(PROGRAM_TEMPORARY, (bit-1));
612 }
613
614
615 /** Mark a temp reg as being no longer allocatable. */
616 static void reserve_temp( struct texenv_fragment_program *p, struct ureg r )
617 {
618 if (r.file == PROGRAM_TEMPORARY)
619 p->temps_output |= (1 << r.idx);
620 }
621
622
623 static void release_temps(GLcontext *ctx, struct texenv_fragment_program *p )
624 {
625 GLuint max_temp = ctx->Const.FragmentProgram.MaxTemps;
626
627 /* KW: To support tex_env_crossbar, don't release the registers in
628 * temps_output.
629 */
630 if (max_temp >= sizeof(int) * 8)
631 p->temp_in_use = p->temps_output;
632 else
633 p->temp_in_use = ~((1<<max_temp)-1) | p->temps_output;
634 }
635
636
637 static struct ureg register_param5( struct texenv_fragment_program *p,
638 GLint s0,
639 GLint s1,
640 GLint s2,
641 GLint s3,
642 GLint s4)
643 {
644 gl_state_index tokens[STATE_LENGTH];
645 GLuint idx;
646 tokens[0] = s0;
647 tokens[1] = s1;
648 tokens[2] = s2;
649 tokens[3] = s3;
650 tokens[4] = s4;
651 idx = _mesa_add_state_reference( p->program->Base.Parameters, tokens );
652 return make_ureg(PROGRAM_STATE_VAR, idx);
653 }
654
655
656 #define register_param1(p,s0) register_param5(p,s0,0,0,0,0)
657 #define register_param2(p,s0,s1) register_param5(p,s0,s1,0,0,0)
658 #define register_param3(p,s0,s1,s2) register_param5(p,s0,s1,s2,0,0)
659 #define register_param4(p,s0,s1,s2,s3) register_param5(p,s0,s1,s2,s3,0)
660
661 static GLuint frag_to_vert_attrib( GLuint attrib )
662 {
663 switch (attrib) {
664 case FRAG_ATTRIB_COL0: return VERT_ATTRIB_COLOR0;
665 case FRAG_ATTRIB_COL1: return VERT_ATTRIB_COLOR1;
666 default:
667 assert(attrib >= FRAG_ATTRIB_TEX0);
668 assert(attrib <= FRAG_ATTRIB_TEX7);
669 return attrib - FRAG_ATTRIB_TEX0 + VERT_ATTRIB_TEX0;
670 }
671 }
672
673
674 static struct ureg register_input( struct texenv_fragment_program *p, GLuint input )
675 {
676 if (p->state->inputs_available & (1<<input)) {
677 p->program->Base.InputsRead |= (1 << input);
678 return make_ureg(PROGRAM_INPUT, input);
679 }
680 else {
681 GLuint idx = frag_to_vert_attrib( input );
682 return register_param3( p, STATE_INTERNAL, STATE_CURRENT_ATTRIB, idx );
683 }
684 }
685
686
687 static void emit_arg( struct prog_src_register *reg,
688 struct ureg ureg )
689 {
690 reg->File = ureg.file;
691 reg->Index = ureg.idx;
692 reg->Swizzle = ureg.swz;
693 reg->Negate = ureg.negatebase ? NEGATE_XYZW : NEGATE_NONE;
694 reg->Abs = ureg.abs;
695 }
696
697 static void emit_dst( struct prog_dst_register *dst,
698 struct ureg ureg, GLuint mask )
699 {
700 dst->File = ureg.file;
701 dst->Index = ureg.idx;
702 dst->WriteMask = mask;
703 dst->CondMask = COND_TR; /* always pass cond test */
704 dst->CondSwizzle = SWIZZLE_NOOP;
705 }
706
707 static struct prog_instruction *
708 emit_op(struct texenv_fragment_program *p,
709 enum prog_opcode op,
710 struct ureg dest,
711 GLuint mask,
712 GLboolean saturate,
713 struct ureg src0,
714 struct ureg src1,
715 struct ureg src2 )
716 {
717 GLuint nr = p->program->Base.NumInstructions++;
718 struct prog_instruction *inst = &p->program->Base.Instructions[nr];
719
720 assert(nr < MAX_INSTRUCTIONS);
721
722 _mesa_init_instructions(inst, 1);
723 inst->Opcode = op;
724
725 emit_arg( &inst->SrcReg[0], src0 );
726 emit_arg( &inst->SrcReg[1], src1 );
727 emit_arg( &inst->SrcReg[2], src2 );
728
729 inst->SaturateMode = saturate ? SATURATE_ZERO_ONE : SATURATE_OFF;
730
731 emit_dst( &inst->DstReg, dest, mask );
732
733 #if 0
734 /* Accounting for indirection tracking:
735 */
736 if (dest.file == PROGRAM_TEMPORARY)
737 p->temps_output |= 1 << dest.idx;
738 #endif
739
740 return inst;
741 }
742
743
744 static struct ureg emit_arith( struct texenv_fragment_program *p,
745 enum prog_opcode op,
746 struct ureg dest,
747 GLuint mask,
748 GLboolean saturate,
749 struct ureg src0,
750 struct ureg src1,
751 struct ureg src2 )
752 {
753 emit_op(p, op, dest, mask, saturate, src0, src1, src2);
754
755 /* Accounting for indirection tracking:
756 */
757 if (src0.file == PROGRAM_TEMPORARY)
758 p->alu_temps |= 1 << src0.idx;
759
760 if (!is_undef(src1) && src1.file == PROGRAM_TEMPORARY)
761 p->alu_temps |= 1 << src1.idx;
762
763 if (!is_undef(src2) && src2.file == PROGRAM_TEMPORARY)
764 p->alu_temps |= 1 << src2.idx;
765
766 if (dest.file == PROGRAM_TEMPORARY)
767 p->alu_temps |= 1 << dest.idx;
768
769 p->program->Base.NumAluInstructions++;
770 return dest;
771 }
772
773 static struct ureg emit_texld( struct texenv_fragment_program *p,
774 enum prog_opcode op,
775 struct ureg dest,
776 GLuint destmask,
777 GLuint tex_unit,
778 GLuint tex_idx,
779 GLuint tex_shadow,
780 struct ureg coord )
781 {
782 struct prog_instruction *inst = emit_op( p, op,
783 dest, destmask,
784 GL_FALSE, /* don't saturate? */
785 coord, /* arg 0? */
786 undef,
787 undef);
788
789 inst->TexSrcTarget = tex_idx;
790 inst->TexSrcUnit = tex_unit;
791 inst->TexShadow = tex_shadow;
792
793 p->program->Base.NumTexInstructions++;
794
795 /* Accounting for indirection tracking:
796 */
797 reserve_temp(p, dest);
798
799 #if 0
800 /* Is this a texture indirection?
801 */
802 if ((coord.file == PROGRAM_TEMPORARY &&
803 (p->temps_output & (1<<coord.idx))) ||
804 (dest.file == PROGRAM_TEMPORARY &&
805 (p->alu_temps & (1<<dest.idx)))) {
806 p->program->Base.NumTexIndirections++;
807 p->temps_output = 1<<coord.idx;
808 p->alu_temps = 0;
809 assert(0); /* KW: texture env crossbar */
810 }
811 #endif
812
813 return dest;
814 }
815
816
817 static struct ureg register_const4f( struct texenv_fragment_program *p,
818 GLfloat s0,
819 GLfloat s1,
820 GLfloat s2,
821 GLfloat s3)
822 {
823 GLfloat values[4];
824 GLuint idx, swizzle;
825 struct ureg r;
826 values[0] = s0;
827 values[1] = s1;
828 values[2] = s2;
829 values[3] = s3;
830 idx = _mesa_add_unnamed_constant( p->program->Base.Parameters, values, 4,
831 &swizzle );
832 r = make_ureg(PROGRAM_CONSTANT, idx);
833 r.swz = swizzle;
834 return r;
835 }
836
837 #define register_scalar_const(p, s0) register_const4f(p, s0, s0, s0, s0)
838 #define register_const1f(p, s0) register_const4f(p, s0, 0, 0, 1)
839 #define register_const2f(p, s0, s1) register_const4f(p, s0, s1, 0, 1)
840 #define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1)
841
842
843 static struct ureg get_one( struct texenv_fragment_program *p )
844 {
845 if (is_undef(p->one))
846 p->one = register_scalar_const(p, 1.0);
847 return p->one;
848 }
849
850 static struct ureg get_half( struct texenv_fragment_program *p )
851 {
852 if (is_undef(p->half))
853 p->half = register_scalar_const(p, 0.5);
854 return p->half;
855 }
856
857 static struct ureg get_zero( struct texenv_fragment_program *p )
858 {
859 if (is_undef(p->zero))
860 p->zero = register_scalar_const(p, 0.0);
861 return p->zero;
862 }
863
864
865 static void program_error( struct texenv_fragment_program *p, const char *msg )
866 {
867 _mesa_problem(NULL, msg);
868 p->error = 1;
869 }
870
871 static struct ureg get_source( struct texenv_fragment_program *p,
872 GLuint src, GLuint unit )
873 {
874 switch (src) {
875 case SRC_TEXTURE:
876 assert(!is_undef(p->src_texture[unit]));
877 return p->src_texture[unit];
878
879 case SRC_TEXTURE0:
880 case SRC_TEXTURE1:
881 case SRC_TEXTURE2:
882 case SRC_TEXTURE3:
883 case SRC_TEXTURE4:
884 case SRC_TEXTURE5:
885 case SRC_TEXTURE6:
886 case SRC_TEXTURE7:
887 assert(!is_undef(p->src_texture[src - SRC_TEXTURE0]));
888 return p->src_texture[src - SRC_TEXTURE0];
889
890 case SRC_CONSTANT:
891 return register_param2(p, STATE_TEXENV_COLOR, unit);
892
893 case SRC_PRIMARY_COLOR:
894 return register_input(p, FRAG_ATTRIB_COL0);
895
896 case SRC_ZERO:
897 return get_zero(p);
898
899 case SRC_PREVIOUS:
900 if (is_undef(p->src_previous))
901 return register_input(p, FRAG_ATTRIB_COL0);
902 else
903 return p->src_previous;
904
905 default:
906 assert(0);
907 return undef;
908 }
909 }
910
911 static struct ureg emit_combine_source( struct texenv_fragment_program *p,
912 GLuint mask,
913 GLuint unit,
914 GLuint source,
915 GLuint operand )
916 {
917 struct ureg arg, src, one;
918
919 src = get_source(p, source, unit);
920
921 switch (operand) {
922 case OPR_ONE_MINUS_SRC_COLOR:
923 /* Get unused tmp,
924 * Emit tmp = 1.0 - arg.xyzw
925 */
926 arg = get_temp( p );
927 one = get_one( p );
928 return emit_arith( p, OPCODE_SUB, arg, mask, 0, one, src, undef);
929
930 case OPR_SRC_ALPHA:
931 if (mask == WRITEMASK_W)
932 return src;
933 else
934 return swizzle1( src, SWIZZLE_W );
935 case OPR_ONE_MINUS_SRC_ALPHA:
936 /* Get unused tmp,
937 * Emit tmp = 1.0 - arg.wwww
938 */
939 arg = get_temp(p);
940 one = get_one(p);
941 return emit_arith(p, OPCODE_SUB, arg, mask, 0,
942 one, swizzle1(src, SWIZZLE_W), undef);
943 case OPR_ZERO:
944 return get_zero(p);
945 case OPR_ONE:
946 return get_one(p);
947 case OPR_SRC_COLOR:
948 return src;
949 default:
950 assert(0);
951 return src;
952 }
953 }
954
955 static GLboolean args_match( const struct state_key *key, GLuint unit )
956 {
957 GLuint i, nr = key->unit[unit].NumArgsRGB;
958
959 for (i = 0 ; i < nr ; i++) {
960 if (key->unit[unit].OptA[i].Source != key->unit[unit].OptRGB[i].Source)
961 return GL_FALSE;
962
963 switch(key->unit[unit].OptA[i].Operand) {
964 case OPR_SRC_ALPHA:
965 switch(key->unit[unit].OptRGB[i].Operand) {
966 case OPR_SRC_COLOR:
967 case OPR_SRC_ALPHA:
968 break;
969 default:
970 return GL_FALSE;
971 }
972 break;
973 case OPR_ONE_MINUS_SRC_ALPHA:
974 switch(key->unit[unit].OptRGB[i].Operand) {
975 case OPR_ONE_MINUS_SRC_COLOR:
976 case OPR_ONE_MINUS_SRC_ALPHA:
977 break;
978 default:
979 return GL_FALSE;
980 }
981 break;
982 default:
983 return GL_FALSE; /* impossible */
984 }
985 }
986
987 return GL_TRUE;
988 }
989
990 static struct ureg emit_combine( struct texenv_fragment_program *p,
991 struct ureg dest,
992 GLuint mask,
993 GLboolean saturate,
994 GLuint unit,
995 GLuint nr,
996 GLuint mode,
997 const struct mode_opt *opt)
998 {
999 struct ureg src[MAX_COMBINER_TERMS];
1000 struct ureg tmp, half;
1001 GLuint i;
1002
1003 assert(nr <= MAX_COMBINER_TERMS);
1004
1005 tmp = undef; /* silence warning (bug 5318) */
1006
1007 for (i = 0; i < nr; i++)
1008 src[i] = emit_combine_source( p, mask, unit, opt[i].Source, opt[i].Operand );
1009
1010 switch (mode) {
1011 case MODE_REPLACE:
1012 if (mask == WRITEMASK_XYZW && !saturate)
1013 return src[0];
1014 else
1015 return emit_arith( p, OPCODE_MOV, dest, mask, saturate, src[0], undef, undef );
1016 case MODE_MODULATE:
1017 return emit_arith( p, OPCODE_MUL, dest, mask, saturate,
1018 src[0], src[1], undef );
1019 case MODE_ADD:
1020 return emit_arith( p, OPCODE_ADD, dest, mask, saturate,
1021 src[0], src[1], undef );
1022 case MODE_ADD_SIGNED:
1023 /* tmp = arg0 + arg1
1024 * result = tmp - .5
1025 */
1026 half = get_half(p);
1027 tmp = get_temp( p );
1028 emit_arith( p, OPCODE_ADD, tmp, mask, 0, src[0], src[1], undef );
1029 emit_arith( p, OPCODE_SUB, dest, mask, saturate, tmp, half, undef );
1030 return dest;
1031 case MODE_INTERPOLATE:
1032 /* Arg0 * (Arg2) + Arg1 * (1-Arg2) -- note arguments are reordered:
1033 */
1034 return emit_arith( p, OPCODE_LRP, dest, mask, saturate, src[2], src[0], src[1] );
1035
1036 case MODE_SUBTRACT:
1037 return emit_arith( p, OPCODE_SUB, dest, mask, saturate, src[0], src[1], undef );
1038
1039 case MODE_DOT3_RGBA:
1040 case MODE_DOT3_RGBA_EXT:
1041 case MODE_DOT3_RGB_EXT:
1042 case MODE_DOT3_RGB: {
1043 struct ureg tmp0 = get_temp( p );
1044 struct ureg tmp1 = get_temp( p );
1045 struct ureg neg1 = register_scalar_const(p, -1);
1046 struct ureg two = register_scalar_const(p, 2);
1047
1048 /* tmp0 = 2*src0 - 1
1049 * tmp1 = 2*src1 - 1
1050 *
1051 * dst = tmp0 dot3 tmp1
1052 */
1053 emit_arith( p, OPCODE_MAD, tmp0, WRITEMASK_XYZW, 0,
1054 two, src[0], neg1);
1055
1056 if (_mesa_memcmp(&src[0], &src[1], sizeof(struct ureg)) == 0)
1057 tmp1 = tmp0;
1058 else
1059 emit_arith( p, OPCODE_MAD, tmp1, WRITEMASK_XYZW, 0,
1060 two, src[1], neg1);
1061 emit_arith( p, OPCODE_DP3, dest, mask, saturate, tmp0, tmp1, undef);
1062 return dest;
1063 }
1064 case MODE_MODULATE_ADD_ATI:
1065 /* Arg0 * Arg2 + Arg1 */
1066 return emit_arith( p, OPCODE_MAD, dest, mask, saturate,
1067 src[0], src[2], src[1] );
1068 case MODE_MODULATE_SIGNED_ADD_ATI: {
1069 /* Arg0 * Arg2 + Arg1 - 0.5 */
1070 struct ureg tmp0 = get_temp(p);
1071 half = get_half(p);
1072 emit_arith( p, OPCODE_MAD, tmp0, mask, 0, src[0], src[2], src[1] );
1073 emit_arith( p, OPCODE_SUB, dest, mask, saturate, tmp0, half, undef );
1074 return dest;
1075 }
1076 case MODE_MODULATE_SUBTRACT_ATI:
1077 /* Arg0 * Arg2 - Arg1 */
1078 emit_arith( p, OPCODE_MAD, dest, mask, 0, src[0], src[2], negate(src[1]) );
1079 return dest;
1080 case MODE_ADD_PRODUCTS:
1081 /* Arg0 * Arg1 + Arg2 * Arg3 */
1082 {
1083 struct ureg tmp0 = get_temp(p);
1084 emit_arith( p, OPCODE_MUL, tmp0, mask, 0, src[0], src[1], undef );
1085 emit_arith( p, OPCODE_MAD, dest, mask, saturate, src[2], src[3], tmp0 );
1086 }
1087 return dest;
1088 case MODE_ADD_PRODUCTS_SIGNED:
1089 /* Arg0 * Arg1 + Arg2 * Arg3 - 0.5 */
1090 {
1091 struct ureg tmp0 = get_temp(p);
1092 half = get_half(p);
1093 emit_arith( p, OPCODE_MUL, tmp0, mask, 0, src[0], src[1], undef );
1094 emit_arith( p, OPCODE_MAD, tmp0, mask, 0, src[2], src[3], tmp0 );
1095 emit_arith( p, OPCODE_SUB, dest, mask, saturate, tmp0, half, undef );
1096 }
1097 return dest;
1098 case MODE_BUMP_ENVMAP_ATI:
1099 /* special - not handled here */
1100 assert(0);
1101 return src[0];
1102 default:
1103 assert(0);
1104 return src[0];
1105 }
1106 }
1107
1108
1109 /**
1110 * Generate instructions for one texture unit's env/combiner mode.
1111 */
1112 static struct ureg
1113 emit_texenv(struct texenv_fragment_program *p, GLuint unit)
1114 {
1115 const struct state_key *key = p->state;
1116 GLboolean saturate;
1117 GLuint rgb_shift, alpha_shift;
1118 struct ureg out, dest;
1119
1120 if (!key->unit[unit].enabled) {
1121 return get_source(p, SRC_PREVIOUS, 0);
1122 }
1123 if (key->unit[unit].ModeRGB == MODE_BUMP_ENVMAP_ATI) {
1124 /* this isn't really a env stage delivering a color and handled elsewhere */
1125 return get_source(p, SRC_PREVIOUS, 0);
1126 }
1127
1128 switch (key->unit[unit].ModeRGB) {
1129 case MODE_DOT3_RGB_EXT:
1130 alpha_shift = key->unit[unit].ScaleShiftA;
1131 rgb_shift = 0;
1132 break;
1133 case MODE_DOT3_RGBA_EXT:
1134 alpha_shift = 0;
1135 rgb_shift = 0;
1136 break;
1137 default:
1138 rgb_shift = key->unit[unit].ScaleShiftRGB;
1139 alpha_shift = key->unit[unit].ScaleShiftA;
1140 break;
1141 }
1142
1143 /* If we'll do rgb/alpha shifting don't saturate in emit_combine().
1144 * We don't want to clamp twice.
1145 */
1146 saturate = !(rgb_shift || alpha_shift);
1147
1148 /* If this is the very last calculation, emit direct to output reg:
1149 */
1150 if (key->separate_specular ||
1151 unit != p->last_tex_stage ||
1152 alpha_shift ||
1153 rgb_shift)
1154 dest = get_temp( p );
1155 else
1156 dest = make_ureg(PROGRAM_OUTPUT, FRAG_RESULT_COLOR);
1157
1158 /* Emit the RGB and A combine ops
1159 */
1160 if (key->unit[unit].ModeRGB == key->unit[unit].ModeA &&
1161 args_match(key, unit)) {
1162 out = emit_combine( p, dest, WRITEMASK_XYZW, saturate,
1163 unit,
1164 key->unit[unit].NumArgsRGB,
1165 key->unit[unit].ModeRGB,
1166 key->unit[unit].OptRGB);
1167 }
1168 else if (key->unit[unit].ModeRGB == MODE_DOT3_RGBA_EXT ||
1169 key->unit[unit].ModeRGB == MODE_DOT3_RGBA) {
1170 out = emit_combine( p, dest, WRITEMASK_XYZW, saturate,
1171 unit,
1172 key->unit[unit].NumArgsRGB,
1173 key->unit[unit].ModeRGB,
1174 key->unit[unit].OptRGB);
1175 }
1176 else {
1177 /* Need to do something to stop from re-emitting identical
1178 * argument calculations here:
1179 */
1180 out = emit_combine( p, dest, WRITEMASK_XYZ, saturate,
1181 unit,
1182 key->unit[unit].NumArgsRGB,
1183 key->unit[unit].ModeRGB,
1184 key->unit[unit].OptRGB);
1185 out = emit_combine( p, dest, WRITEMASK_W, saturate,
1186 unit,
1187 key->unit[unit].NumArgsA,
1188 key->unit[unit].ModeA,
1189 key->unit[unit].OptA);
1190 }
1191
1192 /* Deal with the final shift:
1193 */
1194 if (alpha_shift || rgb_shift) {
1195 struct ureg shift;
1196
1197 saturate = GL_TRUE; /* always saturate at this point */
1198
1199 if (rgb_shift == alpha_shift) {
1200 shift = register_scalar_const(p, (GLfloat)(1<<rgb_shift));
1201 }
1202 else {
1203 shift = register_const4f(p,
1204 (GLfloat)(1<<rgb_shift),
1205 (GLfloat)(1<<rgb_shift),
1206 (GLfloat)(1<<rgb_shift),
1207 (GLfloat)(1<<alpha_shift));
1208 }
1209 return emit_arith( p, OPCODE_MUL, dest, WRITEMASK_XYZW,
1210 saturate, out, shift, undef );
1211 }
1212 else
1213 return out;
1214 }
1215
1216
1217 /**
1218 * Generate instruction for getting a texture source term.
1219 */
1220 static void load_texture( struct texenv_fragment_program *p, GLuint unit )
1221 {
1222 if (is_undef(p->src_texture[unit])) {
1223 GLuint texTarget = p->state->unit[unit].source_index;
1224 struct ureg texcoord;
1225 struct ureg tmp = get_tex_temp( p );
1226
1227 if (is_undef(p->texcoord_tex[unit])) {
1228 texcoord = register_input(p, FRAG_ATTRIB_TEX0+unit);
1229 }
1230 else {
1231 /* might want to reuse this reg for tex output actually */
1232 texcoord = p->texcoord_tex[unit];
1233 }
1234
1235 if (texTarget == TEXTURE_UNKNOWN_INDEX)
1236 program_error(p, "TexSrcBit");
1237
1238 /* TODO: Use D0_MASK_XY where possible.
1239 */
1240 if (p->state->unit[unit].enabled) {
1241 GLboolean shadow = GL_FALSE;
1242
1243 if (p->state->unit[unit].shadow) {
1244 p->program->Base.ShadowSamplers |= 1 << unit;
1245 shadow = GL_TRUE;
1246 }
1247
1248 p->src_texture[unit] = emit_texld( p, OPCODE_TXP,
1249 tmp, WRITEMASK_XYZW,
1250 unit, texTarget, shadow,
1251 texcoord );
1252
1253 p->program->Base.SamplersUsed |= (1 << unit);
1254 /* This identity mapping should already be in place
1255 * (see _mesa_init_program_struct()) but let's be safe.
1256 */
1257 p->program->Base.SamplerUnits[unit] = unit;
1258 }
1259 else
1260 p->src_texture[unit] = get_zero(p);
1261 }
1262 }
1263
1264 static GLboolean load_texenv_source( struct texenv_fragment_program *p,
1265 GLuint src, GLuint unit )
1266 {
1267 switch (src) {
1268 case SRC_TEXTURE:
1269 load_texture(p, unit);
1270 break;
1271
1272 case SRC_TEXTURE0:
1273 case SRC_TEXTURE1:
1274 case SRC_TEXTURE2:
1275 case SRC_TEXTURE3:
1276 case SRC_TEXTURE4:
1277 case SRC_TEXTURE5:
1278 case SRC_TEXTURE6:
1279 case SRC_TEXTURE7:
1280 load_texture(p, src - SRC_TEXTURE0);
1281 break;
1282
1283 default:
1284 /* not a texture src - do nothing */
1285 break;
1286 }
1287
1288 return GL_TRUE;
1289 }
1290
1291
1292 /**
1293 * Generate instructions for loading all texture source terms.
1294 */
1295 static GLboolean
1296 load_texunit_sources( struct texenv_fragment_program *p, int unit )
1297 {
1298 const struct state_key *key = p->state;
1299 GLuint i;
1300
1301 for (i = 0; i < key->unit[unit].NumArgsRGB; i++) {
1302 load_texenv_source( p, key->unit[unit].OptRGB[i].Source, unit );
1303 }
1304
1305 for (i = 0; i < key->unit[unit].NumArgsA; i++) {
1306 load_texenv_source( p, key->unit[unit].OptA[i].Source, unit );
1307 }
1308
1309 return GL_TRUE;
1310 }
1311
1312 /**
1313 * Generate instructions for loading bump map textures.
1314 */
1315 static GLboolean
1316 load_texunit_bumpmap( struct texenv_fragment_program *p, int unit )
1317 {
1318 const struct state_key *key = p->state;
1319 GLuint bumpedUnitNr = key->unit[unit].OptRGB[1].Source - SRC_TEXTURE0;
1320 struct ureg texcDst, bumpMapRes;
1321 struct ureg constdudvcolor = register_const4f(p, 0.0, 0.0, 0.0, 1.0);
1322 struct ureg texcSrc = register_input(p, FRAG_ATTRIB_TEX0 + bumpedUnitNr);
1323 struct ureg rotMat0 = register_param3( p, STATE_INTERNAL, STATE_ROT_MATRIX_0, unit );
1324 struct ureg rotMat1 = register_param3( p, STATE_INTERNAL, STATE_ROT_MATRIX_1, unit );
1325
1326 load_texenv_source( p, unit + SRC_TEXTURE0, unit );
1327
1328 bumpMapRes = get_source(p, key->unit[unit].OptRGB[0].Source, unit);
1329 texcDst = get_tex_temp( p );
1330 p->texcoord_tex[bumpedUnitNr] = texcDst;
1331
1332 /* apply rot matrix and add coords to be available in next phase */
1333 /* dest = (Arg0.xxxx * rotMat0 + Arg1) + (Arg0.yyyy * rotMat1) */
1334 /* note only 2 coords are affected the rest are left unchanged (mul by 0) */
1335 emit_arith( p, OPCODE_MAD, texcDst, WRITEMASK_XYZW, 0,
1336 swizzle1(bumpMapRes, SWIZZLE_X), rotMat0, texcSrc );
1337 emit_arith( p, OPCODE_MAD, texcDst, WRITEMASK_XYZW, 0,
1338 swizzle1(bumpMapRes, SWIZZLE_Y), rotMat1, texcDst );
1339
1340 /* move 0,0,0,1 into bumpmap src if someone (crossbar) is foolish
1341 enough to access this later, should optimize away */
1342 emit_arith( p, OPCODE_MOV, bumpMapRes, WRITEMASK_XYZW, 0, constdudvcolor, undef, undef );
1343
1344 return GL_TRUE;
1345 }
1346
1347 /**
1348 * Generate a new fragment program which implements the context's
1349 * current texture env/combine mode.
1350 */
1351 static void
1352 create_new_program(GLcontext *ctx, struct state_key *key,
1353 struct gl_fragment_program *program)
1354 {
1355 struct prog_instruction instBuffer[MAX_INSTRUCTIONS];
1356 struct texenv_fragment_program p;
1357 GLuint unit;
1358 struct ureg cf, out;
1359
1360 _mesa_memset(&p, 0, sizeof(p));
1361 p.ctx = ctx;
1362 p.state = key;
1363 p.program = program;
1364
1365 /* During code generation, use locally-allocated instruction buffer,
1366 * then alloc dynamic storage below.
1367 */
1368 p.program->Base.Instructions = instBuffer;
1369 p.program->Base.Target = GL_FRAGMENT_PROGRAM_ARB;
1370 p.program->Base.NumTexIndirections = 1;
1371 p.program->Base.NumTexInstructions = 0;
1372 p.program->Base.NumAluInstructions = 0;
1373 p.program->Base.String = NULL;
1374 p.program->Base.NumInstructions =
1375 p.program->Base.NumTemporaries =
1376 p.program->Base.NumParameters =
1377 p.program->Base.NumAttributes = p.program->Base.NumAddressRegs = 0;
1378 p.program->Base.Parameters = _mesa_new_parameter_list();
1379
1380 p.program->Base.InputsRead = 0;
1381 p.program->Base.OutputsWritten = 1 << FRAG_RESULT_COLOR;
1382
1383 for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
1384 p.src_texture[unit] = undef;
1385 p.texcoord_tex[unit] = undef;
1386 }
1387
1388 p.src_previous = undef;
1389 p.half = undef;
1390 p.zero = undef;
1391 p.one = undef;
1392
1393 p.last_tex_stage = 0;
1394 release_temps(ctx, &p);
1395
1396 if (key->enabled_units) {
1397 GLboolean needbumpstage = GL_FALSE;
1398 /* Zeroth pass - bump map textures first */
1399 for (unit = 0 ; unit < ctx->Const.MaxTextureUnits ; unit++)
1400 if (key->unit[unit].enabled && key->unit[unit].ModeRGB == MODE_BUMP_ENVMAP_ATI) {
1401 needbumpstage = GL_TRUE;
1402 load_texunit_bumpmap( &p, unit );
1403 }
1404 if (needbumpstage)
1405 p.program->Base.NumTexIndirections++;
1406
1407 /* First pass - to support texture_env_crossbar, first identify
1408 * all referenced texture sources and emit texld instructions
1409 * for each:
1410 */
1411 for (unit = 0 ; unit < ctx->Const.MaxTextureUnits ; unit++)
1412 if (key->unit[unit].enabled) {
1413 load_texunit_sources( &p, unit );
1414 p.last_tex_stage = unit;
1415 }
1416
1417 /* Second pass - emit combine instructions to build final color:
1418 */
1419 for (unit = 0 ; unit < ctx->Const.MaxTextureUnits; unit++)
1420 if (key->enabled_units & (1<<unit)) {
1421 p.src_previous = emit_texenv( &p, unit );
1422 reserve_temp(&p, p.src_previous); /* don't re-use this temp reg */
1423 release_temps(ctx, &p); /* release all temps */
1424 }
1425 }
1426
1427 cf = get_source( &p, SRC_PREVIOUS, 0 );
1428 out = make_ureg( PROGRAM_OUTPUT, FRAG_RESULT_COLOR );
1429
1430 if (key->separate_specular) {
1431 /* Emit specular add.
1432 */
1433 struct ureg s = register_input(&p, FRAG_ATTRIB_COL1);
1434 emit_arith( &p, OPCODE_ADD, out, WRITEMASK_XYZ, 0, cf, s, undef );
1435 emit_arith( &p, OPCODE_MOV, out, WRITEMASK_W, 0, cf, undef, undef );
1436 }
1437 else if (_mesa_memcmp(&cf, &out, sizeof(cf)) != 0) {
1438 /* Will wind up in here if no texture enabled or a couple of
1439 * other scenarios (GL_REPLACE for instance).
1440 */
1441 emit_arith( &p, OPCODE_MOV, out, WRITEMASK_XYZW, 0, cf, undef, undef );
1442 }
1443
1444 /* Finish up:
1445 */
1446 emit_arith( &p, OPCODE_END, undef, WRITEMASK_XYZW, 0, undef, undef, undef);
1447
1448 if (key->fog_enabled) {
1449 /* Pull fog mode from GLcontext, the value in the state key is
1450 * a reduced value and not what is expected in FogOption
1451 */
1452 p.program->FogOption = ctx->Fog.Mode;
1453 p.program->Base.InputsRead |= FRAG_BIT_FOGC; /* XXX new */
1454 } else
1455 p.program->FogOption = GL_NONE;
1456
1457 if (p.program->Base.NumTexIndirections > ctx->Const.FragmentProgram.MaxTexIndirections)
1458 program_error(&p, "Exceeded max nr indirect texture lookups");
1459
1460 if (p.program->Base.NumTexInstructions > ctx->Const.FragmentProgram.MaxTexInstructions)
1461 program_error(&p, "Exceeded max TEX instructions");
1462
1463 if (p.program->Base.NumAluInstructions > ctx->Const.FragmentProgram.MaxAluInstructions)
1464 program_error(&p, "Exceeded max ALU instructions");
1465
1466 ASSERT(p.program->Base.NumInstructions <= MAX_INSTRUCTIONS);
1467
1468 /* Allocate final instruction array */
1469 p.program->Base.Instructions
1470 = _mesa_alloc_instructions(p.program->Base.NumInstructions);
1471 if (!p.program->Base.Instructions) {
1472 _mesa_error(ctx, GL_OUT_OF_MEMORY,
1473 "generating tex env program");
1474 return;
1475 }
1476 _mesa_copy_instructions(p.program->Base.Instructions, instBuffer,
1477 p.program->Base.NumInstructions);
1478
1479 if (p.program->FogOption) {
1480 _mesa_append_fog_code(ctx, p.program);
1481 p.program->FogOption = GL_NONE;
1482 }
1483
1484
1485 /* Notify driver the fragment program has (actually) changed.
1486 */
1487 if (ctx->Driver.ProgramStringNotify) {
1488 ctx->Driver.ProgramStringNotify( ctx, GL_FRAGMENT_PROGRAM_ARB,
1489 &p.program->Base );
1490 }
1491
1492 if (DISASSEM) {
1493 _mesa_print_program(&p.program->Base);
1494 _mesa_printf("\n");
1495 }
1496 }
1497
1498
1499 /**
1500 * Return a fragment program which implements the current
1501 * fixed-function texture, fog and color-sum operations.
1502 */
1503 struct gl_fragment_program *
1504 _mesa_get_fixed_func_fragment_program(GLcontext *ctx)
1505 {
1506 struct gl_fragment_program *prog;
1507 struct state_key key;
1508
1509 make_state_key(ctx, &key);
1510
1511 prog = (struct gl_fragment_program *)
1512 _mesa_search_program_cache(ctx->FragmentProgram.Cache,
1513 &key, sizeof(key));
1514
1515 if (!prog) {
1516 prog = (struct gl_fragment_program *)
1517 ctx->Driver.NewProgram(ctx, GL_FRAGMENT_PROGRAM_ARB, 0);
1518
1519 create_new_program(ctx, &key, prog);
1520
1521 _mesa_program_cache_insert(ctx, ctx->FragmentProgram.Cache,
1522 &key, sizeof(key), &prog->Base);
1523 }
1524
1525 return prog;
1526 }