mesa: minor code clean-ups, comments
[mesa.git] / src / mesa / main / texenvprogram.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 * Copyright 2009 VMware, Inc. All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 #include "glheader.h"
30 #include "macros.h"
31 #include "enums.h"
32 #include "shader/program.h"
33 #include "shader/prog_parameter.h"
34 #include "shader/prog_cache.h"
35 #include "shader/prog_instruction.h"
36 #include "shader/prog_print.h"
37 #include "shader/prog_statevars.h"
38 #include "shader/programopt.h"
39 #include "texenvprogram.h"
40
41
42 /*
43 * Note on texture units:
44 *
45 * The number of texture units supported by fixed-function fragment
46 * processing is MAX_TEXTURE_COORD_UNITS, not MAX_TEXTURE_IMAGE_UNITS.
47 * That's because there's a one-to-one correspondence between texture
48 * coordinates and samplers in fixed-function processing.
49 *
50 * Since fixed-function vertex processing is limited to MAX_TEXTURE_COORD_UNITS
51 * sets of texcoords, so is fixed-function fragment processing.
52 *
53 * We can safely use ctx->Const.MaxTextureUnits for loop bounds.
54 */
55
56
57 struct texenvprog_cache_item
58 {
59 GLuint hash;
60 void *key;
61 struct gl_fragment_program *data;
62 struct texenvprog_cache_item *next;
63 };
64
65 static GLboolean
66 texenv_doing_secondary_color(GLcontext *ctx)
67 {
68 if (ctx->Light.Enabled &&
69 (ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR))
70 return GL_TRUE;
71
72 if (ctx->Fog.ColorSumEnabled)
73 return GL_TRUE;
74
75 return GL_FALSE;
76 }
77
78 /**
79 * Up to nine instructions per tex unit, plus fog, specular color.
80 */
81 #define MAX_INSTRUCTIONS ((MAX_TEXTURE_COORD_UNITS * 9) + 12)
82
83 #define DISASSEM (MESA_VERBOSE & VERBOSE_DISASSEM)
84
85 struct mode_opt {
86 GLuint Source:4; /**< SRC_x */
87 GLuint Operand:3; /**< OPR_x */
88 };
89
90 struct state_key {
91 GLuint nr_enabled_units:8;
92 GLuint enabled_units:8;
93 GLuint separate_specular:1;
94 GLuint fog_enabled:1;
95 GLuint fog_mode:2;
96 GLuint inputs_available:12;
97
98 struct {
99 GLuint enabled:1;
100 GLuint source_index:3; /* one of TEXTURE_1D/2D/3D/CUBE/RECT_INDEX */
101 GLuint shadow:1;
102 GLuint ScaleShiftRGB:2;
103 GLuint ScaleShiftA:2;
104
105 GLuint NumArgsRGB:3;
106 GLuint ModeRGB:5; /**< MODE_x */
107 struct mode_opt OptRGB[MAX_COMBINER_TERMS];
108
109 GLuint NumArgsA:3;
110 GLuint ModeA:5; /**< MODE_x */
111 struct mode_opt OptA[MAX_COMBINER_TERMS];
112 } unit[MAX_TEXTURE_UNITS];
113 };
114
115 #define FOG_LINEAR 0
116 #define FOG_EXP 1
117 #define FOG_EXP2 2
118 #define FOG_UNKNOWN 3
119
120 static GLuint translate_fog_mode( GLenum mode )
121 {
122 switch (mode) {
123 case GL_LINEAR: return FOG_LINEAR;
124 case GL_EXP: return FOG_EXP;
125 case GL_EXP2: return FOG_EXP2;
126 default: return FOG_UNKNOWN;
127 }
128 }
129
130 #define OPR_SRC_COLOR 0
131 #define OPR_ONE_MINUS_SRC_COLOR 1
132 #define OPR_SRC_ALPHA 2
133 #define OPR_ONE_MINUS_SRC_ALPHA 3
134 #define OPR_ZERO 4
135 #define OPR_ONE 5
136 #define OPR_UNKNOWN 7
137
138 static GLuint translate_operand( GLenum operand )
139 {
140 switch (operand) {
141 case GL_SRC_COLOR: return OPR_SRC_COLOR;
142 case GL_ONE_MINUS_SRC_COLOR: return OPR_ONE_MINUS_SRC_COLOR;
143 case GL_SRC_ALPHA: return OPR_SRC_ALPHA;
144 case GL_ONE_MINUS_SRC_ALPHA: return OPR_ONE_MINUS_SRC_ALPHA;
145 case GL_ZERO: return OPR_ZERO;
146 case GL_ONE: return OPR_ONE;
147 default:
148 assert(0);
149 return OPR_UNKNOWN;
150 }
151 }
152
153 #define SRC_TEXTURE 0
154 #define SRC_TEXTURE0 1
155 #define SRC_TEXTURE1 2
156 #define SRC_TEXTURE2 3
157 #define SRC_TEXTURE3 4
158 #define SRC_TEXTURE4 5
159 #define SRC_TEXTURE5 6
160 #define SRC_TEXTURE6 7
161 #define SRC_TEXTURE7 8
162 #define SRC_CONSTANT 9
163 #define SRC_PRIMARY_COLOR 10
164 #define SRC_PREVIOUS 11
165 #define SRC_ZERO 12
166 #define SRC_UNKNOWN 15
167
168 static GLuint translate_source( GLenum src )
169 {
170 switch (src) {
171 case GL_TEXTURE: return SRC_TEXTURE;
172 case GL_TEXTURE0:
173 case GL_TEXTURE1:
174 case GL_TEXTURE2:
175 case GL_TEXTURE3:
176 case GL_TEXTURE4:
177 case GL_TEXTURE5:
178 case GL_TEXTURE6:
179 case GL_TEXTURE7: return SRC_TEXTURE0 + (src - GL_TEXTURE0);
180 case GL_CONSTANT: return SRC_CONSTANT;
181 case GL_PRIMARY_COLOR: return SRC_PRIMARY_COLOR;
182 case GL_PREVIOUS: return SRC_PREVIOUS;
183 case GL_ZERO:
184 return SRC_ZERO;
185 default:
186 assert(0);
187 return SRC_UNKNOWN;
188 }
189 }
190
191 #define MODE_REPLACE 0 /* r = a0 */
192 #define MODE_MODULATE 1 /* r = a0 * a1 */
193 #define MODE_ADD 2 /* r = a0 + a1 */
194 #define MODE_ADD_SIGNED 3 /* r = a0 + a1 - 0.5 */
195 #define MODE_INTERPOLATE 4 /* r = a0 * a2 + a1 * (1 - a2) */
196 #define MODE_SUBTRACT 5 /* r = a0 - a1 */
197 #define MODE_DOT3_RGB 6 /* r = a0 . a1 */
198 #define MODE_DOT3_RGB_EXT 7 /* r = a0 . a1 */
199 #define MODE_DOT3_RGBA 8 /* r = a0 . a1 */
200 #define MODE_DOT3_RGBA_EXT 9 /* r = a0 . a1 */
201 #define MODE_MODULATE_ADD_ATI 10 /* r = a0 * a2 + a1 */
202 #define MODE_MODULATE_SIGNED_ADD_ATI 11 /* r = a0 * a2 + a1 - 0.5 */
203 #define MODE_MODULATE_SUBTRACT_ATI 12 /* r = a0 * a2 - a1 */
204 #define MODE_ADD_PRODUCTS 13 /* r = a0 * a1 + a2 * a3 */
205 #define MODE_ADD_PRODUCTS_SIGNED 14 /* r = a0 * a1 + a2 * a3 - 0.5 */
206 #define MODE_BUMP_ENVMAP_ATI 15 /* special */
207 #define MODE_UNKNOWN 16
208
209 /**
210 * Translate GL combiner state into a MODE_x value
211 */
212 static GLuint translate_mode( GLenum envMode, GLenum mode )
213 {
214 switch (mode) {
215 case GL_REPLACE: return MODE_REPLACE;
216 case GL_MODULATE: return MODE_MODULATE;
217 case GL_ADD:
218 if (envMode == GL_COMBINE4_NV)
219 return MODE_ADD_PRODUCTS;
220 else
221 return MODE_ADD;
222 case GL_ADD_SIGNED:
223 if (envMode == GL_COMBINE4_NV)
224 return MODE_ADD_PRODUCTS_SIGNED;
225 else
226 return MODE_ADD_SIGNED;
227 case GL_INTERPOLATE: return MODE_INTERPOLATE;
228 case GL_SUBTRACT: return MODE_SUBTRACT;
229 case GL_DOT3_RGB: return MODE_DOT3_RGB;
230 case GL_DOT3_RGB_EXT: return MODE_DOT3_RGB_EXT;
231 case GL_DOT3_RGBA: return MODE_DOT3_RGBA;
232 case GL_DOT3_RGBA_EXT: return MODE_DOT3_RGBA_EXT;
233 case GL_MODULATE_ADD_ATI: return MODE_MODULATE_ADD_ATI;
234 case GL_MODULATE_SIGNED_ADD_ATI: return MODE_MODULATE_SIGNED_ADD_ATI;
235 case GL_MODULATE_SUBTRACT_ATI: return MODE_MODULATE_SUBTRACT_ATI;
236 case GL_BUMP_ENVMAP_ATI: return MODE_BUMP_ENVMAP_ATI;
237 default:
238 assert(0);
239 return MODE_UNKNOWN;
240 }
241 }
242
243
244 #define TEXTURE_UNKNOWN_INDEX 7
245
246 /**
247 * Translate TEXTURE_x_BIT to TEXTURE_x_INDEX.
248 */
249 static GLuint translate_tex_src_bit( GLbitfield bit )
250 {
251 /* make sure number of switch cases is correct */
252 assert(NUM_TEXTURE_TARGETS == 7);
253 switch (bit) {
254 case TEXTURE_1D_BIT: return TEXTURE_1D_INDEX;
255 case TEXTURE_2D_BIT: return TEXTURE_2D_INDEX;
256 case TEXTURE_RECT_BIT: return TEXTURE_RECT_INDEX;
257 case TEXTURE_3D_BIT: return TEXTURE_3D_INDEX;
258 case TEXTURE_CUBE_BIT: return TEXTURE_CUBE_INDEX;
259 case TEXTURE_1D_ARRAY_BIT: return TEXTURE_1D_ARRAY_INDEX;
260 case TEXTURE_2D_ARRAY_BIT: return TEXTURE_2D_ARRAY_INDEX;
261 default:
262 assert(0);
263 return TEXTURE_UNKNOWN_INDEX;
264 }
265 }
266
267
268 #define VERT_BIT_TEX_ANY (0xff << VERT_ATTRIB_TEX0)
269 #define VERT_RESULT_TEX_ANY (0xff << VERT_RESULT_TEX0)
270
271 /**
272 * Identify all possible varying inputs. The fragment program will
273 * never reference non-varying inputs, but will track them via state
274 * constants instead.
275 *
276 * This function figures out all the inputs that the fragment program
277 * has access to. The bitmask is later reduced to just those which
278 * are actually referenced.
279 */
280 static GLbitfield get_fp_input_mask( GLcontext *ctx )
281 {
282 /* _NEW_PROGRAM */
283 const GLboolean vertexShader = (ctx->Shader.CurrentProgram &&
284 ctx->Shader.CurrentProgram->LinkStatus &&
285 ctx->Shader.CurrentProgram->VertexProgram);
286 const GLboolean vertexProgram = ctx->VertexProgram._Enabled;
287 GLbitfield fp_inputs = 0x0;
288
289 if (ctx->VertexProgram._Overriden) {
290 /* Somebody's messing with the vertex program and we don't have
291 * a clue what's happening. Assume that it could be producing
292 * all possible outputs.
293 */
294 fp_inputs = ~0;
295 }
296 else if (ctx->RenderMode == GL_FEEDBACK) {
297 /* _NEW_RENDERMODE */
298 fp_inputs = (FRAG_BIT_COL0 | FRAG_BIT_TEX0);
299 }
300 else if (!(vertexProgram || vertexShader) ||
301 !ctx->VertexProgram._Current) {
302 /* Fixed function vertex logic */
303 /* _NEW_ARRAY */
304 GLbitfield varying_inputs = ctx->varying_vp_inputs;
305
306 /* These get generated in the setup routine regardless of the
307 * vertex program:
308 */
309 /* _NEW_POINT */
310 if (ctx->Point.PointSprite)
311 varying_inputs |= FRAG_BITS_TEX_ANY;
312
313 /* First look at what values may be computed by the generated
314 * vertex program:
315 */
316 /* _NEW_LIGHT */
317 if (ctx->Light.Enabled) {
318 fp_inputs |= FRAG_BIT_COL0;
319
320 if (texenv_doing_secondary_color(ctx))
321 fp_inputs |= FRAG_BIT_COL1;
322 }
323
324 /* _NEW_TEXTURE */
325 fp_inputs |= (ctx->Texture._TexGenEnabled |
326 ctx->Texture._TexMatEnabled) << FRAG_ATTRIB_TEX0;
327
328 /* Then look at what might be varying as a result of enabled
329 * arrays, etc:
330 */
331 if (varying_inputs & VERT_BIT_COLOR0)
332 fp_inputs |= FRAG_BIT_COL0;
333 if (varying_inputs & VERT_BIT_COLOR1)
334 fp_inputs |= FRAG_BIT_COL1;
335
336 fp_inputs |= (((varying_inputs & VERT_BIT_TEX_ANY) >> VERT_ATTRIB_TEX0)
337 << FRAG_ATTRIB_TEX0);
338
339 }
340 else {
341 /* calculate from vp->outputs */
342 struct gl_vertex_program *vprog;
343 GLbitfield vp_outputs;
344
345 /* Choose GLSL vertex shader over ARB vertex program. Need this
346 * since vertex shader state validation comes after fragment state
347 * validation (see additional comments in state.c).
348 */
349 if (vertexShader)
350 vprog = ctx->Shader.CurrentProgram->VertexProgram;
351 else
352 vprog = ctx->VertexProgram.Current;
353
354 vp_outputs = vprog->Base.OutputsWritten;
355
356 /* These get generated in the setup routine regardless of the
357 * vertex program:
358 */
359 /* _NEW_POINT */
360 if (ctx->Point.PointSprite)
361 vp_outputs |= FRAG_BITS_TEX_ANY;
362
363 if (vp_outputs & (1 << VERT_RESULT_COL0))
364 fp_inputs |= FRAG_BIT_COL0;
365 if (vp_outputs & (1 << VERT_RESULT_COL1))
366 fp_inputs |= FRAG_BIT_COL1;
367
368 fp_inputs |= (((vp_outputs & VERT_RESULT_TEX_ANY) >> VERT_RESULT_TEX0)
369 << FRAG_ATTRIB_TEX0);
370 }
371
372 return fp_inputs;
373 }
374
375
376 /**
377 * Examine current texture environment state and generate a unique
378 * key to identify it.
379 */
380 static void make_state_key( GLcontext *ctx, struct state_key *key )
381 {
382 GLuint i, j;
383 GLbitfield inputs_referenced = FRAG_BIT_COL0;
384 const GLbitfield inputs_available = get_fp_input_mask( ctx );
385
386 memset(key, 0, sizeof(*key));
387
388 /* _NEW_TEXTURE */
389 for (i = 0; i < ctx->Const.MaxTextureUnits; i++) {
390 const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
391 const struct gl_texture_object *texObj = texUnit->_Current;
392 const struct gl_tex_env_combine_state *comb = texUnit->_CurrentCombine;
393 GLenum format;
394
395 if (!texUnit->_ReallyEnabled || !texUnit->Enabled)
396 continue;
397
398 format = texObj->Image[0][texObj->BaseLevel]->_BaseFormat;
399
400 key->unit[i].enabled = 1;
401 key->enabled_units |= (1<<i);
402 key->nr_enabled_units = i+1;
403 inputs_referenced |= FRAG_BIT_TEX(i);
404
405 key->unit[i].source_index =
406 translate_tex_src_bit(texUnit->_ReallyEnabled);
407
408 key->unit[i].shadow = ((texObj->CompareMode == GL_COMPARE_R_TO_TEXTURE) &&
409 ((format == GL_DEPTH_COMPONENT) ||
410 (format == GL_DEPTH_STENCIL_EXT)));
411
412 key->unit[i].NumArgsRGB = comb->_NumArgsRGB;
413 key->unit[i].NumArgsA = comb->_NumArgsA;
414
415 key->unit[i].ModeRGB =
416 translate_mode(texUnit->EnvMode, comb->ModeRGB);
417 key->unit[i].ModeA =
418 translate_mode(texUnit->EnvMode, comb->ModeA);
419
420 key->unit[i].ScaleShiftRGB = comb->ScaleShiftRGB;
421 key->unit[i].ScaleShiftA = comb->ScaleShiftA;
422
423 for (j = 0; j < MAX_COMBINER_TERMS; j++) {
424 key->unit[i].OptRGB[j].Operand = translate_operand(comb->OperandRGB[j]);
425 key->unit[i].OptA[j].Operand = translate_operand(comb->OperandA[j]);
426 key->unit[i].OptRGB[j].Source = translate_source(comb->SourceRGB[j]);
427 key->unit[i].OptA[j].Source = translate_source(comb->SourceA[j]);
428 }
429
430 if (key->unit[i].ModeRGB == MODE_BUMP_ENVMAP_ATI) {
431 /* requires some special translation */
432 key->unit[i].NumArgsRGB = 2;
433 key->unit[i].ScaleShiftRGB = 0;
434 key->unit[i].OptRGB[0].Operand = OPR_SRC_COLOR;
435 key->unit[i].OptRGB[0].Source = SRC_TEXTURE;
436 key->unit[i].OptRGB[1].Operand = OPR_SRC_COLOR;
437 key->unit[i].OptRGB[1].Source = texUnit->BumpTarget - GL_TEXTURE0 + SRC_TEXTURE0;
438 }
439 }
440
441 /* _NEW_LIGHT | _NEW_FOG */
442 if (texenv_doing_secondary_color(ctx)) {
443 key->separate_specular = 1;
444 inputs_referenced |= FRAG_BIT_COL1;
445 }
446
447 /* _NEW_FOG */
448 if (ctx->Fog.Enabled) {
449 key->fog_enabled = 1;
450 key->fog_mode = translate_fog_mode(ctx->Fog.Mode);
451 inputs_referenced |= FRAG_BIT_FOGC; /* maybe */
452 }
453
454 key->inputs_available = (inputs_available & inputs_referenced);
455 }
456
457 /**
458 * Use uregs to represent registers internally, translate to Mesa's
459 * expected formats on emit.
460 *
461 * NOTE: These are passed by value extensively in this file rather
462 * than as usual by pointer reference. If this disturbs you, try
463 * remembering they are just 32bits in size.
464 *
465 * GCC is smart enough to deal with these dword-sized structures in
466 * much the same way as if I had defined them as dwords and was using
467 * macros to access and set the fields. This is much nicer and easier
468 * to evolve.
469 */
470 struct ureg {
471 GLuint file:4;
472 GLuint idx:8;
473 GLuint negatebase:1;
474 GLuint abs:1;
475 GLuint negateabs:1;
476 GLuint swz:12;
477 GLuint pad:5;
478 };
479
480 static const struct ureg undef = {
481 PROGRAM_UNDEFINED,
482 ~0,
483 0,
484 0,
485 0,
486 0,
487 0
488 };
489
490
491 /** State used to build the fragment program:
492 */
493 struct texenv_fragment_program {
494 struct gl_fragment_program *program;
495 GLcontext *ctx;
496 struct state_key *state;
497
498 GLbitfield alu_temps; /**< Track texture indirections, see spec. */
499 GLbitfield temps_output; /**< Track texture indirections, see spec. */
500 GLbitfield temp_in_use; /**< Tracks temporary regs which are in use. */
501 GLboolean error;
502
503 struct ureg src_texture[MAX_TEXTURE_COORD_UNITS];
504 /* Reg containing each texture unit's sampled texture color,
505 * else undef.
506 */
507
508 struct ureg texcoord_tex[MAX_TEXTURE_COORD_UNITS];
509 /* Reg containing texcoord for a texture unit,
510 * needed for bump mapping, else undef.
511 */
512
513 struct ureg src_previous; /**< Reg containing color from previous
514 * stage. May need to be decl'd.
515 */
516
517 GLuint last_tex_stage; /**< Number of last enabled texture unit */
518
519 struct ureg half;
520 struct ureg one;
521 struct ureg zero;
522 };
523
524
525
526 static struct ureg make_ureg(GLuint file, GLuint idx)
527 {
528 struct ureg reg;
529 reg.file = file;
530 reg.idx = idx;
531 reg.negatebase = 0;
532 reg.abs = 0;
533 reg.negateabs = 0;
534 reg.swz = SWIZZLE_NOOP;
535 reg.pad = 0;
536 return reg;
537 }
538
539 static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w )
540 {
541 reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x),
542 GET_SWZ(reg.swz, y),
543 GET_SWZ(reg.swz, z),
544 GET_SWZ(reg.swz, w));
545
546 return reg;
547 }
548
549 static struct ureg swizzle1( struct ureg reg, int x )
550 {
551 return swizzle(reg, x, x, x, x);
552 }
553
554 static struct ureg negate( struct ureg reg )
555 {
556 reg.negatebase ^= 1;
557 return reg;
558 }
559
560 static GLboolean is_undef( struct ureg reg )
561 {
562 return reg.file == PROGRAM_UNDEFINED;
563 }
564
565
566 static struct ureg get_temp( struct texenv_fragment_program *p )
567 {
568 GLint bit;
569
570 /* First try and reuse temps which have been used already:
571 */
572 bit = _mesa_ffs( ~p->temp_in_use & p->alu_temps );
573
574 /* Then any unused temporary:
575 */
576 if (!bit)
577 bit = _mesa_ffs( ~p->temp_in_use );
578
579 if (!bit) {
580 _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
581 _mesa_exit(1);
582 }
583
584 if ((GLuint) bit > p->program->Base.NumTemporaries)
585 p->program->Base.NumTemporaries = bit;
586
587 p->temp_in_use |= 1<<(bit-1);
588 return make_ureg(PROGRAM_TEMPORARY, (bit-1));
589 }
590
591 static struct ureg get_tex_temp( struct texenv_fragment_program *p )
592 {
593 int bit;
594
595 /* First try to find available temp not previously used (to avoid
596 * starting a new texture indirection). According to the spec, the
597 * ~p->temps_output isn't necessary, but will keep it there for
598 * now:
599 */
600 bit = _mesa_ffs( ~p->temp_in_use & ~p->alu_temps & ~p->temps_output );
601
602 /* Then any unused temporary:
603 */
604 if (!bit)
605 bit = _mesa_ffs( ~p->temp_in_use );
606
607 if (!bit) {
608 _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
609 _mesa_exit(1);
610 }
611
612 if ((GLuint) bit > p->program->Base.NumTemporaries)
613 p->program->Base.NumTemporaries = bit;
614
615 p->temp_in_use |= 1<<(bit-1);
616 return make_ureg(PROGRAM_TEMPORARY, (bit-1));
617 }
618
619
620 /** Mark a temp reg as being no longer allocatable. */
621 static void reserve_temp( struct texenv_fragment_program *p, struct ureg r )
622 {
623 if (r.file == PROGRAM_TEMPORARY)
624 p->temps_output |= (1 << r.idx);
625 }
626
627
628 static void release_temps(GLcontext *ctx, struct texenv_fragment_program *p )
629 {
630 GLuint max_temp = ctx->Const.FragmentProgram.MaxTemps;
631
632 /* KW: To support tex_env_crossbar, don't release the registers in
633 * temps_output.
634 */
635 if (max_temp >= sizeof(int) * 8)
636 p->temp_in_use = p->temps_output;
637 else
638 p->temp_in_use = ~((1<<max_temp)-1) | p->temps_output;
639 }
640
641
642 static struct ureg register_param5( struct texenv_fragment_program *p,
643 GLint s0,
644 GLint s1,
645 GLint s2,
646 GLint s3,
647 GLint s4)
648 {
649 gl_state_index tokens[STATE_LENGTH];
650 GLuint idx;
651 tokens[0] = s0;
652 tokens[1] = s1;
653 tokens[2] = s2;
654 tokens[3] = s3;
655 tokens[4] = s4;
656 idx = _mesa_add_state_reference( p->program->Base.Parameters, tokens );
657 return make_ureg(PROGRAM_STATE_VAR, idx);
658 }
659
660
661 #define register_param1(p,s0) register_param5(p,s0,0,0,0,0)
662 #define register_param2(p,s0,s1) register_param5(p,s0,s1,0,0,0)
663 #define register_param3(p,s0,s1,s2) register_param5(p,s0,s1,s2,0,0)
664 #define register_param4(p,s0,s1,s2,s3) register_param5(p,s0,s1,s2,s3,0)
665
666 static GLuint frag_to_vert_attrib( GLuint attrib )
667 {
668 switch (attrib) {
669 case FRAG_ATTRIB_COL0: return VERT_ATTRIB_COLOR0;
670 case FRAG_ATTRIB_COL1: return VERT_ATTRIB_COLOR1;
671 default:
672 assert(attrib >= FRAG_ATTRIB_TEX0);
673 assert(attrib <= FRAG_ATTRIB_TEX7);
674 return attrib - FRAG_ATTRIB_TEX0 + VERT_ATTRIB_TEX0;
675 }
676 }
677
678
679 static struct ureg register_input( struct texenv_fragment_program *p, GLuint input )
680 {
681 if (p->state->inputs_available & (1<<input)) {
682 p->program->Base.InputsRead |= (1 << input);
683 return make_ureg(PROGRAM_INPUT, input);
684 }
685 else {
686 GLuint idx = frag_to_vert_attrib( input );
687 return register_param3( p, STATE_INTERNAL, STATE_CURRENT_ATTRIB, idx );
688 }
689 }
690
691
692 static void emit_arg( struct prog_src_register *reg,
693 struct ureg ureg )
694 {
695 reg->File = ureg.file;
696 reg->Index = ureg.idx;
697 reg->Swizzle = ureg.swz;
698 reg->Negate = ureg.negatebase ? NEGATE_XYZW : NEGATE_NONE;
699 reg->Abs = ureg.abs;
700 }
701
702 static void emit_dst( struct prog_dst_register *dst,
703 struct ureg ureg, GLuint mask )
704 {
705 dst->File = ureg.file;
706 dst->Index = ureg.idx;
707 dst->WriteMask = mask;
708 dst->CondMask = COND_TR; /* always pass cond test */
709 dst->CondSwizzle = SWIZZLE_NOOP;
710 }
711
712 static struct prog_instruction *
713 emit_op(struct texenv_fragment_program *p,
714 enum prog_opcode op,
715 struct ureg dest,
716 GLuint mask,
717 GLboolean saturate,
718 struct ureg src0,
719 struct ureg src1,
720 struct ureg src2 )
721 {
722 GLuint nr = p->program->Base.NumInstructions++;
723 struct prog_instruction *inst = &p->program->Base.Instructions[nr];
724
725 assert(nr < MAX_INSTRUCTIONS);
726
727 _mesa_init_instructions(inst, 1);
728 inst->Opcode = op;
729
730 emit_arg( &inst->SrcReg[0], src0 );
731 emit_arg( &inst->SrcReg[1], src1 );
732 emit_arg( &inst->SrcReg[2], src2 );
733
734 inst->SaturateMode = saturate ? SATURATE_ZERO_ONE : SATURATE_OFF;
735
736 emit_dst( &inst->DstReg, dest, mask );
737
738 #if 0
739 /* Accounting for indirection tracking:
740 */
741 if (dest.file == PROGRAM_TEMPORARY)
742 p->temps_output |= 1 << dest.idx;
743 #endif
744
745 return inst;
746 }
747
748
749 static struct ureg emit_arith( struct texenv_fragment_program *p,
750 enum prog_opcode op,
751 struct ureg dest,
752 GLuint mask,
753 GLboolean saturate,
754 struct ureg src0,
755 struct ureg src1,
756 struct ureg src2 )
757 {
758 emit_op(p, op, dest, mask, saturate, src0, src1, src2);
759
760 /* Accounting for indirection tracking:
761 */
762 if (src0.file == PROGRAM_TEMPORARY)
763 p->alu_temps |= 1 << src0.idx;
764
765 if (!is_undef(src1) && src1.file == PROGRAM_TEMPORARY)
766 p->alu_temps |= 1 << src1.idx;
767
768 if (!is_undef(src2) && src2.file == PROGRAM_TEMPORARY)
769 p->alu_temps |= 1 << src2.idx;
770
771 if (dest.file == PROGRAM_TEMPORARY)
772 p->alu_temps |= 1 << dest.idx;
773
774 p->program->Base.NumAluInstructions++;
775 return dest;
776 }
777
778 static struct ureg emit_texld( struct texenv_fragment_program *p,
779 enum prog_opcode op,
780 struct ureg dest,
781 GLuint destmask,
782 GLuint tex_unit,
783 GLuint tex_idx,
784 GLuint tex_shadow,
785 struct ureg coord )
786 {
787 struct prog_instruction *inst = emit_op( p, op,
788 dest, destmask,
789 GL_FALSE, /* don't saturate? */
790 coord, /* arg 0? */
791 undef,
792 undef);
793
794 inst->TexSrcTarget = tex_idx;
795 inst->TexSrcUnit = tex_unit;
796 inst->TexShadow = tex_shadow;
797
798 p->program->Base.NumTexInstructions++;
799
800 /* Accounting for indirection tracking:
801 */
802 reserve_temp(p, dest);
803
804 #if 0
805 /* Is this a texture indirection?
806 */
807 if ((coord.file == PROGRAM_TEMPORARY &&
808 (p->temps_output & (1<<coord.idx))) ||
809 (dest.file == PROGRAM_TEMPORARY &&
810 (p->alu_temps & (1<<dest.idx)))) {
811 p->program->Base.NumTexIndirections++;
812 p->temps_output = 1<<coord.idx;
813 p->alu_temps = 0;
814 assert(0); /* KW: texture env crossbar */
815 }
816 #endif
817
818 return dest;
819 }
820
821
822 static struct ureg register_const4f( struct texenv_fragment_program *p,
823 GLfloat s0,
824 GLfloat s1,
825 GLfloat s2,
826 GLfloat s3)
827 {
828 GLfloat values[4];
829 GLuint idx, swizzle;
830 struct ureg r;
831 values[0] = s0;
832 values[1] = s1;
833 values[2] = s2;
834 values[3] = s3;
835 idx = _mesa_add_unnamed_constant( p->program->Base.Parameters, values, 4,
836 &swizzle );
837 r = make_ureg(PROGRAM_CONSTANT, idx);
838 r.swz = swizzle;
839 return r;
840 }
841
842 #define register_scalar_const(p, s0) register_const4f(p, s0, s0, s0, s0)
843 #define register_const1f(p, s0) register_const4f(p, s0, 0, 0, 1)
844 #define register_const2f(p, s0, s1) register_const4f(p, s0, s1, 0, 1)
845 #define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1)
846
847
848 static struct ureg get_one( struct texenv_fragment_program *p )
849 {
850 if (is_undef(p->one))
851 p->one = register_scalar_const(p, 1.0);
852 return p->one;
853 }
854
855 static struct ureg get_half( struct texenv_fragment_program *p )
856 {
857 if (is_undef(p->half))
858 p->half = register_scalar_const(p, 0.5);
859 return p->half;
860 }
861
862 static struct ureg get_zero( struct texenv_fragment_program *p )
863 {
864 if (is_undef(p->zero))
865 p->zero = register_scalar_const(p, 0.0);
866 return p->zero;
867 }
868
869
870 static void program_error( struct texenv_fragment_program *p, const char *msg )
871 {
872 _mesa_problem(NULL, msg);
873 p->error = 1;
874 }
875
876 static struct ureg get_source( struct texenv_fragment_program *p,
877 GLuint src, GLuint unit )
878 {
879 switch (src) {
880 case SRC_TEXTURE:
881 assert(!is_undef(p->src_texture[unit]));
882 return p->src_texture[unit];
883
884 case SRC_TEXTURE0:
885 case SRC_TEXTURE1:
886 case SRC_TEXTURE2:
887 case SRC_TEXTURE3:
888 case SRC_TEXTURE4:
889 case SRC_TEXTURE5:
890 case SRC_TEXTURE6:
891 case SRC_TEXTURE7:
892 assert(!is_undef(p->src_texture[src - SRC_TEXTURE0]));
893 return p->src_texture[src - SRC_TEXTURE0];
894
895 case SRC_CONSTANT:
896 return register_param2(p, STATE_TEXENV_COLOR, unit);
897
898 case SRC_PRIMARY_COLOR:
899 return register_input(p, FRAG_ATTRIB_COL0);
900
901 case SRC_ZERO:
902 return get_zero(p);
903
904 case SRC_PREVIOUS:
905 if (is_undef(p->src_previous))
906 return register_input(p, FRAG_ATTRIB_COL0);
907 else
908 return p->src_previous;
909
910 default:
911 assert(0);
912 return undef;
913 }
914 }
915
916 static struct ureg emit_combine_source( struct texenv_fragment_program *p,
917 GLuint mask,
918 GLuint unit,
919 GLuint source,
920 GLuint operand )
921 {
922 struct ureg arg, src, one;
923
924 src = get_source(p, source, unit);
925
926 switch (operand) {
927 case OPR_ONE_MINUS_SRC_COLOR:
928 /* Get unused tmp,
929 * Emit tmp = 1.0 - arg.xyzw
930 */
931 arg = get_temp( p );
932 one = get_one( p );
933 return emit_arith( p, OPCODE_SUB, arg, mask, 0, one, src, undef);
934
935 case OPR_SRC_ALPHA:
936 if (mask == WRITEMASK_W)
937 return src;
938 else
939 return swizzle1( src, SWIZZLE_W );
940 case OPR_ONE_MINUS_SRC_ALPHA:
941 /* Get unused tmp,
942 * Emit tmp = 1.0 - arg.wwww
943 */
944 arg = get_temp(p);
945 one = get_one(p);
946 return emit_arith(p, OPCODE_SUB, arg, mask, 0,
947 one, swizzle1(src, SWIZZLE_W), undef);
948 case OPR_ZERO:
949 return get_zero(p);
950 case OPR_ONE:
951 return get_one(p);
952 case OPR_SRC_COLOR:
953 return src;
954 default:
955 assert(0);
956 return src;
957 }
958 }
959
960 /**
961 * Check if the RGB and Alpha sources and operands match for the given
962 * texture unit's combinder state. When the RGB and A sources and
963 * operands match, we can emit fewer instructions.
964 */
965 static GLboolean args_match( const struct state_key *key, GLuint unit )
966 {
967 GLuint i, nr = key->unit[unit].NumArgsRGB;
968
969 for (i = 0 ; i < nr ; i++) {
970 if (key->unit[unit].OptA[i].Source != key->unit[unit].OptRGB[i].Source)
971 return GL_FALSE;
972
973 switch(key->unit[unit].OptA[i].Operand) {
974 case OPR_SRC_ALPHA:
975 switch(key->unit[unit].OptRGB[i].Operand) {
976 case OPR_SRC_COLOR:
977 case OPR_SRC_ALPHA:
978 break;
979 default:
980 return GL_FALSE;
981 }
982 break;
983 case OPR_ONE_MINUS_SRC_ALPHA:
984 switch(key->unit[unit].OptRGB[i].Operand) {
985 case OPR_ONE_MINUS_SRC_COLOR:
986 case OPR_ONE_MINUS_SRC_ALPHA:
987 break;
988 default:
989 return GL_FALSE;
990 }
991 break;
992 default:
993 return GL_FALSE; /* impossible */
994 }
995 }
996
997 return GL_TRUE;
998 }
999
1000 static struct ureg emit_combine( struct texenv_fragment_program *p,
1001 struct ureg dest,
1002 GLuint mask,
1003 GLboolean saturate,
1004 GLuint unit,
1005 GLuint nr,
1006 GLuint mode,
1007 const struct mode_opt *opt)
1008 {
1009 struct ureg src[MAX_COMBINER_TERMS];
1010 struct ureg tmp, half;
1011 GLuint i;
1012
1013 assert(nr <= MAX_COMBINER_TERMS);
1014
1015 tmp = undef; /* silence warning (bug 5318) */
1016
1017 for (i = 0; i < nr; i++)
1018 src[i] = emit_combine_source( p, mask, unit, opt[i].Source, opt[i].Operand );
1019
1020 switch (mode) {
1021 case MODE_REPLACE:
1022 if (mask == WRITEMASK_XYZW && !saturate)
1023 return src[0];
1024 else
1025 return emit_arith( p, OPCODE_MOV, dest, mask, saturate, src[0], undef, undef );
1026 case MODE_MODULATE:
1027 return emit_arith( p, OPCODE_MUL, dest, mask, saturate,
1028 src[0], src[1], undef );
1029 case MODE_ADD:
1030 return emit_arith( p, OPCODE_ADD, dest, mask, saturate,
1031 src[0], src[1], undef );
1032 case MODE_ADD_SIGNED:
1033 /* tmp = arg0 + arg1
1034 * result = tmp - .5
1035 */
1036 half = get_half(p);
1037 tmp = get_temp( p );
1038 emit_arith( p, OPCODE_ADD, tmp, mask, 0, src[0], src[1], undef );
1039 emit_arith( p, OPCODE_SUB, dest, mask, saturate, tmp, half, undef );
1040 return dest;
1041 case MODE_INTERPOLATE:
1042 /* Arg0 * (Arg2) + Arg1 * (1-Arg2) -- note arguments are reordered:
1043 */
1044 return emit_arith( p, OPCODE_LRP, dest, mask, saturate, src[2], src[0], src[1] );
1045
1046 case MODE_SUBTRACT:
1047 return emit_arith( p, OPCODE_SUB, dest, mask, saturate, src[0], src[1], undef );
1048
1049 case MODE_DOT3_RGBA:
1050 case MODE_DOT3_RGBA_EXT:
1051 case MODE_DOT3_RGB_EXT:
1052 case MODE_DOT3_RGB: {
1053 struct ureg tmp0 = get_temp( p );
1054 struct ureg tmp1 = get_temp( p );
1055 struct ureg neg1 = register_scalar_const(p, -1);
1056 struct ureg two = register_scalar_const(p, 2);
1057
1058 /* tmp0 = 2*src0 - 1
1059 * tmp1 = 2*src1 - 1
1060 *
1061 * dst = tmp0 dot3 tmp1
1062 */
1063 emit_arith( p, OPCODE_MAD, tmp0, WRITEMASK_XYZW, 0,
1064 two, src[0], neg1);
1065
1066 if (_mesa_memcmp(&src[0], &src[1], sizeof(struct ureg)) == 0)
1067 tmp1 = tmp0;
1068 else
1069 emit_arith( p, OPCODE_MAD, tmp1, WRITEMASK_XYZW, 0,
1070 two, src[1], neg1);
1071 emit_arith( p, OPCODE_DP3, dest, mask, saturate, tmp0, tmp1, undef);
1072 return dest;
1073 }
1074 case MODE_MODULATE_ADD_ATI:
1075 /* Arg0 * Arg2 + Arg1 */
1076 return emit_arith( p, OPCODE_MAD, dest, mask, saturate,
1077 src[0], src[2], src[1] );
1078 case MODE_MODULATE_SIGNED_ADD_ATI: {
1079 /* Arg0 * Arg2 + Arg1 - 0.5 */
1080 struct ureg tmp0 = get_temp(p);
1081 half = get_half(p);
1082 emit_arith( p, OPCODE_MAD, tmp0, mask, 0, src[0], src[2], src[1] );
1083 emit_arith( p, OPCODE_SUB, dest, mask, saturate, tmp0, half, undef );
1084 return dest;
1085 }
1086 case MODE_MODULATE_SUBTRACT_ATI:
1087 /* Arg0 * Arg2 - Arg1 */
1088 emit_arith( p, OPCODE_MAD, dest, mask, 0, src[0], src[2], negate(src[1]) );
1089 return dest;
1090 case MODE_ADD_PRODUCTS:
1091 /* Arg0 * Arg1 + Arg2 * Arg3 */
1092 {
1093 struct ureg tmp0 = get_temp(p);
1094 emit_arith( p, OPCODE_MUL, tmp0, mask, 0, src[0], src[1], undef );
1095 emit_arith( p, OPCODE_MAD, dest, mask, saturate, src[2], src[3], tmp0 );
1096 }
1097 return dest;
1098 case MODE_ADD_PRODUCTS_SIGNED:
1099 /* Arg0 * Arg1 + Arg2 * Arg3 - 0.5 */
1100 {
1101 struct ureg tmp0 = get_temp(p);
1102 half = get_half(p);
1103 emit_arith( p, OPCODE_MUL, tmp0, mask, 0, src[0], src[1], undef );
1104 emit_arith( p, OPCODE_MAD, tmp0, mask, 0, src[2], src[3], tmp0 );
1105 emit_arith( p, OPCODE_SUB, dest, mask, saturate, tmp0, half, undef );
1106 }
1107 return dest;
1108 case MODE_BUMP_ENVMAP_ATI:
1109 /* special - not handled here */
1110 assert(0);
1111 return src[0];
1112 default:
1113 assert(0);
1114 return src[0];
1115 }
1116 }
1117
1118
1119 /**
1120 * Generate instructions for one texture unit's env/combiner mode.
1121 */
1122 static struct ureg
1123 emit_texenv(struct texenv_fragment_program *p, GLuint unit)
1124 {
1125 const struct state_key *key = p->state;
1126 GLboolean saturate;
1127 GLuint rgb_shift, alpha_shift;
1128 struct ureg out, dest;
1129
1130 if (!key->unit[unit].enabled) {
1131 return get_source(p, SRC_PREVIOUS, 0);
1132 }
1133 if (key->unit[unit].ModeRGB == MODE_BUMP_ENVMAP_ATI) {
1134 /* this isn't really a env stage delivering a color and handled elsewhere */
1135 return get_source(p, SRC_PREVIOUS, 0);
1136 }
1137
1138 switch (key->unit[unit].ModeRGB) {
1139 case MODE_DOT3_RGB_EXT:
1140 alpha_shift = key->unit[unit].ScaleShiftA;
1141 rgb_shift = 0;
1142 break;
1143 case MODE_DOT3_RGBA_EXT:
1144 alpha_shift = 0;
1145 rgb_shift = 0;
1146 break;
1147 default:
1148 rgb_shift = key->unit[unit].ScaleShiftRGB;
1149 alpha_shift = key->unit[unit].ScaleShiftA;
1150 break;
1151 }
1152
1153 /* If we'll do rgb/alpha shifting don't saturate in emit_combine().
1154 * We don't want to clamp twice.
1155 */
1156 saturate = !(rgb_shift || alpha_shift);
1157
1158 /* If this is the very last calculation, emit direct to output reg:
1159 */
1160 if (key->separate_specular ||
1161 unit != p->last_tex_stage ||
1162 alpha_shift ||
1163 rgb_shift)
1164 dest = get_temp( p );
1165 else
1166 dest = make_ureg(PROGRAM_OUTPUT, FRAG_RESULT_COLOR);
1167
1168 /* Emit the RGB and A combine ops
1169 */
1170 if (key->unit[unit].ModeRGB == key->unit[unit].ModeA &&
1171 args_match(key, unit)) {
1172 out = emit_combine( p, dest, WRITEMASK_XYZW, saturate,
1173 unit,
1174 key->unit[unit].NumArgsRGB,
1175 key->unit[unit].ModeRGB,
1176 key->unit[unit].OptRGB);
1177 }
1178 else if (key->unit[unit].ModeRGB == MODE_DOT3_RGBA_EXT ||
1179 key->unit[unit].ModeRGB == MODE_DOT3_RGBA) {
1180 out = emit_combine( p, dest, WRITEMASK_XYZW, saturate,
1181 unit,
1182 key->unit[unit].NumArgsRGB,
1183 key->unit[unit].ModeRGB,
1184 key->unit[unit].OptRGB);
1185 }
1186 else {
1187 /* Need to do something to stop from re-emitting identical
1188 * argument calculations here:
1189 */
1190 out = emit_combine( p, dest, WRITEMASK_XYZ, saturate,
1191 unit,
1192 key->unit[unit].NumArgsRGB,
1193 key->unit[unit].ModeRGB,
1194 key->unit[unit].OptRGB);
1195 out = emit_combine( p, dest, WRITEMASK_W, saturate,
1196 unit,
1197 key->unit[unit].NumArgsA,
1198 key->unit[unit].ModeA,
1199 key->unit[unit].OptA);
1200 }
1201
1202 /* Deal with the final shift:
1203 */
1204 if (alpha_shift || rgb_shift) {
1205 struct ureg shift;
1206
1207 saturate = GL_TRUE; /* always saturate at this point */
1208
1209 if (rgb_shift == alpha_shift) {
1210 shift = register_scalar_const(p, (GLfloat)(1<<rgb_shift));
1211 }
1212 else {
1213 shift = register_const4f(p,
1214 (GLfloat)(1<<rgb_shift),
1215 (GLfloat)(1<<rgb_shift),
1216 (GLfloat)(1<<rgb_shift),
1217 (GLfloat)(1<<alpha_shift));
1218 }
1219 return emit_arith( p, OPCODE_MUL, dest, WRITEMASK_XYZW,
1220 saturate, out, shift, undef );
1221 }
1222 else
1223 return out;
1224 }
1225
1226
1227 /**
1228 * Generate instruction for getting a texture source term.
1229 */
1230 static void load_texture( struct texenv_fragment_program *p, GLuint unit )
1231 {
1232 if (is_undef(p->src_texture[unit])) {
1233 GLuint texTarget = p->state->unit[unit].source_index;
1234 struct ureg texcoord;
1235 struct ureg tmp = get_tex_temp( p );
1236
1237 if (is_undef(p->texcoord_tex[unit])) {
1238 texcoord = register_input(p, FRAG_ATTRIB_TEX0+unit);
1239 }
1240 else {
1241 /* might want to reuse this reg for tex output actually */
1242 texcoord = p->texcoord_tex[unit];
1243 }
1244
1245 if (texTarget == TEXTURE_UNKNOWN_INDEX)
1246 program_error(p, "TexSrcBit");
1247
1248 /* TODO: Use D0_MASK_XY where possible.
1249 */
1250 if (p->state->unit[unit].enabled) {
1251 GLboolean shadow = GL_FALSE;
1252
1253 if (p->state->unit[unit].shadow) {
1254 p->program->Base.ShadowSamplers |= 1 << unit;
1255 shadow = GL_TRUE;
1256 }
1257
1258 p->src_texture[unit] = emit_texld( p, OPCODE_TXP,
1259 tmp, WRITEMASK_XYZW,
1260 unit, texTarget, shadow,
1261 texcoord );
1262
1263 p->program->Base.SamplersUsed |= (1 << unit);
1264 /* This identity mapping should already be in place
1265 * (see _mesa_init_program_struct()) but let's be safe.
1266 */
1267 p->program->Base.SamplerUnits[unit] = unit;
1268 }
1269 else
1270 p->src_texture[unit] = get_zero(p);
1271 }
1272 }
1273
1274 static GLboolean load_texenv_source( struct texenv_fragment_program *p,
1275 GLuint src, GLuint unit )
1276 {
1277 switch (src) {
1278 case SRC_TEXTURE:
1279 load_texture(p, unit);
1280 break;
1281
1282 case SRC_TEXTURE0:
1283 case SRC_TEXTURE1:
1284 case SRC_TEXTURE2:
1285 case SRC_TEXTURE3:
1286 case SRC_TEXTURE4:
1287 case SRC_TEXTURE5:
1288 case SRC_TEXTURE6:
1289 case SRC_TEXTURE7:
1290 load_texture(p, src - SRC_TEXTURE0);
1291 break;
1292
1293 default:
1294 /* not a texture src - do nothing */
1295 break;
1296 }
1297
1298 return GL_TRUE;
1299 }
1300
1301
1302 /**
1303 * Generate instructions for loading all texture source terms.
1304 */
1305 static GLboolean
1306 load_texunit_sources( struct texenv_fragment_program *p, int unit )
1307 {
1308 const struct state_key *key = p->state;
1309 GLuint i;
1310
1311 for (i = 0; i < key->unit[unit].NumArgsRGB; i++) {
1312 load_texenv_source( p, key->unit[unit].OptRGB[i].Source, unit );
1313 }
1314
1315 for (i = 0; i < key->unit[unit].NumArgsA; i++) {
1316 load_texenv_source( p, key->unit[unit].OptA[i].Source, unit );
1317 }
1318
1319 return GL_TRUE;
1320 }
1321
1322 /**
1323 * Generate instructions for loading bump map textures.
1324 */
1325 static GLboolean
1326 load_texunit_bumpmap( struct texenv_fragment_program *p, int unit )
1327 {
1328 const struct state_key *key = p->state;
1329 GLuint bumpedUnitNr = key->unit[unit].OptRGB[1].Source - SRC_TEXTURE0;
1330 struct ureg texcDst, bumpMapRes;
1331 struct ureg constdudvcolor = register_const4f(p, 0.0, 0.0, 0.0, 1.0);
1332 struct ureg texcSrc = register_input(p, FRAG_ATTRIB_TEX0 + bumpedUnitNr);
1333 struct ureg rotMat0 = register_param3( p, STATE_INTERNAL, STATE_ROT_MATRIX_0, unit );
1334 struct ureg rotMat1 = register_param3( p, STATE_INTERNAL, STATE_ROT_MATRIX_1, unit );
1335
1336 load_texenv_source( p, unit + SRC_TEXTURE0, unit );
1337
1338 bumpMapRes = get_source(p, key->unit[unit].OptRGB[0].Source, unit);
1339 texcDst = get_tex_temp( p );
1340 p->texcoord_tex[bumpedUnitNr] = texcDst;
1341
1342 /* apply rot matrix and add coords to be available in next phase */
1343 /* dest = (Arg0.xxxx * rotMat0 + Arg1) + (Arg0.yyyy * rotMat1) */
1344 /* note only 2 coords are affected the rest are left unchanged (mul by 0) */
1345 emit_arith( p, OPCODE_MAD, texcDst, WRITEMASK_XYZW, 0,
1346 swizzle1(bumpMapRes, SWIZZLE_X), rotMat0, texcSrc );
1347 emit_arith( p, OPCODE_MAD, texcDst, WRITEMASK_XYZW, 0,
1348 swizzle1(bumpMapRes, SWIZZLE_Y), rotMat1, texcDst );
1349
1350 /* move 0,0,0,1 into bumpmap src if someone (crossbar) is foolish
1351 enough to access this later, should optimize away */
1352 emit_arith( p, OPCODE_MOV, bumpMapRes, WRITEMASK_XYZW, 0, constdudvcolor, undef, undef );
1353
1354 return GL_TRUE;
1355 }
1356
1357 /**
1358 * Generate a new fragment program which implements the context's
1359 * current texture env/combine mode.
1360 */
1361 static void
1362 create_new_program(GLcontext *ctx, struct state_key *key,
1363 struct gl_fragment_program *program)
1364 {
1365 struct prog_instruction instBuffer[MAX_INSTRUCTIONS];
1366 struct texenv_fragment_program p;
1367 GLuint unit;
1368 struct ureg cf, out;
1369
1370 _mesa_memset(&p, 0, sizeof(p));
1371 p.ctx = ctx;
1372 p.state = key;
1373 p.program = program;
1374
1375 /* During code generation, use locally-allocated instruction buffer,
1376 * then alloc dynamic storage below.
1377 */
1378 p.program->Base.Instructions = instBuffer;
1379 p.program->Base.Target = GL_FRAGMENT_PROGRAM_ARB;
1380 p.program->Base.NumTexIndirections = 1;
1381 p.program->Base.NumTexInstructions = 0;
1382 p.program->Base.NumAluInstructions = 0;
1383 p.program->Base.String = NULL;
1384 p.program->Base.NumInstructions =
1385 p.program->Base.NumTemporaries =
1386 p.program->Base.NumParameters =
1387 p.program->Base.NumAttributes = p.program->Base.NumAddressRegs = 0;
1388 p.program->Base.Parameters = _mesa_new_parameter_list();
1389
1390 p.program->Base.InputsRead = 0;
1391 p.program->Base.OutputsWritten = 1 << FRAG_RESULT_COLOR;
1392
1393 for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
1394 p.src_texture[unit] = undef;
1395 p.texcoord_tex[unit] = undef;
1396 }
1397
1398 p.src_previous = undef;
1399 p.half = undef;
1400 p.zero = undef;
1401 p.one = undef;
1402
1403 p.last_tex_stage = 0;
1404 release_temps(ctx, &p);
1405
1406 if (key->enabled_units) {
1407 GLboolean needbumpstage = GL_FALSE;
1408 /* Zeroth pass - bump map textures first */
1409 for (unit = 0 ; unit < ctx->Const.MaxTextureUnits ; unit++)
1410 if (key->unit[unit].enabled && key->unit[unit].ModeRGB == MODE_BUMP_ENVMAP_ATI) {
1411 needbumpstage = GL_TRUE;
1412 load_texunit_bumpmap( &p, unit );
1413 }
1414 if (needbumpstage)
1415 p.program->Base.NumTexIndirections++;
1416
1417 /* First pass - to support texture_env_crossbar, first identify
1418 * all referenced texture sources and emit texld instructions
1419 * for each:
1420 */
1421 for (unit = 0 ; unit < ctx->Const.MaxTextureUnits ; unit++)
1422 if (key->unit[unit].enabled) {
1423 load_texunit_sources( &p, unit );
1424 p.last_tex_stage = unit;
1425 }
1426
1427 /* Second pass - emit combine instructions to build final color:
1428 */
1429 for (unit = 0 ; unit < ctx->Const.MaxTextureUnits; unit++)
1430 if (key->enabled_units & (1<<unit)) {
1431 p.src_previous = emit_texenv( &p, unit );
1432 reserve_temp(&p, p.src_previous); /* don't re-use this temp reg */
1433 release_temps(ctx, &p); /* release all temps */
1434 }
1435 }
1436
1437 cf = get_source( &p, SRC_PREVIOUS, 0 );
1438 out = make_ureg( PROGRAM_OUTPUT, FRAG_RESULT_COLOR );
1439
1440 if (key->separate_specular) {
1441 /* Emit specular add.
1442 */
1443 struct ureg s = register_input(&p, FRAG_ATTRIB_COL1);
1444 emit_arith( &p, OPCODE_ADD, out, WRITEMASK_XYZ, 0, cf, s, undef );
1445 emit_arith( &p, OPCODE_MOV, out, WRITEMASK_W, 0, cf, undef, undef );
1446 }
1447 else if (_mesa_memcmp(&cf, &out, sizeof(cf)) != 0) {
1448 /* Will wind up in here if no texture enabled or a couple of
1449 * other scenarios (GL_REPLACE for instance).
1450 */
1451 emit_arith( &p, OPCODE_MOV, out, WRITEMASK_XYZW, 0, cf, undef, undef );
1452 }
1453
1454 /* Finish up:
1455 */
1456 emit_arith( &p, OPCODE_END, undef, WRITEMASK_XYZW, 0, undef, undef, undef);
1457
1458 if (key->fog_enabled) {
1459 /* Pull fog mode from GLcontext, the value in the state key is
1460 * a reduced value and not what is expected in FogOption
1461 */
1462 p.program->FogOption = ctx->Fog.Mode;
1463 p.program->Base.InputsRead |= FRAG_BIT_FOGC; /* XXX new */
1464 } else
1465 p.program->FogOption = GL_NONE;
1466
1467 if (p.program->Base.NumTexIndirections > ctx->Const.FragmentProgram.MaxTexIndirections)
1468 program_error(&p, "Exceeded max nr indirect texture lookups");
1469
1470 if (p.program->Base.NumTexInstructions > ctx->Const.FragmentProgram.MaxTexInstructions)
1471 program_error(&p, "Exceeded max TEX instructions");
1472
1473 if (p.program->Base.NumAluInstructions > ctx->Const.FragmentProgram.MaxAluInstructions)
1474 program_error(&p, "Exceeded max ALU instructions");
1475
1476 ASSERT(p.program->Base.NumInstructions <= MAX_INSTRUCTIONS);
1477
1478 /* Allocate final instruction array */
1479 p.program->Base.Instructions
1480 = _mesa_alloc_instructions(p.program->Base.NumInstructions);
1481 if (!p.program->Base.Instructions) {
1482 _mesa_error(ctx, GL_OUT_OF_MEMORY,
1483 "generating tex env program");
1484 return;
1485 }
1486 _mesa_copy_instructions(p.program->Base.Instructions, instBuffer,
1487 p.program->Base.NumInstructions);
1488
1489 if (p.program->FogOption) {
1490 _mesa_append_fog_code(ctx, p.program);
1491 p.program->FogOption = GL_NONE;
1492 }
1493
1494
1495 /* Notify driver the fragment program has (actually) changed.
1496 */
1497 if (ctx->Driver.ProgramStringNotify) {
1498 ctx->Driver.ProgramStringNotify( ctx, GL_FRAGMENT_PROGRAM_ARB,
1499 &p.program->Base );
1500 }
1501
1502 if (DISASSEM) {
1503 _mesa_print_program(&p.program->Base);
1504 _mesa_printf("\n");
1505 }
1506 }
1507
1508
1509 /**
1510 * Return a fragment program which implements the current
1511 * fixed-function texture, fog and color-sum operations.
1512 */
1513 struct gl_fragment_program *
1514 _mesa_get_fixed_func_fragment_program(GLcontext *ctx)
1515 {
1516 struct gl_fragment_program *prog;
1517 struct state_key key;
1518
1519 make_state_key(ctx, &key);
1520
1521 prog = (struct gl_fragment_program *)
1522 _mesa_search_program_cache(ctx->FragmentProgram.Cache,
1523 &key, sizeof(key));
1524
1525 if (!prog) {
1526 prog = (struct gl_fragment_program *)
1527 ctx->Driver.NewProgram(ctx, GL_FRAGMENT_PROGRAM_ARB, 0);
1528
1529 create_new_program(ctx, &key, prog);
1530
1531 _mesa_program_cache_insert(ctx, ctx->FragmentProgram.Cache,
1532 &key, sizeof(key), &prog->Base);
1533 }
1534
1535 return prog;
1536 }