mesa: Add core API support for GL_ARB_stencil_texturing (from 4.3).
[mesa.git] / src / mesa / main / texobj.c
1 /**
2 * \file texobj.c
3 * Texture object management.
4 */
5
6 /*
7 * Mesa 3-D graphics library
8 *
9 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
10 *
11 * Permission is hereby granted, free of charge, to any person obtaining a
12 * copy of this software and associated documentation files (the "Software"),
13 * to deal in the Software without restriction, including without limitation
14 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
15 * and/or sell copies of the Software, and to permit persons to whom the
16 * Software is furnished to do so, subject to the following conditions:
17 *
18 * The above copyright notice and this permission notice shall be included
19 * in all copies or substantial portions of the Software.
20 *
21 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
22 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
23 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
24 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
25 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
26 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
27 * OTHER DEALINGS IN THE SOFTWARE.
28 */
29
30
31 #include "bufferobj.h"
32 #include "colortab.h"
33 #include "context.h"
34 #include "enums.h"
35 #include "fbobject.h"
36 #include "formats.h"
37 #include "hash.h"
38 #include "imports.h"
39 #include "macros.h"
40 #include "teximage.h"
41 #include "texobj.h"
42 #include "texstate.h"
43 #include "mtypes.h"
44 #include "program/prog_instruction.h"
45
46
47
48 /**********************************************************************/
49 /** \name Internal functions */
50 /*@{*/
51
52
53 /**
54 * Return the gl_texture_object for a given ID.
55 */
56 struct gl_texture_object *
57 _mesa_lookup_texture(struct gl_context *ctx, GLuint id)
58 {
59 return (struct gl_texture_object *)
60 _mesa_HashLookup(ctx->Shared->TexObjects, id);
61 }
62
63
64
65 /**
66 * Allocate and initialize a new texture object. But don't put it into the
67 * texture object hash table.
68 *
69 * Called via ctx->Driver.NewTextureObject, unless overridden by a device
70 * driver.
71 *
72 * \param shared the shared GL state structure to contain the texture object
73 * \param name integer name for the texture object
74 * \param target either GL_TEXTURE_1D, GL_TEXTURE_2D, GL_TEXTURE_3D,
75 * GL_TEXTURE_CUBE_MAP_ARB or GL_TEXTURE_RECTANGLE_NV. zero is ok for the sake
76 * of GenTextures()
77 *
78 * \return pointer to new texture object.
79 */
80 struct gl_texture_object *
81 _mesa_new_texture_object( struct gl_context *ctx, GLuint name, GLenum target )
82 {
83 struct gl_texture_object *obj;
84 (void) ctx;
85 obj = MALLOC_STRUCT(gl_texture_object);
86 _mesa_initialize_texture_object(ctx, obj, name, target);
87 return obj;
88 }
89
90
91 /**
92 * Initialize a new texture object to default values.
93 * \param obj the texture object
94 * \param name the texture name
95 * \param target the texture target
96 */
97 void
98 _mesa_initialize_texture_object( struct gl_context *ctx,
99 struct gl_texture_object *obj,
100 GLuint name, GLenum target )
101 {
102 ASSERT(target == 0 ||
103 target == GL_TEXTURE_1D ||
104 target == GL_TEXTURE_2D ||
105 target == GL_TEXTURE_3D ||
106 target == GL_TEXTURE_CUBE_MAP_ARB ||
107 target == GL_TEXTURE_RECTANGLE_NV ||
108 target == GL_TEXTURE_1D_ARRAY_EXT ||
109 target == GL_TEXTURE_2D_ARRAY_EXT ||
110 target == GL_TEXTURE_EXTERNAL_OES ||
111 target == GL_TEXTURE_CUBE_MAP_ARRAY ||
112 target == GL_TEXTURE_BUFFER ||
113 target == GL_TEXTURE_2D_MULTISAMPLE ||
114 target == GL_TEXTURE_2D_MULTISAMPLE_ARRAY);
115
116 memset(obj, 0, sizeof(*obj));
117 /* init the non-zero fields */
118 mtx_init(&obj->Mutex, mtx_plain);
119 obj->RefCount = 1;
120 obj->Name = name;
121 obj->Target = target;
122 obj->Priority = 1.0F;
123 obj->BaseLevel = 0;
124 obj->MaxLevel = 1000;
125
126 /* must be one; no support for (YUV) planes in separate buffers */
127 obj->RequiredTextureImageUnits = 1;
128
129 /* sampler state */
130 if (target == GL_TEXTURE_RECTANGLE_NV ||
131 target == GL_TEXTURE_EXTERNAL_OES) {
132 obj->Sampler.WrapS = GL_CLAMP_TO_EDGE;
133 obj->Sampler.WrapT = GL_CLAMP_TO_EDGE;
134 obj->Sampler.WrapR = GL_CLAMP_TO_EDGE;
135 obj->Sampler.MinFilter = GL_LINEAR;
136 }
137 else {
138 obj->Sampler.WrapS = GL_REPEAT;
139 obj->Sampler.WrapT = GL_REPEAT;
140 obj->Sampler.WrapR = GL_REPEAT;
141 obj->Sampler.MinFilter = GL_NEAREST_MIPMAP_LINEAR;
142 }
143 obj->Sampler.MagFilter = GL_LINEAR;
144 obj->Sampler.MinLod = -1000.0;
145 obj->Sampler.MaxLod = 1000.0;
146 obj->Sampler.LodBias = 0.0;
147 obj->Sampler.MaxAnisotropy = 1.0;
148 obj->Sampler.CompareMode = GL_NONE; /* ARB_shadow */
149 obj->Sampler.CompareFunc = GL_LEQUAL; /* ARB_shadow */
150 obj->DepthMode = ctx->API == API_OPENGL_CORE ? GL_RED : GL_LUMINANCE;
151 obj->StencilSampling = false;
152 obj->Sampler.CubeMapSeamless = GL_FALSE;
153 obj->Swizzle[0] = GL_RED;
154 obj->Swizzle[1] = GL_GREEN;
155 obj->Swizzle[2] = GL_BLUE;
156 obj->Swizzle[3] = GL_ALPHA;
157 obj->_Swizzle = SWIZZLE_NOOP;
158 obj->Sampler.sRGBDecode = GL_DECODE_EXT;
159 obj->BufferObjectFormat = GL_R8;
160 obj->_BufferObjectFormat = MESA_FORMAT_R_UNORM8;
161 obj->ImageFormatCompatibilityType = GL_IMAGE_FORMAT_COMPATIBILITY_BY_SIZE;
162 }
163
164
165 /**
166 * Some texture initialization can't be finished until we know which
167 * target it's getting bound to (GL_TEXTURE_1D/2D/etc).
168 */
169 static void
170 finish_texture_init(struct gl_context *ctx, GLenum target,
171 struct gl_texture_object *obj)
172 {
173 GLenum filter = GL_LINEAR;
174 assert(obj->Target == 0);
175
176 switch (target) {
177 case GL_TEXTURE_2D_MULTISAMPLE:
178 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
179 filter = GL_NEAREST;
180 /* fallthrough */
181
182 case GL_TEXTURE_RECTANGLE_NV:
183 case GL_TEXTURE_EXTERNAL_OES:
184 /* have to init wrap and filter state here - kind of klunky */
185 obj->Sampler.WrapS = GL_CLAMP_TO_EDGE;
186 obj->Sampler.WrapT = GL_CLAMP_TO_EDGE;
187 obj->Sampler.WrapR = GL_CLAMP_TO_EDGE;
188 obj->Sampler.MinFilter = filter;
189 obj->Sampler.MagFilter = filter;
190 if (ctx->Driver.TexParameter) {
191 static const GLfloat fparam_wrap[1] = {(GLfloat) GL_CLAMP_TO_EDGE};
192 const GLfloat fparam_filter[1] = {(GLfloat) filter};
193 ctx->Driver.TexParameter(ctx, obj, GL_TEXTURE_WRAP_S, fparam_wrap);
194 ctx->Driver.TexParameter(ctx, obj, GL_TEXTURE_WRAP_T, fparam_wrap);
195 ctx->Driver.TexParameter(ctx, obj, GL_TEXTURE_WRAP_R, fparam_wrap);
196 ctx->Driver.TexParameter(ctx, obj,
197 GL_TEXTURE_MIN_FILTER, fparam_filter);
198 ctx->Driver.TexParameter(ctx, obj,
199 GL_TEXTURE_MAG_FILTER, fparam_filter);
200 }
201 break;
202
203 default:
204 /* nothing needs done */
205 break;
206 }
207 }
208
209
210 /**
211 * Deallocate a texture object struct. It should have already been
212 * removed from the texture object pool.
213 * Called via ctx->Driver.DeleteTexture() if not overriden by a driver.
214 *
215 * \param shared the shared GL state to which the object belongs.
216 * \param texObj the texture object to delete.
217 */
218 void
219 _mesa_delete_texture_object(struct gl_context *ctx,
220 struct gl_texture_object *texObj)
221 {
222 GLuint i, face;
223
224 /* Set Target to an invalid value. With some assertions elsewhere
225 * we can try to detect possible use of deleted textures.
226 */
227 texObj->Target = 0x99;
228
229 /* free the texture images */
230 for (face = 0; face < 6; face++) {
231 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
232 if (texObj->Image[face][i]) {
233 ctx->Driver.DeleteTextureImage(ctx, texObj->Image[face][i]);
234 }
235 }
236 }
237
238 _mesa_reference_buffer_object(ctx, &texObj->BufferObject, NULL);
239
240 /* destroy the mutex -- it may have allocated memory (eg on bsd) */
241 mtx_destroy(&texObj->Mutex);
242
243 free(texObj->Label);
244
245 /* free this object */
246 free(texObj);
247 }
248
249
250
251 /**
252 * Copy texture object state from one texture object to another.
253 * Use for glPush/PopAttrib.
254 *
255 * \param dest destination texture object.
256 * \param src source texture object.
257 */
258 void
259 _mesa_copy_texture_object( struct gl_texture_object *dest,
260 const struct gl_texture_object *src )
261 {
262 dest->Target = src->Target;
263 dest->Name = src->Name;
264 dest->Priority = src->Priority;
265 dest->Sampler.BorderColor.f[0] = src->Sampler.BorderColor.f[0];
266 dest->Sampler.BorderColor.f[1] = src->Sampler.BorderColor.f[1];
267 dest->Sampler.BorderColor.f[2] = src->Sampler.BorderColor.f[2];
268 dest->Sampler.BorderColor.f[3] = src->Sampler.BorderColor.f[3];
269 dest->Sampler.WrapS = src->Sampler.WrapS;
270 dest->Sampler.WrapT = src->Sampler.WrapT;
271 dest->Sampler.WrapR = src->Sampler.WrapR;
272 dest->Sampler.MinFilter = src->Sampler.MinFilter;
273 dest->Sampler.MagFilter = src->Sampler.MagFilter;
274 dest->Sampler.MinLod = src->Sampler.MinLod;
275 dest->Sampler.MaxLod = src->Sampler.MaxLod;
276 dest->Sampler.LodBias = src->Sampler.LodBias;
277 dest->BaseLevel = src->BaseLevel;
278 dest->MaxLevel = src->MaxLevel;
279 dest->Sampler.MaxAnisotropy = src->Sampler.MaxAnisotropy;
280 dest->Sampler.CompareMode = src->Sampler.CompareMode;
281 dest->Sampler.CompareFunc = src->Sampler.CompareFunc;
282 dest->Sampler.CubeMapSeamless = src->Sampler.CubeMapSeamless;
283 dest->DepthMode = src->DepthMode;
284 dest->StencilSampling = src->StencilSampling;
285 dest->Sampler.sRGBDecode = src->Sampler.sRGBDecode;
286 dest->_MaxLevel = src->_MaxLevel;
287 dest->_MaxLambda = src->_MaxLambda;
288 dest->GenerateMipmap = src->GenerateMipmap;
289 dest->_BaseComplete = src->_BaseComplete;
290 dest->_MipmapComplete = src->_MipmapComplete;
291 COPY_4V(dest->Swizzle, src->Swizzle);
292 dest->_Swizzle = src->_Swizzle;
293
294 dest->RequiredTextureImageUnits = src->RequiredTextureImageUnits;
295 }
296
297
298 /**
299 * Free all texture images of the given texture object.
300 *
301 * \param ctx GL context.
302 * \param t texture object.
303 *
304 * \sa _mesa_clear_texture_image().
305 */
306 void
307 _mesa_clear_texture_object(struct gl_context *ctx,
308 struct gl_texture_object *texObj)
309 {
310 GLuint i, j;
311
312 if (texObj->Target == 0)
313 return;
314
315 for (i = 0; i < MAX_FACES; i++) {
316 for (j = 0; j < MAX_TEXTURE_LEVELS; j++) {
317 struct gl_texture_image *texImage = texObj->Image[i][j];
318 if (texImage)
319 _mesa_clear_texture_image(ctx, texImage);
320 }
321 }
322 }
323
324
325 /**
326 * Check if the given texture object is valid by examining its Target field.
327 * For debugging only.
328 */
329 static GLboolean
330 valid_texture_object(const struct gl_texture_object *tex)
331 {
332 switch (tex->Target) {
333 case 0:
334 case GL_TEXTURE_1D:
335 case GL_TEXTURE_2D:
336 case GL_TEXTURE_3D:
337 case GL_TEXTURE_CUBE_MAP_ARB:
338 case GL_TEXTURE_RECTANGLE_NV:
339 case GL_TEXTURE_1D_ARRAY_EXT:
340 case GL_TEXTURE_2D_ARRAY_EXT:
341 case GL_TEXTURE_BUFFER:
342 case GL_TEXTURE_EXTERNAL_OES:
343 case GL_TEXTURE_CUBE_MAP_ARRAY:
344 case GL_TEXTURE_2D_MULTISAMPLE:
345 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
346 return GL_TRUE;
347 case 0x99:
348 _mesa_problem(NULL, "invalid reference to a deleted texture object");
349 return GL_FALSE;
350 default:
351 _mesa_problem(NULL, "invalid texture object Target 0x%x, Id = %u",
352 tex->Target, tex->Name);
353 return GL_FALSE;
354 }
355 }
356
357
358 /**
359 * Reference (or unreference) a texture object.
360 * If '*ptr', decrement *ptr's refcount (and delete if it becomes zero).
361 * If 'tex' is non-null, increment its refcount.
362 * This is normally only called from the _mesa_reference_texobj() macro
363 * when there's a real pointer change.
364 */
365 void
366 _mesa_reference_texobj_(struct gl_texture_object **ptr,
367 struct gl_texture_object *tex)
368 {
369 assert(ptr);
370
371 if (*ptr) {
372 /* Unreference the old texture */
373 GLboolean deleteFlag = GL_FALSE;
374 struct gl_texture_object *oldTex = *ptr;
375
376 ASSERT(valid_texture_object(oldTex));
377 (void) valid_texture_object; /* silence warning in release builds */
378
379 mtx_lock(&oldTex->Mutex);
380 ASSERT(oldTex->RefCount > 0);
381 oldTex->RefCount--;
382
383 deleteFlag = (oldTex->RefCount == 0);
384 mtx_unlock(&oldTex->Mutex);
385
386 if (deleteFlag) {
387 GET_CURRENT_CONTEXT(ctx);
388 if (ctx)
389 ctx->Driver.DeleteTexture(ctx, oldTex);
390 else
391 _mesa_problem(NULL, "Unable to delete texture, no context");
392 }
393
394 *ptr = NULL;
395 }
396 assert(!*ptr);
397
398 if (tex) {
399 /* reference new texture */
400 ASSERT(valid_texture_object(tex));
401 mtx_lock(&tex->Mutex);
402 if (tex->RefCount == 0) {
403 /* this texture's being deleted (look just above) */
404 /* Not sure this can every really happen. Warn if it does. */
405 _mesa_problem(NULL, "referencing deleted texture object");
406 *ptr = NULL;
407 }
408 else {
409 tex->RefCount++;
410 *ptr = tex;
411 }
412 mtx_unlock(&tex->Mutex);
413 }
414 }
415
416
417 enum base_mipmap { BASE, MIPMAP };
418
419
420 /**
421 * Mark a texture object as incomplete. There are actually three kinds of
422 * (in)completeness:
423 * 1. "base incomplete": the base level of the texture is invalid so no
424 * texturing is possible.
425 * 2. "mipmap incomplete": a non-base level of the texture is invalid so
426 * mipmap filtering isn't possible, but non-mipmap filtering is.
427 * 3. "texture incompleteness": some combination of texture state and
428 * sampler state renders the texture incomplete.
429 *
430 * \param t texture object
431 * \param bm either BASE or MIPMAP to indicate what's incomplete
432 * \param fmt... string describing why it's incomplete (for debugging).
433 */
434 static void
435 incomplete(struct gl_texture_object *t, enum base_mipmap bm,
436 const char *fmt, ...)
437 {
438 if (MESA_DEBUG_FLAGS & DEBUG_INCOMPLETE_TEXTURE) {
439 va_list args;
440 char s[100];
441
442 va_start(args, fmt);
443 vsnprintf(s, sizeof(s), fmt, args);
444 va_end(args);
445
446 _mesa_debug(NULL, "Texture Obj %d incomplete because: %s\n", t->Name, s);
447 }
448
449 if (bm == BASE)
450 t->_BaseComplete = GL_FALSE;
451 t->_MipmapComplete = GL_FALSE;
452 }
453
454
455 /**
456 * Examine a texture object to determine if it is complete.
457 *
458 * The gl_texture_object::Complete flag will be set to GL_TRUE or GL_FALSE
459 * accordingly.
460 *
461 * \param ctx GL context.
462 * \param t texture object.
463 *
464 * According to the texture target, verifies that each of the mipmaps is
465 * present and has the expected size.
466 */
467 void
468 _mesa_test_texobj_completeness( const struct gl_context *ctx,
469 struct gl_texture_object *t )
470 {
471 const GLint baseLevel = t->BaseLevel;
472 const struct gl_texture_image *baseImage;
473 GLint maxLevels = 0;
474
475 /* We'll set these to FALSE if tests fail below */
476 t->_BaseComplete = GL_TRUE;
477 t->_MipmapComplete = GL_TRUE;
478
479 if (t->Target == GL_TEXTURE_BUFFER) {
480 /* Buffer textures are always considered complete. The obvious case where
481 * they would be incomplete (no BO attached) is actually specced to be
482 * undefined rendering results.
483 */
484 return;
485 }
486
487 /* Detect cases where the application set the base level to an invalid
488 * value.
489 */
490 if ((baseLevel < 0) || (baseLevel >= MAX_TEXTURE_LEVELS)) {
491 incomplete(t, BASE, "base level = %d is invalid", baseLevel);
492 return;
493 }
494
495 if (t->MaxLevel < baseLevel) {
496 incomplete(t, MIPMAP, "MAX_LEVEL (%d) < BASE_LEVEL (%d)",
497 t->MaxLevel, baseLevel);
498 return;
499 }
500
501 baseImage = t->Image[0][baseLevel];
502
503 /* Always need the base level image */
504 if (!baseImage) {
505 incomplete(t, BASE, "Image[baseLevel=%d] == NULL", baseLevel);
506 return;
507 }
508
509 /* Check width/height/depth for zero */
510 if (baseImage->Width == 0 ||
511 baseImage->Height == 0 ||
512 baseImage->Depth == 0) {
513 incomplete(t, BASE, "texture width or height or depth = 0");
514 return;
515 }
516
517 /* Check if the texture values are integer */
518 {
519 GLenum datatype = _mesa_get_format_datatype(baseImage->TexFormat);
520 t->_IsIntegerFormat = datatype == GL_INT || datatype == GL_UNSIGNED_INT;
521 }
522
523 /* Compute _MaxLevel (the maximum mipmap level we'll sample from given the
524 * mipmap image sizes and GL_TEXTURE_MAX_LEVEL state).
525 */
526 switch (t->Target) {
527 case GL_TEXTURE_1D:
528 case GL_TEXTURE_1D_ARRAY_EXT:
529 maxLevels = ctx->Const.MaxTextureLevels;
530 break;
531 case GL_TEXTURE_2D:
532 case GL_TEXTURE_2D_ARRAY_EXT:
533 maxLevels = ctx->Const.MaxTextureLevels;
534 break;
535 case GL_TEXTURE_3D:
536 maxLevels = ctx->Const.Max3DTextureLevels;
537 break;
538 case GL_TEXTURE_CUBE_MAP_ARB:
539 case GL_TEXTURE_CUBE_MAP_ARRAY:
540 maxLevels = ctx->Const.MaxCubeTextureLevels;
541 break;
542 case GL_TEXTURE_RECTANGLE_NV:
543 case GL_TEXTURE_BUFFER:
544 case GL_TEXTURE_EXTERNAL_OES:
545 case GL_TEXTURE_2D_MULTISAMPLE:
546 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
547 maxLevels = 1; /* no mipmapping */
548 break;
549 default:
550 _mesa_problem(ctx, "Bad t->Target in _mesa_test_texobj_completeness");
551 return;
552 }
553
554 ASSERT(maxLevels > 0);
555
556 t->_MaxLevel = MIN3(t->MaxLevel,
557 /* 'p' in the GL spec */
558 (int) (baseLevel + baseImage->MaxNumLevels - 1),
559 /* 'q' in the GL spec */
560 maxLevels - 1);
561
562 /* Compute _MaxLambda = q - p in the spec used during mipmapping */
563 t->_MaxLambda = (GLfloat) (t->_MaxLevel - baseLevel);
564
565 if (t->Immutable) {
566 /* This texture object was created with glTexStorage1/2/3D() so we
567 * know that all the mipmap levels are the right size and all cube
568 * map faces are the same size.
569 * We don't need to do any of the additional checks below.
570 */
571 return;
572 }
573
574 if (t->Target == GL_TEXTURE_CUBE_MAP_ARB) {
575 /* Make sure that all six cube map level 0 images are the same size.
576 * Note: we know that the image's width==height (we enforce that
577 * at glTexImage time) so we only need to test the width here.
578 */
579 GLuint face;
580 assert(baseImage->Width2 == baseImage->Height);
581 for (face = 1; face < 6; face++) {
582 assert(t->Image[face][baseLevel] == NULL ||
583 t->Image[face][baseLevel]->Width2 ==
584 t->Image[face][baseLevel]->Height2);
585 if (t->Image[face][baseLevel] == NULL ||
586 t->Image[face][baseLevel]->Width2 != baseImage->Width2) {
587 incomplete(t, BASE, "Cube face missing or mismatched size");
588 return;
589 }
590 }
591 }
592
593 /*
594 * Do mipmap consistency checking.
595 * Note: we don't care about the current texture sampler state here.
596 * To determine texture completeness we'll either look at _BaseComplete
597 * or _MipmapComplete depending on the current minification filter mode.
598 */
599 {
600 GLint i;
601 const GLint minLevel = baseLevel;
602 const GLint maxLevel = t->_MaxLevel;
603 const GLuint numFaces = _mesa_num_tex_faces(t->Target);
604 GLuint width, height, depth, face;
605
606 if (minLevel > maxLevel) {
607 incomplete(t, MIPMAP, "minLevel > maxLevel");
608 return;
609 }
610
611 /* Get the base image's dimensions */
612 width = baseImage->Width2;
613 height = baseImage->Height2;
614 depth = baseImage->Depth2;
615
616 /* Note: this loop will be a no-op for RECT, BUFFER, EXTERNAL,
617 * MULTISAMPLE and MULTISAMPLE_ARRAY textures
618 */
619 for (i = baseLevel + 1; i < maxLevels; i++) {
620 /* Compute the expected size of image at level[i] */
621 if (width > 1) {
622 width /= 2;
623 }
624 if (height > 1 && t->Target != GL_TEXTURE_1D_ARRAY) {
625 height /= 2;
626 }
627 if (depth > 1 && t->Target != GL_TEXTURE_2D_ARRAY && t->Target != GL_TEXTURE_CUBE_MAP_ARRAY) {
628 depth /= 2;
629 }
630
631 /* loop over cube faces (or single face otherwise) */
632 for (face = 0; face < numFaces; face++) {
633 if (i >= minLevel && i <= maxLevel) {
634 const struct gl_texture_image *img = t->Image[face][i];
635
636 if (!img) {
637 incomplete(t, MIPMAP, "TexImage[%d] is missing", i);
638 return;
639 }
640 if (img->TexFormat != baseImage->TexFormat) {
641 incomplete(t, MIPMAP, "Format[i] != Format[baseLevel]");
642 return;
643 }
644 if (img->Border != baseImage->Border) {
645 incomplete(t, MIPMAP, "Border[i] != Border[baseLevel]");
646 return;
647 }
648 if (img->Width2 != width) {
649 incomplete(t, MIPMAP, "TexImage[%d] bad width %u", i, img->Width2);
650 return;
651 }
652 if (img->Height2 != height) {
653 incomplete(t, MIPMAP, "TexImage[%d] bad height %u", i, img->Height2);
654 return;
655 }
656 if (img->Depth2 != depth) {
657 incomplete(t, MIPMAP, "TexImage[%d] bad depth %u", i, img->Depth2);
658 return;
659 }
660
661 /* Extra checks for cube textures */
662 if (face > 0) {
663 /* check that cube faces are the same size */
664 if (img->Width2 != t->Image[0][i]->Width2 ||
665 img->Height2 != t->Image[0][i]->Height2) {
666 incomplete(t, MIPMAP, "CubeMap Image[n][i] bad size");
667 return;
668 }
669 }
670 }
671 }
672
673 if (width == 1 && height == 1 && depth == 1) {
674 return; /* found smallest needed mipmap, all done! */
675 }
676 }
677 }
678 }
679
680
681 /**
682 * Check if the given cube map texture is "cube complete" as defined in
683 * the OpenGL specification.
684 */
685 GLboolean
686 _mesa_cube_complete(const struct gl_texture_object *texObj)
687 {
688 const GLint baseLevel = texObj->BaseLevel;
689 const struct gl_texture_image *img0, *img;
690 GLuint face;
691
692 if (texObj->Target != GL_TEXTURE_CUBE_MAP)
693 return GL_FALSE;
694
695 if ((baseLevel < 0) || (baseLevel >= MAX_TEXTURE_LEVELS))
696 return GL_FALSE;
697
698 /* check first face */
699 img0 = texObj->Image[0][baseLevel];
700 if (!img0 ||
701 img0->Width < 1 ||
702 img0->Width != img0->Height)
703 return GL_FALSE;
704
705 /* check remaining faces vs. first face */
706 for (face = 1; face < 6; face++) {
707 img = texObj->Image[face][baseLevel];
708 if (!img ||
709 img->Width != img0->Width ||
710 img->Height != img0->Height ||
711 img->TexFormat != img0->TexFormat)
712 return GL_FALSE;
713 }
714
715 return GL_TRUE;
716 }
717
718
719 /**
720 * Mark a texture object dirty. It forces the object to be incomplete
721 * and forces the context to re-validate its state.
722 *
723 * \param ctx GL context.
724 * \param texObj texture object.
725 */
726 void
727 _mesa_dirty_texobj(struct gl_context *ctx, struct gl_texture_object *texObj)
728 {
729 texObj->_BaseComplete = GL_FALSE;
730 texObj->_MipmapComplete = GL_FALSE;
731 ctx->NewState |= _NEW_TEXTURE;
732 }
733
734
735 /**
736 * Return pointer to a default/fallback texture of the given type/target.
737 * The texture is an RGBA texture with all texels = (0,0,0,1).
738 * That's the value a GLSL sampler should get when sampling from an
739 * incomplete texture.
740 */
741 struct gl_texture_object *
742 _mesa_get_fallback_texture(struct gl_context *ctx, gl_texture_index tex)
743 {
744 if (!ctx->Shared->FallbackTex[tex]) {
745 /* create fallback texture now */
746 const GLsizei width = 1, height = 1, depth = 1;
747 GLubyte texel[4];
748 struct gl_texture_object *texObj;
749 struct gl_texture_image *texImage;
750 mesa_format texFormat;
751 GLuint dims, face, numFaces = 1;
752 GLenum target;
753
754 texel[0] =
755 texel[1] =
756 texel[2] = 0x0;
757 texel[3] = 0xff;
758
759 switch (tex) {
760 case TEXTURE_2D_ARRAY_INDEX:
761 dims = 3;
762 target = GL_TEXTURE_2D_ARRAY;
763 break;
764 case TEXTURE_1D_ARRAY_INDEX:
765 dims = 2;
766 target = GL_TEXTURE_1D_ARRAY;
767 break;
768 case TEXTURE_CUBE_INDEX:
769 dims = 2;
770 target = GL_TEXTURE_CUBE_MAP;
771 numFaces = 6;
772 break;
773 case TEXTURE_3D_INDEX:
774 dims = 3;
775 target = GL_TEXTURE_3D;
776 break;
777 case TEXTURE_RECT_INDEX:
778 dims = 2;
779 target = GL_TEXTURE_RECTANGLE;
780 break;
781 case TEXTURE_2D_INDEX:
782 dims = 2;
783 target = GL_TEXTURE_2D;
784 break;
785 case TEXTURE_1D_INDEX:
786 dims = 1;
787 target = GL_TEXTURE_1D;
788 break;
789 case TEXTURE_BUFFER_INDEX:
790 dims = 0;
791 target = GL_TEXTURE_BUFFER;
792 break;
793 case TEXTURE_CUBE_ARRAY_INDEX:
794 dims = 3;
795 target = GL_TEXTURE_CUBE_MAP_ARRAY;
796 break;
797 case TEXTURE_EXTERNAL_INDEX:
798 dims = 2;
799 target = GL_TEXTURE_EXTERNAL_OES;
800 break;
801 case TEXTURE_2D_MULTISAMPLE_INDEX:
802 dims = 2;
803 target = GL_TEXTURE_2D_MULTISAMPLE;
804 break;
805 case TEXTURE_2D_MULTISAMPLE_ARRAY_INDEX:
806 dims = 3;
807 target = GL_TEXTURE_2D_MULTISAMPLE_ARRAY;
808 break;
809 default:
810 /* no-op */
811 return NULL;
812 }
813
814 /* create texture object */
815 texObj = ctx->Driver.NewTextureObject(ctx, 0, target);
816 if (!texObj)
817 return NULL;
818
819 assert(texObj->RefCount == 1);
820 texObj->Sampler.MinFilter = GL_NEAREST;
821 texObj->Sampler.MagFilter = GL_NEAREST;
822
823 texFormat = ctx->Driver.ChooseTextureFormat(ctx, target,
824 GL_RGBA, GL_RGBA,
825 GL_UNSIGNED_BYTE);
826
827 /* need a loop here just for cube maps */
828 for (face = 0; face < numFaces; face++) {
829 GLenum faceTarget;
830
831 if (target == GL_TEXTURE_CUBE_MAP)
832 faceTarget = GL_TEXTURE_CUBE_MAP_POSITIVE_X + face;
833 else
834 faceTarget = target;
835
836 /* initialize level[0] texture image */
837 texImage = _mesa_get_tex_image(ctx, texObj, faceTarget, 0);
838
839 _mesa_init_teximage_fields(ctx, texImage,
840 width,
841 (dims > 1) ? height : 1,
842 (dims > 2) ? depth : 1,
843 0, /* border */
844 GL_RGBA, texFormat);
845
846 ctx->Driver.TexImage(ctx, dims, texImage,
847 GL_RGBA, GL_UNSIGNED_BYTE, texel,
848 &ctx->DefaultPacking);
849 }
850
851 _mesa_test_texobj_completeness(ctx, texObj);
852 assert(texObj->_BaseComplete);
853 assert(texObj->_MipmapComplete);
854
855 ctx->Shared->FallbackTex[tex] = texObj;
856 }
857 return ctx->Shared->FallbackTex[tex];
858 }
859
860
861 /**
862 * Compute the size of the given texture object, in bytes.
863 */
864 static GLuint
865 texture_size(const struct gl_texture_object *texObj)
866 {
867 const GLuint numFaces = _mesa_num_tex_faces(texObj->Target);
868 GLuint face, level, size = 0;
869
870 for (face = 0; face < numFaces; face++) {
871 for (level = 0; level < MAX_TEXTURE_LEVELS; level++) {
872 const struct gl_texture_image *img = texObj->Image[face][level];
873 if (img) {
874 GLuint sz = _mesa_format_image_size(img->TexFormat, img->Width,
875 img->Height, img->Depth);
876 size += sz;
877 }
878 }
879 }
880
881 return size;
882 }
883
884
885 /**
886 * Callback called from _mesa_HashWalk()
887 */
888 static void
889 count_tex_size(GLuint key, void *data, void *userData)
890 {
891 const struct gl_texture_object *texObj =
892 (const struct gl_texture_object *) data;
893 GLuint *total = (GLuint *) userData;
894
895 (void) key;
896
897 *total = *total + texture_size(texObj);
898 }
899
900
901 /**
902 * Compute total size (in bytes) of all textures for the given context.
903 * For debugging purposes.
904 */
905 GLuint
906 _mesa_total_texture_memory(struct gl_context *ctx)
907 {
908 GLuint tgt, total = 0;
909
910 _mesa_HashWalk(ctx->Shared->TexObjects, count_tex_size, &total);
911
912 /* plus, the default texture objects */
913 for (tgt = 0; tgt < NUM_TEXTURE_TARGETS; tgt++) {
914 total += texture_size(ctx->Shared->DefaultTex[tgt]);
915 }
916
917 return total;
918 }
919
920 static struct gl_texture_object *
921 invalidate_tex_image_error_check(struct gl_context *ctx, GLuint texture,
922 GLint level, const char *name)
923 {
924 /* The GL_ARB_invalidate_subdata spec says:
925 *
926 * "If <texture> is zero or is not the name of a texture, the error
927 * INVALID_VALUE is generated."
928 *
929 * This performs the error check in a different order than listed in the
930 * spec. We have to get the texture object before we can validate the
931 * other parameters against values in the texture object.
932 */
933 struct gl_texture_object *const t = _mesa_lookup_texture(ctx, texture);
934 if (texture == 0 || t == NULL) {
935 _mesa_error(ctx, GL_INVALID_VALUE, "%s(texture)", name);
936 return NULL;
937 }
938
939 /* The GL_ARB_invalidate_subdata spec says:
940 *
941 * "If <level> is less than zero or greater than the base 2 logarithm
942 * of the maximum texture width, height, or depth, the error
943 * INVALID_VALUE is generated."
944 */
945 if (level < 0 || level > t->MaxLevel) {
946 _mesa_error(ctx, GL_INVALID_VALUE, "%s(level)", name);
947 return NULL;
948 }
949
950 /* The GL_ARB_invalidate_subdata spec says:
951 *
952 * "If the target of <texture> is TEXTURE_RECTANGLE, TEXTURE_BUFFER,
953 * TEXTURE_2D_MULTISAMPLE, or TEXTURE_2D_MULTISAMPLE_ARRAY, and <level>
954 * is not zero, the error INVALID_VALUE is generated."
955 */
956 if (level != 0) {
957 switch (t->Target) {
958 case GL_TEXTURE_RECTANGLE:
959 case GL_TEXTURE_BUFFER:
960 case GL_TEXTURE_2D_MULTISAMPLE:
961 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
962 _mesa_error(ctx, GL_INVALID_VALUE, "%s(level)", name);
963 return NULL;
964
965 default:
966 break;
967 }
968 }
969
970 return t;
971 }
972
973 /*@}*/
974
975
976 /***********************************************************************/
977 /** \name API functions */
978 /*@{*/
979
980
981 /**
982 * Generate texture names.
983 *
984 * \param n number of texture names to be generated.
985 * \param textures an array in which will hold the generated texture names.
986 *
987 * \sa glGenTextures().
988 *
989 * Calls _mesa_HashFindFreeKeyBlock() to find a block of free texture
990 * IDs which are stored in \p textures. Corresponding empty texture
991 * objects are also generated.
992 */
993 void GLAPIENTRY
994 _mesa_GenTextures( GLsizei n, GLuint *textures )
995 {
996 GET_CURRENT_CONTEXT(ctx);
997 GLuint first;
998 GLint i;
999
1000 if (MESA_VERBOSE & (VERBOSE_API|VERBOSE_TEXTURE))
1001 _mesa_debug(ctx, "glGenTextures %d\n", n);
1002
1003 if (n < 0) {
1004 _mesa_error( ctx, GL_INVALID_VALUE, "glGenTextures" );
1005 return;
1006 }
1007
1008 if (!textures)
1009 return;
1010
1011 /*
1012 * This must be atomic (generation and allocation of texture IDs)
1013 */
1014 mtx_lock(&ctx->Shared->Mutex);
1015
1016 first = _mesa_HashFindFreeKeyBlock(ctx->Shared->TexObjects, n);
1017
1018 /* Allocate new, empty texture objects */
1019 for (i = 0; i < n; i++) {
1020 struct gl_texture_object *texObj;
1021 GLuint name = first + i;
1022 GLenum target = 0;
1023 texObj = ctx->Driver.NewTextureObject(ctx, name, target);
1024 if (!texObj) {
1025 mtx_unlock(&ctx->Shared->Mutex);
1026 _mesa_error(ctx, GL_OUT_OF_MEMORY, "glGenTextures");
1027 return;
1028 }
1029
1030 /* insert into hash table */
1031 _mesa_HashInsert(ctx->Shared->TexObjects, texObj->Name, texObj);
1032
1033 textures[i] = name;
1034 }
1035
1036 mtx_unlock(&ctx->Shared->Mutex);
1037 }
1038
1039
1040 /**
1041 * Check if the given texture object is bound to the current draw or
1042 * read framebuffer. If so, Unbind it.
1043 */
1044 static void
1045 unbind_texobj_from_fbo(struct gl_context *ctx,
1046 struct gl_texture_object *texObj)
1047 {
1048 bool progress = false;
1049
1050 /* Section 4.4.2 (Attaching Images to Framebuffer Objects), subsection
1051 * "Attaching Texture Images to a Framebuffer," of the OpenGL 3.1 spec
1052 * says:
1053 *
1054 * "If a texture object is deleted while its image is attached to one
1055 * or more attachment points in the currently bound framebuffer, then
1056 * it is as if FramebufferTexture* had been called, with a texture of
1057 * zero, for each attachment point to which this image was attached in
1058 * the currently bound framebuffer. In other words, this texture image
1059 * is first detached from all attachment points in the currently bound
1060 * framebuffer. Note that the texture image is specifically not
1061 * detached from any other framebuffer objects. Detaching the texture
1062 * image from any other framebuffer objects is the responsibility of
1063 * the application."
1064 */
1065 if (_mesa_is_user_fbo(ctx->DrawBuffer)) {
1066 progress = _mesa_detach_renderbuffer(ctx, ctx->DrawBuffer, texObj);
1067 }
1068 if (_mesa_is_user_fbo(ctx->ReadBuffer)
1069 && ctx->ReadBuffer != ctx->DrawBuffer) {
1070 progress = _mesa_detach_renderbuffer(ctx, ctx->ReadBuffer, texObj)
1071 || progress;
1072 }
1073
1074 if (progress)
1075 /* Vertices are already flushed by _mesa_DeleteTextures */
1076 ctx->NewState |= _NEW_BUFFERS;
1077 }
1078
1079
1080 /**
1081 * Check if the given texture object is bound to any texture image units and
1082 * unbind it if so (revert to default textures).
1083 */
1084 static void
1085 unbind_texobj_from_texunits(struct gl_context *ctx,
1086 struct gl_texture_object *texObj)
1087 {
1088 GLuint u, tex;
1089
1090 for (u = 0; u < Elements(ctx->Texture.Unit); u++) {
1091 struct gl_texture_unit *unit = &ctx->Texture.Unit[u];
1092 for (tex = 0; tex < NUM_TEXTURE_TARGETS; tex++) {
1093 if (texObj == unit->CurrentTex[tex]) {
1094 _mesa_reference_texobj(&unit->CurrentTex[tex],
1095 ctx->Shared->DefaultTex[tex]);
1096 ASSERT(unit->CurrentTex[tex]);
1097 break;
1098 }
1099 }
1100 }
1101 }
1102
1103
1104 /**
1105 * Check if the given texture object is bound to any shader image unit
1106 * and unbind it if that's the case.
1107 */
1108 static void
1109 unbind_texobj_from_image_units(struct gl_context *ctx,
1110 struct gl_texture_object *texObj)
1111 {
1112 GLuint i;
1113
1114 for (i = 0; i < ctx->Const.MaxImageUnits; i++) {
1115 struct gl_image_unit *unit = &ctx->ImageUnits[i];
1116
1117 if (texObj == unit->TexObj)
1118 _mesa_reference_texobj(&unit->TexObj, NULL);
1119 }
1120 }
1121
1122
1123 /**
1124 * Delete named textures.
1125 *
1126 * \param n number of textures to be deleted.
1127 * \param textures array of texture IDs to be deleted.
1128 *
1129 * \sa glDeleteTextures().
1130 *
1131 * If we're about to delete a texture that's currently bound to any
1132 * texture unit, unbind the texture first. Decrement the reference
1133 * count on the texture object and delete it if it's zero.
1134 * Recall that texture objects can be shared among several rendering
1135 * contexts.
1136 */
1137 void GLAPIENTRY
1138 _mesa_DeleteTextures( GLsizei n, const GLuint *textures)
1139 {
1140 GET_CURRENT_CONTEXT(ctx);
1141 GLint i;
1142
1143 if (MESA_VERBOSE & (VERBOSE_API|VERBOSE_TEXTURE))
1144 _mesa_debug(ctx, "glDeleteTextures %d\n", n);
1145
1146 FLUSH_VERTICES(ctx, 0); /* too complex */
1147
1148 if (!textures)
1149 return;
1150
1151 for (i = 0; i < n; i++) {
1152 if (textures[i] > 0) {
1153 struct gl_texture_object *delObj
1154 = _mesa_lookup_texture(ctx, textures[i]);
1155
1156 if (delObj) {
1157 _mesa_lock_texture(ctx, delObj);
1158
1159 /* Check if texture is bound to any framebuffer objects.
1160 * If so, unbind.
1161 * See section 4.4.2.3 of GL_EXT_framebuffer_object.
1162 */
1163 unbind_texobj_from_fbo(ctx, delObj);
1164
1165 /* Check if this texture is currently bound to any texture units.
1166 * If so, unbind it.
1167 */
1168 unbind_texobj_from_texunits(ctx, delObj);
1169
1170 /* Check if this texture is currently bound to any shader
1171 * image unit. If so, unbind it.
1172 * See section 3.9.X of GL_ARB_shader_image_load_store.
1173 */
1174 unbind_texobj_from_image_units(ctx, delObj);
1175
1176 _mesa_unlock_texture(ctx, delObj);
1177
1178 ctx->NewState |= _NEW_TEXTURE;
1179
1180 /* The texture _name_ is now free for re-use.
1181 * Remove it from the hash table now.
1182 */
1183 mtx_lock(&ctx->Shared->Mutex);
1184 _mesa_HashRemove(ctx->Shared->TexObjects, delObj->Name);
1185 mtx_unlock(&ctx->Shared->Mutex);
1186
1187 /* Unreference the texobj. If refcount hits zero, the texture
1188 * will be deleted.
1189 */
1190 _mesa_reference_texobj(&delObj, NULL);
1191 }
1192 }
1193 }
1194 }
1195
1196
1197 /**
1198 * Convert a GL texture target enum such as GL_TEXTURE_2D or GL_TEXTURE_3D
1199 * into the corresponding Mesa texture target index.
1200 * Note that proxy targets are not valid here.
1201 * \return TEXTURE_x_INDEX or -1 if target is invalid
1202 */
1203 int
1204 _mesa_tex_target_to_index(const struct gl_context *ctx, GLenum target)
1205 {
1206 switch (target) {
1207 case GL_TEXTURE_1D:
1208 return _mesa_is_desktop_gl(ctx) ? TEXTURE_1D_INDEX : -1;
1209 case GL_TEXTURE_2D:
1210 return TEXTURE_2D_INDEX;
1211 case GL_TEXTURE_3D:
1212 return ctx->API != API_OPENGLES ? TEXTURE_3D_INDEX : -1;
1213 case GL_TEXTURE_CUBE_MAP:
1214 return ctx->Extensions.ARB_texture_cube_map
1215 ? TEXTURE_CUBE_INDEX : -1;
1216 case GL_TEXTURE_RECTANGLE:
1217 return _mesa_is_desktop_gl(ctx) && ctx->Extensions.NV_texture_rectangle
1218 ? TEXTURE_RECT_INDEX : -1;
1219 case GL_TEXTURE_1D_ARRAY:
1220 return _mesa_is_desktop_gl(ctx) && ctx->Extensions.EXT_texture_array
1221 ? TEXTURE_1D_ARRAY_INDEX : -1;
1222 case GL_TEXTURE_2D_ARRAY:
1223 return (_mesa_is_desktop_gl(ctx) && ctx->Extensions.EXT_texture_array)
1224 || _mesa_is_gles3(ctx)
1225 ? TEXTURE_2D_ARRAY_INDEX : -1;
1226 case GL_TEXTURE_BUFFER:
1227 return ctx->API == API_OPENGL_CORE &&
1228 ctx->Extensions.ARB_texture_buffer_object ?
1229 TEXTURE_BUFFER_INDEX : -1;
1230 case GL_TEXTURE_EXTERNAL_OES:
1231 return _mesa_is_gles(ctx) && ctx->Extensions.OES_EGL_image_external
1232 ? TEXTURE_EXTERNAL_INDEX : -1;
1233 case GL_TEXTURE_CUBE_MAP_ARRAY:
1234 return _mesa_is_desktop_gl(ctx) && ctx->Extensions.ARB_texture_cube_map_array
1235 ? TEXTURE_CUBE_ARRAY_INDEX : -1;
1236 case GL_TEXTURE_2D_MULTISAMPLE:
1237 return _mesa_is_desktop_gl(ctx) && ctx->Extensions.ARB_texture_multisample
1238 ? TEXTURE_2D_MULTISAMPLE_INDEX: -1;
1239 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
1240 return _mesa_is_desktop_gl(ctx) && ctx->Extensions.ARB_texture_multisample
1241 ? TEXTURE_2D_MULTISAMPLE_ARRAY_INDEX: -1;
1242 default:
1243 return -1;
1244 }
1245 }
1246
1247
1248 /**
1249 * Bind a named texture to a texturing target.
1250 *
1251 * \param target texture target.
1252 * \param texName texture name.
1253 *
1254 * \sa glBindTexture().
1255 *
1256 * Determines the old texture object bound and returns immediately if rebinding
1257 * the same texture. Get the current texture which is either a default texture
1258 * if name is null, a named texture from the hash, or a new texture if the
1259 * given texture name is new. Increments its reference count, binds it, and
1260 * calls dd_function_table::BindTexture. Decrements the old texture reference
1261 * count and deletes it if it reaches zero.
1262 */
1263 void GLAPIENTRY
1264 _mesa_BindTexture( GLenum target, GLuint texName )
1265 {
1266 GET_CURRENT_CONTEXT(ctx);
1267 struct gl_texture_unit *texUnit = _mesa_get_current_tex_unit(ctx);
1268 struct gl_texture_object *newTexObj = NULL;
1269 GLint targetIndex;
1270
1271 if (MESA_VERBOSE & (VERBOSE_API|VERBOSE_TEXTURE))
1272 _mesa_debug(ctx, "glBindTexture %s %d\n",
1273 _mesa_lookup_enum_by_nr(target), (GLint) texName);
1274
1275 targetIndex = _mesa_tex_target_to_index(ctx, target);
1276 if (targetIndex < 0) {
1277 _mesa_error(ctx, GL_INVALID_ENUM, "glBindTexture(target)");
1278 return;
1279 }
1280 assert(targetIndex < NUM_TEXTURE_TARGETS);
1281
1282 /*
1283 * Get pointer to new texture object (newTexObj)
1284 */
1285 if (texName == 0) {
1286 /* Use a default texture object */
1287 newTexObj = ctx->Shared->DefaultTex[targetIndex];
1288 }
1289 else {
1290 /* non-default texture object */
1291 newTexObj = _mesa_lookup_texture(ctx, texName);
1292 if (newTexObj) {
1293 /* error checking */
1294 if (newTexObj->Target != 0 && newTexObj->Target != target) {
1295 /* the named texture object's target doesn't match the given target */
1296 _mesa_error( ctx, GL_INVALID_OPERATION,
1297 "glBindTexture(target mismatch)" );
1298 return;
1299 }
1300 if (newTexObj->Target == 0) {
1301 finish_texture_init(ctx, target, newTexObj);
1302 }
1303 }
1304 else {
1305 if (ctx->API == API_OPENGL_CORE) {
1306 _mesa_error(ctx, GL_INVALID_OPERATION, "glBindTexture(non-gen name)");
1307 return;
1308 }
1309
1310 /* if this is a new texture id, allocate a texture object now */
1311 newTexObj = ctx->Driver.NewTextureObject(ctx, texName, target);
1312 if (!newTexObj) {
1313 _mesa_error(ctx, GL_OUT_OF_MEMORY, "glBindTexture");
1314 return;
1315 }
1316
1317 /* and insert it into hash table */
1318 mtx_lock(&ctx->Shared->Mutex);
1319 _mesa_HashInsert(ctx->Shared->TexObjects, texName, newTexObj);
1320 mtx_unlock(&ctx->Shared->Mutex);
1321 }
1322 newTexObj->Target = target;
1323 }
1324
1325 assert(valid_texture_object(newTexObj));
1326
1327 /* Check if this texture is only used by this context and is already bound.
1328 * If so, just return.
1329 */
1330 {
1331 GLboolean early_out;
1332 mtx_lock(&ctx->Shared->Mutex);
1333 early_out = ((ctx->Shared->RefCount == 1)
1334 && (newTexObj == texUnit->CurrentTex[targetIndex]));
1335 mtx_unlock(&ctx->Shared->Mutex);
1336 if (early_out) {
1337 return;
1338 }
1339 }
1340
1341 /* flush before changing binding */
1342 FLUSH_VERTICES(ctx, _NEW_TEXTURE);
1343
1344 /* Do the actual binding. The refcount on the previously bound
1345 * texture object will be decremented. It'll be deleted if the
1346 * count hits zero.
1347 */
1348 _mesa_reference_texobj(&texUnit->CurrentTex[targetIndex], newTexObj);
1349 ASSERT(texUnit->CurrentTex[targetIndex]);
1350
1351 /* Pass BindTexture call to device driver */
1352 if (ctx->Driver.BindTexture)
1353 ctx->Driver.BindTexture(ctx, target, newTexObj);
1354 }
1355
1356
1357 /**
1358 * Set texture priorities.
1359 *
1360 * \param n number of textures.
1361 * \param texName texture names.
1362 * \param priorities corresponding texture priorities.
1363 *
1364 * \sa glPrioritizeTextures().
1365 *
1366 * Looks up each texture in the hash, clamps the corresponding priority between
1367 * 0.0 and 1.0, and calls dd_function_table::PrioritizeTexture.
1368 */
1369 void GLAPIENTRY
1370 _mesa_PrioritizeTextures( GLsizei n, const GLuint *texName,
1371 const GLclampf *priorities )
1372 {
1373 GET_CURRENT_CONTEXT(ctx);
1374 GLint i;
1375
1376 if (MESA_VERBOSE & (VERBOSE_API|VERBOSE_TEXTURE))
1377 _mesa_debug(ctx, "glPrioritizeTextures %d\n", n);
1378
1379 FLUSH_VERTICES(ctx, 0);
1380
1381 if (n < 0) {
1382 _mesa_error( ctx, GL_INVALID_VALUE, "glPrioritizeTextures" );
1383 return;
1384 }
1385
1386 if (!priorities)
1387 return;
1388
1389 for (i = 0; i < n; i++) {
1390 if (texName[i] > 0) {
1391 struct gl_texture_object *t = _mesa_lookup_texture(ctx, texName[i]);
1392 if (t) {
1393 t->Priority = CLAMP( priorities[i], 0.0F, 1.0F );
1394 }
1395 }
1396 }
1397
1398 ctx->NewState |= _NEW_TEXTURE;
1399 }
1400
1401
1402
1403 /**
1404 * See if textures are loaded in texture memory.
1405 *
1406 * \param n number of textures to query.
1407 * \param texName array with the texture names.
1408 * \param residences array which will hold the residence status.
1409 *
1410 * \return GL_TRUE if all textures are resident and \p residences is left unchanged,
1411 *
1412 * Note: we assume all textures are always resident
1413 */
1414 GLboolean GLAPIENTRY
1415 _mesa_AreTexturesResident(GLsizei n, const GLuint *texName,
1416 GLboolean *residences)
1417 {
1418 GET_CURRENT_CONTEXT(ctx);
1419 GLboolean allResident = GL_TRUE;
1420 GLint i;
1421 ASSERT_OUTSIDE_BEGIN_END_WITH_RETVAL(ctx, GL_FALSE);
1422
1423 if (MESA_VERBOSE & (VERBOSE_API|VERBOSE_TEXTURE))
1424 _mesa_debug(ctx, "glAreTexturesResident %d\n", n);
1425
1426 if (n < 0) {
1427 _mesa_error(ctx, GL_INVALID_VALUE, "glAreTexturesResident(n)");
1428 return GL_FALSE;
1429 }
1430
1431 if (!texName || !residences)
1432 return GL_FALSE;
1433
1434 /* We only do error checking on the texture names */
1435 for (i = 0; i < n; i++) {
1436 struct gl_texture_object *t;
1437 if (texName[i] == 0) {
1438 _mesa_error(ctx, GL_INVALID_VALUE, "glAreTexturesResident");
1439 return GL_FALSE;
1440 }
1441 t = _mesa_lookup_texture(ctx, texName[i]);
1442 if (!t) {
1443 _mesa_error(ctx, GL_INVALID_VALUE, "glAreTexturesResident");
1444 return GL_FALSE;
1445 }
1446 }
1447
1448 return allResident;
1449 }
1450
1451
1452 /**
1453 * See if a name corresponds to a texture.
1454 *
1455 * \param texture texture name.
1456 *
1457 * \return GL_TRUE if texture name corresponds to a texture, or GL_FALSE
1458 * otherwise.
1459 *
1460 * \sa glIsTexture().
1461 *
1462 * Calls _mesa_HashLookup().
1463 */
1464 GLboolean GLAPIENTRY
1465 _mesa_IsTexture( GLuint texture )
1466 {
1467 struct gl_texture_object *t;
1468 GET_CURRENT_CONTEXT(ctx);
1469 ASSERT_OUTSIDE_BEGIN_END_WITH_RETVAL(ctx, GL_FALSE);
1470
1471 if (MESA_VERBOSE & (VERBOSE_API|VERBOSE_TEXTURE))
1472 _mesa_debug(ctx, "glIsTexture %d\n", texture);
1473
1474 if (!texture)
1475 return GL_FALSE;
1476
1477 t = _mesa_lookup_texture(ctx, texture);
1478
1479 /* IsTexture is true only after object has been bound once. */
1480 return t && t->Target;
1481 }
1482
1483
1484 /**
1485 * Simplest implementation of texture locking: grab the shared tex
1486 * mutex. Examine the shared context state timestamp and if there has
1487 * been a change, set the appropriate bits in ctx->NewState.
1488 *
1489 * This is used to deal with synchronizing things when a texture object
1490 * is used/modified by different contexts (or threads) which are sharing
1491 * the texture.
1492 *
1493 * See also _mesa_lock/unlock_texture() in teximage.h
1494 */
1495 void
1496 _mesa_lock_context_textures( struct gl_context *ctx )
1497 {
1498 mtx_lock(&ctx->Shared->TexMutex);
1499
1500 if (ctx->Shared->TextureStateStamp != ctx->TextureStateTimestamp) {
1501 ctx->NewState |= _NEW_TEXTURE;
1502 ctx->TextureStateTimestamp = ctx->Shared->TextureStateStamp;
1503 }
1504 }
1505
1506
1507 void
1508 _mesa_unlock_context_textures( struct gl_context *ctx )
1509 {
1510 assert(ctx->Shared->TextureStateStamp == ctx->TextureStateTimestamp);
1511 mtx_unlock(&ctx->Shared->TexMutex);
1512 }
1513
1514 void GLAPIENTRY
1515 _mesa_InvalidateTexSubImage(GLuint texture, GLint level, GLint xoffset,
1516 GLint yoffset, GLint zoffset, GLsizei width,
1517 GLsizei height, GLsizei depth)
1518 {
1519 struct gl_texture_object *t;
1520 struct gl_texture_image *image;
1521 GET_CURRENT_CONTEXT(ctx);
1522
1523 if (MESA_VERBOSE & (VERBOSE_API|VERBOSE_TEXTURE))
1524 _mesa_debug(ctx, "glInvalidateTexSubImage %d\n", texture);
1525
1526 t = invalidate_tex_image_error_check(ctx, texture, level,
1527 "glInvalidateTexSubImage");
1528
1529 /* The GL_ARB_invalidate_subdata spec says:
1530 *
1531 * "...the specified subregion must be between -<b> and <dim>+<b> where
1532 * <dim> is the size of the dimension of the texture image, and <b> is
1533 * the size of the border of that texture image, otherwise
1534 * INVALID_VALUE is generated (border is not applied to dimensions that
1535 * don't exist in a given texture target)."
1536 */
1537 image = t->Image[0][level];
1538 if (image) {
1539 int xBorder;
1540 int yBorder;
1541 int zBorder;
1542 int imageWidth;
1543 int imageHeight;
1544 int imageDepth;
1545
1546 /* The GL_ARB_invalidate_subdata spec says:
1547 *
1548 * "For texture targets that don't have certain dimensions, this
1549 * command treats those dimensions as having a size of 1. For
1550 * example, to invalidate a portion of a two-dimensional texture,
1551 * the application would use <zoffset> equal to zero and <depth>
1552 * equal to one."
1553 */
1554 switch (t->Target) {
1555 case GL_TEXTURE_BUFFER:
1556 xBorder = 0;
1557 yBorder = 0;
1558 zBorder = 0;
1559 imageWidth = 1;
1560 imageHeight = 1;
1561 imageDepth = 1;
1562 break;
1563 case GL_TEXTURE_1D:
1564 xBorder = image->Border;
1565 yBorder = 0;
1566 zBorder = 0;
1567 imageWidth = image->Width;
1568 imageHeight = 1;
1569 imageDepth = 1;
1570 break;
1571 case GL_TEXTURE_1D_ARRAY:
1572 xBorder = image->Border;
1573 yBorder = 0;
1574 zBorder = 0;
1575 imageWidth = image->Width;
1576 imageHeight = image->Height;
1577 imageDepth = 1;
1578 break;
1579 case GL_TEXTURE_2D:
1580 case GL_TEXTURE_CUBE_MAP:
1581 case GL_TEXTURE_RECTANGLE:
1582 case GL_TEXTURE_2D_MULTISAMPLE:
1583 xBorder = image->Border;
1584 yBorder = image->Border;
1585 zBorder = 0;
1586 imageWidth = image->Width;
1587 imageHeight = image->Height;
1588 imageDepth = 1;
1589 break;
1590 case GL_TEXTURE_2D_ARRAY:
1591 case GL_TEXTURE_CUBE_MAP_ARRAY:
1592 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
1593 xBorder = image->Border;
1594 yBorder = image->Border;
1595 zBorder = 0;
1596 imageWidth = image->Width;
1597 imageHeight = image->Height;
1598 imageDepth = image->Depth;
1599 break;
1600 case GL_TEXTURE_3D:
1601 xBorder = image->Border;
1602 yBorder = image->Border;
1603 zBorder = image->Border;
1604 imageWidth = image->Width;
1605 imageHeight = image->Height;
1606 imageDepth = image->Depth;
1607 break;
1608 default:
1609 assert(!"Should not get here.");
1610 xBorder = 0;
1611 yBorder = 0;
1612 zBorder = 0;
1613 imageWidth = 0;
1614 imageHeight = 0;
1615 imageDepth = 0;
1616 break;
1617 }
1618
1619 if (xoffset < -xBorder) {
1620 _mesa_error(ctx, GL_INVALID_VALUE, "glInvalidateSubTexImage(xoffset)");
1621 return;
1622 }
1623
1624 if (xoffset + width > imageWidth + xBorder) {
1625 _mesa_error(ctx, GL_INVALID_VALUE,
1626 "glInvalidateSubTexImage(xoffset+width)");
1627 return;
1628 }
1629
1630 if (yoffset < -yBorder) {
1631 _mesa_error(ctx, GL_INVALID_VALUE, "glInvalidateSubTexImage(yoffset)");
1632 return;
1633 }
1634
1635 if (yoffset + height > imageHeight + yBorder) {
1636 _mesa_error(ctx, GL_INVALID_VALUE,
1637 "glInvalidateSubTexImage(yoffset+height)");
1638 return;
1639 }
1640
1641 if (zoffset < -zBorder) {
1642 _mesa_error(ctx, GL_INVALID_VALUE,
1643 "glInvalidateSubTexImage(zoffset)");
1644 return;
1645 }
1646
1647 if (zoffset + depth > imageDepth + zBorder) {
1648 _mesa_error(ctx, GL_INVALID_VALUE,
1649 "glInvalidateSubTexImage(zoffset+depth)");
1650 return;
1651 }
1652 }
1653
1654 /* We don't actually do anything for this yet. Just return after
1655 * validating the parameters and generating the required errors.
1656 */
1657 return;
1658 }
1659
1660 void GLAPIENTRY
1661 _mesa_InvalidateTexImage(GLuint texture, GLint level)
1662 {
1663 GET_CURRENT_CONTEXT(ctx);
1664
1665 if (MESA_VERBOSE & (VERBOSE_API|VERBOSE_TEXTURE))
1666 _mesa_debug(ctx, "glInvalidateTexImage(%d, %d)\n", texture, level);
1667
1668 invalidate_tex_image_error_check(ctx, texture, level,
1669 "glInvalidateTexImage");
1670
1671 /* We don't actually do anything for this yet. Just return after
1672 * validating the parameters and generating the required errors.
1673 */
1674 return;
1675 }
1676
1677 /*@}*/