improved solve_plane_chan() (Evgeny Kotsuba)
[mesa.git] / src / mesa / main / texstore.c
1 /* $Id: texstore.c,v 1.49 2002/12/03 00:05:48 brianp Exp $ */
2
3 /*
4 * Mesa 3-D graphics library
5 * Version: 5.1
6 *
7 * Copyright (C) 1999-2002 Brian Paul All Rights Reserved.
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included
17 * in all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
23 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 */
26
27 /*
28 * Authors:
29 * Brian Paul
30 */
31
32 /*
33 * The GL texture image functions in teximage.c basically just do
34 * error checking and data structure allocation. They in turn call
35 * device driver functions which actually copy/convert/store the user's
36 * texture image data.
37 *
38 * However, most device drivers will be able to use the fallback functions
39 * in this file. That is, most drivers will have the following bit of
40 * code:
41 * ctx->Driver.TexImage1D = _mesa_store_teximage1d;
42 * ctx->Driver.TexImage2D = _mesa_store_teximage2d;
43 * ctx->Driver.TexImage3D = _mesa_store_teximage3d;
44 * etc...
45 *
46 * Texture image processing is actually kind of complicated. We have to do:
47 * Format/type conversions
48 * pixel unpacking
49 * pixel transfer (scale, bais, lookup, convolution!, etc)
50 *
51 * These functions can handle most everything, including processing full
52 * images and sub-images.
53 */
54
55
56 #include "glheader.h"
57 #include "colormac.h"
58 #include "context.h"
59 #include "convolve.h"
60 #include "image.h"
61 #include "macros.h"
62 #include "imports.h"
63 #include "texcompress.h"
64 #include "texformat.h"
65 #include "teximage.h"
66 #include "texstore.h"
67 #include "texutil.h"
68
69
70 /*
71 * Given an internal texture format enum or 1, 2, 3, 4 return the
72 * corresponding _base_ internal format: GL_ALPHA, GL_LUMINANCE,
73 * GL_LUMANCE_ALPHA, GL_INTENSITY, GL_RGB, or GL_RGBA. Return the
74 * number of components for the format. Return -1 if invalid enum.
75 */
76 static GLint
77 components_in_intformat( GLint format )
78 {
79 switch (format) {
80 case GL_ALPHA:
81 case GL_ALPHA4:
82 case GL_ALPHA8:
83 case GL_ALPHA12:
84 case GL_ALPHA16:
85 return 1;
86 case 1:
87 case GL_LUMINANCE:
88 case GL_LUMINANCE4:
89 case GL_LUMINANCE8:
90 case GL_LUMINANCE12:
91 case GL_LUMINANCE16:
92 return 1;
93 case 2:
94 case GL_LUMINANCE_ALPHA:
95 case GL_LUMINANCE4_ALPHA4:
96 case GL_LUMINANCE6_ALPHA2:
97 case GL_LUMINANCE8_ALPHA8:
98 case GL_LUMINANCE12_ALPHA4:
99 case GL_LUMINANCE12_ALPHA12:
100 case GL_LUMINANCE16_ALPHA16:
101 return 2;
102 case GL_INTENSITY:
103 case GL_INTENSITY4:
104 case GL_INTENSITY8:
105 case GL_INTENSITY12:
106 case GL_INTENSITY16:
107 return 1;
108 case 3:
109 case GL_RGB:
110 case GL_R3_G3_B2:
111 case GL_RGB4:
112 case GL_RGB5:
113 case GL_RGB8:
114 case GL_RGB10:
115 case GL_RGB12:
116 case GL_RGB16:
117 return 3;
118 case 4:
119 case GL_RGBA:
120 case GL_RGBA2:
121 case GL_RGBA4:
122 case GL_RGB5_A1:
123 case GL_RGBA8:
124 case GL_RGB10_A2:
125 case GL_RGBA12:
126 case GL_RGBA16:
127 return 4;
128 case GL_COLOR_INDEX:
129 case GL_COLOR_INDEX1_EXT:
130 case GL_COLOR_INDEX2_EXT:
131 case GL_COLOR_INDEX4_EXT:
132 case GL_COLOR_INDEX8_EXT:
133 case GL_COLOR_INDEX12_EXT:
134 case GL_COLOR_INDEX16_EXT:
135 return 1;
136 case GL_DEPTH_COMPONENT:
137 case GL_DEPTH_COMPONENT16_SGIX:
138 case GL_DEPTH_COMPONENT24_SGIX:
139 case GL_DEPTH_COMPONENT32_SGIX:
140 return 1;
141 case GL_YCBCR_MESA:
142 return 2; /* Y + (Cb or Cr) */
143 default:
144 return -1; /* error */
145 }
146 }
147
148
149 /*
150 * This function is used to transfer the user's image data into a texture
151 * image buffer. We handle both full texture images and subtexture images.
152 * We also take care of all image transfer operations here, including
153 * convolution, scale/bias, colortables, etc.
154 *
155 * The destination texel type is always GLchan.
156 * The destination texel format is one of the 6 basic types.
157 *
158 * A hardware driver may use this as a helper routine to unpack and
159 * apply pixel transfer ops into a temporary image buffer. Then,
160 * convert the temporary image into the special hardware format.
161 *
162 * Input:
163 * dimensions - 1, 2, or 3
164 * texDestFormat - GL_LUMINANCE, GL_INTENSITY, GL_LUMINANCE_ALPHA, GL_ALPHA,
165 * GL_RGB or GL_RGBA (the destination format)
166 * texDestAddr - destination image address
167 * srcWidth, srcHeight, srcDepth - size (in pixels) of src and dest images
168 * dstXoffset, dstYoffset, dstZoffset - position to store the image within
169 * the destination 3D texture
170 * dstRowStride, dstImageStride - dest image strides in bytes
171 * srcFormat - source image format (GL_ALPHA, GL_RED, GL_RGB, etc)
172 * srcType - GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT_5_6_5, GL_FLOAT, etc
173 * srcPacking - describes packing of incoming image.
174 * transferOps - mask of pixel transfer operations
175 */
176 static void
177 transfer_teximage(GLcontext *ctx, GLuint dimensions,
178 GLenum texDestFormat, GLvoid *texDestAddr,
179 GLint srcWidth, GLint srcHeight, GLint srcDepth,
180 GLint dstXoffset, GLint dstYoffset, GLint dstZoffset,
181 GLint dstRowStride, GLint dstImageStride,
182 GLenum srcFormat, GLenum srcType,
183 const GLvoid *srcAddr,
184 const struct gl_pixelstore_attrib *srcPacking,
185 GLuint transferOps)
186 {
187 GLint texComponents;
188
189 ASSERT(ctx);
190 ASSERT(dimensions >= 1 && dimensions <= 3);
191 ASSERT(texDestFormat == GL_LUMINANCE ||
192 texDestFormat == GL_INTENSITY ||
193 texDestFormat == GL_LUMINANCE_ALPHA ||
194 texDestFormat == GL_ALPHA ||
195 texDestFormat == GL_RGB ||
196 texDestFormat == GL_RGBA ||
197 texDestFormat == GL_DEPTH_COMPONENT);
198 ASSERT(texDestAddr);
199 ASSERT(srcWidth >= 1);
200 ASSERT(srcHeight >= 1);
201 ASSERT(srcDepth >= 1);
202 ASSERT(dstXoffset >= 0);
203 ASSERT(dstYoffset >= 0);
204 ASSERT(dstZoffset >= 0);
205 ASSERT(dstRowStride >= 0);
206 ASSERT(dstImageStride >= 0);
207 ASSERT(srcAddr);
208 ASSERT(srcPacking);
209
210 texComponents = components_in_intformat(texDestFormat);
211
212 /* try common 2D texture cases first */
213 if (!transferOps && dimensions == 2 && srcType == CHAN_TYPE) {
214
215 if (srcFormat == texDestFormat) {
216 /* This will cover the common GL_RGB, GL_RGBA, GL_ALPHA,
217 * GL_LUMINANCE_ALPHA, etc. texture formats. Use memcpy().
218 */
219 const GLchan *src = (const GLchan *) _mesa_image_address(
220 srcPacking, srcAddr, srcWidth, srcHeight,
221 srcFormat, srcType, 0, 0, 0);
222 const GLint srcRowStride = _mesa_image_row_stride(srcPacking,
223 srcWidth, srcFormat, srcType);
224 const GLint widthInBytes = srcWidth * texComponents * sizeof(GLchan);
225 GLchan *dst = (GLchan *) texDestAddr
226 + dstYoffset * (dstRowStride / sizeof(GLchan))
227 + dstXoffset * texComponents;
228 if (srcRowStride == widthInBytes && dstRowStride == widthInBytes) {
229 MEMCPY(dst, src, srcHeight * widthInBytes);
230 }
231 else {
232 GLint i;
233 for (i = 0; i < srcHeight; i++) {
234 MEMCPY(dst, src, widthInBytes);
235 src += (srcRowStride / sizeof(GLchan));
236 dst += (dstRowStride / sizeof(GLchan));
237 }
238 }
239 return; /* all done */
240 }
241 else if (srcFormat == GL_RGBA && texDestFormat == GL_RGB) {
242 /* commonly used by Quake */
243 const GLchan *src = (const GLchan *) _mesa_image_address(
244 srcPacking, srcAddr, srcWidth, srcHeight,
245 srcFormat, srcType, 0, 0, 0);
246 const GLint srcRowStride = _mesa_image_row_stride(srcPacking,
247 srcWidth, srcFormat, srcType);
248 GLchan *dst = (GLchan *) texDestAddr
249 + dstYoffset * (dstRowStride / sizeof(GLchan))
250 + dstXoffset * texComponents;
251 GLint i, j;
252 for (i = 0; i < srcHeight; i++) {
253 const GLchan *s = src;
254 GLchan *d = dst;
255 for (j = 0; j < srcWidth; j++) {
256 *d++ = *s++; /*red*/
257 *d++ = *s++; /*green*/
258 *d++ = *s++; /*blue*/
259 s++; /*alpha*/
260 }
261 src += (srcRowStride / sizeof(GLchan));
262 dst += (dstRowStride / sizeof(GLchan));
263 }
264 return; /* all done */
265 }
266 }
267
268 /*
269 * General case solutions
270 */
271 if (texDestFormat == GL_COLOR_INDEX) {
272 /* color index texture */
273 const GLenum texType = CHAN_TYPE;
274 GLint img, row;
275 GLchan *dest = (GLchan *) texDestAddr
276 + dstZoffset * (dstImageStride / sizeof(GLchan))
277 + dstYoffset * (dstRowStride / sizeof(GLchan))
278 + dstXoffset * texComponents;
279 for (img = 0; img < srcDepth; img++) {
280 GLchan *destRow = dest;
281 for (row = 0; row < srcHeight; row++) {
282 const GLvoid *src = _mesa_image_address(srcPacking,
283 srcAddr, srcWidth, srcHeight, srcFormat, srcType, img, row, 0);
284 _mesa_unpack_index_span(ctx, srcWidth, texType, destRow,
285 srcType, src, srcPacking, transferOps);
286 destRow += (dstRowStride / sizeof(GLchan));
287 }
288 dest += dstImageStride;
289 }
290 }
291 else if (texDestFormat == GL_YCBCR_MESA) {
292 /* YCbCr texture */
293 GLint img, row;
294 GLushort *dest = (GLushort *) texDestAddr
295 + dstZoffset * (dstImageStride / sizeof(GLushort))
296 + dstYoffset * (dstRowStride / sizeof(GLushort))
297 + dstXoffset * texComponents;
298 ASSERT(ctx->Extensions.MESA_ycbcr_texture);
299 for (img = 0; img < srcDepth; img++) {
300 GLushort *destRow = dest;
301 for (row = 0; row < srcHeight; row++) {
302 const GLvoid *srcRow = _mesa_image_address(srcPacking,
303 srcAddr, srcWidth, srcHeight,
304 srcFormat, srcType, img, row, 0);
305 MEMCPY(destRow, srcRow, srcWidth * sizeof(GLushort));
306 destRow += (dstRowStride / sizeof(GLushort));
307 }
308 dest += dstImageStride / sizeof(GLushort);
309 }
310 }
311 else if (texDestFormat == GL_DEPTH_COMPONENT) {
312 /* Depth texture (shadow maps) */
313 GLint img, row;
314 GLubyte *dest = (GLubyte *) texDestAddr
315 + dstZoffset * dstImageStride
316 + dstYoffset * (dstRowStride / sizeof(GLchan))
317 + dstXoffset * texComponents;
318 for (img = 0; img < srcDepth; img++) {
319 GLubyte *destRow = dest;
320 for (row = 0; row < srcHeight; row++) {
321 const GLvoid *src = _mesa_image_address(srcPacking,
322 srcAddr, srcWidth, srcHeight, srcFormat, srcType, img, row, 0);
323 _mesa_unpack_depth_span(ctx, srcWidth, (GLfloat *) destRow,
324 srcType, src, srcPacking);
325 destRow += (dstRowStride / sizeof(GLchan));
326 }
327 dest += dstImageStride;
328 }
329 }
330 else {
331 /* regular, color texture */
332 if ((dimensions == 1 && ctx->Pixel.Convolution1DEnabled) ||
333 (dimensions >= 2 && ctx->Pixel.Convolution2DEnabled) ||
334 (dimensions >= 2 && ctx->Pixel.Separable2DEnabled)) {
335 /*
336 * Fill texture image with convolution
337 */
338 GLint img, row;
339 GLint convWidth = srcWidth, convHeight = srcHeight;
340 GLfloat *tmpImage, *convImage;
341 tmpImage = (GLfloat *) MALLOC(srcWidth * srcHeight * 4 * sizeof(GLfloat));
342 if (!tmpImage) {
343 _mesa_error(ctx, GL_OUT_OF_MEMORY, "glTexImage");
344 return;
345 }
346 convImage = (GLfloat *) MALLOC(srcWidth * srcHeight * 4 * sizeof(GLfloat));
347 if (!convImage) {
348 _mesa_error(ctx, GL_OUT_OF_MEMORY, "glTexImage");
349 FREE(tmpImage);
350 return;
351 }
352
353 for (img = 0; img < srcDepth; img++) {
354 const GLfloat *srcf;
355 GLfloat *dstf = tmpImage;
356 GLchan *dest;
357
358 /* unpack and do transfer ops up to convolution */
359 for (row = 0; row < srcHeight; row++) {
360 const GLvoid *src = _mesa_image_address(srcPacking,
361 srcAddr, srcWidth, srcHeight,
362 srcFormat, srcType, img, row, 0);
363 _mesa_unpack_float_color_span(ctx, srcWidth, GL_RGBA, dstf,
364 srcFormat, srcType, src, srcPacking,
365 transferOps & IMAGE_PRE_CONVOLUTION_BITS,
366 GL_TRUE);
367 dstf += srcWidth * 4;
368 }
369
370 /* convolve */
371 if (dimensions == 1) {
372 ASSERT(ctx->Pixel.Convolution1DEnabled);
373 _mesa_convolve_1d_image(ctx, &convWidth, tmpImage, convImage);
374 }
375 else {
376 if (ctx->Pixel.Convolution2DEnabled) {
377 _mesa_convolve_2d_image(ctx, &convWidth, &convHeight,
378 tmpImage, convImage);
379 }
380 else {
381 ASSERT(ctx->Pixel.Separable2DEnabled);
382 _mesa_convolve_sep_image(ctx, &convWidth, &convHeight,
383 tmpImage, convImage);
384 }
385 }
386
387 /* packing and transfer ops after convolution */
388 srcf = convImage;
389 dest = (GLchan *) texDestAddr
390 + (dstZoffset + img) * (dstImageStride / sizeof(GLchan))
391 + dstYoffset * (dstRowStride / sizeof(GLchan));
392 for (row = 0; row < convHeight; row++) {
393 _mesa_pack_float_rgba_span(ctx, convWidth,
394 (const GLfloat (*)[4]) srcf,
395 texDestFormat, CHAN_TYPE,
396 dest, &_mesa_native_packing,
397 transferOps
398 & IMAGE_POST_CONVOLUTION_BITS);
399 srcf += convWidth * 4;
400 dest += (dstRowStride / sizeof(GLchan));
401 }
402 }
403
404 FREE(convImage);
405 FREE(tmpImage);
406 }
407 else {
408 /*
409 * no convolution
410 */
411 GLint img, row;
412 GLchan *dest = (GLchan *) texDestAddr
413 + dstZoffset * (dstImageStride / sizeof(GLchan))
414 + dstYoffset * (dstRowStride / sizeof(GLchan))
415 + dstXoffset * texComponents;
416 for (img = 0; img < srcDepth; img++) {
417 GLchan *destRow = dest;
418 for (row = 0; row < srcHeight; row++) {
419 const GLvoid *srcRow = _mesa_image_address(srcPacking,
420 srcAddr, srcWidth, srcHeight,
421 srcFormat, srcType, img, row, 0);
422 _mesa_unpack_chan_color_span(ctx, srcWidth, texDestFormat,
423 destRow, srcFormat, srcType, srcRow,
424 srcPacking, transferOps);
425 destRow += (dstRowStride / sizeof(GLchan));
426 }
427 dest += dstImageStride / sizeof(GLchan);
428 }
429 }
430 }
431 }
432
433
434
435 /*
436 * Transfer a texture image from user space to <destAddr> applying all
437 * needed image transfer operations and storing the result in the format
438 * specified by <dstFormat>. <dstFormat> may be any format from texformat.h.
439 * Input:
440 * dimensions - 1, 2 or 3
441 * baseInternalFormat - base format of the internal texture format
442 * specified by the user. This is very important, see below.
443 * dstFormat - destination image format
444 * dstAddr - destination address
445 * srcWidth, srcHeight, srcDepth - size of source iamge
446 * dstX/Y/Zoffset - as specified by glTexSubImage
447 * dstRowStride - stride between dest rows in bytes
448 * dstImageStride - stride between dest images in bytes
449 * srcFormat, srcType - incoming image format and datatype
450 * srcAddr - source image address
451 * srcPacking - packing params of source image
452 *
453 * XXX this function is a bit more complicated than it should be. If
454 * _mesa_convert_texsubimage[123]d could handle any dest/source formats
455 * or if transfer_teximage() could store in any MESA_FORMAT_* format, we
456 * could simplify things here.
457 */
458 void
459 _mesa_transfer_teximage(GLcontext *ctx, GLuint dimensions,
460 GLenum baseInternalFormat,
461 const struct gl_texture_format *dstFormat,
462 GLvoid *dstAddr,
463 GLint srcWidth, GLint srcHeight, GLint srcDepth,
464 GLint dstXoffset, GLint dstYoffset, GLint dstZoffset,
465 GLint dstRowStride, GLint dstImageStride,
466 GLenum srcFormat, GLenum srcType,
467 const GLvoid *srcAddr,
468 const struct gl_pixelstore_attrib *srcPacking)
469 {
470 const GLint dstRowStridePixels = dstRowStride / dstFormat->TexelBytes;
471 const GLint dstImageStridePixels = dstImageStride / dstFormat->TexelBytes;
472 GLboolean makeTemp;
473 GLuint transferOps = ctx->_ImageTransferState;
474 GLboolean freeSourceData = GL_FALSE;
475 GLint postConvWidth = srcWidth, postConvHeight = srcHeight;
476
477 assert(baseInternalFormat > 0);
478 ASSERT(baseInternalFormat == GL_LUMINANCE ||
479 baseInternalFormat == GL_INTENSITY ||
480 baseInternalFormat == GL_LUMINANCE_ALPHA ||
481 baseInternalFormat == GL_ALPHA ||
482 baseInternalFormat == GL_RGB ||
483 baseInternalFormat == GL_RGBA ||
484 baseInternalFormat == GL_DEPTH_COMPONENT);
485
486 if (transferOps & IMAGE_CONVOLUTION_BIT) {
487 _mesa_adjust_image_for_convolution(ctx, dimensions, &postConvWidth,
488 &postConvHeight);
489 }
490
491 /*
492 * Consider this scenario: The user's source image is GL_RGB and the
493 * requested internal format is GL_LUMINANCE. Now suppose the device
494 * driver doesn't support GL_LUMINANCE and instead uses RGB16 as the
495 * texture format. In that case we still need to do an intermediate
496 * conversion to luminance format so that the incoming red channel gets
497 * replicated into the dest red, green and blue channels. The following
498 * code takes care of that.
499 */
500 if (dstFormat->BaseFormat != baseInternalFormat) {
501 /* Allocate storage for temporary image in the baseInternalFormat */
502 const GLint texelSize = _mesa_components_in_format(baseInternalFormat)
503 * sizeof(GLchan);
504 const GLint bytes = texelSize * postConvWidth * postConvHeight *srcDepth;
505 const GLint tmpRowStride = texelSize * postConvWidth;
506 const GLint tmpImgStride = texelSize * postConvWidth * postConvHeight;
507 GLvoid *tmpImage = MALLOC(bytes);
508 if (!tmpImage)
509 return;
510 transfer_teximage(ctx, dimensions, baseInternalFormat, tmpImage,
511 srcWidth, srcHeight, srcDepth,
512 0, 0, 0, /* x/y/zoffset */
513 tmpRowStride, tmpImgStride,
514 srcFormat, srcType, srcAddr, srcPacking, transferOps);
515
516 /* this is our new source image */
517 srcWidth = postConvWidth;
518 srcHeight = postConvHeight;
519 srcFormat = baseInternalFormat;
520 srcType = CHAN_TYPE;
521 srcAddr = tmpImage;
522 srcPacking = &_mesa_native_packing;
523 freeSourceData = GL_TRUE;
524 transferOps = 0; /* image transfer ops were completed */
525 }
526
527 /* Let the optimized tex conversion functions take a crack at the
528 * image conversion if the dest format is a h/w format.
529 */
530 if (_mesa_is_hardware_tex_format(dstFormat)) {
531 if (transferOps) {
532 makeTemp = GL_TRUE;
533 }
534 else {
535 if (dimensions == 1) {
536 makeTemp = !_mesa_convert_texsubimage1d(dstFormat->MesaFormat,
537 dstXoffset,
538 srcWidth,
539 srcFormat, srcType,
540 srcPacking, srcAddr,
541 dstAddr);
542 }
543 else if (dimensions == 2) {
544 makeTemp = !_mesa_convert_texsubimage2d(dstFormat->MesaFormat,
545 dstXoffset, dstYoffset,
546 srcWidth, srcHeight,
547 dstRowStridePixels,
548 srcFormat, srcType,
549 srcPacking, srcAddr,
550 dstAddr);
551 }
552 else {
553 assert(dimensions == 3);
554 makeTemp = !_mesa_convert_texsubimage3d(dstFormat->MesaFormat,
555 dstXoffset, dstYoffset, dstZoffset,
556 srcWidth, srcHeight, srcDepth,
557 dstRowStridePixels, dstImageStridePixels,
558 srcFormat, srcType,
559 srcPacking, srcAddr, dstAddr);
560 }
561 if (!makeTemp) {
562 /* all done! */
563 if (freeSourceData)
564 FREE((void *) srcAddr);
565 return;
566 }
567 }
568 }
569 else {
570 /* software texture format */
571 makeTemp = GL_FALSE;
572 }
573
574 if (makeTemp) {
575 GLint postConvWidth = srcWidth, postConvHeight = srcHeight;
576 GLenum tmpFormat;
577 GLuint tmpComps, tmpTexelSize;
578 GLint tmpRowStride, tmpImageStride;
579 GLubyte *tmpImage;
580
581 if (transferOps & IMAGE_CONVOLUTION_BIT) {
582 _mesa_adjust_image_for_convolution(ctx, dimensions, &postConvWidth,
583 &postConvHeight);
584 }
585
586 tmpFormat = dstFormat->BaseFormat;
587 tmpComps = _mesa_components_in_format(tmpFormat);
588 tmpTexelSize = tmpComps * sizeof(GLchan);
589 tmpRowStride = postConvWidth * tmpTexelSize;
590 tmpImageStride = postConvWidth * postConvHeight * tmpTexelSize;
591 tmpImage = (GLubyte *) MALLOC(postConvWidth * postConvHeight *
592 srcDepth * tmpTexelSize);
593 if (!tmpImage) {
594 if (freeSourceData)
595 FREE((void *) srcAddr);
596 return;
597 }
598
599 transfer_teximage(ctx, dimensions, tmpFormat, tmpImage,
600 srcWidth, srcHeight, srcDepth,
601 0, 0, 0, /* x/y/zoffset */
602 tmpRowStride, tmpImageStride,
603 srcFormat, srcType, srcAddr, srcPacking, transferOps);
604
605 if (freeSourceData)
606 FREE((void *) srcAddr);
607
608 /* the temp image is our new source image */
609 srcWidth = postConvWidth;
610 srcHeight = postConvHeight;
611 srcFormat = tmpFormat;
612 srcType = CHAN_TYPE;
613 srcAddr = tmpImage;
614 srcPacking = &_mesa_native_packing;
615 freeSourceData = GL_TRUE;
616 }
617
618 if (_mesa_is_hardware_tex_format(dstFormat)) {
619 assert(makeTemp);
620 if (dimensions == 1) {
621 GLboolean b;
622 b = _mesa_convert_texsubimage1d(dstFormat->MesaFormat,
623 dstXoffset,
624 srcWidth,
625 srcFormat, srcType,
626 srcPacking, srcAddr,
627 dstAddr);
628 assert(b);
629 }
630 else if (dimensions == 2) {
631 GLboolean b;
632 b = _mesa_convert_texsubimage2d(dstFormat->MesaFormat,
633 dstXoffset, dstYoffset,
634 srcWidth, srcHeight,
635 dstRowStridePixels,
636 srcFormat, srcType,
637 srcPacking, srcAddr,
638 dstAddr);
639 assert(b);
640 }
641 else {
642 GLboolean b;
643 b = _mesa_convert_texsubimage3d(dstFormat->MesaFormat,
644 dstXoffset, dstYoffset, dstZoffset,
645 srcWidth, srcHeight, srcDepth,
646 dstRowStridePixels, dstImageStridePixels,
647 srcFormat, srcType,
648 srcPacking, srcAddr, dstAddr);
649 assert(b);
650 }
651 }
652 else {
653 /* software format */
654 assert(!makeTemp);
655 transfer_teximage(ctx, dimensions, dstFormat->BaseFormat, dstAddr,
656 srcWidth, srcHeight, srcDepth,
657 dstXoffset, dstYoffset, dstZoffset,
658 dstRowStride, dstImageStride,
659 srcFormat, srcType, srcAddr, srcPacking, transferOps);
660 }
661
662 if (freeSourceData)
663 FREE((void *) srcAddr); /* the temp image */
664 }
665
666
667
668 /**
669 * Given a user's uncompressed texture image, this function takes care of
670 * pixel unpacking, pixel transfer, format conversion and compression.
671 */
672 static void
673 transfer_compressed_teximage(GLcontext *ctx, GLuint dimensions,
674 GLsizei width, GLsizei height, GLsizei depth,
675 GLenum srcFormat, GLenum srcType,
676 const struct gl_pixelstore_attrib *unpacking,
677 const GLvoid *source,
678 const struct gl_texture_format *dstFormat,
679 GLubyte *dest,
680 GLint dstRowStride)
681 {
682 GLchan *tempImage = NULL;
683 GLint srcRowStride;
684 GLenum baseFormat;
685
686 ASSERT(dimensions == 2);
687 /* TexelBytes is zero if and only if it's a compressed format */
688 ASSERT(dstFormat->TexelBytes == 0);
689
690 baseFormat = dstFormat->BaseFormat;
691
692 if (srcFormat != baseFormat || srcType != CHAN_TYPE ||
693 ctx->_ImageTransferState != 0 || unpacking->SwapBytes) {
694 /* need to convert user's image to texImage->Format, GLchan */
695 GLint comps = components_in_intformat(baseFormat);
696 GLint postConvWidth = width, postConvHeight = height;
697
698 /* XXX convolution untested */
699 if (ctx->_ImageTransferState & IMAGE_CONVOLUTION_BIT) {
700 _mesa_adjust_image_for_convolution(ctx, dimensions, &postConvWidth,
701 &postConvHeight);
702 }
703
704 tempImage = (GLchan*) MALLOC(width * height * comps * sizeof(GLchan));
705 if (!tempImage) {
706 _mesa_error(ctx, GL_OUT_OF_MEMORY, "glTexImage2D");
707 return;
708 }
709 transfer_teximage(ctx, dimensions,
710 baseFormat, /* dest format */
711 tempImage, /* dst address */
712 width, height, depth, /* src size */
713 0, 0, 0, /* x/y/zoffset */
714 comps * width, /* dst row stride */
715 comps * width * height, /* dst image stride */
716 srcFormat, srcType, /* src format, type */
717 source, unpacking, /* src and src packing */
718 ctx->_ImageTransferState);
719 source = tempImage;
720 width = postConvWidth;
721 height = postConvHeight;
722 srcRowStride = width;
723 }
724 else {
725 if (unpacking->RowLength)
726 srcRowStride = unpacking->RowLength;
727 else
728 srcRowStride = width;
729 }
730
731 _mesa_compress_teximage(ctx, width, height, baseFormat,
732 (const GLchan *) source, srcRowStride,
733 dstFormat, dest, dstRowStride);
734 if (tempImage) {
735 FREE(tempImage);
736 }
737 }
738
739
740
741 /*
742 * This is the software fallback for Driver.TexImage1D()
743 * and Driver.CopyTexImage2D().
744 * The texture image type will be GLchan.
745 * The texture image format will be GL_COLOR_INDEX, GL_INTENSITY,
746 * GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_ALPHA, GL_RGB or GL_RGBA.
747 */
748 void
749 _mesa_store_teximage1d(GLcontext *ctx, GLenum target, GLint level,
750 GLint internalFormat,
751 GLint width, GLint border,
752 GLenum format, GLenum type, const GLvoid *pixels,
753 const struct gl_pixelstore_attrib *packing,
754 struct gl_texture_object *texObj,
755 struct gl_texture_image *texImage)
756 {
757 GLint postConvWidth = width;
758 GLint texelBytes, sizeInBytes;
759
760 if (ctx->_ImageTransferState & IMAGE_CONVOLUTION_BIT) {
761 _mesa_adjust_image_for_convolution(ctx, 1, &postConvWidth, NULL);
762 }
763
764 /* choose the texture format */
765 assert(ctx->Driver.ChooseTextureFormat);
766 texImage->TexFormat = (*ctx->Driver.ChooseTextureFormat)(ctx,
767 internalFormat, format, type);
768 assert(texImage->TexFormat);
769 texImage->FetchTexel = texImage->TexFormat->FetchTexel1D;
770
771 texelBytes = texImage->TexFormat->TexelBytes;
772
773 /* allocate memory */
774 if (texImage->IsCompressed)
775 sizeInBytes = texImage->CompressedSize;
776 else
777 sizeInBytes = postConvWidth * texelBytes;
778 texImage->Data = MESA_PBUFFER_ALLOC(sizeInBytes);
779 if (!texImage->Data) {
780 _mesa_error(ctx, GL_OUT_OF_MEMORY, "glTexImage1D");
781 return;
782 }
783
784 if (!pixels)
785 return;
786
787 /* unpack image, apply transfer ops and store in texImage->Data */
788 if (texImage->IsCompressed) {
789 GLint dstRowStride = _mesa_compressed_row_stride(texImage->IntFormat,
790 width);
791 transfer_compressed_teximage(ctx, 1, width, 1, 1,
792 format, type, packing,
793 pixels, texImage->TexFormat,
794 (GLubyte *) texImage->Data, dstRowStride);
795 }
796 else {
797 _mesa_transfer_teximage(ctx, 1,
798 texImage->Format, /* base format */
799 texImage->TexFormat, texImage->Data,
800 width, 1, 1, /* src size */
801 0, 0, 0, /* dstX/Y/Zoffset */
802 0, /* dstRowStride */
803 0, /* dstImageStride */
804 format, type, pixels, packing);
805 }
806
807 /* GL_SGIS_generate_mipmap */
808 if (level == texObj->BaseLevel && texObj->GenerateMipmap) {
809 _mesa_generate_mipmap(ctx, target,
810 &ctx->Texture.Unit[ctx->Texture.CurrentUnit],
811 texObj);
812 }
813 }
814
815
816 /*
817 * This is the software fallback for Driver.TexImage2D()
818 * and Driver.CopyTexImage2D().
819 * The texture image type will be GLchan.
820 * The texture image format will be GL_COLOR_INDEX, GL_INTENSITY,
821 * GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_ALPHA, GL_RGB or GL_RGBA.
822 */
823 void
824 _mesa_store_teximage2d(GLcontext *ctx, GLenum target, GLint level,
825 GLint internalFormat,
826 GLint width, GLint height, GLint border,
827 GLenum format, GLenum type, const void *pixels,
828 const struct gl_pixelstore_attrib *packing,
829 struct gl_texture_object *texObj,
830 struct gl_texture_image *texImage)
831 {
832 GLint postConvWidth = width, postConvHeight = height;
833 GLint texelBytes, sizeInBytes;
834
835 if (ctx->_ImageTransferState & IMAGE_CONVOLUTION_BIT) {
836 _mesa_adjust_image_for_convolution(ctx, 2, &postConvWidth,
837 &postConvHeight);
838 }
839
840 /* choose the texture format */
841 assert(ctx->Driver.ChooseTextureFormat);
842 texImage->TexFormat = (*ctx->Driver.ChooseTextureFormat)(ctx,
843 internalFormat, format, type);
844 assert(texImage->TexFormat);
845 texImage->FetchTexel = texImage->TexFormat->FetchTexel2D;
846
847 texelBytes = texImage->TexFormat->TexelBytes;
848
849 /* allocate memory */
850 if (texImage->IsCompressed)
851 sizeInBytes = texImage->CompressedSize;
852 else
853 sizeInBytes = postConvWidth * postConvHeight * texelBytes;
854 texImage->Data = MESA_PBUFFER_ALLOC(sizeInBytes);
855 if (!texImage->Data) {
856 _mesa_error(ctx, GL_OUT_OF_MEMORY, "glTexImage2D");
857 return;
858 }
859
860 if (!pixels)
861 return;
862
863 /* unpack image, apply transfer ops and store in texImage->Data */
864 if (texImage->IsCompressed) {
865 GLint dstRowStride = _mesa_compressed_row_stride(texImage->IntFormat,
866 width);
867 transfer_compressed_teximage(ctx, 2, width, height, 1,
868 format, type, packing,
869 pixels, texImage->TexFormat,
870 (GLubyte *) texImage->Data, dstRowStride);
871 }
872 else {
873 _mesa_transfer_teximage(ctx, 2,
874 texImage->Format,
875 texImage->TexFormat, texImage->Data,
876 width, height, 1, /* src size */
877 0, 0, 0, /* dstX/Y/Zoffset */
878 texImage->Width * texelBytes, /* dstRowStride */
879 0, /* dstImageStride */
880 format, type, pixels, packing);
881 }
882
883 /* GL_SGIS_generate_mipmap */
884 if (level == texObj->BaseLevel && texObj->GenerateMipmap) {
885 _mesa_generate_mipmap(ctx, target,
886 &ctx->Texture.Unit[ctx->Texture.CurrentUnit],
887 texObj);
888 }
889 }
890
891
892
893 /*
894 * This is the software fallback for Driver.TexImage3D()
895 * and Driver.CopyTexImage3D().
896 * The texture image type will be GLchan.
897 * The texture image format will be GL_COLOR_INDEX, GL_INTENSITY,
898 * GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_ALPHA, GL_RGB or GL_RGBA.
899 */
900 void
901 _mesa_store_teximage3d(GLcontext *ctx, GLenum target, GLint level,
902 GLint internalFormat,
903 GLint width, GLint height, GLint depth, GLint border,
904 GLenum format, GLenum type, const void *pixels,
905 const struct gl_pixelstore_attrib *packing,
906 struct gl_texture_object *texObj,
907 struct gl_texture_image *texImage)
908 {
909 GLint texelBytes, sizeInBytes;
910
911 /* choose the texture format */
912 assert(ctx->Driver.ChooseTextureFormat);
913 texImage->TexFormat = (*ctx->Driver.ChooseTextureFormat)(ctx,
914 internalFormat, format, type);
915 assert(texImage->TexFormat);
916 texImage->FetchTexel = texImage->TexFormat->FetchTexel3D;
917
918 texelBytes = texImage->TexFormat->TexelBytes;
919
920 /* allocate memory */
921 if (texImage->IsCompressed)
922 sizeInBytes = texImage->CompressedSize;
923 else
924 sizeInBytes = width * height * depth * texelBytes;
925 texImage->Data = MESA_PBUFFER_ALLOC(sizeInBytes);
926 if (!texImage->Data) {
927 _mesa_error(ctx, GL_OUT_OF_MEMORY, "glTexImage3D");
928 return;
929 }
930
931 if (!pixels)
932 return;
933
934 /* unpack image, apply transfer ops and store in texImage->Data */
935 if (texImage->IsCompressed) {
936 GLint dstRowStride = _mesa_compressed_row_stride(texImage->IntFormat,
937 width);
938 transfer_compressed_teximage(ctx, 3, width, height, depth,
939 format, type, packing,
940 pixels, texImage->TexFormat,
941 (GLubyte *) texImage->Data, dstRowStride);
942 }
943 else {
944 _mesa_transfer_teximage(ctx, 3,
945 texImage->Format,
946 texImage->TexFormat, texImage->Data,
947 width, height, depth, /* src size */
948 0, 0, 0, /* dstX/Y/Zoffset */
949 texImage->Width * texelBytes, /* dstRowStride */
950 texImage->Width * texImage->Height * texelBytes,
951 format, type, pixels, packing);
952 }
953
954 /* GL_SGIS_generate_mipmap */
955 if (level == texObj->BaseLevel && texObj->GenerateMipmap) {
956 _mesa_generate_mipmap(ctx, target,
957 &ctx->Texture.Unit[ctx->Texture.CurrentUnit],
958 texObj);
959 }
960 }
961
962
963
964
965 /*
966 * This is the software fallback for Driver.TexSubImage1D()
967 * and Driver.CopyTexSubImage1D().
968 */
969 void
970 _mesa_store_texsubimage1d(GLcontext *ctx, GLenum target, GLint level,
971 GLint xoffset, GLint width,
972 GLenum format, GLenum type, const void *pixels,
973 const struct gl_pixelstore_attrib *packing,
974 struct gl_texture_object *texObj,
975 struct gl_texture_image *texImage)
976 {
977 if (texImage->IsCompressed) {
978 GLint dstRowStride = _mesa_compressed_row_stride(texImage->IntFormat,
979 texImage->Width);
980 GLubyte *dest = _mesa_compressed_image_address(xoffset, 0, 0,
981 texImage->IntFormat,
982 texImage->Width,
983 texImage->Data);
984 transfer_compressed_teximage(ctx, 1, /* dimensions */
985 width, 1, 1, /* size to replace */
986 format, type, /* source format/type */
987 packing, /* source packing */
988 pixels, /* source data */
989 texImage->TexFormat,/* dest format */
990 dest, dstRowStride);
991 }
992 else {
993 _mesa_transfer_teximage(ctx, 1,
994 texImage->Format,
995 texImage->TexFormat, texImage->Data,
996 width, 1, 1, /* src size */
997 xoffset, 0, 0, /* dest offsets */
998 0, /* dstRowStride */
999 0, /* dstImageStride */
1000 format, type, pixels, packing);
1001 }
1002
1003 /* GL_SGIS_generate_mipmap */
1004 if (level == texObj->BaseLevel && texObj->GenerateMipmap) {
1005 _mesa_generate_mipmap(ctx, target,
1006 &ctx->Texture.Unit[ctx->Texture.CurrentUnit],
1007 texObj);
1008 }
1009 }
1010
1011
1012
1013 /*
1014 * This is the software fallback for Driver.TexSubImage2D()
1015 * and Driver.CopyTexSubImage2D().
1016 */
1017 void
1018 _mesa_store_texsubimage2d(GLcontext *ctx, GLenum target, GLint level,
1019 GLint xoffset, GLint yoffset,
1020 GLint width, GLint height,
1021 GLenum format, GLenum type, const void *pixels,
1022 const struct gl_pixelstore_attrib *packing,
1023 struct gl_texture_object *texObj,
1024 struct gl_texture_image *texImage)
1025 {
1026 if (texImage->IsCompressed) {
1027 GLint dstRowStride = _mesa_compressed_row_stride(texImage->IntFormat,
1028 texImage->Width);
1029 GLubyte *dest = _mesa_compressed_image_address(xoffset, yoffset, 0,
1030 texImage->IntFormat,
1031 texImage->Width,
1032 texImage->Data);
1033 transfer_compressed_teximage(ctx, 2, /* dimensions */
1034 width, height, 1, /* size to replace */
1035 format, type, /* source format/type */
1036 packing, /* source packing */
1037 pixels, /* source data */
1038 texImage->TexFormat,/* dest format */
1039 dest, dstRowStride);
1040 }
1041 else {
1042 _mesa_transfer_teximage(ctx, 2,
1043 texImage->Format,
1044 texImage->TexFormat, texImage->Data,
1045 width, height, 1, /* src size */
1046 xoffset, yoffset, 0, /* dest offsets */
1047 texImage->Width *texImage->TexFormat->TexelBytes,
1048 0, /* dstImageStride */
1049 format, type, pixels, packing);
1050 }
1051
1052 /* GL_SGIS_generate_mipmap */
1053 if (level == texObj->BaseLevel && texObj->GenerateMipmap) {
1054 _mesa_generate_mipmap(ctx, target,
1055 &ctx->Texture.Unit[ctx->Texture.CurrentUnit],
1056 texObj);
1057 }
1058 }
1059
1060
1061 /*
1062 * This is the software fallback for Driver.TexSubImage3D().
1063 * and Driver.CopyTexSubImage3D().
1064 */
1065 void
1066 _mesa_store_texsubimage3d(GLcontext *ctx, GLenum target, GLint level,
1067 GLint xoffset, GLint yoffset, GLint zoffset,
1068 GLint width, GLint height, GLint depth,
1069 GLenum format, GLenum type, const void *pixels,
1070 const struct gl_pixelstore_attrib *packing,
1071 struct gl_texture_object *texObj,
1072 struct gl_texture_image *texImage)
1073 {
1074 if (texImage->IsCompressed) {
1075 GLint dstRowStride = _mesa_compressed_row_stride(texImage->IntFormat,
1076 texImage->Width);
1077 GLubyte *dest = _mesa_compressed_image_address(xoffset, yoffset, zoffset,
1078 texImage->IntFormat,
1079 texImage->Width,
1080 texImage->Data);
1081 transfer_compressed_teximage(ctx, 3, /* dimensions */
1082 width, height, depth,/* size to replace */
1083 format, type, /* source format/type */
1084 packing, /* source packing */
1085 pixels, /* source data */
1086 texImage->TexFormat,/* dest format */
1087 dest, dstRowStride);
1088 }
1089 else {
1090 const GLint texelBytes = texImage->TexFormat->TexelBytes;
1091 _mesa_transfer_teximage(ctx, 3,
1092 texImage->Format,
1093 texImage->TexFormat, texImage->Data,
1094 width, height, depth, /* src size */
1095 xoffset, yoffset, xoffset, /* dest offsets */
1096 texImage->Width * texelBytes, /* dst row stride */
1097 texImage->Width * texImage->Height * texelBytes,
1098 format, type, pixels, packing);
1099 }
1100
1101 /* GL_SGIS_generate_mipmap */
1102 if (level == texObj->BaseLevel && texObj->GenerateMipmap) {
1103 _mesa_generate_mipmap(ctx, target,
1104 &ctx->Texture.Unit[ctx->Texture.CurrentUnit],
1105 texObj);
1106 }
1107 }
1108
1109
1110
1111
1112 /*
1113 * Fallback for Driver.CompressedTexImage1D()
1114 */
1115 void
1116 _mesa_store_compressed_teximage1d(GLcontext *ctx, GLenum target, GLint level,
1117 GLint internalFormat,
1118 GLint width, GLint border,
1119 GLsizei imageSize, const GLvoid *data,
1120 struct gl_texture_object *texObj,
1121 struct gl_texture_image *texImage)
1122 {
1123 /* this space intentionally left blank */
1124 }
1125
1126
1127
1128 /*
1129 * Fallback for Driver.CompressedTexImage2D()
1130 */
1131 void
1132 _mesa_store_compressed_teximage2d(GLcontext *ctx, GLenum target, GLint level,
1133 GLint internalFormat,
1134 GLint width, GLint height, GLint border,
1135 GLsizei imageSize, const GLvoid *data,
1136 struct gl_texture_object *texObj,
1137 struct gl_texture_image *texImage)
1138 {
1139 /* This is pretty simple, basically just do a memcpy without worrying
1140 * about the usual image unpacking or image transfer operations.
1141 */
1142 ASSERT(texObj);
1143 ASSERT(texImage);
1144 ASSERT(texImage->Width > 0);
1145 ASSERT(texImage->Height > 0);
1146 ASSERT(texImage->Depth == 1);
1147 ASSERT(texImage->Data == NULL); /* was freed in glCompressedTexImage2DARB */
1148
1149 /* choose the texture format */
1150 assert(ctx->Driver.ChooseTextureFormat);
1151 texImage->TexFormat = (*ctx->Driver.ChooseTextureFormat)(ctx,
1152 internalFormat, 0, 0);
1153 assert(texImage->TexFormat);
1154 texImage->FetchTexel = texImage->TexFormat->FetchTexel2D;
1155
1156 /* allocate storage */
1157 texImage->Data = MESA_PBUFFER_ALLOC(imageSize);
1158 if (!texImage->Data) {
1159 _mesa_error(ctx, GL_OUT_OF_MEMORY, "glCompressedTexImage2DARB");
1160 return;
1161 }
1162
1163 /* copy the data */
1164 ASSERT(texImage->CompressedSize == imageSize);
1165 MEMCPY(texImage->Data, data, imageSize);
1166 }
1167
1168
1169
1170 /*
1171 * Fallback for Driver.CompressedTexImage3D()
1172 */
1173 void
1174 _mesa_store_compressed_teximage3d(GLcontext *ctx, GLenum target, GLint level,
1175 GLint internalFormat,
1176 GLint width, GLint height, GLint depth,
1177 GLint border,
1178 GLsizei imageSize, const GLvoid *data,
1179 struct gl_texture_object *texObj,
1180 struct gl_texture_image *texImage)
1181 {
1182 /* this space intentionally left blank */
1183 }
1184
1185
1186
1187 /**
1188 * Fallback for Driver.CompressedTexSubImage1D()
1189 */
1190 void
1191 _mesa_store_compressed_texsubimage1d(GLcontext *ctx, GLenum target,
1192 GLint level,
1193 GLint xoffset, GLsizei width,
1194 GLenum format,
1195 GLsizei imageSize, const GLvoid *data,
1196 struct gl_texture_object *texObj,
1197 struct gl_texture_image *texImage)
1198 {
1199 /* this space intentionally left blank */
1200 }
1201
1202
1203 /**
1204 * Fallback for Driver.CompressedTexSubImage2D()
1205 */
1206 void
1207 _mesa_store_compressed_texsubimage2d(GLcontext *ctx, GLenum target,
1208 GLint level,
1209 GLint xoffset, GLint yoffset,
1210 GLsizei width, GLsizei height,
1211 GLenum format,
1212 GLsizei imageSize, const GLvoid *data,
1213 struct gl_texture_object *texObj,
1214 struct gl_texture_image *texImage)
1215 {
1216 GLint bytesPerRow, destRowStride, srcRowStride;
1217 GLint i, rows;
1218 GLubyte *dest;
1219 const GLubyte *src;
1220
1221 /* these should have been caught sooner */
1222 ASSERT((width & 3) == 0 || width == 2 || width == 1);
1223 ASSERT((height & 3) == 0 || height == 2 || height == 1);
1224 ASSERT((xoffset & 3) == 0);
1225 ASSERT((yoffset & 3) == 0);
1226
1227 srcRowStride = _mesa_compressed_row_stride(texImage->IntFormat, width);
1228 src = (const GLubyte *) data;
1229
1230 destRowStride = _mesa_compressed_row_stride(texImage->IntFormat,
1231 texImage->Width);
1232 dest = _mesa_compressed_image_address(xoffset, yoffset, 0,
1233 texImage->IntFormat,
1234 texImage->Width, texImage->Data);
1235
1236 bytesPerRow = srcRowStride;
1237 rows = height / 4;
1238
1239 for (i = 0; i < rows; i++) {
1240 MEMCPY(dest, src, bytesPerRow);
1241 dest += destRowStride;
1242 src += srcRowStride;
1243 }
1244 }
1245
1246
1247 /**
1248 * Fallback for Driver.CompressedTexSubImage3D()
1249 */
1250 void
1251 _mesa_store_compressed_texsubimage3d(GLcontext *ctx, GLenum target,
1252 GLint level,
1253 GLint xoffset, GLint yoffset, GLint zoffset,
1254 GLsizei width, GLsizei height, GLsizei depth,
1255 GLenum format,
1256 GLsizei imageSize, const GLvoid *data,
1257 struct gl_texture_object *texObj,
1258 struct gl_texture_image *texImage)
1259 {
1260 /* this space intentionally left blank */
1261 }
1262
1263
1264
1265
1266
1267 /*
1268 * This is the fallback for Driver.TestProxyTexImage().
1269 */
1270 GLboolean
1271 _mesa_test_proxy_teximage(GLcontext *ctx, GLenum target, GLint level,
1272 GLint internalFormat, GLenum format, GLenum type,
1273 GLint width, GLint height, GLint depth, GLint border)
1274 {
1275 struct gl_texture_unit *texUnit;
1276 struct gl_texture_object *texObj;
1277 struct gl_texture_image *texImage;
1278
1279 (void) format;
1280 (void) type;
1281
1282 texUnit = &ctx->Texture.Unit[ctx->Texture.CurrentUnit];
1283 texObj = _mesa_select_tex_object(ctx, texUnit, target);
1284 texImage = _mesa_select_tex_image(ctx, texUnit, target, level);
1285
1286 /* We always pass.
1287 * The core Mesa code will have already tested the image size, etc.
1288 * If a driver has more stringent texture limits to enforce it will
1289 * have to override this function.
1290 */
1291 /* choose the texture format */
1292 assert(ctx->Driver.ChooseTextureFormat);
1293 texImage->TexFormat = (*ctx->Driver.ChooseTextureFormat)(ctx,
1294 internalFormat, format, type);
1295 assert(texImage->TexFormat);
1296
1297 return GL_TRUE;
1298 }
1299
1300
1301
1302 /*
1303 * Average together two rows of a source image to produce a single new
1304 * row in the dest image. It's legal for the two source rows to point
1305 * to the same data. The source width must be equal to either the
1306 * dest width or two times the dest width.
1307 */
1308 static void
1309 do_row(const struct gl_texture_format *format, GLint srcWidth,
1310 const GLvoid *srcRowA, const GLvoid *srcRowB,
1311 GLint dstWidth, GLvoid *dstRow)
1312 {
1313 const GLuint k0 = (srcWidth == dstWidth) ? 0 : 1;
1314 const GLuint colStride = (srcWidth == dstWidth) ? 1 : 2;
1315
1316 assert(srcWidth == dstWidth || srcWidth == 2 * dstWidth);
1317
1318 switch (format->MesaFormat) {
1319 case MESA_FORMAT_RGBA:
1320 {
1321 GLuint i, j, k;
1322 const GLchan (*rowA)[4] = (const GLchan (*)[4]) srcRowA;
1323 const GLchan (*rowB)[4] = (const GLchan (*)[4]) srcRowB;
1324 GLchan (*dst)[4] = (GLchan (*)[4]) dstRow;
1325 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1326 i++, j += colStride, k += colStride) {
1327 dst[i][0] = (rowA[j][0] + rowA[k][0] +
1328 rowB[j][0] + rowB[k][0]) / 4;
1329 dst[i][1] = (rowA[j][1] + rowA[k][1] +
1330 rowB[j][1] + rowB[k][1]) / 4;
1331 dst[i][2] = (rowA[j][2] + rowA[k][2] +
1332 rowB[j][2] + rowB[k][2]) / 4;
1333 dst[i][3] = (rowA[j][3] + rowA[k][3] +
1334 rowB[j][3] + rowB[k][3]) / 4;
1335 }
1336 }
1337 return;
1338 case MESA_FORMAT_RGB:
1339 {
1340 GLuint i, j, k;
1341 const GLchan (*rowA)[3] = (const GLchan (*)[3]) srcRowA;
1342 const GLchan (*rowB)[3] = (const GLchan (*)[3]) srcRowB;
1343 GLchan (*dst)[3] = (GLchan (*)[3]) dstRow;
1344 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1345 i++, j += colStride, k += colStride) {
1346 dst[i][0] = (rowA[j][0] + rowA[k][0] +
1347 rowB[j][0] + rowB[k][0]) / 4;
1348 dst[i][1] = (rowA[j][1] + rowA[k][1] +
1349 rowB[j][1] + rowB[k][1]) / 4;
1350 dst[i][2] = (rowA[j][2] + rowA[k][2] +
1351 rowB[j][2] + rowB[k][2]) / 4;
1352 }
1353 }
1354 return;
1355 case MESA_FORMAT_ALPHA:
1356 case MESA_FORMAT_LUMINANCE:
1357 case MESA_FORMAT_INTENSITY:
1358 case MESA_FORMAT_COLOR_INDEX:
1359 {
1360 GLuint i, j, k;
1361 const GLchan *rowA = (const GLchan *) srcRowA;
1362 const GLchan *rowB = (const GLchan *) srcRowB;
1363 GLchan *dst = (GLchan *) dstRow;
1364 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1365 i++, j += colStride, k += colStride) {
1366 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4;
1367 }
1368 }
1369 return;
1370 case MESA_FORMAT_LUMINANCE_ALPHA:
1371 {
1372 GLuint i, j, k;
1373 const GLchan (*rowA)[2] = (const GLchan (*)[2]) srcRowA;
1374 const GLchan (*rowB)[2] = (const GLchan (*)[2]) srcRowB;
1375 GLchan (*dst)[2] = (GLchan (*)[2]) dstRow;
1376 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1377 i++, j += colStride, k += colStride) {
1378 dst[i][0] = (rowA[j][0] + rowA[k][0] +
1379 rowB[j][0] + rowB[k][0]) / 4;
1380 dst[i][1] = (rowA[j][1] + rowA[k][1] +
1381 rowB[j][1] + rowB[k][1]) / 4;
1382 }
1383 }
1384 return;
1385 case MESA_FORMAT_DEPTH_COMPONENT:
1386 {
1387 GLuint i, j, k;
1388 const GLfloat *rowA = (const GLfloat *) srcRowA;
1389 const GLfloat *rowB = (const GLfloat *) srcRowB;
1390 GLfloat *dst = (GLfloat *) dstRow;
1391 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1392 i++, j += colStride, k += colStride) {
1393 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) * 0.25F;
1394 }
1395 }
1396 return;
1397 /* Begin hardware formats */
1398 case MESA_FORMAT_RGBA8888:
1399 case MESA_FORMAT_ARGB8888:
1400 {
1401 GLuint i, j, k;
1402 const GLubyte (*rowA)[4] = (const GLubyte (*)[4]) srcRowA;
1403 const GLubyte (*rowB)[4] = (const GLubyte (*)[4]) srcRowB;
1404 GLubyte (*dst)[4] = (GLubyte (*)[4]) dstRow;
1405 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1406 i++, j += colStride, k += colStride) {
1407 dst[i][0] = (rowA[j][0] + rowA[k][0] +
1408 rowB[j][0] + rowB[k][0]) / 4;
1409 dst[i][1] = (rowA[j][1] + rowA[k][1] +
1410 rowB[j][1] + rowB[k][1]) / 4;
1411 dst[i][2] = (rowA[j][2] + rowA[k][2] +
1412 rowB[j][2] + rowB[k][2]) / 4;
1413 dst[i][3] = (rowA[j][3] + rowA[k][3] +
1414 rowB[j][3] + rowB[k][3]) / 4;
1415 }
1416 }
1417 return;
1418 case MESA_FORMAT_RGB888:
1419 {
1420 GLuint i, j, k;
1421 const GLubyte (*rowA)[3] = (const GLubyte (*)[3]) srcRowA;
1422 const GLubyte (*rowB)[3] = (const GLubyte (*)[3]) srcRowB;
1423 GLubyte (*dst)[3] = (GLubyte (*)[3]) dstRow;
1424 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1425 i++, j += colStride, k += colStride) {
1426 dst[i][0] = (rowA[j][0] + rowA[k][0] +
1427 rowB[j][0] + rowB[k][0]) / 4;
1428 dst[i][1] = (rowA[j][1] + rowA[k][1] +
1429 rowB[j][1] + rowB[k][1]) / 4;
1430 dst[i][2] = (rowA[j][2] + rowA[k][2] +
1431 rowB[j][2] + rowB[k][2]) / 4;
1432 }
1433 }
1434 return;
1435 case MESA_FORMAT_RGB565:
1436 {
1437 GLuint i, j, k;
1438 const GLushort *rowA = (const GLushort *) srcRowA;
1439 const GLushort *rowB = (const GLushort *) srcRowB;
1440 GLushort *dst = (GLushort *) dstRow;
1441 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1442 i++, j += colStride, k += colStride) {
1443 const GLint rowAr0 = rowA[j] & 0x1f;
1444 const GLint rowAr1 = rowA[k] & 0x1f;
1445 const GLint rowBr0 = rowB[j] & 0x1f;
1446 const GLint rowBr1 = rowB[k] & 0x1f;
1447 const GLint rowAg0 = (rowA[j] >> 5) & 0x3f;
1448 const GLint rowAg1 = (rowA[k] >> 5) & 0x3f;
1449 const GLint rowBg0 = (rowB[j] >> 5) & 0x3f;
1450 const GLint rowBg1 = (rowB[k] >> 5) & 0x3f;
1451 const GLint rowAb0 = (rowA[j] >> 11) & 0x1f;
1452 const GLint rowAb1 = (rowA[k] >> 11) & 0x1f;
1453 const GLint rowBb0 = (rowB[j] >> 11) & 0x1f;
1454 const GLint rowBb1 = (rowB[k] >> 11) & 0x1f;
1455 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 4;
1456 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 4;
1457 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 4;
1458 dst[i] = (blue << 11) | (green << 5) | red;
1459 }
1460 }
1461 return;
1462 case MESA_FORMAT_ARGB4444:
1463 {
1464 GLuint i, j, k;
1465 const GLushort *rowA = (const GLushort *) srcRowA;
1466 const GLushort *rowB = (const GLushort *) srcRowB;
1467 GLushort *dst = (GLushort *) dstRow;
1468 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1469 i++, j += colStride, k += colStride) {
1470 const GLint rowAr0 = rowA[j] & 0xf;
1471 const GLint rowAr1 = rowA[k] & 0xf;
1472 const GLint rowBr0 = rowB[j] & 0xf;
1473 const GLint rowBr1 = rowB[k] & 0xf;
1474 const GLint rowAg0 = (rowA[j] >> 4) & 0xf;
1475 const GLint rowAg1 = (rowA[k] >> 4) & 0xf;
1476 const GLint rowBg0 = (rowB[j] >> 4) & 0xf;
1477 const GLint rowBg1 = (rowB[k] >> 4) & 0xf;
1478 const GLint rowAb0 = (rowA[j] >> 8) & 0xf;
1479 const GLint rowAb1 = (rowA[k] >> 8) & 0xf;
1480 const GLint rowBb0 = (rowB[j] >> 8) & 0xf;
1481 const GLint rowBb1 = (rowB[k] >> 8) & 0xf;
1482 const GLint rowAa0 = (rowA[j] >> 12) & 0xf;
1483 const GLint rowAa1 = (rowA[k] >> 12) & 0xf;
1484 const GLint rowBa0 = (rowB[j] >> 12) & 0xf;
1485 const GLint rowBa1 = (rowB[k] >> 12) & 0xf;
1486 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 4;
1487 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 4;
1488 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 4;
1489 const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 4;
1490 dst[i] = (alpha << 12) | (blue << 8) | (green << 4) | red;
1491 }
1492 }
1493 return;
1494 case MESA_FORMAT_ARGB1555:
1495 {
1496 GLuint i, j, k;
1497 const GLushort *rowA = (const GLushort *) srcRowA;
1498 const GLushort *rowB = (const GLushort *) srcRowB;
1499 GLushort *dst = (GLushort *) dstRow;
1500 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1501 i++, j += colStride, k += colStride) {
1502 const GLint rowAr0 = rowA[j] & 0x1f;
1503 const GLint rowAr1 = rowA[k] & 0x1f;
1504 const GLint rowBr0 = rowB[j] & 0x1f;
1505 const GLint rowBr1 = rowB[k] & 0xf;
1506 const GLint rowAg0 = (rowA[j] >> 5) & 0x1f;
1507 const GLint rowAg1 = (rowA[k] >> 5) & 0x1f;
1508 const GLint rowBg0 = (rowB[j] >> 5) & 0x1f;
1509 const GLint rowBg1 = (rowB[k] >> 5) & 0x1f;
1510 const GLint rowAb0 = (rowA[j] >> 10) & 0x1f;
1511 const GLint rowAb1 = (rowA[k] >> 10) & 0x1f;
1512 const GLint rowBb0 = (rowB[j] >> 10) & 0x1f;
1513 const GLint rowBb1 = (rowB[k] >> 10) & 0x1f;
1514 const GLint rowAa0 = (rowA[j] >> 15) & 0x1;
1515 const GLint rowAa1 = (rowA[k] >> 15) & 0x1;
1516 const GLint rowBa0 = (rowB[j] >> 15) & 0x1;
1517 const GLint rowBa1 = (rowB[k] >> 15) & 0x1;
1518 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 4;
1519 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 4;
1520 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 4;
1521 const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 4;
1522 dst[i] = (alpha << 15) | (blue << 10) | (green << 5) | red;
1523 }
1524 }
1525 return;
1526 case MESA_FORMAT_AL88:
1527 {
1528 GLuint i, j, k;
1529 const GLubyte (*rowA)[2] = (const GLubyte (*)[2]) srcRowA;
1530 const GLubyte (*rowB)[2] = (const GLubyte (*)[2]) srcRowB;
1531 GLubyte (*dst)[2] = (GLubyte (*)[2]) dstRow;
1532 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1533 i++, j += colStride, k += colStride) {
1534 dst[i][0] = (rowA[j][0] + rowA[k][0] +
1535 rowB[j][0] + rowB[k][0]) >> 2;
1536 dst[i][1] = (rowA[j][1] + rowA[k][1] +
1537 rowB[j][1] + rowB[k][1]) >> 2;
1538 }
1539 }
1540 return;
1541 case MESA_FORMAT_RGB332:
1542 {
1543 GLuint i, j, k;
1544 const GLubyte *rowA = (const GLubyte *) srcRowA;
1545 const GLubyte *rowB = (const GLubyte *) srcRowB;
1546 GLubyte *dst = (GLubyte *) dstRow;
1547 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1548 i++, j += colStride, k += colStride) {
1549 const GLint rowAr0 = rowA[j] & 0x3;
1550 const GLint rowAr1 = rowA[k] & 0x3;
1551 const GLint rowBr0 = rowB[j] & 0x3;
1552 const GLint rowBr1 = rowB[k] & 0x3;
1553 const GLint rowAg0 = (rowA[j] >> 2) & 0x7;
1554 const GLint rowAg1 = (rowA[k] >> 2) & 0x7;
1555 const GLint rowBg0 = (rowB[j] >> 2) & 0x7;
1556 const GLint rowBg1 = (rowB[k] >> 2) & 0x7;
1557 const GLint rowAb0 = (rowA[j] >> 5) & 0x7;
1558 const GLint rowAb1 = (rowA[k] >> 5) & 0x7;
1559 const GLint rowBb0 = (rowB[j] >> 5) & 0x7;
1560 const GLint rowBb1 = (rowB[k] >> 5) & 0x7;
1561 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 4;
1562 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 4;
1563 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 4;
1564 dst[i] = (blue << 5) | (green << 2) | red;
1565 }
1566 }
1567 return;
1568 case MESA_FORMAT_A8:
1569 case MESA_FORMAT_L8:
1570 case MESA_FORMAT_I8:
1571 case MESA_FORMAT_CI8:
1572 {
1573 GLuint i, j, k;
1574 const GLubyte *rowA = (const GLubyte *) srcRowA;
1575 const GLubyte *rowB = (const GLubyte *) srcRowB;
1576 GLubyte *dst = (GLubyte *) dstRow;
1577 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1578 i++, j += colStride, k += colStride) {
1579 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) >> 2;
1580 }
1581 }
1582 return;
1583 default:
1584 _mesa_problem(NULL, "bad format in do_row()");
1585 }
1586 }
1587
1588
1589 /*
1590 * These functions generate a 1/2-size mipmap image from a source image.
1591 * Texture borders are handled by copying or averaging the source image's
1592 * border texels, depending on the scale-down factor.
1593 */
1594
1595 static void
1596 make_1d_mipmap(const struct gl_texture_format *format, GLint border,
1597 GLint srcWidth, const GLubyte *srcPtr,
1598 GLint dstWidth, GLubyte *dstPtr)
1599 {
1600 const GLint bpt = format->TexelBytes;
1601 const GLubyte *src;
1602 GLubyte *dst;
1603
1604 /* skip the border pixel, if any */
1605 src = srcPtr + border * bpt;
1606 dst = dstPtr + border * bpt;
1607
1608 /* we just duplicate the input row, kind of hack, saves code */
1609 do_row(format, srcWidth - 2 * border, src, src,
1610 dstWidth - 2 * border, dst);
1611
1612 if (border) {
1613 /* copy left-most pixel from source */
1614 MEMCPY(dstPtr, srcPtr, bpt);
1615 /* copy right-most pixel from source */
1616 MEMCPY(dstPtr + (dstWidth - 1) * bpt,
1617 srcPtr + (srcWidth - 1) * bpt,
1618 bpt);
1619 }
1620 }
1621
1622
1623 static void
1624 make_2d_mipmap(const struct gl_texture_format *format, GLint border,
1625 GLint srcWidth, GLint srcHeight, const GLubyte *srcPtr,
1626 GLint dstWidth, GLint dstHeight, GLubyte *dstPtr)
1627 {
1628 const GLint bpt = format->TexelBytes;
1629 const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */
1630 const GLint dstWidthNB = dstWidth - 2 * border;
1631 const GLint dstHeightNB = dstHeight - 2 * border;
1632 const GLint srcRowStride = bpt * srcWidth;
1633 const GLint dstRowStride = bpt * dstWidth;
1634 const GLubyte *srcA, *srcB;
1635 GLubyte *dst;
1636 GLint row, colStride;
1637
1638 colStride = (srcWidth == dstWidth) ? 1 : 2;
1639
1640 /* Compute src and dst pointers, skipping any border */
1641 srcA = srcPtr + border * ((srcWidth + 1) * bpt);
1642 if (srcHeight > 1)
1643 srcB = srcA + srcRowStride;
1644 else
1645 srcB = srcA;
1646 dst = dstPtr + border * ((dstWidth + 1) * bpt);
1647
1648 for (row = 0; row < dstHeightNB; row++) {
1649 do_row(format, srcWidthNB, srcA, srcB,
1650 dstWidthNB, dst);
1651 srcA += 2 * srcRowStride;
1652 srcB += 2 * srcRowStride;
1653 dst += dstRowStride;
1654 }
1655
1656 /* This is ugly but probably won't be used much */
1657 if (border > 0) {
1658 /* fill in dest border */
1659 /* lower-left border pixel */
1660 MEMCPY(dstPtr, srcPtr, bpt);
1661 /* lower-right border pixel */
1662 MEMCPY(dstPtr + (dstWidth - 1) * bpt,
1663 srcPtr + (srcWidth - 1) * bpt, bpt);
1664 /* upper-left border pixel */
1665 MEMCPY(dstPtr + dstWidth * (dstHeight - 1) * bpt,
1666 srcPtr + srcWidth * (srcHeight - 1) * bpt, bpt);
1667 /* upper-right border pixel */
1668 MEMCPY(dstPtr + (dstWidth * dstHeight - 1) * bpt,
1669 srcPtr + (srcWidth * srcHeight - 1) * bpt, bpt);
1670 /* lower border */
1671 do_row(format, srcWidthNB,
1672 srcPtr + bpt,
1673 srcPtr + bpt,
1674 dstWidthNB, dstPtr + bpt);
1675 /* upper border */
1676 do_row(format, srcWidthNB,
1677 srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt,
1678 srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt,
1679 dstWidthNB,
1680 dstPtr + (dstWidth * (dstHeight - 1) + 1) * bpt);
1681 /* left and right borders */
1682 if (srcHeight == dstHeight) {
1683 /* copy border pixel from src to dst */
1684 for (row = 1; row < srcHeight; row++) {
1685 MEMCPY(dstPtr + dstWidth * row * bpt,
1686 srcPtr + srcWidth * row * bpt, bpt);
1687 MEMCPY(dstPtr + (dstWidth * row + dstWidth - 1) * bpt,
1688 srcPtr + (srcWidth * row + srcWidth - 1) * bpt, bpt);
1689 }
1690 }
1691 else {
1692 /* average two src pixels each dest pixel */
1693 for (row = 0; row < dstHeightNB; row += 2) {
1694 do_row(format, 1,
1695 srcPtr + (srcWidth * (row * 2 + 1)) * bpt,
1696 srcPtr + (srcWidth * (row * 2 + 2)) * bpt,
1697 1, dstPtr + (dstWidth * row + 1) * bpt);
1698 do_row(format, 1,
1699 srcPtr + (srcWidth * (row * 2 + 1) + srcWidth - 1) * bpt,
1700 srcPtr + (srcWidth * (row * 2 + 2) + srcWidth - 1) * bpt,
1701 1, dstPtr + (dstWidth * row + 1 + dstWidth - 1) * bpt);
1702 }
1703 }
1704 }
1705 }
1706
1707
1708 static void
1709 make_3d_mipmap(const struct gl_texture_format *format, GLint border,
1710 GLint srcWidth, GLint srcHeight, GLint srcDepth,
1711 const GLubyte *srcPtr,
1712 GLint dstWidth, GLint dstHeight, GLint dstDepth,
1713 GLubyte *dstPtr)
1714 {
1715 const GLint bpt = format->TexelBytes;
1716 const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */
1717 const GLint srcDepthNB = srcDepth - 2 * border;
1718 const GLint dstWidthNB = dstWidth - 2 * border;
1719 const GLint dstHeightNB = dstHeight - 2 * border;
1720 const GLint dstDepthNB = dstDepth - 2 * border;
1721 GLvoid *tmpRowA, *tmpRowB;
1722 GLint img, row;
1723 GLint bytesPerSrcImage, bytesPerDstImage;
1724 GLint bytesPerSrcRow, bytesPerDstRow;
1725 GLint srcImageOffset, srcRowOffset;
1726
1727 (void) srcDepthNB; /* silence warnings */
1728
1729 /* Need two temporary row buffers */
1730 tmpRowA = MALLOC(srcWidth * bpt);
1731 if (!tmpRowA)
1732 return;
1733 tmpRowB = MALLOC(srcWidth * bpt);
1734 if (!tmpRowB) {
1735 FREE(tmpRowA);
1736 return;
1737 }
1738
1739 bytesPerSrcImage = srcWidth * srcHeight * bpt;
1740 bytesPerDstImage = dstWidth * dstHeight * bpt;
1741
1742 bytesPerSrcRow = srcWidth * bpt;
1743 bytesPerDstRow = dstWidth * bpt;
1744
1745 /* Offset between adjacent src images to be averaged together */
1746 srcImageOffset = (srcDepth == dstDepth) ? 0 : bytesPerSrcImage;
1747
1748 /* Offset between adjacent src rows to be averaged together */
1749 srcRowOffset = (srcHeight == dstHeight) ? 0 : srcWidth * bpt;
1750
1751 /*
1752 * Need to average together up to 8 src pixels for each dest pixel.
1753 * Break that down into 3 operations:
1754 * 1. take two rows from source image and average them together.
1755 * 2. take two rows from next source image and average them together.
1756 * 3. take the two averaged rows and average them for the final dst row.
1757 */
1758
1759 /*
1760 _mesa_printf("mip3d %d x %d x %d -> %d x %d x %d\n",
1761 srcWidth, srcHeight, srcDepth, dstWidth, dstHeight, dstDepth);
1762 */
1763
1764 for (img = 0; img < dstDepthNB; img++) {
1765 /* first source image pointer, skipping border */
1766 const GLubyte *imgSrcA = srcPtr
1767 + (bytesPerSrcImage + bytesPerSrcRow + border) * bpt * border
1768 + img * (bytesPerSrcImage + srcImageOffset);
1769 /* second source image pointer, skipping border */
1770 const GLubyte *imgSrcB = imgSrcA + srcImageOffset;
1771 /* address of the dest image, skipping border */
1772 GLubyte *imgDst = dstPtr
1773 + (bytesPerDstImage + bytesPerDstRow + border) * bpt * border
1774 + img * bytesPerDstImage;
1775
1776 /* setup the four source row pointers and the dest row pointer */
1777 const GLubyte *srcImgARowA = imgSrcA;
1778 const GLubyte *srcImgARowB = imgSrcA + srcRowOffset;
1779 const GLubyte *srcImgBRowA = imgSrcB;
1780 const GLubyte *srcImgBRowB = imgSrcB + srcRowOffset;
1781 GLubyte *dstImgRow = imgDst;
1782
1783 for (row = 0; row < dstHeightNB; row++) {
1784 /* Average together two rows from first src image */
1785 do_row(format, srcWidthNB, srcImgARowA, srcImgARowB,
1786 srcWidthNB, tmpRowA);
1787 /* Average together two rows from second src image */
1788 do_row(format, srcWidthNB, srcImgBRowA, srcImgBRowB,
1789 srcWidthNB, tmpRowB);
1790 /* Average together the temp rows to make the final row */
1791 do_row(format, srcWidthNB, tmpRowA, tmpRowB,
1792 dstWidthNB, dstImgRow);
1793 /* advance to next rows */
1794 srcImgARowA += bytesPerSrcRow + srcRowOffset;
1795 srcImgARowB += bytesPerSrcRow + srcRowOffset;
1796 srcImgBRowA += bytesPerSrcRow + srcRowOffset;
1797 srcImgBRowB += bytesPerSrcRow + srcRowOffset;
1798 dstImgRow += bytesPerDstRow;
1799 }
1800 }
1801
1802 FREE(tmpRowA);
1803 FREE(tmpRowB);
1804
1805 /* Luckily we can leverage the make_2d_mipmap() function here! */
1806 if (border > 0) {
1807 /* do front border image */
1808 make_2d_mipmap(format, 1, srcWidth, srcHeight, srcPtr,
1809 dstWidth, dstHeight, dstPtr);
1810 /* do back border image */
1811 make_2d_mipmap(format, 1, srcWidth, srcHeight,
1812 srcPtr + bytesPerSrcImage * (srcDepth - 1),
1813 dstWidth, dstHeight,
1814 dstPtr + bytesPerDstImage * (dstDepth - 1));
1815 /* do four remaining border edges that span the image slices */
1816 if (srcDepth == dstDepth) {
1817 /* just copy border pixels from src to dst */
1818 for (img = 0; img < dstDepthNB; img++) {
1819 const GLubyte *src;
1820 GLubyte *dst;
1821
1822 /* do border along [img][row=0][col=0] */
1823 src = srcPtr + (img + 1) * bytesPerSrcImage;
1824 dst = dstPtr + (img + 1) * bytesPerDstImage;
1825 MEMCPY(dst, src, bpt);
1826
1827 /* do border along [img][row=dstHeight-1][col=0] */
1828 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
1829 + (srcHeight - 1) * bytesPerSrcRow;
1830 dst = dstPtr + (img + 1) * bytesPerDstImage
1831 + (dstHeight - 1) * bytesPerDstRow;
1832 MEMCPY(dst, src, bpt);
1833
1834 /* do border along [img][row=0][col=dstWidth-1] */
1835 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
1836 + (srcWidth - 1) * bpt;
1837 dst = dstPtr + (img + 1) * bytesPerDstImage
1838 + (dstWidth - 1) * bpt;
1839 MEMCPY(dst, src, bpt);
1840
1841 /* do border along [img][row=dstHeight-1][col=dstWidth-1] */
1842 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
1843 + (bytesPerSrcImage - bpt);
1844 dst = dstPtr + (img + 1) * bytesPerDstImage
1845 + (bytesPerDstImage - bpt);
1846 MEMCPY(dst, src, bpt);
1847 }
1848 }
1849 else {
1850 /* average border pixels from adjacent src image pairs */
1851 ASSERT(srcDepthNB == 2 * dstDepthNB);
1852 for (img = 0; img < dstDepthNB; img++) {
1853 const GLubyte *src;
1854 GLubyte *dst;
1855
1856 /* do border along [img][row=0][col=0] */
1857 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage;
1858 dst = dstPtr + (img + 1) * bytesPerDstImage;
1859 do_row(format, 1, src, src + srcImageOffset, 1, dst);
1860
1861 /* do border along [img][row=dstHeight-1][col=0] */
1862 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
1863 + (srcHeight - 1) * bytesPerSrcRow;
1864 dst = dstPtr + (img + 1) * bytesPerDstImage
1865 + (dstHeight - 1) * bytesPerDstRow;
1866 do_row(format, 1, src, src + srcImageOffset, 1, dst);
1867
1868 /* do border along [img][row=0][col=dstWidth-1] */
1869 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
1870 + (srcWidth - 1) * bpt;
1871 dst = dstPtr + (img + 1) * bytesPerDstImage
1872 + (dstWidth - 1) * bpt;
1873 do_row(format, 1, src, src + srcImageOffset, 1, dst);
1874
1875 /* do border along [img][row=dstHeight-1][col=dstWidth-1] */
1876 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
1877 + (bytesPerSrcImage - bpt);
1878 dst = dstPtr + (img + 1) * bytesPerDstImage
1879 + (bytesPerDstImage - bpt);
1880 do_row(format, 1, src, src + srcImageOffset, 1, dst);
1881 }
1882 }
1883 }
1884 }
1885
1886
1887 /*
1888 * For GL_SGIX_generate_mipmap:
1889 * Generate a complete set of mipmaps from texObj's base-level image.
1890 * Stop at texObj's MaxLevel or when we get to the 1x1 texture.
1891 */
1892 void
1893 _mesa_generate_mipmap(GLcontext *ctx, GLenum target,
1894 const struct gl_texture_unit *texUnit,
1895 struct gl_texture_object *texObj)
1896 {
1897 const struct gl_texture_image *srcImage;
1898 const struct gl_texture_format *convertFormat;
1899 const GLubyte *srcData;
1900 GLubyte *dstData;
1901 GLint level, maxLevels;
1902
1903 ASSERT(texObj);
1904 srcImage = texObj->Image[texObj->BaseLevel];
1905 ASSERT(srcImage);
1906
1907 maxLevels = _mesa_max_texture_levels(ctx, texObj->Target);
1908 ASSERT(maxLevels > 0); /* bad target */
1909
1910 /* Find convertFormat - the format that do_row() will process */
1911 if (srcImage->IsCompressed) {
1912 /* setup for compressed textures */
1913 GLuint row;
1914 GLint components, size;
1915 GLchan *dst;
1916
1917 assert(texObj->Target == GL_TEXTURE_2D);
1918
1919 if (srcImage->Format == GL_RGB) {
1920 convertFormat = &_mesa_texformat_rgb;
1921 components = 3;
1922 }
1923 else if (srcImage->Format == GL_RGBA) {
1924 convertFormat = &_mesa_texformat_rgba;
1925 components = 4;
1926 }
1927 else {
1928 _mesa_problem(ctx, "bad srcImage->Format in _mesa_generate_mipmaps");
1929 return;
1930 }
1931
1932 /* allocate storage for uncompressed GL_RGB or GL_RGBA images */
1933 size = _mesa_bytes_per_pixel(srcImage->Format, CHAN_TYPE)
1934 * srcImage->Width * srcImage->Height * srcImage->Depth + 20;
1935 /* 20 extra bytes, just be safe when calling last FetchTexel */
1936 srcData = MALLOC(size);
1937 if (!srcData) {
1938 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generate mipmaps");
1939 return;
1940 }
1941 dstData = MALLOC(size / 2); /* 1/4 would probably be OK */
1942 if (!dstData) {
1943 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generate mipmaps");
1944 FREE((void *) srcData);
1945 return;
1946 }
1947
1948 /* decompress base image here */
1949 dst = (GLchan *) srcData;
1950 for (row = 0; row < srcImage->Height; row++) {
1951 GLuint col;
1952 for (col = 0; col < srcImage->Width; col++) {
1953 (*srcImage->FetchTexel)(srcImage, col, row, 0, (GLvoid *) dst);
1954 dst += components;
1955 }
1956 }
1957 }
1958 else {
1959 /* uncompressed */
1960 convertFormat = srcImage->TexFormat;
1961 }
1962
1963 for (level = texObj->BaseLevel; level < texObj->MaxLevel
1964 && level < maxLevels - 1; level++) {
1965 /* generate image[level+1] from image[level] */
1966 const struct gl_texture_image *srcImage;
1967 struct gl_texture_image *dstImage;
1968 GLint srcWidth, srcHeight, srcDepth;
1969 GLint dstWidth, dstHeight, dstDepth;
1970 GLint border, bytesPerTexel;
1971
1972 /* get src image parameters */
1973 srcImage = _mesa_select_tex_image(ctx, texUnit, target, level);
1974 ASSERT(srcImage);
1975 srcWidth = srcImage->Width;
1976 srcHeight = srcImage->Height;
1977 srcDepth = srcImage->Depth;
1978 border = srcImage->Border;
1979
1980 /* compute next (level+1) image size */
1981 if (srcWidth - 2 * border > 1) {
1982 dstWidth = (srcWidth - 2 * border) / 2 + 2 * border;
1983 }
1984 else {
1985 dstWidth = srcWidth; /* can't go smaller */
1986 }
1987 if (srcHeight - 2 * border > 1) {
1988 dstHeight = (srcHeight - 2 * border) / 2 + 2 * border;
1989 }
1990 else {
1991 dstHeight = srcHeight; /* can't go smaller */
1992 }
1993 if (srcDepth - 2 * border > 1) {
1994 dstDepth = (srcDepth - 2 * border) / 2 + 2 * border;
1995 }
1996 else {
1997 dstDepth = srcDepth; /* can't go smaller */
1998 }
1999
2000 if (dstWidth == srcWidth &&
2001 dstHeight == srcHeight &&
2002 dstDepth == srcDepth) {
2003 /* all done */
2004 if (srcImage->IsCompressed) {
2005 FREE((void *) srcData);
2006 FREE(dstData);
2007 }
2008 return;
2009 }
2010
2011 /* get dest gl_texture_image */
2012 dstImage = _mesa_select_tex_image(ctx, texUnit, target, level+1);
2013 if (!dstImage) {
2014 dstImage = _mesa_alloc_texture_image();
2015 if (!dstImage) {
2016 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generating mipmaps");
2017 return;
2018 }
2019 _mesa_set_tex_image(texObj, target, level + 1, dstImage);
2020 }
2021
2022 /* Free old image data */
2023 if (dstImage->Data)
2024 MESA_PBUFFER_FREE(dstImage->Data);
2025
2026 /* initialize new image */
2027 _mesa_init_teximage_fields(ctx, target, dstImage, dstWidth, dstHeight,
2028 dstDepth, border, srcImage->IntFormat);
2029 dstImage->DriverData = NULL;
2030 dstImage->TexFormat = srcImage->TexFormat;
2031 dstImage->FetchTexel = srcImage->FetchTexel;
2032 ASSERT(dstImage->TexFormat);
2033 ASSERT(dstImage->FetchTexel);
2034
2035 /* Alloc new teximage data buffer.
2036 * Setup src and dest data pointers.
2037 */
2038 if (dstImage->IsCompressed) {
2039 ASSERT(dstImage->CompressedSize > 0); /* set by init_teximage_fields*/
2040 dstImage->Data = MESA_PBUFFER_ALLOC(dstImage->CompressedSize);
2041 if (!dstImage->Data) {
2042 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generating mipmaps");
2043 return;
2044 }
2045 /* srcData and dstData are already set */
2046 ASSERT(srcData);
2047 ASSERT(dstData);
2048 }
2049 else {
2050 bytesPerTexel = srcImage->TexFormat->TexelBytes;
2051 ASSERT(dstWidth * dstHeight * dstDepth * bytesPerTexel > 0);
2052 dstImage->Data = MESA_PBUFFER_ALLOC(dstWidth * dstHeight * dstDepth
2053 * bytesPerTexel);
2054 if (!dstImage->Data) {
2055 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generating mipmaps");
2056 return;
2057 }
2058 srcData = (const GLubyte *) srcImage->Data;
2059 dstData = (GLubyte *) dstImage->Data;
2060 }
2061
2062 /*
2063 * We use simple 2x2 averaging to compute the next mipmap level.
2064 */
2065 switch (target) {
2066 case GL_TEXTURE_1D:
2067 make_1d_mipmap(convertFormat, border,
2068 srcWidth, srcData,
2069 dstWidth, dstData);
2070 break;
2071 case GL_TEXTURE_2D:
2072 case GL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB:
2073 case GL_TEXTURE_CUBE_MAP_NEGATIVE_X_ARB:
2074 case GL_TEXTURE_CUBE_MAP_POSITIVE_Y_ARB:
2075 case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB:
2076 case GL_TEXTURE_CUBE_MAP_POSITIVE_Z_ARB:
2077 case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB:
2078 make_2d_mipmap(convertFormat, border,
2079 srcWidth, srcHeight, srcData,
2080 dstWidth, dstHeight, dstData);
2081 break;
2082 case GL_TEXTURE_3D:
2083 make_3d_mipmap(convertFormat, border,
2084 srcWidth, srcHeight, srcDepth, srcData,
2085 dstWidth, dstHeight, dstDepth, dstData);
2086 break;
2087 case GL_TEXTURE_RECTANGLE_NV:
2088 /* no mipmaps, do nothing */
2089 break;
2090 default:
2091 _mesa_problem(ctx, "bad dimensions in _mesa_generate_mipmaps");
2092 return;
2093 }
2094
2095 if (dstImage->IsCompressed) {
2096 GLubyte *temp;
2097 /* compress image from dstData into dstImage->Data */
2098 const GLenum srcFormat = convertFormat->BaseFormat;
2099 GLint dstRowStride = _mesa_compressed_row_stride(srcImage->IntFormat,
2100 dstWidth);
2101 ASSERT(srcFormat == GL_RGB || srcFormat == GL_RGBA);
2102 _mesa_compress_teximage(ctx,
2103 dstWidth, dstHeight, /* size */
2104 srcFormat, /* source format */
2105 dstData, /* source buffer */
2106 dstWidth, /* source row stride */
2107 dstImage->TexFormat, /* dest format */
2108 dstImage->Data, /* dest buffer */
2109 dstRowStride ); /* dest row stride */
2110
2111 /* swap src and dest pointers */
2112 temp = (GLubyte *) srcData;
2113 srcData = dstData;
2114 dstData = temp;
2115 }
2116
2117 } /* loop over mipmap levels */
2118 }