Minor tweaks to help out at a driver level.
[mesa.git] / src / mesa / main / texstore.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 5.1
4 *
5 * Copyright (C) 1999-2003 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 /*
26 * Authors:
27 * Brian Paul
28 */
29
30 /*
31 * The GL texture image functions in teximage.c basically just do
32 * error checking and data structure allocation. They in turn call
33 * device driver functions which actually copy/convert/store the user's
34 * texture image data.
35 *
36 * However, most device drivers will be able to use the fallback functions
37 * in this file. That is, most drivers will have the following bit of
38 * code:
39 * ctx->Driver.TexImage1D = _mesa_store_teximage1d;
40 * ctx->Driver.TexImage2D = _mesa_store_teximage2d;
41 * ctx->Driver.TexImage3D = _mesa_store_teximage3d;
42 * etc...
43 *
44 * Texture image processing is actually kind of complicated. We have to do:
45 * Format/type conversions
46 * pixel unpacking
47 * pixel transfer (scale, bais, lookup, convolution!, etc)
48 *
49 * These functions can handle most everything, including processing full
50 * images and sub-images.
51 */
52
53
54 #include "glheader.h"
55 #include "colormac.h"
56 #include "context.h"
57 #include "convolve.h"
58 #include "image.h"
59 #include "macros.h"
60 #include "imports.h"
61 #include "texcompress.h"
62 #include "texformat.h"
63 #include "teximage.h"
64 #include "texstore.h"
65 #include "texutil.h"
66
67
68 /*
69 * Given an internal texture format enum or 1, 2, 3, 4 return the
70 * corresponding _base_ internal format: GL_ALPHA, GL_LUMINANCE,
71 * GL_LUMANCE_ALPHA, GL_INTENSITY, GL_RGB, or GL_RGBA. Return the
72 * number of components for the format. Return -1 if invalid enum.
73 */
74 static GLint
75 components_in_intformat( GLint format )
76 {
77 switch (format) {
78 case GL_ALPHA:
79 case GL_ALPHA4:
80 case GL_ALPHA8:
81 case GL_ALPHA12:
82 case GL_ALPHA16:
83 return 1;
84 case 1:
85 case GL_LUMINANCE:
86 case GL_LUMINANCE4:
87 case GL_LUMINANCE8:
88 case GL_LUMINANCE12:
89 case GL_LUMINANCE16:
90 return 1;
91 case 2:
92 case GL_LUMINANCE_ALPHA:
93 case GL_LUMINANCE4_ALPHA4:
94 case GL_LUMINANCE6_ALPHA2:
95 case GL_LUMINANCE8_ALPHA8:
96 case GL_LUMINANCE12_ALPHA4:
97 case GL_LUMINANCE12_ALPHA12:
98 case GL_LUMINANCE16_ALPHA16:
99 return 2;
100 case GL_INTENSITY:
101 case GL_INTENSITY4:
102 case GL_INTENSITY8:
103 case GL_INTENSITY12:
104 case GL_INTENSITY16:
105 return 1;
106 case 3:
107 case GL_RGB:
108 case GL_R3_G3_B2:
109 case GL_RGB4:
110 case GL_RGB5:
111 case GL_RGB8:
112 case GL_RGB10:
113 case GL_RGB12:
114 case GL_RGB16:
115 return 3;
116 case 4:
117 case GL_RGBA:
118 case GL_RGBA2:
119 case GL_RGBA4:
120 case GL_RGB5_A1:
121 case GL_RGBA8:
122 case GL_RGB10_A2:
123 case GL_RGBA12:
124 case GL_RGBA16:
125 return 4;
126 case GL_COLOR_INDEX:
127 case GL_COLOR_INDEX1_EXT:
128 case GL_COLOR_INDEX2_EXT:
129 case GL_COLOR_INDEX4_EXT:
130 case GL_COLOR_INDEX8_EXT:
131 case GL_COLOR_INDEX12_EXT:
132 case GL_COLOR_INDEX16_EXT:
133 return 1;
134 case GL_DEPTH_COMPONENT:
135 case GL_DEPTH_COMPONENT16_SGIX:
136 case GL_DEPTH_COMPONENT24_SGIX:
137 case GL_DEPTH_COMPONENT32_SGIX:
138 return 1;
139 case GL_YCBCR_MESA:
140 return 2; /* Y + (Cb or Cr) */
141 default:
142 return -1; /* error */
143 }
144 }
145
146
147 /*
148 * This function is used to transfer the user's image data into a texture
149 * image buffer. We handle both full texture images and subtexture images.
150 * We also take care of all image transfer operations here, including
151 * convolution, scale/bias, colortables, etc.
152 *
153 * The destination texel type is always GLchan.
154 * The destination texel format is one of the 6 basic types.
155 *
156 * A hardware driver may use this as a helper routine to unpack and
157 * apply pixel transfer ops into a temporary image buffer. Then,
158 * convert the temporary image into the special hardware format.
159 *
160 * \param
161 * dimensions - 1, 2, or 3
162 * texDestFormat - GL_LUMINANCE, GL_INTENSITY, GL_LUMINANCE_ALPHA, GL_ALPHA,
163 * GL_RGB or GL_RGBA (the destination format)
164 * texDestAddr - destination image address
165 * srcWidth, srcHeight, srcDepth - size (in pixels) of src and dest images
166 * dstXoffset, dstYoffset, dstZoffset - position to store the image within
167 * the destination 3D texture
168 * dstRowStride, dstImageStride - dest image strides in bytes
169 * srcFormat - source image format (GL_ALPHA, GL_RED, GL_RGB, etc)
170 * srcType - GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT_5_6_5, GL_FLOAT, etc
171 * srcPacking - describes packing of incoming image.
172 * transferOps - mask of pixel transfer operations
173 */
174 static void
175 transfer_teximage(GLcontext *ctx, GLuint dimensions,
176 GLenum texDestFormat, GLvoid *texDestAddr,
177 GLint srcWidth, GLint srcHeight, GLint srcDepth,
178 GLint dstXoffset, GLint dstYoffset, GLint dstZoffset,
179 GLint dstRowStride, GLint dstImageStride,
180 GLenum srcFormat, GLenum srcType,
181 const GLvoid *srcAddr,
182 const struct gl_pixelstore_attrib *srcPacking,
183 GLuint transferOps)
184 {
185 GLint texComponents;
186
187 ASSERT(ctx);
188 ASSERT(dimensions >= 1 && dimensions <= 3);
189 ASSERT(texDestFormat == GL_LUMINANCE ||
190 texDestFormat == GL_INTENSITY ||
191 texDestFormat == GL_LUMINANCE_ALPHA ||
192 texDestFormat == GL_ALPHA ||
193 texDestFormat == GL_RGB ||
194 texDestFormat == GL_RGBA ||
195 texDestFormat == GL_COLOR_INDEX ||
196 texDestFormat == GL_DEPTH_COMPONENT);
197 ASSERT(texDestAddr);
198 ASSERT(srcWidth >= 0);
199 ASSERT(srcHeight >= 0);
200 ASSERT(srcDepth >= 0);
201 ASSERT(dstXoffset >= 0);
202 ASSERT(dstYoffset >= 0);
203 ASSERT(dstZoffset >= 0);
204 ASSERT(dstRowStride >= 0);
205 ASSERT(dstImageStride >= 0);
206 ASSERT(srcAddr);
207 ASSERT(srcPacking);
208
209 texComponents = components_in_intformat(texDestFormat);
210
211 /* try common 2D texture cases first */
212 if (!transferOps && dimensions == 2 && srcType == CHAN_TYPE) {
213
214 if (srcFormat == texDestFormat) {
215 /* This will cover the common GL_RGB, GL_RGBA, GL_ALPHA,
216 * GL_LUMINANCE_ALPHA, etc. texture formats. Use memcpy().
217 */
218 const GLchan *src = (const GLchan *) _mesa_image_address(
219 srcPacking, srcAddr, srcWidth, srcHeight,
220 srcFormat, srcType, 0, 0, 0);
221 const GLint srcRowStride = _mesa_image_row_stride(srcPacking,
222 srcWidth, srcFormat, srcType);
223 const GLint widthInBytes = srcWidth * texComponents * sizeof(GLchan);
224 GLchan *dst = (GLchan *) texDestAddr
225 + dstYoffset * (dstRowStride / sizeof(GLchan))
226 + dstXoffset * texComponents;
227 if (srcRowStride == widthInBytes && dstRowStride == widthInBytes) {
228 MEMCPY(dst, src, srcHeight * widthInBytes);
229 }
230 else {
231 GLint i;
232 for (i = 0; i < srcHeight; i++) {
233 MEMCPY(dst, src, widthInBytes);
234 src += (srcRowStride / sizeof(GLchan));
235 dst += (dstRowStride / sizeof(GLchan));
236 }
237 }
238 return; /* all done */
239 }
240 else if (srcFormat == GL_RGBA && texDestFormat == GL_RGB) {
241 /* commonly used by Quake */
242 const GLchan *src = (const GLchan *) _mesa_image_address(
243 srcPacking, srcAddr, srcWidth, srcHeight,
244 srcFormat, srcType, 0, 0, 0);
245 const GLint srcRowStride = _mesa_image_row_stride(srcPacking,
246 srcWidth, srcFormat, srcType);
247 GLchan *dst = (GLchan *) texDestAddr
248 + dstYoffset * (dstRowStride / sizeof(GLchan))
249 + dstXoffset * texComponents;
250 GLint i, j;
251 for (i = 0; i < srcHeight; i++) {
252 const GLchan *s = src;
253 GLchan *d = dst;
254 for (j = 0; j < srcWidth; j++) {
255 *d++ = *s++; /*red*/
256 *d++ = *s++; /*green*/
257 *d++ = *s++; /*blue*/
258 s++; /*alpha*/
259 }
260 src += (srcRowStride / sizeof(GLchan));
261 dst += (dstRowStride / sizeof(GLchan));
262 }
263 return; /* all done */
264 }
265 }
266
267 /*
268 * General case solutions
269 */
270 if (texDestFormat == GL_COLOR_INDEX) {
271 /* color index texture */
272 const GLenum texType = CHAN_TYPE;
273 GLint img, row;
274 GLchan *dest = (GLchan *) texDestAddr
275 + dstZoffset * (dstImageStride / sizeof(GLchan))
276 + dstYoffset * (dstRowStride / sizeof(GLchan))
277 + dstXoffset * texComponents;
278 for (img = 0; img < srcDepth; img++) {
279 GLchan *destRow = dest;
280 for (row = 0; row < srcHeight; row++) {
281 const GLvoid *src = _mesa_image_address(srcPacking,
282 srcAddr, srcWidth, srcHeight, srcFormat, srcType, img, row, 0);
283 _mesa_unpack_index_span(ctx, srcWidth, texType, destRow,
284 srcType, src, srcPacking, transferOps);
285 destRow += (dstRowStride / sizeof(GLchan));
286 }
287 dest += dstImageStride;
288 }
289 }
290 else if (texDestFormat == GL_YCBCR_MESA) {
291 /* YCbCr texture */
292 GLint img, row;
293 GLushort *dest = (GLushort *) texDestAddr
294 + dstZoffset * (dstImageStride / sizeof(GLushort))
295 + dstYoffset * (dstRowStride / sizeof(GLushort))
296 + dstXoffset * texComponents;
297 ASSERT(ctx->Extensions.MESA_ycbcr_texture);
298 for (img = 0; img < srcDepth; img++) {
299 GLushort *destRow = dest;
300 for (row = 0; row < srcHeight; row++) {
301 const GLvoid *srcRow = _mesa_image_address(srcPacking,
302 srcAddr, srcWidth, srcHeight,
303 srcFormat, srcType, img, row, 0);
304 MEMCPY(destRow, srcRow, srcWidth * sizeof(GLushort));
305 destRow += (dstRowStride / sizeof(GLushort));
306 }
307 dest += dstImageStride / sizeof(GLushort);
308 }
309 }
310 else if (texDestFormat == GL_DEPTH_COMPONENT) {
311 /* Depth texture (shadow maps) */
312 GLint img, row;
313 GLubyte *dest = (GLubyte *) texDestAddr
314 + dstZoffset * dstImageStride
315 + dstYoffset * (dstRowStride / sizeof(GLchan))
316 + dstXoffset * texComponents;
317 for (img = 0; img < srcDepth; img++) {
318 GLubyte *destRow = dest;
319 for (row = 0; row < srcHeight; row++) {
320 const GLvoid *src = _mesa_image_address(srcPacking,
321 srcAddr, srcWidth, srcHeight, srcFormat, srcType, img, row, 0);
322 _mesa_unpack_depth_span(ctx, srcWidth, (GLfloat *) destRow,
323 srcType, src, srcPacking);
324 destRow += (dstRowStride / sizeof(GLchan));
325 }
326 dest += dstImageStride;
327 }
328 }
329 else {
330 /* regular, color texture */
331 if ((dimensions == 1 && ctx->Pixel.Convolution1DEnabled) ||
332 (dimensions >= 2 && ctx->Pixel.Convolution2DEnabled) ||
333 (dimensions >= 2 && ctx->Pixel.Separable2DEnabled)) {
334 /*
335 * Fill texture image with convolution
336 */
337 GLint img, row;
338 GLint convWidth = srcWidth, convHeight = srcHeight;
339 GLfloat *tmpImage, *convImage;
340 tmpImage = (GLfloat *) MALLOC(srcWidth * srcHeight * 4 * sizeof(GLfloat));
341 if (!tmpImage) {
342 _mesa_error(ctx, GL_OUT_OF_MEMORY, "glTexImage");
343 return;
344 }
345 convImage = (GLfloat *) MALLOC(srcWidth * srcHeight * 4 * sizeof(GLfloat));
346 if (!convImage) {
347 _mesa_error(ctx, GL_OUT_OF_MEMORY, "glTexImage");
348 FREE(tmpImage);
349 return;
350 }
351
352 for (img = 0; img < srcDepth; img++) {
353 const GLfloat *srcf;
354 GLfloat *dstf = tmpImage;
355 GLchan *dest;
356
357 /* unpack and do transfer ops up to convolution */
358 for (row = 0; row < srcHeight; row++) {
359 const GLvoid *src = _mesa_image_address(srcPacking,
360 srcAddr, srcWidth, srcHeight,
361 srcFormat, srcType, img, row, 0);
362 _mesa_unpack_float_color_span(ctx, srcWidth, GL_RGBA, dstf,
363 srcFormat, srcType, src, srcPacking,
364 transferOps & IMAGE_PRE_CONVOLUTION_BITS,
365 GL_TRUE);
366 dstf += srcWidth * 4;
367 }
368
369 /* convolve */
370 if (dimensions == 1) {
371 ASSERT(ctx->Pixel.Convolution1DEnabled);
372 _mesa_convolve_1d_image(ctx, &convWidth, tmpImage, convImage);
373 }
374 else {
375 if (ctx->Pixel.Convolution2DEnabled) {
376 _mesa_convolve_2d_image(ctx, &convWidth, &convHeight,
377 tmpImage, convImage);
378 }
379 else {
380 ASSERT(ctx->Pixel.Separable2DEnabled);
381 _mesa_convolve_sep_image(ctx, &convWidth, &convHeight,
382 tmpImage, convImage);
383 }
384 }
385
386 /* packing and transfer ops after convolution */
387 srcf = convImage;
388 dest = (GLchan *) texDestAddr
389 + (dstZoffset + img) * (dstImageStride / sizeof(GLchan))
390 + dstYoffset * (dstRowStride / sizeof(GLchan));
391 for (row = 0; row < convHeight; row++) {
392 _mesa_pack_float_rgba_span(ctx, convWidth,
393 (const GLfloat (*)[4]) srcf,
394 texDestFormat, CHAN_TYPE,
395 dest, &_mesa_native_packing,
396 transferOps
397 & IMAGE_POST_CONVOLUTION_BITS);
398 srcf += convWidth * 4;
399 dest += (dstRowStride / sizeof(GLchan));
400 }
401 }
402
403 FREE(convImage);
404 FREE(tmpImage);
405 }
406 else {
407 /*
408 * no convolution
409 */
410 GLint img, row;
411 GLchan *dest = (GLchan *) texDestAddr
412 + dstZoffset * (dstImageStride / sizeof(GLchan))
413 + dstYoffset * (dstRowStride / sizeof(GLchan))
414 + dstXoffset * texComponents;
415 for (img = 0; img < srcDepth; img++) {
416 GLchan *destRow = dest;
417 for (row = 0; row < srcHeight; row++) {
418 const GLvoid *srcRow = _mesa_image_address(srcPacking,
419 srcAddr, srcWidth, srcHeight,
420 srcFormat, srcType, img, row, 0);
421 _mesa_unpack_chan_color_span(ctx, srcWidth, texDestFormat,
422 destRow, srcFormat, srcType, srcRow,
423 srcPacking, transferOps);
424 destRow += (dstRowStride / sizeof(GLchan));
425 }
426 dest += dstImageStride / sizeof(GLchan);
427 }
428 }
429 }
430 }
431
432
433
434 /*
435 * Transfer a texture image from user space to <destAddr> applying all
436 * needed image transfer operations and storing the result in the format
437 * specified by <dstFormat>. <dstFormat> may be any format from texformat.h.
438 * \param
439 * dimensions - 1, 2 or 3
440 * baseInternalFormat - base format of the internal texture format
441 * specified by the user. This is very important, see below.
442 * dstFormat - destination image format
443 * dstAddr - destination address
444 * srcWidth, srcHeight, srcDepth - size of source iamge
445 * dstX/Y/Zoffset - as specified by glTexSubImage
446 * dstRowStride - stride between dest rows in bytes
447 * dstImageStride - stride between dest images in bytes
448 * srcFormat, srcType - incoming image format and data type
449 * srcAddr - source image address
450 * srcPacking - packing params of source image
451 *
452 * XXX this function is a bit more complicated than it should be. If
453 * _mesa_convert_texsubimage[123]d could handle any dest/source formats
454 * or if transfer_teximage() could store in any MESA_FORMAT_* format, we
455 * could simplify things here.
456 */
457 void
458 _mesa_transfer_teximage(GLcontext *ctx, GLuint dimensions,
459 GLenum baseInternalFormat,
460 const struct gl_texture_format *dstFormat,
461 GLvoid *dstAddr,
462 GLint srcWidth, GLint srcHeight, GLint srcDepth,
463 GLint dstXoffset, GLint dstYoffset, GLint dstZoffset,
464 GLint dstRowStride, GLint dstImageStride,
465 GLenum srcFormat, GLenum srcType,
466 const GLvoid *srcAddr,
467 const struct gl_pixelstore_attrib *srcPacking)
468 {
469 const GLint dstRowStridePixels = dstRowStride / dstFormat->TexelBytes;
470 const GLint dstImageStridePixels = dstImageStride / dstFormat->TexelBytes;
471 GLboolean makeTemp;
472 GLuint transferOps = ctx->_ImageTransferState;
473 GLboolean freeSourceData = GL_FALSE;
474 GLint postConvWidth = srcWidth, postConvHeight = srcHeight;
475
476 assert(baseInternalFormat > 0);
477 ASSERT(baseInternalFormat == GL_LUMINANCE ||
478 baseInternalFormat == GL_INTENSITY ||
479 baseInternalFormat == GL_LUMINANCE_ALPHA ||
480 baseInternalFormat == GL_ALPHA ||
481 baseInternalFormat == GL_RGB ||
482 baseInternalFormat == GL_RGBA ||
483 baseInternalFormat == GL_YCBCR_MESA ||
484 baseInternalFormat == GL_COLOR_INDEX ||
485 baseInternalFormat == GL_DEPTH_COMPONENT);
486
487 if (transferOps & IMAGE_CONVOLUTION_BIT) {
488 _mesa_adjust_image_for_convolution(ctx, dimensions, &postConvWidth,
489 &postConvHeight);
490 }
491
492 /*
493 * Consider this scenario: The user's source image is GL_RGB and the
494 * requested internal format is GL_LUMINANCE. Now suppose the device
495 * driver doesn't support GL_LUMINANCE and instead uses RGB16 as the
496 * texture format. In that case we still need to do an intermediate
497 * conversion to luminance format so that the incoming red channel gets
498 * replicated into the dest red, green and blue channels. The following
499 * code takes care of that.
500 */
501 if (dstFormat->BaseFormat != baseInternalFormat) {
502 /* Allocate storage for temporary image in the baseInternalFormat */
503 const GLint texelSize = _mesa_components_in_format(baseInternalFormat)
504 * sizeof(GLchan);
505 const GLint bytes = texelSize * postConvWidth * postConvHeight *srcDepth;
506 const GLint tmpRowStride = texelSize * postConvWidth;
507 const GLint tmpImgStride = texelSize * postConvWidth * postConvHeight;
508 GLvoid *tmpImage = MALLOC(bytes);
509 if (!tmpImage)
510 return;
511 transfer_teximage(ctx, dimensions, baseInternalFormat, tmpImage,
512 srcWidth, srcHeight, srcDepth,
513 0, 0, 0, /* x/y/zoffset */
514 tmpRowStride, tmpImgStride,
515 srcFormat, srcType, srcAddr, srcPacking, transferOps);
516
517 /* this is our new source image */
518 srcWidth = postConvWidth;
519 srcHeight = postConvHeight;
520 srcFormat = baseInternalFormat;
521 srcType = CHAN_TYPE;
522 srcAddr = tmpImage;
523 srcPacking = &_mesa_native_packing;
524 freeSourceData = GL_TRUE;
525 transferOps = 0; /* image transfer ops were completed */
526 }
527
528 /* Let the optimized tex conversion functions take a crack at the
529 * image conversion if the dest format is a h/w format.
530 */
531 if (_mesa_is_hardware_tex_format(dstFormat)) {
532 if (transferOps) {
533 makeTemp = GL_TRUE;
534 }
535 else {
536 if (dimensions == 1) {
537 makeTemp = !_mesa_convert_texsubimage1d(dstFormat->MesaFormat,
538 dstXoffset,
539 srcWidth,
540 srcFormat, srcType,
541 srcPacking, srcAddr,
542 dstAddr);
543 }
544 else if (dimensions == 2) {
545 makeTemp = !_mesa_convert_texsubimage2d(dstFormat->MesaFormat,
546 dstXoffset, dstYoffset,
547 srcWidth, srcHeight,
548 dstRowStridePixels,
549 srcFormat, srcType,
550 srcPacking, srcAddr,
551 dstAddr);
552 }
553 else {
554 assert(dimensions == 3);
555 makeTemp = !_mesa_convert_texsubimage3d(dstFormat->MesaFormat,
556 dstXoffset, dstYoffset, dstZoffset,
557 srcWidth, srcHeight, srcDepth,
558 dstRowStridePixels, dstImageStridePixels,
559 srcFormat, srcType,
560 srcPacking, srcAddr, dstAddr);
561 }
562 if (!makeTemp) {
563 /* all done! */
564 if (freeSourceData)
565 FREE((void *) srcAddr);
566 return;
567 }
568 }
569 }
570 else {
571 /* software texture format */
572 makeTemp = GL_FALSE;
573 }
574
575 if (makeTemp) {
576 GLint postConvWidth = srcWidth, postConvHeight = srcHeight;
577 GLenum tmpFormat;
578 GLuint tmpComps, tmpTexelSize;
579 GLint tmpRowStride, tmpImageStride;
580 GLubyte *tmpImage;
581
582 if (transferOps & IMAGE_CONVOLUTION_BIT) {
583 _mesa_adjust_image_for_convolution(ctx, dimensions, &postConvWidth,
584 &postConvHeight);
585 }
586
587 tmpFormat = dstFormat->BaseFormat;
588 tmpComps = _mesa_components_in_format(tmpFormat);
589 tmpTexelSize = tmpComps * sizeof(GLchan);
590 tmpRowStride = postConvWidth * tmpTexelSize;
591 tmpImageStride = postConvWidth * postConvHeight * tmpTexelSize;
592 tmpImage = (GLubyte *) MALLOC(postConvWidth * postConvHeight *
593 srcDepth * tmpTexelSize);
594 if (!tmpImage) {
595 if (freeSourceData)
596 FREE((void *) srcAddr);
597 return;
598 }
599
600 transfer_teximage(ctx, dimensions, tmpFormat, tmpImage,
601 srcWidth, srcHeight, srcDepth,
602 0, 0, 0, /* x/y/zoffset */
603 tmpRowStride, tmpImageStride,
604 srcFormat, srcType, srcAddr, srcPacking, transferOps);
605
606 if (freeSourceData)
607 FREE((void *) srcAddr);
608
609 /* the temp image is our new source image */
610 srcWidth = postConvWidth;
611 srcHeight = postConvHeight;
612 srcFormat = tmpFormat;
613 srcType = CHAN_TYPE;
614 srcAddr = tmpImage;
615 srcPacking = &_mesa_native_packing;
616 freeSourceData = GL_TRUE;
617 }
618
619 if (_mesa_is_hardware_tex_format(dstFormat)) {
620 assert(makeTemp);
621 if (dimensions == 1) {
622 GLboolean b;
623 b = _mesa_convert_texsubimage1d(dstFormat->MesaFormat,
624 dstXoffset,
625 srcWidth,
626 srcFormat, srcType,
627 srcPacking, srcAddr,
628 dstAddr);
629 assert(b);
630 (void) b;
631 }
632 else if (dimensions == 2) {
633 GLboolean b;
634 b = _mesa_convert_texsubimage2d(dstFormat->MesaFormat,
635 dstXoffset, dstYoffset,
636 srcWidth, srcHeight,
637 dstRowStridePixels,
638 srcFormat, srcType,
639 srcPacking, srcAddr,
640 dstAddr);
641 assert(b);
642 (void) b;
643 }
644 else {
645 GLboolean b;
646 b = _mesa_convert_texsubimage3d(dstFormat->MesaFormat,
647 dstXoffset, dstYoffset, dstZoffset,
648 srcWidth, srcHeight, srcDepth,
649 dstRowStridePixels, dstImageStridePixels,
650 srcFormat, srcType,
651 srcPacking, srcAddr, dstAddr);
652 assert(b);
653 (void) b;
654 }
655 }
656 else {
657 /* software format */
658 assert(!makeTemp);
659 transfer_teximage(ctx, dimensions, dstFormat->BaseFormat, dstAddr,
660 srcWidth, srcHeight, srcDepth,
661 dstXoffset, dstYoffset, dstZoffset,
662 dstRowStride, dstImageStride,
663 srcFormat, srcType, srcAddr, srcPacking, transferOps);
664 }
665
666 if (freeSourceData)
667 FREE((void *) srcAddr); /* the temp image */
668 }
669
670
671
672 /**
673 * Given a user's uncompressed texture image, this function takes care of
674 * pixel unpacking, pixel transfer, format conversion and compression.
675 */
676 static void
677 transfer_compressed_teximage(GLcontext *ctx, GLuint dimensions,
678 GLsizei width, GLsizei height, GLsizei depth,
679 GLenum srcFormat, GLenum srcType,
680 const struct gl_pixelstore_attrib *unpacking,
681 const GLvoid *source,
682 const struct gl_texture_format *dstFormat,
683 GLubyte *dest,
684 GLint dstRowStride)
685 {
686 GLchan *tempImage = NULL;
687 GLint srcRowStride;
688 GLenum baseFormat;
689
690 ASSERT(dimensions == 2);
691 /* TexelBytes is zero if and only if it's a compressed format */
692 ASSERT(dstFormat->TexelBytes == 0);
693
694 baseFormat = dstFormat->BaseFormat;
695
696 if (srcFormat != baseFormat || srcType != CHAN_TYPE ||
697 ctx->_ImageTransferState != 0 || unpacking->SwapBytes) {
698 /* need to convert user's image to texImage->Format, GLchan */
699 GLint comps = components_in_intformat(baseFormat);
700 GLint postConvWidth = width, postConvHeight = height;
701
702 /* XXX convolution untested */
703 if (ctx->_ImageTransferState & IMAGE_CONVOLUTION_BIT) {
704 _mesa_adjust_image_for_convolution(ctx, dimensions, &postConvWidth,
705 &postConvHeight);
706 }
707
708 tempImage = (GLchan*) MALLOC(width * height * comps * sizeof(GLchan));
709 if (!tempImage) {
710 _mesa_error(ctx, GL_OUT_OF_MEMORY, "glTexImage2D");
711 return;
712 }
713 transfer_teximage(ctx, dimensions,
714 baseFormat, /* dest format */
715 tempImage, /* dst address */
716 width, height, depth, /* src size */
717 0, 0, 0, /* x/y/zoffset */
718 comps * width, /* dst row stride */
719 comps * width * height, /* dst image stride */
720 srcFormat, srcType, /* src format, type */
721 source, unpacking, /* src and src packing */
722 ctx->_ImageTransferState);
723 source = tempImage;
724 width = postConvWidth;
725 height = postConvHeight;
726 srcRowStride = width;
727 }
728 else {
729 if (unpacking->RowLength)
730 srcRowStride = unpacking->RowLength;
731 else
732 srcRowStride = width;
733 }
734
735 _mesa_compress_teximage(ctx, width, height, baseFormat,
736 (const GLchan *) source, srcRowStride,
737 dstFormat, dest, dstRowStride);
738 if (tempImage) {
739 FREE(tempImage);
740 }
741 }
742
743
744
745 /*
746 * This is the software fallback for Driver.TexImage1D()
747 * and Driver.CopyTexImage2D().
748 * The texture image type will be GLchan.
749 * The texture image format will be GL_COLOR_INDEX, GL_INTENSITY,
750 * GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_ALPHA, GL_RGB or GL_RGBA.
751 */
752 void
753 _mesa_store_teximage1d(GLcontext *ctx, GLenum target, GLint level,
754 GLint internalFormat,
755 GLint width, GLint border,
756 GLenum format, GLenum type, const GLvoid *pixels,
757 const struct gl_pixelstore_attrib *packing,
758 struct gl_texture_object *texObj,
759 struct gl_texture_image *texImage)
760 {
761 GLint postConvWidth = width;
762 GLint texelBytes, sizeInBytes;
763
764 if (ctx->_ImageTransferState & IMAGE_CONVOLUTION_BIT) {
765 _mesa_adjust_image_for_convolution(ctx, 1, &postConvWidth, NULL);
766 }
767
768 /* choose the texture format */
769 assert(ctx->Driver.ChooseTextureFormat);
770 texImage->TexFormat = (*ctx->Driver.ChooseTextureFormat)(ctx,
771 internalFormat, format, type);
772 assert(texImage->TexFormat);
773 texImage->FetchTexel = texImage->TexFormat->FetchTexel1D;
774
775 texelBytes = texImage->TexFormat->TexelBytes;
776
777 /* allocate memory */
778 if (texImage->IsCompressed)
779 sizeInBytes = texImage->CompressedSize;
780 else
781 sizeInBytes = postConvWidth * texelBytes;
782 texImage->Data = MESA_PBUFFER_ALLOC(sizeInBytes);
783 if (!texImage->Data) {
784 _mesa_error(ctx, GL_OUT_OF_MEMORY, "glTexImage1D");
785 return;
786 }
787
788 if (!pixels)
789 return;
790
791 /* unpack image, apply transfer ops and store in texImage->Data */
792 if (texImage->IsCompressed) {
793 GLint dstRowStride = _mesa_compressed_row_stride(texImage->IntFormat,
794 width);
795 transfer_compressed_teximage(ctx, 1, width, 1, 1,
796 format, type, packing,
797 pixels, texImage->TexFormat,
798 (GLubyte *) texImage->Data, dstRowStride);
799 }
800 else {
801 _mesa_transfer_teximage(ctx, 1,
802 texImage->Format, /* base format */
803 texImage->TexFormat, texImage->Data,
804 width, 1, 1, /* src size */
805 0, 0, 0, /* dstX/Y/Zoffset */
806 0, /* dstRowStride */
807 0, /* dstImageStride */
808 format, type, pixels, packing);
809 }
810
811 /* GL_SGIS_generate_mipmap */
812 if (level == texObj->BaseLevel && texObj->GenerateMipmap) {
813 _mesa_generate_mipmap(ctx, target,
814 &ctx->Texture.Unit[ctx->Texture.CurrentUnit],
815 texObj);
816 }
817 }
818
819
820 /*
821 * This is the software fallback for Driver.TexImage2D()
822 * and Driver.CopyTexImage2D().
823 * The texture image type will be GLchan.
824 * The texture image format will be GL_COLOR_INDEX, GL_INTENSITY,
825 * GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_ALPHA, GL_RGB or GL_RGBA.
826 */
827 void
828 _mesa_store_teximage2d(GLcontext *ctx, GLenum target, GLint level,
829 GLint internalFormat,
830 GLint width, GLint height, GLint border,
831 GLenum format, GLenum type, const void *pixels,
832 const struct gl_pixelstore_attrib *packing,
833 struct gl_texture_object *texObj,
834 struct gl_texture_image *texImage)
835 {
836 GLint postConvWidth = width, postConvHeight = height;
837 GLint texelBytes, sizeInBytes;
838
839 if (ctx->_ImageTransferState & IMAGE_CONVOLUTION_BIT) {
840 _mesa_adjust_image_for_convolution(ctx, 2, &postConvWidth,
841 &postConvHeight);
842 }
843
844 /* choose the texture format */
845 assert(ctx->Driver.ChooseTextureFormat);
846 texImage->TexFormat = (*ctx->Driver.ChooseTextureFormat)(ctx,
847 internalFormat, format, type);
848 assert(texImage->TexFormat);
849 texImage->FetchTexel = texImage->TexFormat->FetchTexel2D;
850
851 texelBytes = texImage->TexFormat->TexelBytes;
852
853 /* allocate memory */
854 if (texImage->IsCompressed)
855 sizeInBytes = texImage->CompressedSize;
856 else
857 sizeInBytes = postConvWidth * postConvHeight * texelBytes;
858 texImage->Data = MESA_PBUFFER_ALLOC(sizeInBytes);
859 if (!texImage->Data) {
860 _mesa_error(ctx, GL_OUT_OF_MEMORY, "glTexImage2D");
861 return;
862 }
863
864 if (!pixels)
865 return;
866
867 /* unpack image, apply transfer ops and store in texImage->Data */
868 if (texImage->IsCompressed) {
869 GLint dstRowStride = _mesa_compressed_row_stride(texImage->IntFormat,
870 width);
871 transfer_compressed_teximage(ctx, 2, width, height, 1,
872 format, type, packing,
873 pixels, texImage->TexFormat,
874 (GLubyte *) texImage->Data, dstRowStride);
875 }
876 else {
877 _mesa_transfer_teximage(ctx, 2,
878 texImage->Format,
879 texImage->TexFormat, texImage->Data,
880 width, height, 1, /* src size */
881 0, 0, 0, /* dstX/Y/Zoffset */
882 texImage->Width * texelBytes, /* dstRowStride */
883 0, /* dstImageStride */
884 format, type, pixels, packing);
885 }
886
887 /* GL_SGIS_generate_mipmap */
888 if (level == texObj->BaseLevel && texObj->GenerateMipmap) {
889 _mesa_generate_mipmap(ctx, target,
890 &ctx->Texture.Unit[ctx->Texture.CurrentUnit],
891 texObj);
892 }
893 }
894
895
896
897 /*
898 * This is the software fallback for Driver.TexImage3D()
899 * and Driver.CopyTexImage3D().
900 * The texture image type will be GLchan.
901 * The texture image format will be GL_COLOR_INDEX, GL_INTENSITY,
902 * GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_ALPHA, GL_RGB or GL_RGBA.
903 */
904 void
905 _mesa_store_teximage3d(GLcontext *ctx, GLenum target, GLint level,
906 GLint internalFormat,
907 GLint width, GLint height, GLint depth, GLint border,
908 GLenum format, GLenum type, const void *pixels,
909 const struct gl_pixelstore_attrib *packing,
910 struct gl_texture_object *texObj,
911 struct gl_texture_image *texImage)
912 {
913 GLint texelBytes, sizeInBytes;
914
915 /* choose the texture format */
916 assert(ctx->Driver.ChooseTextureFormat);
917 texImage->TexFormat = (*ctx->Driver.ChooseTextureFormat)(ctx,
918 internalFormat, format, type);
919 assert(texImage->TexFormat);
920 texImage->FetchTexel = texImage->TexFormat->FetchTexel3D;
921
922 texelBytes = texImage->TexFormat->TexelBytes;
923
924 /* allocate memory */
925 if (texImage->IsCompressed)
926 sizeInBytes = texImage->CompressedSize;
927 else
928 sizeInBytes = width * height * depth * texelBytes;
929 texImage->Data = MESA_PBUFFER_ALLOC(sizeInBytes);
930 if (!texImage->Data) {
931 _mesa_error(ctx, GL_OUT_OF_MEMORY, "glTexImage3D");
932 return;
933 }
934
935 if (!pixels)
936 return;
937
938 /* unpack image, apply transfer ops and store in texImage->Data */
939 if (texImage->IsCompressed) {
940 GLint dstRowStride = _mesa_compressed_row_stride(texImage->IntFormat,
941 width);
942 transfer_compressed_teximage(ctx, 3, width, height, depth,
943 format, type, packing,
944 pixels, texImage->TexFormat,
945 (GLubyte *) texImage->Data, dstRowStride);
946 }
947 else {
948 _mesa_transfer_teximage(ctx, 3,
949 texImage->Format,
950 texImage->TexFormat, texImage->Data,
951 width, height, depth, /* src size */
952 0, 0, 0, /* dstX/Y/Zoffset */
953 texImage->Width * texelBytes, /* dstRowStride */
954 texImage->Width * texImage->Height * texelBytes,
955 format, type, pixels, packing);
956 }
957
958 /* GL_SGIS_generate_mipmap */
959 if (level == texObj->BaseLevel && texObj->GenerateMipmap) {
960 _mesa_generate_mipmap(ctx, target,
961 &ctx->Texture.Unit[ctx->Texture.CurrentUnit],
962 texObj);
963 }
964 }
965
966
967
968
969 /*
970 * This is the software fallback for Driver.TexSubImage1D()
971 * and Driver.CopyTexSubImage1D().
972 */
973 void
974 _mesa_store_texsubimage1d(GLcontext *ctx, GLenum target, GLint level,
975 GLint xoffset, GLint width,
976 GLenum format, GLenum type, const void *pixels,
977 const struct gl_pixelstore_attrib *packing,
978 struct gl_texture_object *texObj,
979 struct gl_texture_image *texImage)
980 {
981 if (texImage->IsCompressed) {
982 GLint dstRowStride = _mesa_compressed_row_stride(texImage->IntFormat,
983 texImage->Width);
984 GLubyte *dest = _mesa_compressed_image_address(xoffset, 0, 0,
985 texImage->IntFormat,
986 texImage->Width,
987 (GLubyte*) texImage->Data);
988 transfer_compressed_teximage(ctx, 1, /* dimensions */
989 width, 1, 1, /* size to replace */
990 format, type, /* source format/type */
991 packing, /* source packing */
992 pixels, /* source data */
993 texImage->TexFormat,/* dest format */
994 dest, dstRowStride);
995 }
996 else {
997 _mesa_transfer_teximage(ctx, 1,
998 texImage->Format,
999 texImage->TexFormat, texImage->Data,
1000 width, 1, 1, /* src size */
1001 xoffset, 0, 0, /* dest offsets */
1002 0, /* dstRowStride */
1003 0, /* dstImageStride */
1004 format, type, pixels, packing);
1005 }
1006
1007 /* GL_SGIS_generate_mipmap */
1008 if (level == texObj->BaseLevel && texObj->GenerateMipmap) {
1009 _mesa_generate_mipmap(ctx, target,
1010 &ctx->Texture.Unit[ctx->Texture.CurrentUnit],
1011 texObj);
1012 }
1013 }
1014
1015
1016
1017 /*
1018 * This is the software fallback for Driver.TexSubImage2D()
1019 * and Driver.CopyTexSubImage2D().
1020 */
1021 void
1022 _mesa_store_texsubimage2d(GLcontext *ctx, GLenum target, GLint level,
1023 GLint xoffset, GLint yoffset,
1024 GLint width, GLint height,
1025 GLenum format, GLenum type, const void *pixels,
1026 const struct gl_pixelstore_attrib *packing,
1027 struct gl_texture_object *texObj,
1028 struct gl_texture_image *texImage)
1029 {
1030 if (texImage->IsCompressed) {
1031 GLint dstRowStride = _mesa_compressed_row_stride(texImage->IntFormat,
1032 texImage->Width);
1033 GLubyte *dest = _mesa_compressed_image_address(xoffset, yoffset, 0,
1034 texImage->IntFormat,
1035 texImage->Width,
1036 (GLubyte*) texImage->Data);
1037 transfer_compressed_teximage(ctx, 2, /* dimensions */
1038 width, height, 1, /* size to replace */
1039 format, type, /* source format/type */
1040 packing, /* source packing */
1041 pixels, /* source data */
1042 texImage->TexFormat,/* dest format */
1043 dest, dstRowStride);
1044 }
1045 else {
1046 _mesa_transfer_teximage(ctx, 2,
1047 texImage->Format,
1048 texImage->TexFormat, texImage->Data,
1049 width, height, 1, /* src size */
1050 xoffset, yoffset, 0, /* dest offsets */
1051 texImage->Width *texImage->TexFormat->TexelBytes,
1052 0, /* dstImageStride */
1053 format, type, pixels, packing);
1054 }
1055
1056 /* GL_SGIS_generate_mipmap */
1057 if (level == texObj->BaseLevel && texObj->GenerateMipmap) {
1058 _mesa_generate_mipmap(ctx, target,
1059 &ctx->Texture.Unit[ctx->Texture.CurrentUnit],
1060 texObj);
1061 }
1062 }
1063
1064
1065 /*
1066 * This is the software fallback for Driver.TexSubImage3D().
1067 * and Driver.CopyTexSubImage3D().
1068 */
1069 void
1070 _mesa_store_texsubimage3d(GLcontext *ctx, GLenum target, GLint level,
1071 GLint xoffset, GLint yoffset, GLint zoffset,
1072 GLint width, GLint height, GLint depth,
1073 GLenum format, GLenum type, const void *pixels,
1074 const struct gl_pixelstore_attrib *packing,
1075 struct gl_texture_object *texObj,
1076 struct gl_texture_image *texImage)
1077 {
1078 if (texImage->IsCompressed) {
1079 GLint dstRowStride = _mesa_compressed_row_stride(texImage->IntFormat,
1080 texImage->Width);
1081 GLubyte *dest = _mesa_compressed_image_address(xoffset, yoffset, zoffset,
1082 texImage->IntFormat,
1083 texImage->Width,
1084 (GLubyte*) texImage->Data);
1085 transfer_compressed_teximage(ctx, 3, /* dimensions */
1086 width, height, depth,/* size to replace */
1087 format, type, /* source format/type */
1088 packing, /* source packing */
1089 pixels, /* source data */
1090 texImage->TexFormat,/* dest format */
1091 dest, dstRowStride);
1092 }
1093 else {
1094 const GLint texelBytes = texImage->TexFormat->TexelBytes;
1095 _mesa_transfer_teximage(ctx, 3,
1096 texImage->Format,
1097 texImage->TexFormat, texImage->Data,
1098 width, height, depth, /* src size */
1099 xoffset, yoffset, zoffset, /* dest offsets */
1100 texImage->Width * texelBytes, /* dst row stride */
1101 texImage->Width * texImage->Height * texelBytes,
1102 format, type, pixels, packing);
1103 }
1104
1105 /* GL_SGIS_generate_mipmap */
1106 if (level == texObj->BaseLevel && texObj->GenerateMipmap) {
1107 _mesa_generate_mipmap(ctx, target,
1108 &ctx->Texture.Unit[ctx->Texture.CurrentUnit],
1109 texObj);
1110 }
1111 }
1112
1113
1114
1115
1116 /*
1117 * Fallback for Driver.CompressedTexImage1D()
1118 */
1119 void
1120 _mesa_store_compressed_teximage1d(GLcontext *ctx, GLenum target, GLint level,
1121 GLint internalFormat,
1122 GLint width, GLint border,
1123 GLsizei imageSize, const GLvoid *data,
1124 struct gl_texture_object *texObj,
1125 struct gl_texture_image *texImage)
1126 {
1127 /* this space intentionally left blank */
1128 }
1129
1130
1131
1132 /*
1133 * Fallback for Driver.CompressedTexImage2D()
1134 */
1135 void
1136 _mesa_store_compressed_teximage2d(GLcontext *ctx, GLenum target, GLint level,
1137 GLint internalFormat,
1138 GLint width, GLint height, GLint border,
1139 GLsizei imageSize, const GLvoid *data,
1140 struct gl_texture_object *texObj,
1141 struct gl_texture_image *texImage)
1142 {
1143 /* This is pretty simple, basically just do a memcpy without worrying
1144 * about the usual image unpacking or image transfer operations.
1145 */
1146 ASSERT(texObj);
1147 ASSERT(texImage);
1148 ASSERT(texImage->Width > 0);
1149 ASSERT(texImage->Height > 0);
1150 ASSERT(texImage->Depth == 1);
1151 ASSERT(texImage->Data == NULL); /* was freed in glCompressedTexImage2DARB */
1152
1153 /* choose the texture format */
1154 assert(ctx->Driver.ChooseTextureFormat);
1155 texImage->TexFormat = (*ctx->Driver.ChooseTextureFormat)(ctx,
1156 internalFormat, 0, 0);
1157 assert(texImage->TexFormat);
1158 texImage->FetchTexel = texImage->TexFormat->FetchTexel2D;
1159
1160 /* allocate storage */
1161 texImage->Data = MESA_PBUFFER_ALLOC(imageSize);
1162 if (!texImage->Data) {
1163 _mesa_error(ctx, GL_OUT_OF_MEMORY, "glCompressedTexImage2DARB");
1164 return;
1165 }
1166
1167 /* copy the data */
1168 ASSERT(texImage->CompressedSize == (GLuint) imageSize);
1169 MEMCPY(texImage->Data, data, imageSize);
1170 }
1171
1172
1173
1174 /*
1175 * Fallback for Driver.CompressedTexImage3D()
1176 */
1177 void
1178 _mesa_store_compressed_teximage3d(GLcontext *ctx, GLenum target, GLint level,
1179 GLint internalFormat,
1180 GLint width, GLint height, GLint depth,
1181 GLint border,
1182 GLsizei imageSize, const GLvoid *data,
1183 struct gl_texture_object *texObj,
1184 struct gl_texture_image *texImage)
1185 {
1186 /* this space intentionally left blank */
1187 }
1188
1189
1190
1191 /**
1192 * Fallback for Driver.CompressedTexSubImage1D()
1193 */
1194 void
1195 _mesa_store_compressed_texsubimage1d(GLcontext *ctx, GLenum target,
1196 GLint level,
1197 GLint xoffset, GLsizei width,
1198 GLenum format,
1199 GLsizei imageSize, const GLvoid *data,
1200 struct gl_texture_object *texObj,
1201 struct gl_texture_image *texImage)
1202 {
1203 /* this space intentionally left blank */
1204 }
1205
1206
1207 /**
1208 * Fallback for Driver.CompressedTexSubImage2D()
1209 */
1210 void
1211 _mesa_store_compressed_texsubimage2d(GLcontext *ctx, GLenum target,
1212 GLint level,
1213 GLint xoffset, GLint yoffset,
1214 GLsizei width, GLsizei height,
1215 GLenum format,
1216 GLsizei imageSize, const GLvoid *data,
1217 struct gl_texture_object *texObj,
1218 struct gl_texture_image *texImage)
1219 {
1220 GLint bytesPerRow, destRowStride, srcRowStride;
1221 GLint i, rows;
1222 GLubyte *dest;
1223 const GLubyte *src;
1224
1225 /* these should have been caught sooner */
1226 ASSERT((width & 3) == 0 || width == 2 || width == 1);
1227 ASSERT((height & 3) == 0 || height == 2 || height == 1);
1228 ASSERT((xoffset & 3) == 0);
1229 ASSERT((yoffset & 3) == 0);
1230
1231 srcRowStride = _mesa_compressed_row_stride(texImage->IntFormat, width);
1232 src = (const GLubyte *) data;
1233
1234 destRowStride = _mesa_compressed_row_stride(texImage->IntFormat,
1235 texImage->Width);
1236 dest = _mesa_compressed_image_address(xoffset, yoffset, 0,
1237 texImage->IntFormat,
1238 texImage->Width,
1239 (GLubyte*) texImage->Data);
1240
1241 bytesPerRow = srcRowStride;
1242 rows = height / 4;
1243
1244 for (i = 0; i < rows; i++) {
1245 MEMCPY(dest, src, bytesPerRow);
1246 dest += destRowStride;
1247 src += srcRowStride;
1248 }
1249 }
1250
1251
1252 /**
1253 * Fallback for Driver.CompressedTexSubImage3D()
1254 */
1255 void
1256 _mesa_store_compressed_texsubimage3d(GLcontext *ctx, GLenum target,
1257 GLint level,
1258 GLint xoffset, GLint yoffset, GLint zoffset,
1259 GLsizei width, GLsizei height, GLsizei depth,
1260 GLenum format,
1261 GLsizei imageSize, const GLvoid *data,
1262 struct gl_texture_object *texObj,
1263 struct gl_texture_image *texImage)
1264 {
1265 /* this space intentionally left blank */
1266 }
1267
1268
1269 /*
1270 * Average together two rows of a source image to produce a single new
1271 * row in the dest image. It's legal for the two source rows to point
1272 * to the same data. The source width must be equal to either the
1273 * dest width or two times the dest width.
1274 */
1275 static void
1276 do_row(const struct gl_texture_format *format, GLint srcWidth,
1277 const GLvoid *srcRowA, const GLvoid *srcRowB,
1278 GLint dstWidth, GLvoid *dstRow)
1279 {
1280 const GLuint k0 = (srcWidth == dstWidth) ? 0 : 1;
1281 const GLuint colStride = (srcWidth == dstWidth) ? 1 : 2;
1282
1283 /* This assertion is no longer valid with non-power-of-2 textures
1284 assert(srcWidth == dstWidth || srcWidth == 2 * dstWidth);
1285 */
1286
1287 switch (format->MesaFormat) {
1288 case MESA_FORMAT_RGBA:
1289 {
1290 GLuint i, j, k;
1291 const GLchan (*rowA)[4] = (const GLchan (*)[4]) srcRowA;
1292 const GLchan (*rowB)[4] = (const GLchan (*)[4]) srcRowB;
1293 GLchan (*dst)[4] = (GLchan (*)[4]) dstRow;
1294 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1295 i++, j += colStride, k += colStride) {
1296 dst[i][0] = (rowA[j][0] + rowA[k][0] +
1297 rowB[j][0] + rowB[k][0]) / 4;
1298 dst[i][1] = (rowA[j][1] + rowA[k][1] +
1299 rowB[j][1] + rowB[k][1]) / 4;
1300 dst[i][2] = (rowA[j][2] + rowA[k][2] +
1301 rowB[j][2] + rowB[k][2]) / 4;
1302 dst[i][3] = (rowA[j][3] + rowA[k][3] +
1303 rowB[j][3] + rowB[k][3]) / 4;
1304 }
1305 }
1306 return;
1307 case MESA_FORMAT_RGB:
1308 {
1309 GLuint i, j, k;
1310 const GLchan (*rowA)[3] = (const GLchan (*)[3]) srcRowA;
1311 const GLchan (*rowB)[3] = (const GLchan (*)[3]) srcRowB;
1312 GLchan (*dst)[3] = (GLchan (*)[3]) dstRow;
1313 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1314 i++, j += colStride, k += colStride) {
1315 dst[i][0] = (rowA[j][0] + rowA[k][0] +
1316 rowB[j][0] + rowB[k][0]) / 4;
1317 dst[i][1] = (rowA[j][1] + rowA[k][1] +
1318 rowB[j][1] + rowB[k][1]) / 4;
1319 dst[i][2] = (rowA[j][2] + rowA[k][2] +
1320 rowB[j][2] + rowB[k][2]) / 4;
1321 }
1322 }
1323 return;
1324 case MESA_FORMAT_ALPHA:
1325 case MESA_FORMAT_LUMINANCE:
1326 case MESA_FORMAT_INTENSITY:
1327 case MESA_FORMAT_COLOR_INDEX:
1328 {
1329 GLuint i, j, k;
1330 const GLchan *rowA = (const GLchan *) srcRowA;
1331 const GLchan *rowB = (const GLchan *) srcRowB;
1332 GLchan *dst = (GLchan *) dstRow;
1333 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1334 i++, j += colStride, k += colStride) {
1335 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4;
1336 }
1337 }
1338 return;
1339 case MESA_FORMAT_LUMINANCE_ALPHA:
1340 {
1341 GLuint i, j, k;
1342 const GLchan (*rowA)[2] = (const GLchan (*)[2]) srcRowA;
1343 const GLchan (*rowB)[2] = (const GLchan (*)[2]) srcRowB;
1344 GLchan (*dst)[2] = (GLchan (*)[2]) dstRow;
1345 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1346 i++, j += colStride, k += colStride) {
1347 dst[i][0] = (rowA[j][0] + rowA[k][0] +
1348 rowB[j][0] + rowB[k][0]) / 4;
1349 dst[i][1] = (rowA[j][1] + rowA[k][1] +
1350 rowB[j][1] + rowB[k][1]) / 4;
1351 }
1352 }
1353 return;
1354 case MESA_FORMAT_DEPTH_COMPONENT:
1355 {
1356 GLuint i, j, k;
1357 const GLfloat *rowA = (const GLfloat *) srcRowA;
1358 const GLfloat *rowB = (const GLfloat *) srcRowB;
1359 GLfloat *dst = (GLfloat *) dstRow;
1360 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1361 i++, j += colStride, k += colStride) {
1362 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) * 0.25F;
1363 }
1364 }
1365 return;
1366 /* Begin hardware formats */
1367 case MESA_FORMAT_RGBA8888:
1368 case MESA_FORMAT_ARGB8888:
1369 {
1370 GLuint i, j, k;
1371 const GLubyte (*rowA)[4] = (const GLubyte (*)[4]) srcRowA;
1372 const GLubyte (*rowB)[4] = (const GLubyte (*)[4]) srcRowB;
1373 GLubyte (*dst)[4] = (GLubyte (*)[4]) dstRow;
1374 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1375 i++, j += colStride, k += colStride) {
1376 dst[i][0] = (rowA[j][0] + rowA[k][0] +
1377 rowB[j][0] + rowB[k][0]) / 4;
1378 dst[i][1] = (rowA[j][1] + rowA[k][1] +
1379 rowB[j][1] + rowB[k][1]) / 4;
1380 dst[i][2] = (rowA[j][2] + rowA[k][2] +
1381 rowB[j][2] + rowB[k][2]) / 4;
1382 dst[i][3] = (rowA[j][3] + rowA[k][3] +
1383 rowB[j][3] + rowB[k][3]) / 4;
1384 }
1385 }
1386 return;
1387 case MESA_FORMAT_RGB888:
1388 {
1389 GLuint i, j, k;
1390 const GLubyte (*rowA)[3] = (const GLubyte (*)[3]) srcRowA;
1391 const GLubyte (*rowB)[3] = (const GLubyte (*)[3]) srcRowB;
1392 GLubyte (*dst)[3] = (GLubyte (*)[3]) dstRow;
1393 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1394 i++, j += colStride, k += colStride) {
1395 dst[i][0] = (rowA[j][0] + rowA[k][0] +
1396 rowB[j][0] + rowB[k][0]) / 4;
1397 dst[i][1] = (rowA[j][1] + rowA[k][1] +
1398 rowB[j][1] + rowB[k][1]) / 4;
1399 dst[i][2] = (rowA[j][2] + rowA[k][2] +
1400 rowB[j][2] + rowB[k][2]) / 4;
1401 }
1402 }
1403 return;
1404 case MESA_FORMAT_RGB565:
1405 {
1406 GLuint i, j, k;
1407 const GLushort *rowA = (const GLushort *) srcRowA;
1408 const GLushort *rowB = (const GLushort *) srcRowB;
1409 GLushort *dst = (GLushort *) dstRow;
1410 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1411 i++, j += colStride, k += colStride) {
1412 const GLint rowAr0 = rowA[j] & 0x1f;
1413 const GLint rowAr1 = rowA[k] & 0x1f;
1414 const GLint rowBr0 = rowB[j] & 0x1f;
1415 const GLint rowBr1 = rowB[k] & 0x1f;
1416 const GLint rowAg0 = (rowA[j] >> 5) & 0x3f;
1417 const GLint rowAg1 = (rowA[k] >> 5) & 0x3f;
1418 const GLint rowBg0 = (rowB[j] >> 5) & 0x3f;
1419 const GLint rowBg1 = (rowB[k] >> 5) & 0x3f;
1420 const GLint rowAb0 = (rowA[j] >> 11) & 0x1f;
1421 const GLint rowAb1 = (rowA[k] >> 11) & 0x1f;
1422 const GLint rowBb0 = (rowB[j] >> 11) & 0x1f;
1423 const GLint rowBb1 = (rowB[k] >> 11) & 0x1f;
1424 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 4;
1425 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 4;
1426 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 4;
1427 dst[i] = (blue << 11) | (green << 5) | red;
1428 }
1429 }
1430 return;
1431 case MESA_FORMAT_ARGB4444:
1432 {
1433 GLuint i, j, k;
1434 const GLushort *rowA = (const GLushort *) srcRowA;
1435 const GLushort *rowB = (const GLushort *) srcRowB;
1436 GLushort *dst = (GLushort *) dstRow;
1437 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1438 i++, j += colStride, k += colStride) {
1439 const GLint rowAr0 = rowA[j] & 0xf;
1440 const GLint rowAr1 = rowA[k] & 0xf;
1441 const GLint rowBr0 = rowB[j] & 0xf;
1442 const GLint rowBr1 = rowB[k] & 0xf;
1443 const GLint rowAg0 = (rowA[j] >> 4) & 0xf;
1444 const GLint rowAg1 = (rowA[k] >> 4) & 0xf;
1445 const GLint rowBg0 = (rowB[j] >> 4) & 0xf;
1446 const GLint rowBg1 = (rowB[k] >> 4) & 0xf;
1447 const GLint rowAb0 = (rowA[j] >> 8) & 0xf;
1448 const GLint rowAb1 = (rowA[k] >> 8) & 0xf;
1449 const GLint rowBb0 = (rowB[j] >> 8) & 0xf;
1450 const GLint rowBb1 = (rowB[k] >> 8) & 0xf;
1451 const GLint rowAa0 = (rowA[j] >> 12) & 0xf;
1452 const GLint rowAa1 = (rowA[k] >> 12) & 0xf;
1453 const GLint rowBa0 = (rowB[j] >> 12) & 0xf;
1454 const GLint rowBa1 = (rowB[k] >> 12) & 0xf;
1455 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 4;
1456 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 4;
1457 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 4;
1458 const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 4;
1459 dst[i] = (alpha << 12) | (blue << 8) | (green << 4) | red;
1460 }
1461 }
1462 return;
1463 case MESA_FORMAT_ARGB1555:
1464 {
1465 GLuint i, j, k;
1466 const GLushort *rowA = (const GLushort *) srcRowA;
1467 const GLushort *rowB = (const GLushort *) srcRowB;
1468 GLushort *dst = (GLushort *) dstRow;
1469 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1470 i++, j += colStride, k += colStride) {
1471 const GLint rowAr0 = rowA[j] & 0x1f;
1472 const GLint rowAr1 = rowA[k] & 0x1f;
1473 const GLint rowBr0 = rowB[j] & 0x1f;
1474 const GLint rowBr1 = rowB[k] & 0xf;
1475 const GLint rowAg0 = (rowA[j] >> 5) & 0x1f;
1476 const GLint rowAg1 = (rowA[k] >> 5) & 0x1f;
1477 const GLint rowBg0 = (rowB[j] >> 5) & 0x1f;
1478 const GLint rowBg1 = (rowB[k] >> 5) & 0x1f;
1479 const GLint rowAb0 = (rowA[j] >> 10) & 0x1f;
1480 const GLint rowAb1 = (rowA[k] >> 10) & 0x1f;
1481 const GLint rowBb0 = (rowB[j] >> 10) & 0x1f;
1482 const GLint rowBb1 = (rowB[k] >> 10) & 0x1f;
1483 const GLint rowAa0 = (rowA[j] >> 15) & 0x1;
1484 const GLint rowAa1 = (rowA[k] >> 15) & 0x1;
1485 const GLint rowBa0 = (rowB[j] >> 15) & 0x1;
1486 const GLint rowBa1 = (rowB[k] >> 15) & 0x1;
1487 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 4;
1488 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 4;
1489 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 4;
1490 const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 4;
1491 dst[i] = (alpha << 15) | (blue << 10) | (green << 5) | red;
1492 }
1493 }
1494 return;
1495 case MESA_FORMAT_AL88:
1496 {
1497 GLuint i, j, k;
1498 const GLubyte (*rowA)[2] = (const GLubyte (*)[2]) srcRowA;
1499 const GLubyte (*rowB)[2] = (const GLubyte (*)[2]) srcRowB;
1500 GLubyte (*dst)[2] = (GLubyte (*)[2]) dstRow;
1501 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1502 i++, j += colStride, k += colStride) {
1503 dst[i][0] = (rowA[j][0] + rowA[k][0] +
1504 rowB[j][0] + rowB[k][0]) >> 2;
1505 dst[i][1] = (rowA[j][1] + rowA[k][1] +
1506 rowB[j][1] + rowB[k][1]) >> 2;
1507 }
1508 }
1509 return;
1510 case MESA_FORMAT_RGB332:
1511 {
1512 GLuint i, j, k;
1513 const GLubyte *rowA = (const GLubyte *) srcRowA;
1514 const GLubyte *rowB = (const GLubyte *) srcRowB;
1515 GLubyte *dst = (GLubyte *) dstRow;
1516 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1517 i++, j += colStride, k += colStride) {
1518 const GLint rowAr0 = rowA[j] & 0x3;
1519 const GLint rowAr1 = rowA[k] & 0x3;
1520 const GLint rowBr0 = rowB[j] & 0x3;
1521 const GLint rowBr1 = rowB[k] & 0x3;
1522 const GLint rowAg0 = (rowA[j] >> 2) & 0x7;
1523 const GLint rowAg1 = (rowA[k] >> 2) & 0x7;
1524 const GLint rowBg0 = (rowB[j] >> 2) & 0x7;
1525 const GLint rowBg1 = (rowB[k] >> 2) & 0x7;
1526 const GLint rowAb0 = (rowA[j] >> 5) & 0x7;
1527 const GLint rowAb1 = (rowA[k] >> 5) & 0x7;
1528 const GLint rowBb0 = (rowB[j] >> 5) & 0x7;
1529 const GLint rowBb1 = (rowB[k] >> 5) & 0x7;
1530 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 4;
1531 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 4;
1532 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 4;
1533 dst[i] = (blue << 5) | (green << 2) | red;
1534 }
1535 }
1536 return;
1537 case MESA_FORMAT_A8:
1538 case MESA_FORMAT_L8:
1539 case MESA_FORMAT_I8:
1540 case MESA_FORMAT_CI8:
1541 {
1542 GLuint i, j, k;
1543 const GLubyte *rowA = (const GLubyte *) srcRowA;
1544 const GLubyte *rowB = (const GLubyte *) srcRowB;
1545 GLubyte *dst = (GLubyte *) dstRow;
1546 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1547 i++, j += colStride, k += colStride) {
1548 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) >> 2;
1549 }
1550 }
1551 return;
1552 default:
1553 _mesa_problem(NULL, "bad format in do_row()");
1554 }
1555 }
1556
1557
1558 /*
1559 * These functions generate a 1/2-size mipmap image from a source image.
1560 * Texture borders are handled by copying or averaging the source image's
1561 * border texels, depending on the scale-down factor.
1562 */
1563
1564 static void
1565 make_1d_mipmap(const struct gl_texture_format *format, GLint border,
1566 GLint srcWidth, const GLubyte *srcPtr,
1567 GLint dstWidth, GLubyte *dstPtr)
1568 {
1569 const GLint bpt = format->TexelBytes;
1570 const GLubyte *src;
1571 GLubyte *dst;
1572
1573 /* skip the border pixel, if any */
1574 src = srcPtr + border * bpt;
1575 dst = dstPtr + border * bpt;
1576
1577 /* we just duplicate the input row, kind of hack, saves code */
1578 do_row(format, srcWidth - 2 * border, src, src,
1579 dstWidth - 2 * border, dst);
1580
1581 if (border) {
1582 /* copy left-most pixel from source */
1583 MEMCPY(dstPtr, srcPtr, bpt);
1584 /* copy right-most pixel from source */
1585 MEMCPY(dstPtr + (dstWidth - 1) * bpt,
1586 srcPtr + (srcWidth - 1) * bpt,
1587 bpt);
1588 }
1589 }
1590
1591
1592 static void
1593 make_2d_mipmap(const struct gl_texture_format *format, GLint border,
1594 GLint srcWidth, GLint srcHeight, const GLubyte *srcPtr,
1595 GLint dstWidth, GLint dstHeight, GLubyte *dstPtr)
1596 {
1597 const GLint bpt = format->TexelBytes;
1598 const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */
1599 const GLint dstWidthNB = dstWidth - 2 * border;
1600 const GLint dstHeightNB = dstHeight - 2 * border;
1601 const GLint srcRowStride = bpt * srcWidth;
1602 const GLint dstRowStride = bpt * dstWidth;
1603 const GLubyte *srcA, *srcB;
1604 GLubyte *dst;
1605 GLint row, colStride;
1606
1607 colStride = (srcWidth == dstWidth) ? 1 : 2;
1608
1609 /* Compute src and dst pointers, skipping any border */
1610 srcA = srcPtr + border * ((srcWidth + 1) * bpt);
1611 if (srcHeight > 1)
1612 srcB = srcA + srcRowStride;
1613 else
1614 srcB = srcA;
1615 dst = dstPtr + border * ((dstWidth + 1) * bpt);
1616
1617 for (row = 0; row < dstHeightNB; row++) {
1618 do_row(format, srcWidthNB, srcA, srcB,
1619 dstWidthNB, dst);
1620 srcA += 2 * srcRowStride;
1621 srcB += 2 * srcRowStride;
1622 dst += dstRowStride;
1623 }
1624
1625 /* This is ugly but probably won't be used much */
1626 if (border > 0) {
1627 /* fill in dest border */
1628 /* lower-left border pixel */
1629 MEMCPY(dstPtr, srcPtr, bpt);
1630 /* lower-right border pixel */
1631 MEMCPY(dstPtr + (dstWidth - 1) * bpt,
1632 srcPtr + (srcWidth - 1) * bpt, bpt);
1633 /* upper-left border pixel */
1634 MEMCPY(dstPtr + dstWidth * (dstHeight - 1) * bpt,
1635 srcPtr + srcWidth * (srcHeight - 1) * bpt, bpt);
1636 /* upper-right border pixel */
1637 MEMCPY(dstPtr + (dstWidth * dstHeight - 1) * bpt,
1638 srcPtr + (srcWidth * srcHeight - 1) * bpt, bpt);
1639 /* lower border */
1640 do_row(format, srcWidthNB,
1641 srcPtr + bpt,
1642 srcPtr + bpt,
1643 dstWidthNB, dstPtr + bpt);
1644 /* upper border */
1645 do_row(format, srcWidthNB,
1646 srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt,
1647 srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt,
1648 dstWidthNB,
1649 dstPtr + (dstWidth * (dstHeight - 1) + 1) * bpt);
1650 /* left and right borders */
1651 if (srcHeight == dstHeight) {
1652 /* copy border pixel from src to dst */
1653 for (row = 1; row < srcHeight; row++) {
1654 MEMCPY(dstPtr + dstWidth * row * bpt,
1655 srcPtr + srcWidth * row * bpt, bpt);
1656 MEMCPY(dstPtr + (dstWidth * row + dstWidth - 1) * bpt,
1657 srcPtr + (srcWidth * row + srcWidth - 1) * bpt, bpt);
1658 }
1659 }
1660 else {
1661 /* average two src pixels each dest pixel */
1662 for (row = 0; row < dstHeightNB; row += 2) {
1663 do_row(format, 1,
1664 srcPtr + (srcWidth * (row * 2 + 1)) * bpt,
1665 srcPtr + (srcWidth * (row * 2 + 2)) * bpt,
1666 1, dstPtr + (dstWidth * row + 1) * bpt);
1667 do_row(format, 1,
1668 srcPtr + (srcWidth * (row * 2 + 1) + srcWidth - 1) * bpt,
1669 srcPtr + (srcWidth * (row * 2 + 2) + srcWidth - 1) * bpt,
1670 1, dstPtr + (dstWidth * row + 1 + dstWidth - 1) * bpt);
1671 }
1672 }
1673 }
1674 }
1675
1676
1677 static void
1678 make_3d_mipmap(const struct gl_texture_format *format, GLint border,
1679 GLint srcWidth, GLint srcHeight, GLint srcDepth,
1680 const GLubyte *srcPtr,
1681 GLint dstWidth, GLint dstHeight, GLint dstDepth,
1682 GLubyte *dstPtr)
1683 {
1684 const GLint bpt = format->TexelBytes;
1685 const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */
1686 const GLint srcDepthNB = srcDepth - 2 * border;
1687 const GLint dstWidthNB = dstWidth - 2 * border;
1688 const GLint dstHeightNB = dstHeight - 2 * border;
1689 const GLint dstDepthNB = dstDepth - 2 * border;
1690 GLvoid *tmpRowA, *tmpRowB;
1691 GLint img, row;
1692 GLint bytesPerSrcImage, bytesPerDstImage;
1693 GLint bytesPerSrcRow, bytesPerDstRow;
1694 GLint srcImageOffset, srcRowOffset;
1695
1696 (void) srcDepthNB; /* silence warnings */
1697
1698 /* Need two temporary row buffers */
1699 tmpRowA = MALLOC(srcWidth * bpt);
1700 if (!tmpRowA)
1701 return;
1702 tmpRowB = MALLOC(srcWidth * bpt);
1703 if (!tmpRowB) {
1704 FREE(tmpRowA);
1705 return;
1706 }
1707
1708 bytesPerSrcImage = srcWidth * srcHeight * bpt;
1709 bytesPerDstImage = dstWidth * dstHeight * bpt;
1710
1711 bytesPerSrcRow = srcWidth * bpt;
1712 bytesPerDstRow = dstWidth * bpt;
1713
1714 /* Offset between adjacent src images to be averaged together */
1715 srcImageOffset = (srcDepth == dstDepth) ? 0 : bytesPerSrcImage;
1716
1717 /* Offset between adjacent src rows to be averaged together */
1718 srcRowOffset = (srcHeight == dstHeight) ? 0 : srcWidth * bpt;
1719
1720 /*
1721 * Need to average together up to 8 src pixels for each dest pixel.
1722 * Break that down into 3 operations:
1723 * 1. take two rows from source image and average them together.
1724 * 2. take two rows from next source image and average them together.
1725 * 3. take the two averaged rows and average them for the final dst row.
1726 */
1727
1728 /*
1729 _mesa_printf("mip3d %d x %d x %d -> %d x %d x %d\n",
1730 srcWidth, srcHeight, srcDepth, dstWidth, dstHeight, dstDepth);
1731 */
1732
1733 for (img = 0; img < dstDepthNB; img++) {
1734 /* first source image pointer, skipping border */
1735 const GLubyte *imgSrcA = srcPtr
1736 + (bytesPerSrcImage + bytesPerSrcRow + border) * bpt * border
1737 + img * (bytesPerSrcImage + srcImageOffset);
1738 /* second source image pointer, skipping border */
1739 const GLubyte *imgSrcB = imgSrcA + srcImageOffset;
1740 /* address of the dest image, skipping border */
1741 GLubyte *imgDst = dstPtr
1742 + (bytesPerDstImage + bytesPerDstRow + border) * bpt * border
1743 + img * bytesPerDstImage;
1744
1745 /* setup the four source row pointers and the dest row pointer */
1746 const GLubyte *srcImgARowA = imgSrcA;
1747 const GLubyte *srcImgARowB = imgSrcA + srcRowOffset;
1748 const GLubyte *srcImgBRowA = imgSrcB;
1749 const GLubyte *srcImgBRowB = imgSrcB + srcRowOffset;
1750 GLubyte *dstImgRow = imgDst;
1751
1752 for (row = 0; row < dstHeightNB; row++) {
1753 /* Average together two rows from first src image */
1754 do_row(format, srcWidthNB, srcImgARowA, srcImgARowB,
1755 srcWidthNB, tmpRowA);
1756 /* Average together two rows from second src image */
1757 do_row(format, srcWidthNB, srcImgBRowA, srcImgBRowB,
1758 srcWidthNB, tmpRowB);
1759 /* Average together the temp rows to make the final row */
1760 do_row(format, srcWidthNB, tmpRowA, tmpRowB,
1761 dstWidthNB, dstImgRow);
1762 /* advance to next rows */
1763 srcImgARowA += bytesPerSrcRow + srcRowOffset;
1764 srcImgARowB += bytesPerSrcRow + srcRowOffset;
1765 srcImgBRowA += bytesPerSrcRow + srcRowOffset;
1766 srcImgBRowB += bytesPerSrcRow + srcRowOffset;
1767 dstImgRow += bytesPerDstRow;
1768 }
1769 }
1770
1771 FREE(tmpRowA);
1772 FREE(tmpRowB);
1773
1774 /* Luckily we can leverage the make_2d_mipmap() function here! */
1775 if (border > 0) {
1776 /* do front border image */
1777 make_2d_mipmap(format, 1, srcWidth, srcHeight, srcPtr,
1778 dstWidth, dstHeight, dstPtr);
1779 /* do back border image */
1780 make_2d_mipmap(format, 1, srcWidth, srcHeight,
1781 srcPtr + bytesPerSrcImage * (srcDepth - 1),
1782 dstWidth, dstHeight,
1783 dstPtr + bytesPerDstImage * (dstDepth - 1));
1784 /* do four remaining border edges that span the image slices */
1785 if (srcDepth == dstDepth) {
1786 /* just copy border pixels from src to dst */
1787 for (img = 0; img < dstDepthNB; img++) {
1788 const GLubyte *src;
1789 GLubyte *dst;
1790
1791 /* do border along [img][row=0][col=0] */
1792 src = srcPtr + (img + 1) * bytesPerSrcImage;
1793 dst = dstPtr + (img + 1) * bytesPerDstImage;
1794 MEMCPY(dst, src, bpt);
1795
1796 /* do border along [img][row=dstHeight-1][col=0] */
1797 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
1798 + (srcHeight - 1) * bytesPerSrcRow;
1799 dst = dstPtr + (img + 1) * bytesPerDstImage
1800 + (dstHeight - 1) * bytesPerDstRow;
1801 MEMCPY(dst, src, bpt);
1802
1803 /* do border along [img][row=0][col=dstWidth-1] */
1804 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
1805 + (srcWidth - 1) * bpt;
1806 dst = dstPtr + (img + 1) * bytesPerDstImage
1807 + (dstWidth - 1) * bpt;
1808 MEMCPY(dst, src, bpt);
1809
1810 /* do border along [img][row=dstHeight-1][col=dstWidth-1] */
1811 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
1812 + (bytesPerSrcImage - bpt);
1813 dst = dstPtr + (img + 1) * bytesPerDstImage
1814 + (bytesPerDstImage - bpt);
1815 MEMCPY(dst, src, bpt);
1816 }
1817 }
1818 else {
1819 /* average border pixels from adjacent src image pairs */
1820 ASSERT(srcDepthNB == 2 * dstDepthNB);
1821 for (img = 0; img < dstDepthNB; img++) {
1822 const GLubyte *src;
1823 GLubyte *dst;
1824
1825 /* do border along [img][row=0][col=0] */
1826 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage;
1827 dst = dstPtr + (img + 1) * bytesPerDstImage;
1828 do_row(format, 1, src, src + srcImageOffset, 1, dst);
1829
1830 /* do border along [img][row=dstHeight-1][col=0] */
1831 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
1832 + (srcHeight - 1) * bytesPerSrcRow;
1833 dst = dstPtr + (img + 1) * bytesPerDstImage
1834 + (dstHeight - 1) * bytesPerDstRow;
1835 do_row(format, 1, src, src + srcImageOffset, 1, dst);
1836
1837 /* do border along [img][row=0][col=dstWidth-1] */
1838 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
1839 + (srcWidth - 1) * bpt;
1840 dst = dstPtr + (img + 1) * bytesPerDstImage
1841 + (dstWidth - 1) * bpt;
1842 do_row(format, 1, src, src + srcImageOffset, 1, dst);
1843
1844 /* do border along [img][row=dstHeight-1][col=dstWidth-1] */
1845 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
1846 + (bytesPerSrcImage - bpt);
1847 dst = dstPtr + (img + 1) * bytesPerDstImage
1848 + (bytesPerDstImage - bpt);
1849 do_row(format, 1, src, src + srcImageOffset, 1, dst);
1850 }
1851 }
1852 }
1853 }
1854
1855
1856 /*
1857 * For GL_SGIX_generate_mipmap:
1858 * Generate a complete set of mipmaps from texObj's base-level image.
1859 * Stop at texObj's MaxLevel or when we get to the 1x1 texture.
1860 */
1861 void
1862 _mesa_generate_mipmap(GLcontext *ctx, GLenum target,
1863 const struct gl_texture_unit *texUnit,
1864 struct gl_texture_object *texObj)
1865 {
1866 const struct gl_texture_image *srcImage;
1867 const struct gl_texture_format *convertFormat;
1868 const GLubyte *srcData = NULL;
1869 GLubyte *dstData = NULL;
1870 GLint level, maxLevels;
1871
1872 ASSERT(texObj);
1873 srcImage = texObj->Image[texObj->BaseLevel];
1874 ASSERT(srcImage);
1875
1876 maxLevels = _mesa_max_texture_levels(ctx, texObj->Target);
1877 ASSERT(maxLevels > 0); /* bad target */
1878
1879 /* Find convertFormat - the format that do_row() will process */
1880 if (srcImage->IsCompressed) {
1881 /* setup for compressed textures */
1882 GLuint row;
1883 GLint components, size;
1884 GLchan *dst;
1885
1886 assert(texObj->Target == GL_TEXTURE_2D);
1887
1888 if (srcImage->Format == GL_RGB) {
1889 convertFormat = &_mesa_texformat_rgb;
1890 components = 3;
1891 }
1892 else if (srcImage->Format == GL_RGBA) {
1893 convertFormat = &_mesa_texformat_rgba;
1894 components = 4;
1895 }
1896 else {
1897 _mesa_problem(ctx, "bad srcImage->Format in _mesa_generate_mipmaps");
1898 return;
1899 }
1900
1901 /* allocate storage for uncompressed GL_RGB or GL_RGBA images */
1902 size = _mesa_bytes_per_pixel(srcImage->Format, CHAN_TYPE)
1903 * srcImage->Width * srcImage->Height * srcImage->Depth + 20;
1904 /* 20 extra bytes, just be safe when calling last FetchTexel */
1905 srcData = (GLubyte *) MALLOC(size);
1906 if (!srcData) {
1907 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generate mipmaps");
1908 return;
1909 }
1910 dstData = (GLubyte *) MALLOC(size / 2); /* 1/4 would probably be OK */
1911 if (!dstData) {
1912 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generate mipmaps");
1913 FREE((void *) srcData);
1914 return;
1915 }
1916
1917 /* decompress base image here */
1918 dst = (GLchan *) srcData;
1919 for (row = 0; row < srcImage->Height; row++) {
1920 GLuint col;
1921 for (col = 0; col < srcImage->Width; col++) {
1922 (*srcImage->FetchTexel)(srcImage, col, row, 0, (GLvoid *) dst);
1923 dst += components;
1924 }
1925 }
1926 }
1927 else {
1928 /* uncompressed */
1929 convertFormat = srcImage->TexFormat;
1930 }
1931
1932 for (level = texObj->BaseLevel; level < texObj->MaxLevel
1933 && level < maxLevels - 1; level++) {
1934 /* generate image[level+1] from image[level] */
1935 const struct gl_texture_image *srcImage;
1936 struct gl_texture_image *dstImage;
1937 GLint srcWidth, srcHeight, srcDepth;
1938 GLint dstWidth, dstHeight, dstDepth;
1939 GLint border, bytesPerTexel;
1940
1941 /* get src image parameters */
1942 srcImage = _mesa_select_tex_image(ctx, texUnit, target, level);
1943 ASSERT(srcImage);
1944 srcWidth = srcImage->Width;
1945 srcHeight = srcImage->Height;
1946 srcDepth = srcImage->Depth;
1947 border = srcImage->Border;
1948
1949 /* compute next (level+1) image size */
1950 if (srcWidth - 2 * border > 1) {
1951 dstWidth = (srcWidth - 2 * border) / 2 + 2 * border;
1952 }
1953 else {
1954 dstWidth = srcWidth; /* can't go smaller */
1955 }
1956 if (srcHeight - 2 * border > 1) {
1957 dstHeight = (srcHeight - 2 * border) / 2 + 2 * border;
1958 }
1959 else {
1960 dstHeight = srcHeight; /* can't go smaller */
1961 }
1962 if (srcDepth - 2 * border > 1) {
1963 dstDepth = (srcDepth - 2 * border) / 2 + 2 * border;
1964 }
1965 else {
1966 dstDepth = srcDepth; /* can't go smaller */
1967 }
1968
1969 if (dstWidth == srcWidth &&
1970 dstHeight == srcHeight &&
1971 dstDepth == srcDepth) {
1972 /* all done */
1973 if (srcImage->IsCompressed) {
1974 FREE((void *) srcData);
1975 FREE(dstData);
1976 }
1977 return;
1978 }
1979
1980 /* get dest gl_texture_image */
1981 dstImage = _mesa_get_tex_image(ctx, texUnit, target, level + 1);
1982 if (!dstImage) {
1983 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generating mipmaps");
1984 return;
1985 }
1986
1987 /* Free old image data */
1988 if (dstImage->Data)
1989 MESA_PBUFFER_FREE(dstImage->Data);
1990
1991 /* initialize new image */
1992 _mesa_init_teximage_fields(ctx, target, dstImage, dstWidth, dstHeight,
1993 dstDepth, border, srcImage->IntFormat);
1994 dstImage->DriverData = NULL;
1995 dstImage->TexFormat = srcImage->TexFormat;
1996 dstImage->FetchTexel = srcImage->FetchTexel;
1997 ASSERT(dstImage->TexFormat);
1998 ASSERT(dstImage->FetchTexel);
1999
2000 /* Alloc new teximage data buffer.
2001 * Setup src and dest data pointers.
2002 */
2003 if (dstImage->IsCompressed) {
2004 ASSERT(dstImage->CompressedSize > 0); /* set by init_teximage_fields*/
2005 dstImage->Data = MESA_PBUFFER_ALLOC(dstImage->CompressedSize);
2006 if (!dstImage->Data) {
2007 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generating mipmaps");
2008 return;
2009 }
2010 /* srcData and dstData are already set */
2011 ASSERT(srcData);
2012 ASSERT(dstData);
2013 }
2014 else {
2015 bytesPerTexel = srcImage->TexFormat->TexelBytes;
2016 ASSERT(dstWidth * dstHeight * dstDepth * bytesPerTexel > 0);
2017 dstImage->Data = MESA_PBUFFER_ALLOC(dstWidth * dstHeight * dstDepth
2018 * bytesPerTexel);
2019 if (!dstImage->Data) {
2020 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generating mipmaps");
2021 return;
2022 }
2023 srcData = (const GLubyte *) srcImage->Data;
2024 dstData = (GLubyte *) dstImage->Data;
2025 }
2026
2027 /*
2028 * We use simple 2x2 averaging to compute the next mipmap level.
2029 */
2030 switch (target) {
2031 case GL_TEXTURE_1D:
2032 make_1d_mipmap(convertFormat, border,
2033 srcWidth, srcData,
2034 dstWidth, dstData);
2035 break;
2036 case GL_TEXTURE_2D:
2037 case GL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB:
2038 case GL_TEXTURE_CUBE_MAP_NEGATIVE_X_ARB:
2039 case GL_TEXTURE_CUBE_MAP_POSITIVE_Y_ARB:
2040 case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB:
2041 case GL_TEXTURE_CUBE_MAP_POSITIVE_Z_ARB:
2042 case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB:
2043 make_2d_mipmap(convertFormat, border,
2044 srcWidth, srcHeight, srcData,
2045 dstWidth, dstHeight, dstData);
2046 break;
2047 case GL_TEXTURE_3D:
2048 make_3d_mipmap(convertFormat, border,
2049 srcWidth, srcHeight, srcDepth, srcData,
2050 dstWidth, dstHeight, dstDepth, dstData);
2051 break;
2052 case GL_TEXTURE_RECTANGLE_NV:
2053 /* no mipmaps, do nothing */
2054 break;
2055 default:
2056 _mesa_problem(ctx, "bad dimensions in _mesa_generate_mipmaps");
2057 return;
2058 }
2059
2060 if (dstImage->IsCompressed) {
2061 GLubyte *temp;
2062 /* compress image from dstData into dstImage->Data */
2063 const GLenum srcFormat = convertFormat->BaseFormat;
2064 GLint dstRowStride = _mesa_compressed_row_stride(srcImage->IntFormat,
2065 dstWidth);
2066 ASSERT(srcFormat == GL_RGB || srcFormat == GL_RGBA);
2067 _mesa_compress_teximage(ctx,
2068 dstWidth, dstHeight, /* size */
2069 srcFormat, /* source format */
2070 (const GLchan *) dstData, /* source buffer */
2071 dstWidth, /* source row stride */
2072 dstImage->TexFormat, /* dest format */
2073 (GLubyte*) dstImage->Data, /* dest buffer */
2074 dstRowStride ); /* dest row stride */
2075
2076 /* swap src and dest pointers */
2077 temp = (GLubyte *) srcData;
2078 srcData = dstData;
2079 dstData = temp;
2080 }
2081
2082 } /* loop over mipmap levels */
2083 }