Some groundwork for supporting GLhalf datatype.
[mesa.git] / src / mesa / main / texstore.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 5.1
4 *
5 * Copyright (C) 1999-2003 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 /*
26 * Authors:
27 * Brian Paul
28 */
29
30 /*
31 * The GL texture image functions in teximage.c basically just do
32 * error checking and data structure allocation. They in turn call
33 * device driver functions which actually copy/convert/store the user's
34 * texture image data.
35 *
36 * However, most device drivers will be able to use the fallback functions
37 * in this file. That is, most drivers will have the following bit of
38 * code:
39 * ctx->Driver.TexImage1D = _mesa_store_teximage1d;
40 * ctx->Driver.TexImage2D = _mesa_store_teximage2d;
41 * ctx->Driver.TexImage3D = _mesa_store_teximage3d;
42 * etc...
43 *
44 * Texture image processing is actually kind of complicated. We have to do:
45 * Format/type conversions
46 * pixel unpacking
47 * pixel transfer (scale, bais, lookup, convolution!, etc)
48 *
49 * These functions can handle most everything, including processing full
50 * images and sub-images.
51 */
52
53
54 #include "glheader.h"
55 #include "colormac.h"
56 #include "context.h"
57 #include "convolve.h"
58 #include "image.h"
59 #include "macros.h"
60 #include "imports.h"
61 #include "texcompress.h"
62 #include "texformat.h"
63 #include "teximage.h"
64 #include "texstore.h"
65 #include "texutil.h"
66
67
68 /*
69 * Given an internal texture format enum or 1, 2, 3, 4 return the
70 * corresponding _base_ internal format: GL_ALPHA, GL_LUMINANCE,
71 * GL_LUMANCE_ALPHA, GL_INTENSITY, GL_RGB, or GL_RGBA. Return the
72 * number of components for the format. Return -1 if invalid enum.
73 */
74 static GLint
75 components_in_intformat( GLint format )
76 {
77 switch (format) {
78 case GL_ALPHA:
79 case GL_ALPHA4:
80 case GL_ALPHA8:
81 case GL_ALPHA12:
82 case GL_ALPHA16:
83 return 1;
84 case 1:
85 case GL_LUMINANCE:
86 case GL_LUMINANCE4:
87 case GL_LUMINANCE8:
88 case GL_LUMINANCE12:
89 case GL_LUMINANCE16:
90 return 1;
91 case 2:
92 case GL_LUMINANCE_ALPHA:
93 case GL_LUMINANCE4_ALPHA4:
94 case GL_LUMINANCE6_ALPHA2:
95 case GL_LUMINANCE8_ALPHA8:
96 case GL_LUMINANCE12_ALPHA4:
97 case GL_LUMINANCE12_ALPHA12:
98 case GL_LUMINANCE16_ALPHA16:
99 return 2;
100 case GL_INTENSITY:
101 case GL_INTENSITY4:
102 case GL_INTENSITY8:
103 case GL_INTENSITY12:
104 case GL_INTENSITY16:
105 return 1;
106 case 3:
107 case GL_RGB:
108 case GL_R3_G3_B2:
109 case GL_RGB4:
110 case GL_RGB5:
111 case GL_RGB8:
112 case GL_RGB10:
113 case GL_RGB12:
114 case GL_RGB16:
115 return 3;
116 case 4:
117 case GL_RGBA:
118 case GL_RGBA2:
119 case GL_RGBA4:
120 case GL_RGB5_A1:
121 case GL_RGBA8:
122 case GL_RGB10_A2:
123 case GL_RGBA12:
124 case GL_RGBA16:
125 return 4;
126 case GL_COLOR_INDEX:
127 case GL_COLOR_INDEX1_EXT:
128 case GL_COLOR_INDEX2_EXT:
129 case GL_COLOR_INDEX4_EXT:
130 case GL_COLOR_INDEX8_EXT:
131 case GL_COLOR_INDEX12_EXT:
132 case GL_COLOR_INDEX16_EXT:
133 return 1;
134 case GL_DEPTH_COMPONENT:
135 case GL_DEPTH_COMPONENT16_SGIX:
136 case GL_DEPTH_COMPONENT24_SGIX:
137 case GL_DEPTH_COMPONENT32_SGIX:
138 return 1;
139 case GL_YCBCR_MESA:
140 return 2; /* Y + (Cb or Cr) */
141 default:
142 return -1; /* error */
143 }
144 }
145
146
147 /*
148 * This function is used to transfer the user's image data into a texture
149 * image buffer. We handle both full texture images and subtexture images.
150 * We also take care of all image transfer operations here, including
151 * convolution, scale/bias, colortables, etc.
152 *
153 * The destination texel type is always GLchan.
154 * The destination texel format is one of the 6 basic types.
155 *
156 * A hardware driver may use this as a helper routine to unpack and
157 * apply pixel transfer ops into a temporary image buffer. Then,
158 * convert the temporary image into the special hardware format.
159 *
160 * \param
161 * dimensions - 1, 2, or 3
162 * texDestFormat - GL_LUMINANCE, GL_INTENSITY, GL_LUMINANCE_ALPHA, GL_ALPHA,
163 * GL_RGB or GL_RGBA (the destination format)
164 * texDestAddr - destination image address
165 * srcWidth, srcHeight, srcDepth - size (in pixels) of src and dest images
166 * dstXoffset, dstYoffset, dstZoffset - position to store the image within
167 * the destination 3D texture
168 * dstRowStride, dstImageStride - dest image strides in bytes
169 * srcFormat - source image format (GL_ALPHA, GL_RED, GL_RGB, etc)
170 * srcType - GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT_5_6_5, GL_FLOAT, etc
171 * srcPacking - describes packing of incoming image.
172 * transferOps - mask of pixel transfer operations
173 */
174 static void
175 transfer_teximage(GLcontext *ctx, GLuint dimensions,
176 GLenum texDestFormat, GLvoid *texDestAddr,
177 GLint srcWidth, GLint srcHeight, GLint srcDepth,
178 GLint dstXoffset, GLint dstYoffset, GLint dstZoffset,
179 GLint dstRowStride, GLint dstImageStride,
180 GLenum srcFormat, GLenum srcType,
181 const GLvoid *srcAddr,
182 const struct gl_pixelstore_attrib *srcPacking,
183 GLuint transferOps)
184 {
185 GLint texComponents;
186
187 ASSERT(ctx);
188 ASSERT(dimensions >= 1 && dimensions <= 3);
189 ASSERT(texDestFormat == GL_LUMINANCE ||
190 texDestFormat == GL_INTENSITY ||
191 texDestFormat == GL_LUMINANCE_ALPHA ||
192 texDestFormat == GL_ALPHA ||
193 texDestFormat == GL_RGB ||
194 texDestFormat == GL_RGBA ||
195 texDestFormat == GL_COLOR_INDEX ||
196 texDestFormat == GL_DEPTH_COMPONENT);
197 ASSERT(texDestAddr);
198 ASSERT(srcWidth >= 0);
199 ASSERT(srcHeight >= 0);
200 ASSERT(srcDepth >= 0);
201 ASSERT(dstXoffset >= 0);
202 ASSERT(dstYoffset >= 0);
203 ASSERT(dstZoffset >= 0);
204 ASSERT(dstRowStride >= 0);
205 ASSERT(dstImageStride >= 0);
206 ASSERT(srcAddr);
207 ASSERT(srcPacking);
208
209 texComponents = components_in_intformat(texDestFormat);
210
211 /* try common 2D texture cases first */
212 if (!transferOps && dimensions == 2 && srcType == CHAN_TYPE) {
213
214 if (srcFormat == texDestFormat) {
215 /* This will cover the common GL_RGB, GL_RGBA, GL_ALPHA,
216 * GL_LUMINANCE_ALPHA, etc. texture formats. Use memcpy().
217 */
218 const GLchan *src = (const GLchan *) _mesa_image_address(
219 srcPacking, srcAddr, srcWidth, srcHeight,
220 srcFormat, srcType, 0, 0, 0);
221 const GLint srcRowStride = _mesa_image_row_stride(srcPacking,
222 srcWidth, srcFormat, srcType);
223 const GLint widthInBytes = srcWidth * texComponents * sizeof(GLchan);
224 GLchan *dst = (GLchan *) texDestAddr
225 + dstYoffset * (dstRowStride / sizeof(GLchan))
226 + dstXoffset * texComponents;
227 if (srcRowStride == widthInBytes && dstRowStride == widthInBytes) {
228 MEMCPY(dst, src, srcHeight * widthInBytes);
229 }
230 else {
231 GLint i;
232 for (i = 0; i < srcHeight; i++) {
233 MEMCPY(dst, src, widthInBytes);
234 src += (srcRowStride / sizeof(GLchan));
235 dst += (dstRowStride / sizeof(GLchan));
236 }
237 }
238 return; /* all done */
239 }
240 else if (srcFormat == GL_RGBA && texDestFormat == GL_RGB) {
241 /* commonly used by Quake */
242 const GLchan *src = (const GLchan *) _mesa_image_address(
243 srcPacking, srcAddr, srcWidth, srcHeight,
244 srcFormat, srcType, 0, 0, 0);
245 const GLint srcRowStride = _mesa_image_row_stride(srcPacking,
246 srcWidth, srcFormat, srcType);
247 GLchan *dst = (GLchan *) texDestAddr
248 + dstYoffset * (dstRowStride / sizeof(GLchan))
249 + dstXoffset * texComponents;
250 GLint i, j;
251 for (i = 0; i < srcHeight; i++) {
252 const GLchan *s = src;
253 GLchan *d = dst;
254 for (j = 0; j < srcWidth; j++) {
255 *d++ = *s++; /*red*/
256 *d++ = *s++; /*green*/
257 *d++ = *s++; /*blue*/
258 s++; /*alpha*/
259 }
260 src += (srcRowStride / sizeof(GLchan));
261 dst += (dstRowStride / sizeof(GLchan));
262 }
263 return; /* all done */
264 }
265 }
266
267 /*
268 * General case solutions
269 */
270 if (texDestFormat == GL_COLOR_INDEX) {
271 /* color index texture */
272 const GLenum texType = CHAN_TYPE;
273 GLint img, row;
274 GLchan *dest = (GLchan *) texDestAddr
275 + dstZoffset * (dstImageStride / sizeof(GLchan))
276 + dstYoffset * (dstRowStride / sizeof(GLchan))
277 + dstXoffset * texComponents;
278 for (img = 0; img < srcDepth; img++) {
279 GLchan *destRow = dest;
280 for (row = 0; row < srcHeight; row++) {
281 const GLvoid *src = _mesa_image_address(srcPacking,
282 srcAddr, srcWidth, srcHeight, srcFormat, srcType, img, row, 0);
283 _mesa_unpack_index_span(ctx, srcWidth, texType, destRow,
284 srcType, src, srcPacking, transferOps);
285 destRow += (dstRowStride / sizeof(GLchan));
286 }
287 dest += dstImageStride;
288 }
289 }
290 else if (texDestFormat == GL_YCBCR_MESA) {
291 /* YCbCr texture */
292 GLint img, row;
293 GLushort *dest = (GLushort *) texDestAddr
294 + dstZoffset * (dstImageStride / sizeof(GLushort))
295 + dstYoffset * (dstRowStride / sizeof(GLushort))
296 + dstXoffset * texComponents;
297 ASSERT(ctx->Extensions.MESA_ycbcr_texture);
298 for (img = 0; img < srcDepth; img++) {
299 GLushort *destRow = dest;
300 for (row = 0; row < srcHeight; row++) {
301 const GLvoid *srcRow = _mesa_image_address(srcPacking,
302 srcAddr, srcWidth, srcHeight,
303 srcFormat, srcType, img, row, 0);
304 MEMCPY(destRow, srcRow, srcWidth * sizeof(GLushort));
305 destRow += (dstRowStride / sizeof(GLushort));
306 }
307 dest += dstImageStride / sizeof(GLushort);
308 }
309 }
310 else if (texDestFormat == GL_DEPTH_COMPONENT) {
311 /* Depth texture (shadow maps) */
312 GLint img, row;
313 GLubyte *dest = (GLubyte *) texDestAddr
314 + dstZoffset * dstImageStride
315 + dstYoffset * (dstRowStride / sizeof(GLchan))
316 + dstXoffset * texComponents;
317 for (img = 0; img < srcDepth; img++) {
318 GLubyte *destRow = dest;
319 for (row = 0; row < srcHeight; row++) {
320 const GLvoid *src = _mesa_image_address(srcPacking,
321 srcAddr, srcWidth, srcHeight, srcFormat, srcType, img, row, 0);
322 _mesa_unpack_depth_span(ctx, srcWidth, (GLfloat *) destRow,
323 srcType, src, srcPacking);
324 destRow += (dstRowStride / sizeof(GLchan));
325 }
326 dest += dstImageStride;
327 }
328 }
329 else {
330 /* regular, color texture */
331 if ((dimensions == 1 && ctx->Pixel.Convolution1DEnabled) ||
332 (dimensions >= 2 && ctx->Pixel.Convolution2DEnabled) ||
333 (dimensions >= 2 && ctx->Pixel.Separable2DEnabled)) {
334 /*
335 * Fill texture image with convolution
336 */
337 GLint img, row;
338 GLint convWidth = srcWidth, convHeight = srcHeight;
339 GLfloat *tmpImage, *convImage;
340 tmpImage = (GLfloat *) MALLOC(srcWidth * srcHeight * 4 * sizeof(GLfloat));
341 if (!tmpImage) {
342 _mesa_error(ctx, GL_OUT_OF_MEMORY, "glTexImage");
343 return;
344 }
345 convImage = (GLfloat *) MALLOC(srcWidth * srcHeight * 4 * sizeof(GLfloat));
346 if (!convImage) {
347 _mesa_error(ctx, GL_OUT_OF_MEMORY, "glTexImage");
348 FREE(tmpImage);
349 return;
350 }
351
352 for (img = 0; img < srcDepth; img++) {
353 const GLfloat *srcf;
354 GLfloat *dstf = tmpImage;
355 GLchan *dest;
356
357 /* unpack and do transfer ops up to convolution */
358 for (row = 0; row < srcHeight; row++) {
359 const GLvoid *src = _mesa_image_address(srcPacking,
360 srcAddr, srcWidth, srcHeight,
361 srcFormat, srcType, img, row, 0);
362 _mesa_unpack_float_color_span(ctx, srcWidth, GL_RGBA, dstf,
363 srcFormat, srcType, src, srcPacking,
364 transferOps & IMAGE_PRE_CONVOLUTION_BITS,
365 GL_TRUE);
366 dstf += srcWidth * 4;
367 }
368
369 /* convolve */
370 if (dimensions == 1) {
371 ASSERT(ctx->Pixel.Convolution1DEnabled);
372 _mesa_convolve_1d_image(ctx, &convWidth, tmpImage, convImage);
373 }
374 else {
375 if (ctx->Pixel.Convolution2DEnabled) {
376 _mesa_convolve_2d_image(ctx, &convWidth, &convHeight,
377 tmpImage, convImage);
378 }
379 else {
380 ASSERT(ctx->Pixel.Separable2DEnabled);
381 _mesa_convolve_sep_image(ctx, &convWidth, &convHeight,
382 tmpImage, convImage);
383 }
384 }
385
386 /* packing and transfer ops after convolution */
387 srcf = convImage;
388 dest = (GLchan *) texDestAddr
389 + (dstZoffset + img) * (dstImageStride / sizeof(GLchan))
390 + dstYoffset * (dstRowStride / sizeof(GLchan));
391 for (row = 0; row < convHeight; row++) {
392 _mesa_pack_float_rgba_span(ctx, convWidth,
393 (const GLfloat (*)[4]) srcf,
394 texDestFormat, CHAN_TYPE,
395 dest, &_mesa_native_packing,
396 transferOps
397 & IMAGE_POST_CONVOLUTION_BITS);
398 srcf += convWidth * 4;
399 dest += (dstRowStride / sizeof(GLchan));
400 }
401 }
402
403 FREE(convImage);
404 FREE(tmpImage);
405 }
406 else {
407 /*
408 * no convolution
409 */
410 GLint img, row;
411 GLchan *dest = (GLchan *) texDestAddr
412 + dstZoffset * (dstImageStride / sizeof(GLchan))
413 + dstYoffset * (dstRowStride / sizeof(GLchan))
414 + dstXoffset * texComponents;
415 for (img = 0; img < srcDepth; img++) {
416 GLchan *destRow = dest;
417 for (row = 0; row < srcHeight; row++) {
418 const GLvoid *srcRow = _mesa_image_address(srcPacking,
419 srcAddr, srcWidth, srcHeight,
420 srcFormat, srcType, img, row, 0);
421 _mesa_unpack_chan_color_span(ctx, srcWidth, texDestFormat,
422 destRow, srcFormat, srcType, srcRow,
423 srcPacking, transferOps);
424 destRow += (dstRowStride / sizeof(GLchan));
425 }
426 dest += dstImageStride / sizeof(GLchan);
427 }
428 }
429 }
430 }
431
432
433
434 /*
435 * Transfer a texture image from user space to <destAddr> applying all
436 * needed image transfer operations and storing the result in the format
437 * specified by <dstFormat>. <dstFormat> may be any format from texformat.h.
438 * \param
439 * dimensions - 1, 2 or 3
440 * baseInternalFormat - base format of the internal texture format
441 * specified by the user. This is very important, see below.
442 * dstFormat - destination image format
443 * dstAddr - destination address
444 * srcWidth, srcHeight, srcDepth - size of source iamge
445 * dstX/Y/Zoffset - as specified by glTexSubImage
446 * dstRowStride - stride between dest rows in bytes
447 * dstImageStride - stride between dest images in bytes
448 * srcFormat, srcType - incoming image format and data type
449 * srcAddr - source image address
450 * srcPacking - packing params of source image
451 *
452 * XXX this function is a bit more complicated than it should be. If
453 * _mesa_convert_texsubimage[123]d could handle any dest/source formats
454 * or if transfer_teximage() could store in any MESA_FORMAT_* format, we
455 * could simplify things here.
456 */
457 void
458 _mesa_transfer_teximage(GLcontext *ctx, GLuint dimensions,
459 GLenum baseInternalFormat,
460 const struct gl_texture_format *dstFormat,
461 GLvoid *dstAddr,
462 GLint srcWidth, GLint srcHeight, GLint srcDepth,
463 GLint dstXoffset, GLint dstYoffset, GLint dstZoffset,
464 GLint dstRowStride, GLint dstImageStride,
465 GLenum srcFormat, GLenum srcType,
466 const GLvoid *srcAddr,
467 const struct gl_pixelstore_attrib *srcPacking)
468 {
469 const GLint dstRowStridePixels = dstRowStride / dstFormat->TexelBytes;
470 const GLint dstImageStridePixels = dstImageStride / dstFormat->TexelBytes;
471 GLboolean makeTemp;
472 GLuint transferOps = ctx->_ImageTransferState;
473 GLboolean freeSourceData = GL_FALSE;
474 GLint postConvWidth = srcWidth, postConvHeight = srcHeight;
475
476 assert(baseInternalFormat > 0);
477 ASSERT(baseInternalFormat == GL_LUMINANCE ||
478 baseInternalFormat == GL_INTENSITY ||
479 baseInternalFormat == GL_LUMINANCE_ALPHA ||
480 baseInternalFormat == GL_ALPHA ||
481 baseInternalFormat == GL_RGB ||
482 baseInternalFormat == GL_RGBA ||
483 baseInternalFormat == GL_COLOR_INDEX ||
484 baseInternalFormat == GL_DEPTH_COMPONENT);
485
486 if (transferOps & IMAGE_CONVOLUTION_BIT) {
487 _mesa_adjust_image_for_convolution(ctx, dimensions, &postConvWidth,
488 &postConvHeight);
489 }
490
491 /*
492 * Consider this scenario: The user's source image is GL_RGB and the
493 * requested internal format is GL_LUMINANCE. Now suppose the device
494 * driver doesn't support GL_LUMINANCE and instead uses RGB16 as the
495 * texture format. In that case we still need to do an intermediate
496 * conversion to luminance format so that the incoming red channel gets
497 * replicated into the dest red, green and blue channels. The following
498 * code takes care of that.
499 */
500 if (dstFormat->BaseFormat != baseInternalFormat) {
501 /* Allocate storage for temporary image in the baseInternalFormat */
502 const GLint texelSize = _mesa_components_in_format(baseInternalFormat)
503 * sizeof(GLchan);
504 const GLint bytes = texelSize * postConvWidth * postConvHeight *srcDepth;
505 const GLint tmpRowStride = texelSize * postConvWidth;
506 const GLint tmpImgStride = texelSize * postConvWidth * postConvHeight;
507 GLvoid *tmpImage = MALLOC(bytes);
508 if (!tmpImage)
509 return;
510 transfer_teximage(ctx, dimensions, baseInternalFormat, tmpImage,
511 srcWidth, srcHeight, srcDepth,
512 0, 0, 0, /* x/y/zoffset */
513 tmpRowStride, tmpImgStride,
514 srcFormat, srcType, srcAddr, srcPacking, transferOps);
515
516 /* this is our new source image */
517 srcWidth = postConvWidth;
518 srcHeight = postConvHeight;
519 srcFormat = baseInternalFormat;
520 srcType = CHAN_TYPE;
521 srcAddr = tmpImage;
522 srcPacking = &_mesa_native_packing;
523 freeSourceData = GL_TRUE;
524 transferOps = 0; /* image transfer ops were completed */
525 }
526
527 /* Let the optimized tex conversion functions take a crack at the
528 * image conversion if the dest format is a h/w format.
529 */
530 if (_mesa_is_hardware_tex_format(dstFormat)) {
531 if (transferOps) {
532 makeTemp = GL_TRUE;
533 }
534 else {
535 if (dimensions == 1) {
536 makeTemp = !_mesa_convert_texsubimage1d(dstFormat->MesaFormat,
537 dstXoffset,
538 srcWidth,
539 srcFormat, srcType,
540 srcPacking, srcAddr,
541 dstAddr);
542 }
543 else if (dimensions == 2) {
544 makeTemp = !_mesa_convert_texsubimage2d(dstFormat->MesaFormat,
545 dstXoffset, dstYoffset,
546 srcWidth, srcHeight,
547 dstRowStridePixels,
548 srcFormat, srcType,
549 srcPacking, srcAddr,
550 dstAddr);
551 }
552 else {
553 assert(dimensions == 3);
554 makeTemp = !_mesa_convert_texsubimage3d(dstFormat->MesaFormat,
555 dstXoffset, dstYoffset, dstZoffset,
556 srcWidth, srcHeight, srcDepth,
557 dstRowStridePixels, dstImageStridePixels,
558 srcFormat, srcType,
559 srcPacking, srcAddr, dstAddr);
560 }
561 if (!makeTemp) {
562 /* all done! */
563 if (freeSourceData)
564 FREE((void *) srcAddr);
565 return;
566 }
567 }
568 }
569 else {
570 /* software texture format */
571 makeTemp = GL_FALSE;
572 }
573
574 if (makeTemp) {
575 GLint postConvWidth = srcWidth, postConvHeight = srcHeight;
576 GLenum tmpFormat;
577 GLuint tmpComps, tmpTexelSize;
578 GLint tmpRowStride, tmpImageStride;
579 GLubyte *tmpImage;
580
581 if (transferOps & IMAGE_CONVOLUTION_BIT) {
582 _mesa_adjust_image_for_convolution(ctx, dimensions, &postConvWidth,
583 &postConvHeight);
584 }
585
586 tmpFormat = dstFormat->BaseFormat;
587 tmpComps = _mesa_components_in_format(tmpFormat);
588 tmpTexelSize = tmpComps * sizeof(GLchan);
589 tmpRowStride = postConvWidth * tmpTexelSize;
590 tmpImageStride = postConvWidth * postConvHeight * tmpTexelSize;
591 tmpImage = (GLubyte *) MALLOC(postConvWidth * postConvHeight *
592 srcDepth * tmpTexelSize);
593 if (!tmpImage) {
594 if (freeSourceData)
595 FREE((void *) srcAddr);
596 return;
597 }
598
599 transfer_teximage(ctx, dimensions, tmpFormat, tmpImage,
600 srcWidth, srcHeight, srcDepth,
601 0, 0, 0, /* x/y/zoffset */
602 tmpRowStride, tmpImageStride,
603 srcFormat, srcType, srcAddr, srcPacking, transferOps);
604
605 if (freeSourceData)
606 FREE((void *) srcAddr);
607
608 /* the temp image is our new source image */
609 srcWidth = postConvWidth;
610 srcHeight = postConvHeight;
611 srcFormat = tmpFormat;
612 srcType = CHAN_TYPE;
613 srcAddr = tmpImage;
614 srcPacking = &_mesa_native_packing;
615 freeSourceData = GL_TRUE;
616 }
617
618 if (_mesa_is_hardware_tex_format(dstFormat)) {
619 assert(makeTemp);
620 if (dimensions == 1) {
621 GLboolean b;
622 b = _mesa_convert_texsubimage1d(dstFormat->MesaFormat,
623 dstXoffset,
624 srcWidth,
625 srcFormat, srcType,
626 srcPacking, srcAddr,
627 dstAddr);
628 assert(b);
629 }
630 else if (dimensions == 2) {
631 GLboolean b;
632 b = _mesa_convert_texsubimage2d(dstFormat->MesaFormat,
633 dstXoffset, dstYoffset,
634 srcWidth, srcHeight,
635 dstRowStridePixels,
636 srcFormat, srcType,
637 srcPacking, srcAddr,
638 dstAddr);
639 assert(b);
640 }
641 else {
642 GLboolean b;
643 b = _mesa_convert_texsubimage3d(dstFormat->MesaFormat,
644 dstXoffset, dstYoffset, dstZoffset,
645 srcWidth, srcHeight, srcDepth,
646 dstRowStridePixels, dstImageStridePixels,
647 srcFormat, srcType,
648 srcPacking, srcAddr, dstAddr);
649 assert(b);
650 }
651 }
652 else {
653 /* software format */
654 assert(!makeTemp);
655 transfer_teximage(ctx, dimensions, dstFormat->BaseFormat, dstAddr,
656 srcWidth, srcHeight, srcDepth,
657 dstXoffset, dstYoffset, dstZoffset,
658 dstRowStride, dstImageStride,
659 srcFormat, srcType, srcAddr, srcPacking, transferOps);
660 }
661
662 if (freeSourceData)
663 FREE((void *) srcAddr); /* the temp image */
664 }
665
666
667
668 /**
669 * Given a user's uncompressed texture image, this function takes care of
670 * pixel unpacking, pixel transfer, format conversion and compression.
671 */
672 static void
673 transfer_compressed_teximage(GLcontext *ctx, GLuint dimensions,
674 GLsizei width, GLsizei height, GLsizei depth,
675 GLenum srcFormat, GLenum srcType,
676 const struct gl_pixelstore_attrib *unpacking,
677 const GLvoid *source,
678 const struct gl_texture_format *dstFormat,
679 GLubyte *dest,
680 GLint dstRowStride)
681 {
682 GLchan *tempImage = NULL;
683 GLint srcRowStride;
684 GLenum baseFormat;
685
686 ASSERT(dimensions == 2);
687 /* TexelBytes is zero if and only if it's a compressed format */
688 ASSERT(dstFormat->TexelBytes == 0);
689
690 baseFormat = dstFormat->BaseFormat;
691
692 if (srcFormat != baseFormat || srcType != CHAN_TYPE ||
693 ctx->_ImageTransferState != 0 || unpacking->SwapBytes) {
694 /* need to convert user's image to texImage->Format, GLchan */
695 GLint comps = components_in_intformat(baseFormat);
696 GLint postConvWidth = width, postConvHeight = height;
697
698 /* XXX convolution untested */
699 if (ctx->_ImageTransferState & IMAGE_CONVOLUTION_BIT) {
700 _mesa_adjust_image_for_convolution(ctx, dimensions, &postConvWidth,
701 &postConvHeight);
702 }
703
704 tempImage = (GLchan*) MALLOC(width * height * comps * sizeof(GLchan));
705 if (!tempImage) {
706 _mesa_error(ctx, GL_OUT_OF_MEMORY, "glTexImage2D");
707 return;
708 }
709 transfer_teximage(ctx, dimensions,
710 baseFormat, /* dest format */
711 tempImage, /* dst address */
712 width, height, depth, /* src size */
713 0, 0, 0, /* x/y/zoffset */
714 comps * width, /* dst row stride */
715 comps * width * height, /* dst image stride */
716 srcFormat, srcType, /* src format, type */
717 source, unpacking, /* src and src packing */
718 ctx->_ImageTransferState);
719 source = tempImage;
720 width = postConvWidth;
721 height = postConvHeight;
722 srcRowStride = width;
723 }
724 else {
725 if (unpacking->RowLength)
726 srcRowStride = unpacking->RowLength;
727 else
728 srcRowStride = width;
729 }
730
731 _mesa_compress_teximage(ctx, width, height, baseFormat,
732 (const GLchan *) source, srcRowStride,
733 dstFormat, dest, dstRowStride);
734 if (tempImage) {
735 FREE(tempImage);
736 }
737 }
738
739
740
741 /*
742 * This is the software fallback for Driver.TexImage1D()
743 * and Driver.CopyTexImage2D().
744 * The texture image type will be GLchan.
745 * The texture image format will be GL_COLOR_INDEX, GL_INTENSITY,
746 * GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_ALPHA, GL_RGB or GL_RGBA.
747 */
748 void
749 _mesa_store_teximage1d(GLcontext *ctx, GLenum target, GLint level,
750 GLint internalFormat,
751 GLint width, GLint border,
752 GLenum format, GLenum type, const GLvoid *pixels,
753 const struct gl_pixelstore_attrib *packing,
754 struct gl_texture_object *texObj,
755 struct gl_texture_image *texImage)
756 {
757 GLint postConvWidth = width;
758 GLint texelBytes, sizeInBytes;
759
760 if (ctx->_ImageTransferState & IMAGE_CONVOLUTION_BIT) {
761 _mesa_adjust_image_for_convolution(ctx, 1, &postConvWidth, NULL);
762 }
763
764 /* choose the texture format */
765 assert(ctx->Driver.ChooseTextureFormat);
766 texImage->TexFormat = (*ctx->Driver.ChooseTextureFormat)(ctx,
767 internalFormat, format, type);
768 assert(texImage->TexFormat);
769 texImage->FetchTexel = texImage->TexFormat->FetchTexel1D;
770
771 texelBytes = texImage->TexFormat->TexelBytes;
772
773 /* allocate memory */
774 if (texImage->IsCompressed)
775 sizeInBytes = texImage->CompressedSize;
776 else
777 sizeInBytes = postConvWidth * texelBytes;
778 texImage->Data = MESA_PBUFFER_ALLOC(sizeInBytes);
779 if (!texImage->Data) {
780 _mesa_error(ctx, GL_OUT_OF_MEMORY, "glTexImage1D");
781 return;
782 }
783
784 if (!pixels)
785 return;
786
787 /* unpack image, apply transfer ops and store in texImage->Data */
788 if (texImage->IsCompressed) {
789 GLint dstRowStride = _mesa_compressed_row_stride(texImage->IntFormat,
790 width);
791 transfer_compressed_teximage(ctx, 1, width, 1, 1,
792 format, type, packing,
793 pixels, texImage->TexFormat,
794 (GLubyte *) texImage->Data, dstRowStride);
795 }
796 else {
797 _mesa_transfer_teximage(ctx, 1,
798 texImage->Format, /* base format */
799 texImage->TexFormat, texImage->Data,
800 width, 1, 1, /* src size */
801 0, 0, 0, /* dstX/Y/Zoffset */
802 0, /* dstRowStride */
803 0, /* dstImageStride */
804 format, type, pixels, packing);
805 }
806
807 /* GL_SGIS_generate_mipmap */
808 if (level == texObj->BaseLevel && texObj->GenerateMipmap) {
809 _mesa_generate_mipmap(ctx, target,
810 &ctx->Texture.Unit[ctx->Texture.CurrentUnit],
811 texObj);
812 }
813 }
814
815
816 /*
817 * This is the software fallback for Driver.TexImage2D()
818 * and Driver.CopyTexImage2D().
819 * The texture image type will be GLchan.
820 * The texture image format will be GL_COLOR_INDEX, GL_INTENSITY,
821 * GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_ALPHA, GL_RGB or GL_RGBA.
822 */
823 void
824 _mesa_store_teximage2d(GLcontext *ctx, GLenum target, GLint level,
825 GLint internalFormat,
826 GLint width, GLint height, GLint border,
827 GLenum format, GLenum type, const void *pixels,
828 const struct gl_pixelstore_attrib *packing,
829 struct gl_texture_object *texObj,
830 struct gl_texture_image *texImage)
831 {
832 GLint postConvWidth = width, postConvHeight = height;
833 GLint texelBytes, sizeInBytes;
834
835 if (ctx->_ImageTransferState & IMAGE_CONVOLUTION_BIT) {
836 _mesa_adjust_image_for_convolution(ctx, 2, &postConvWidth,
837 &postConvHeight);
838 }
839
840 /* choose the texture format */
841 assert(ctx->Driver.ChooseTextureFormat);
842 texImage->TexFormat = (*ctx->Driver.ChooseTextureFormat)(ctx,
843 internalFormat, format, type);
844 assert(texImage->TexFormat);
845 texImage->FetchTexel = texImage->TexFormat->FetchTexel2D;
846
847 texelBytes = texImage->TexFormat->TexelBytes;
848
849 /* allocate memory */
850 if (texImage->IsCompressed)
851 sizeInBytes = texImage->CompressedSize;
852 else
853 sizeInBytes = postConvWidth * postConvHeight * texelBytes;
854 texImage->Data = MESA_PBUFFER_ALLOC(sizeInBytes);
855 if (!texImage->Data) {
856 _mesa_error(ctx, GL_OUT_OF_MEMORY, "glTexImage2D");
857 return;
858 }
859
860 if (!pixels)
861 return;
862
863 /* unpack image, apply transfer ops and store in texImage->Data */
864 if (texImage->IsCompressed) {
865 GLint dstRowStride = _mesa_compressed_row_stride(texImage->IntFormat,
866 width);
867 transfer_compressed_teximage(ctx, 2, width, height, 1,
868 format, type, packing,
869 pixels, texImage->TexFormat,
870 (GLubyte *) texImage->Data, dstRowStride);
871 }
872 else {
873 _mesa_transfer_teximage(ctx, 2,
874 texImage->Format,
875 texImage->TexFormat, texImage->Data,
876 width, height, 1, /* src size */
877 0, 0, 0, /* dstX/Y/Zoffset */
878 texImage->Width * texelBytes, /* dstRowStride */
879 0, /* dstImageStride */
880 format, type, pixels, packing);
881 }
882
883 /* GL_SGIS_generate_mipmap */
884 if (level == texObj->BaseLevel && texObj->GenerateMipmap) {
885 _mesa_generate_mipmap(ctx, target,
886 &ctx->Texture.Unit[ctx->Texture.CurrentUnit],
887 texObj);
888 }
889 }
890
891
892
893 /*
894 * This is the software fallback for Driver.TexImage3D()
895 * and Driver.CopyTexImage3D().
896 * The texture image type will be GLchan.
897 * The texture image format will be GL_COLOR_INDEX, GL_INTENSITY,
898 * GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_ALPHA, GL_RGB or GL_RGBA.
899 */
900 void
901 _mesa_store_teximage3d(GLcontext *ctx, GLenum target, GLint level,
902 GLint internalFormat,
903 GLint width, GLint height, GLint depth, GLint border,
904 GLenum format, GLenum type, const void *pixels,
905 const struct gl_pixelstore_attrib *packing,
906 struct gl_texture_object *texObj,
907 struct gl_texture_image *texImage)
908 {
909 GLint texelBytes, sizeInBytes;
910
911 /* choose the texture format */
912 assert(ctx->Driver.ChooseTextureFormat);
913 texImage->TexFormat = (*ctx->Driver.ChooseTextureFormat)(ctx,
914 internalFormat, format, type);
915 assert(texImage->TexFormat);
916 texImage->FetchTexel = texImage->TexFormat->FetchTexel3D;
917
918 texelBytes = texImage->TexFormat->TexelBytes;
919
920 /* allocate memory */
921 if (texImage->IsCompressed)
922 sizeInBytes = texImage->CompressedSize;
923 else
924 sizeInBytes = width * height * depth * texelBytes;
925 texImage->Data = MESA_PBUFFER_ALLOC(sizeInBytes);
926 if (!texImage->Data) {
927 _mesa_error(ctx, GL_OUT_OF_MEMORY, "glTexImage3D");
928 return;
929 }
930
931 if (!pixels)
932 return;
933
934 /* unpack image, apply transfer ops and store in texImage->Data */
935 if (texImage->IsCompressed) {
936 GLint dstRowStride = _mesa_compressed_row_stride(texImage->IntFormat,
937 width);
938 transfer_compressed_teximage(ctx, 3, width, height, depth,
939 format, type, packing,
940 pixels, texImage->TexFormat,
941 (GLubyte *) texImage->Data, dstRowStride);
942 }
943 else {
944 _mesa_transfer_teximage(ctx, 3,
945 texImage->Format,
946 texImage->TexFormat, texImage->Data,
947 width, height, depth, /* src size */
948 0, 0, 0, /* dstX/Y/Zoffset */
949 texImage->Width * texelBytes, /* dstRowStride */
950 texImage->Width * texImage->Height * texelBytes,
951 format, type, pixels, packing);
952 }
953
954 /* GL_SGIS_generate_mipmap */
955 if (level == texObj->BaseLevel && texObj->GenerateMipmap) {
956 _mesa_generate_mipmap(ctx, target,
957 &ctx->Texture.Unit[ctx->Texture.CurrentUnit],
958 texObj);
959 }
960 }
961
962
963
964
965 /*
966 * This is the software fallback for Driver.TexSubImage1D()
967 * and Driver.CopyTexSubImage1D().
968 */
969 void
970 _mesa_store_texsubimage1d(GLcontext *ctx, GLenum target, GLint level,
971 GLint xoffset, GLint width,
972 GLenum format, GLenum type, const void *pixels,
973 const struct gl_pixelstore_attrib *packing,
974 struct gl_texture_object *texObj,
975 struct gl_texture_image *texImage)
976 {
977 if (texImage->IsCompressed) {
978 GLint dstRowStride = _mesa_compressed_row_stride(texImage->IntFormat,
979 texImage->Width);
980 GLubyte *dest = _mesa_compressed_image_address(xoffset, 0, 0,
981 texImage->IntFormat,
982 texImage->Width,
983 (GLubyte*) texImage->Data);
984 transfer_compressed_teximage(ctx, 1, /* dimensions */
985 width, 1, 1, /* size to replace */
986 format, type, /* source format/type */
987 packing, /* source packing */
988 pixels, /* source data */
989 texImage->TexFormat,/* dest format */
990 dest, dstRowStride);
991 }
992 else {
993 _mesa_transfer_teximage(ctx, 1,
994 texImage->Format,
995 texImage->TexFormat, texImage->Data,
996 width, 1, 1, /* src size */
997 xoffset, 0, 0, /* dest offsets */
998 0, /* dstRowStride */
999 0, /* dstImageStride */
1000 format, type, pixels, packing);
1001 }
1002
1003 /* GL_SGIS_generate_mipmap */
1004 if (level == texObj->BaseLevel && texObj->GenerateMipmap) {
1005 _mesa_generate_mipmap(ctx, target,
1006 &ctx->Texture.Unit[ctx->Texture.CurrentUnit],
1007 texObj);
1008 }
1009 }
1010
1011
1012
1013 /*
1014 * This is the software fallback for Driver.TexSubImage2D()
1015 * and Driver.CopyTexSubImage2D().
1016 */
1017 void
1018 _mesa_store_texsubimage2d(GLcontext *ctx, GLenum target, GLint level,
1019 GLint xoffset, GLint yoffset,
1020 GLint width, GLint height,
1021 GLenum format, GLenum type, const void *pixels,
1022 const struct gl_pixelstore_attrib *packing,
1023 struct gl_texture_object *texObj,
1024 struct gl_texture_image *texImage)
1025 {
1026 if (texImage->IsCompressed) {
1027 GLint dstRowStride = _mesa_compressed_row_stride(texImage->IntFormat,
1028 texImage->Width);
1029 GLubyte *dest = _mesa_compressed_image_address(xoffset, yoffset, 0,
1030 texImage->IntFormat,
1031 texImage->Width,
1032 (GLubyte*) texImage->Data);
1033 transfer_compressed_teximage(ctx, 2, /* dimensions */
1034 width, height, 1, /* size to replace */
1035 format, type, /* source format/type */
1036 packing, /* source packing */
1037 pixels, /* source data */
1038 texImage->TexFormat,/* dest format */
1039 dest, dstRowStride);
1040 }
1041 else {
1042 _mesa_transfer_teximage(ctx, 2,
1043 texImage->Format,
1044 texImage->TexFormat, texImage->Data,
1045 width, height, 1, /* src size */
1046 xoffset, yoffset, 0, /* dest offsets */
1047 texImage->Width *texImage->TexFormat->TexelBytes,
1048 0, /* dstImageStride */
1049 format, type, pixels, packing);
1050 }
1051
1052 /* GL_SGIS_generate_mipmap */
1053 if (level == texObj->BaseLevel && texObj->GenerateMipmap) {
1054 _mesa_generate_mipmap(ctx, target,
1055 &ctx->Texture.Unit[ctx->Texture.CurrentUnit],
1056 texObj);
1057 }
1058 }
1059
1060
1061 /*
1062 * This is the software fallback for Driver.TexSubImage3D().
1063 * and Driver.CopyTexSubImage3D().
1064 */
1065 void
1066 _mesa_store_texsubimage3d(GLcontext *ctx, GLenum target, GLint level,
1067 GLint xoffset, GLint yoffset, GLint zoffset,
1068 GLint width, GLint height, GLint depth,
1069 GLenum format, GLenum type, const void *pixels,
1070 const struct gl_pixelstore_attrib *packing,
1071 struct gl_texture_object *texObj,
1072 struct gl_texture_image *texImage)
1073 {
1074 if (texImage->IsCompressed) {
1075 GLint dstRowStride = _mesa_compressed_row_stride(texImage->IntFormat,
1076 texImage->Width);
1077 GLubyte *dest = _mesa_compressed_image_address(xoffset, yoffset, zoffset,
1078 texImage->IntFormat,
1079 texImage->Width,
1080 (GLubyte*) texImage->Data);
1081 transfer_compressed_teximage(ctx, 3, /* dimensions */
1082 width, height, depth,/* size to replace */
1083 format, type, /* source format/type */
1084 packing, /* source packing */
1085 pixels, /* source data */
1086 texImage->TexFormat,/* dest format */
1087 dest, dstRowStride);
1088 }
1089 else {
1090 const GLint texelBytes = texImage->TexFormat->TexelBytes;
1091 _mesa_transfer_teximage(ctx, 3,
1092 texImage->Format,
1093 texImage->TexFormat, texImage->Data,
1094 width, height, depth, /* src size */
1095 xoffset, yoffset, zoffset, /* dest offsets */
1096 texImage->Width * texelBytes, /* dst row stride */
1097 texImage->Width * texImage->Height * texelBytes,
1098 format, type, pixels, packing);
1099 }
1100
1101 /* GL_SGIS_generate_mipmap */
1102 if (level == texObj->BaseLevel && texObj->GenerateMipmap) {
1103 _mesa_generate_mipmap(ctx, target,
1104 &ctx->Texture.Unit[ctx->Texture.CurrentUnit],
1105 texObj);
1106 }
1107 }
1108
1109
1110
1111
1112 /*
1113 * Fallback for Driver.CompressedTexImage1D()
1114 */
1115 void
1116 _mesa_store_compressed_teximage1d(GLcontext *ctx, GLenum target, GLint level,
1117 GLint internalFormat,
1118 GLint width, GLint border,
1119 GLsizei imageSize, const GLvoid *data,
1120 struct gl_texture_object *texObj,
1121 struct gl_texture_image *texImage)
1122 {
1123 /* this space intentionally left blank */
1124 }
1125
1126
1127
1128 /*
1129 * Fallback for Driver.CompressedTexImage2D()
1130 */
1131 void
1132 _mesa_store_compressed_teximage2d(GLcontext *ctx, GLenum target, GLint level,
1133 GLint internalFormat,
1134 GLint width, GLint height, GLint border,
1135 GLsizei imageSize, const GLvoid *data,
1136 struct gl_texture_object *texObj,
1137 struct gl_texture_image *texImage)
1138 {
1139 /* This is pretty simple, basically just do a memcpy without worrying
1140 * about the usual image unpacking or image transfer operations.
1141 */
1142 ASSERT(texObj);
1143 ASSERT(texImage);
1144 ASSERT(texImage->Width > 0);
1145 ASSERT(texImage->Height > 0);
1146 ASSERT(texImage->Depth == 1);
1147 ASSERT(texImage->Data == NULL); /* was freed in glCompressedTexImage2DARB */
1148
1149 /* choose the texture format */
1150 assert(ctx->Driver.ChooseTextureFormat);
1151 texImage->TexFormat = (*ctx->Driver.ChooseTextureFormat)(ctx,
1152 internalFormat, 0, 0);
1153 assert(texImage->TexFormat);
1154 texImage->FetchTexel = texImage->TexFormat->FetchTexel2D;
1155
1156 /* allocate storage */
1157 texImage->Data = MESA_PBUFFER_ALLOC(imageSize);
1158 if (!texImage->Data) {
1159 _mesa_error(ctx, GL_OUT_OF_MEMORY, "glCompressedTexImage2DARB");
1160 return;
1161 }
1162
1163 /* copy the data */
1164 ASSERT(texImage->CompressedSize == (GLuint) imageSize);
1165 MEMCPY(texImage->Data, data, imageSize);
1166 }
1167
1168
1169
1170 /*
1171 * Fallback for Driver.CompressedTexImage3D()
1172 */
1173 void
1174 _mesa_store_compressed_teximage3d(GLcontext *ctx, GLenum target, GLint level,
1175 GLint internalFormat,
1176 GLint width, GLint height, GLint depth,
1177 GLint border,
1178 GLsizei imageSize, const GLvoid *data,
1179 struct gl_texture_object *texObj,
1180 struct gl_texture_image *texImage)
1181 {
1182 /* this space intentionally left blank */
1183 }
1184
1185
1186
1187 /**
1188 * Fallback for Driver.CompressedTexSubImage1D()
1189 */
1190 void
1191 _mesa_store_compressed_texsubimage1d(GLcontext *ctx, GLenum target,
1192 GLint level,
1193 GLint xoffset, GLsizei width,
1194 GLenum format,
1195 GLsizei imageSize, const GLvoid *data,
1196 struct gl_texture_object *texObj,
1197 struct gl_texture_image *texImage)
1198 {
1199 /* this space intentionally left blank */
1200 }
1201
1202
1203 /**
1204 * Fallback for Driver.CompressedTexSubImage2D()
1205 */
1206 void
1207 _mesa_store_compressed_texsubimage2d(GLcontext *ctx, GLenum target,
1208 GLint level,
1209 GLint xoffset, GLint yoffset,
1210 GLsizei width, GLsizei height,
1211 GLenum format,
1212 GLsizei imageSize, const GLvoid *data,
1213 struct gl_texture_object *texObj,
1214 struct gl_texture_image *texImage)
1215 {
1216 GLint bytesPerRow, destRowStride, srcRowStride;
1217 GLint i, rows;
1218 GLubyte *dest;
1219 const GLubyte *src;
1220
1221 /* these should have been caught sooner */
1222 ASSERT((width & 3) == 0 || width == 2 || width == 1);
1223 ASSERT((height & 3) == 0 || height == 2 || height == 1);
1224 ASSERT((xoffset & 3) == 0);
1225 ASSERT((yoffset & 3) == 0);
1226
1227 srcRowStride = _mesa_compressed_row_stride(texImage->IntFormat, width);
1228 src = (const GLubyte *) data;
1229
1230 destRowStride = _mesa_compressed_row_stride(texImage->IntFormat,
1231 texImage->Width);
1232 dest = _mesa_compressed_image_address(xoffset, yoffset, 0,
1233 texImage->IntFormat,
1234 texImage->Width,
1235 (GLubyte*) texImage->Data);
1236
1237 bytesPerRow = srcRowStride;
1238 rows = height / 4;
1239
1240 for (i = 0; i < rows; i++) {
1241 MEMCPY(dest, src, bytesPerRow);
1242 dest += destRowStride;
1243 src += srcRowStride;
1244 }
1245 }
1246
1247
1248 /**
1249 * Fallback for Driver.CompressedTexSubImage3D()
1250 */
1251 void
1252 _mesa_store_compressed_texsubimage3d(GLcontext *ctx, GLenum target,
1253 GLint level,
1254 GLint xoffset, GLint yoffset, GLint zoffset,
1255 GLsizei width, GLsizei height, GLsizei depth,
1256 GLenum format,
1257 GLsizei imageSize, const GLvoid *data,
1258 struct gl_texture_object *texObj,
1259 struct gl_texture_image *texImage)
1260 {
1261 /* this space intentionally left blank */
1262 }
1263
1264
1265 /*
1266 * Average together two rows of a source image to produce a single new
1267 * row in the dest image. It's legal for the two source rows to point
1268 * to the same data. The source width must be equal to either the
1269 * dest width or two times the dest width.
1270 */
1271 static void
1272 do_row(const struct gl_texture_format *format, GLint srcWidth,
1273 const GLvoid *srcRowA, const GLvoid *srcRowB,
1274 GLint dstWidth, GLvoid *dstRow)
1275 {
1276 const GLuint k0 = (srcWidth == dstWidth) ? 0 : 1;
1277 const GLuint colStride = (srcWidth == dstWidth) ? 1 : 2;
1278
1279 assert(srcWidth == dstWidth || srcWidth == 2 * dstWidth);
1280
1281 switch (format->MesaFormat) {
1282 case MESA_FORMAT_RGBA:
1283 {
1284 GLuint i, j, k;
1285 const GLchan (*rowA)[4] = (const GLchan (*)[4]) srcRowA;
1286 const GLchan (*rowB)[4] = (const GLchan (*)[4]) srcRowB;
1287 GLchan (*dst)[4] = (GLchan (*)[4]) dstRow;
1288 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1289 i++, j += colStride, k += colStride) {
1290 dst[i][0] = (rowA[j][0] + rowA[k][0] +
1291 rowB[j][0] + rowB[k][0]) / 4;
1292 dst[i][1] = (rowA[j][1] + rowA[k][1] +
1293 rowB[j][1] + rowB[k][1]) / 4;
1294 dst[i][2] = (rowA[j][2] + rowA[k][2] +
1295 rowB[j][2] + rowB[k][2]) / 4;
1296 dst[i][3] = (rowA[j][3] + rowA[k][3] +
1297 rowB[j][3] + rowB[k][3]) / 4;
1298 }
1299 }
1300 return;
1301 case MESA_FORMAT_RGB:
1302 {
1303 GLuint i, j, k;
1304 const GLchan (*rowA)[3] = (const GLchan (*)[3]) srcRowA;
1305 const GLchan (*rowB)[3] = (const GLchan (*)[3]) srcRowB;
1306 GLchan (*dst)[3] = (GLchan (*)[3]) dstRow;
1307 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1308 i++, j += colStride, k += colStride) {
1309 dst[i][0] = (rowA[j][0] + rowA[k][0] +
1310 rowB[j][0] + rowB[k][0]) / 4;
1311 dst[i][1] = (rowA[j][1] + rowA[k][1] +
1312 rowB[j][1] + rowB[k][1]) / 4;
1313 dst[i][2] = (rowA[j][2] + rowA[k][2] +
1314 rowB[j][2] + rowB[k][2]) / 4;
1315 }
1316 }
1317 return;
1318 case MESA_FORMAT_ALPHA:
1319 case MESA_FORMAT_LUMINANCE:
1320 case MESA_FORMAT_INTENSITY:
1321 case MESA_FORMAT_COLOR_INDEX:
1322 {
1323 GLuint i, j, k;
1324 const GLchan *rowA = (const GLchan *) srcRowA;
1325 const GLchan *rowB = (const GLchan *) srcRowB;
1326 GLchan *dst = (GLchan *) dstRow;
1327 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1328 i++, j += colStride, k += colStride) {
1329 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4;
1330 }
1331 }
1332 return;
1333 case MESA_FORMAT_LUMINANCE_ALPHA:
1334 {
1335 GLuint i, j, k;
1336 const GLchan (*rowA)[2] = (const GLchan (*)[2]) srcRowA;
1337 const GLchan (*rowB)[2] = (const GLchan (*)[2]) srcRowB;
1338 GLchan (*dst)[2] = (GLchan (*)[2]) dstRow;
1339 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1340 i++, j += colStride, k += colStride) {
1341 dst[i][0] = (rowA[j][0] + rowA[k][0] +
1342 rowB[j][0] + rowB[k][0]) / 4;
1343 dst[i][1] = (rowA[j][1] + rowA[k][1] +
1344 rowB[j][1] + rowB[k][1]) / 4;
1345 }
1346 }
1347 return;
1348 case MESA_FORMAT_DEPTH_COMPONENT:
1349 {
1350 GLuint i, j, k;
1351 const GLfloat *rowA = (const GLfloat *) srcRowA;
1352 const GLfloat *rowB = (const GLfloat *) srcRowB;
1353 GLfloat *dst = (GLfloat *) dstRow;
1354 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1355 i++, j += colStride, k += colStride) {
1356 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) * 0.25F;
1357 }
1358 }
1359 return;
1360 /* Begin hardware formats */
1361 case MESA_FORMAT_RGBA8888:
1362 case MESA_FORMAT_ARGB8888:
1363 {
1364 GLuint i, j, k;
1365 const GLubyte (*rowA)[4] = (const GLubyte (*)[4]) srcRowA;
1366 const GLubyte (*rowB)[4] = (const GLubyte (*)[4]) srcRowB;
1367 GLubyte (*dst)[4] = (GLubyte (*)[4]) dstRow;
1368 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1369 i++, j += colStride, k += colStride) {
1370 dst[i][0] = (rowA[j][0] + rowA[k][0] +
1371 rowB[j][0] + rowB[k][0]) / 4;
1372 dst[i][1] = (rowA[j][1] + rowA[k][1] +
1373 rowB[j][1] + rowB[k][1]) / 4;
1374 dst[i][2] = (rowA[j][2] + rowA[k][2] +
1375 rowB[j][2] + rowB[k][2]) / 4;
1376 dst[i][3] = (rowA[j][3] + rowA[k][3] +
1377 rowB[j][3] + rowB[k][3]) / 4;
1378 }
1379 }
1380 return;
1381 case MESA_FORMAT_RGB888:
1382 {
1383 GLuint i, j, k;
1384 const GLubyte (*rowA)[3] = (const GLubyte (*)[3]) srcRowA;
1385 const GLubyte (*rowB)[3] = (const GLubyte (*)[3]) srcRowB;
1386 GLubyte (*dst)[3] = (GLubyte (*)[3]) dstRow;
1387 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1388 i++, j += colStride, k += colStride) {
1389 dst[i][0] = (rowA[j][0] + rowA[k][0] +
1390 rowB[j][0] + rowB[k][0]) / 4;
1391 dst[i][1] = (rowA[j][1] + rowA[k][1] +
1392 rowB[j][1] + rowB[k][1]) / 4;
1393 dst[i][2] = (rowA[j][2] + rowA[k][2] +
1394 rowB[j][2] + rowB[k][2]) / 4;
1395 }
1396 }
1397 return;
1398 case MESA_FORMAT_RGB565:
1399 {
1400 GLuint i, j, k;
1401 const GLushort *rowA = (const GLushort *) srcRowA;
1402 const GLushort *rowB = (const GLushort *) srcRowB;
1403 GLushort *dst = (GLushort *) dstRow;
1404 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1405 i++, j += colStride, k += colStride) {
1406 const GLint rowAr0 = rowA[j] & 0x1f;
1407 const GLint rowAr1 = rowA[k] & 0x1f;
1408 const GLint rowBr0 = rowB[j] & 0x1f;
1409 const GLint rowBr1 = rowB[k] & 0x1f;
1410 const GLint rowAg0 = (rowA[j] >> 5) & 0x3f;
1411 const GLint rowAg1 = (rowA[k] >> 5) & 0x3f;
1412 const GLint rowBg0 = (rowB[j] >> 5) & 0x3f;
1413 const GLint rowBg1 = (rowB[k] >> 5) & 0x3f;
1414 const GLint rowAb0 = (rowA[j] >> 11) & 0x1f;
1415 const GLint rowAb1 = (rowA[k] >> 11) & 0x1f;
1416 const GLint rowBb0 = (rowB[j] >> 11) & 0x1f;
1417 const GLint rowBb1 = (rowB[k] >> 11) & 0x1f;
1418 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 4;
1419 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 4;
1420 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 4;
1421 dst[i] = (blue << 11) | (green << 5) | red;
1422 }
1423 }
1424 return;
1425 case MESA_FORMAT_ARGB4444:
1426 {
1427 GLuint i, j, k;
1428 const GLushort *rowA = (const GLushort *) srcRowA;
1429 const GLushort *rowB = (const GLushort *) srcRowB;
1430 GLushort *dst = (GLushort *) dstRow;
1431 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1432 i++, j += colStride, k += colStride) {
1433 const GLint rowAr0 = rowA[j] & 0xf;
1434 const GLint rowAr1 = rowA[k] & 0xf;
1435 const GLint rowBr0 = rowB[j] & 0xf;
1436 const GLint rowBr1 = rowB[k] & 0xf;
1437 const GLint rowAg0 = (rowA[j] >> 4) & 0xf;
1438 const GLint rowAg1 = (rowA[k] >> 4) & 0xf;
1439 const GLint rowBg0 = (rowB[j] >> 4) & 0xf;
1440 const GLint rowBg1 = (rowB[k] >> 4) & 0xf;
1441 const GLint rowAb0 = (rowA[j] >> 8) & 0xf;
1442 const GLint rowAb1 = (rowA[k] >> 8) & 0xf;
1443 const GLint rowBb0 = (rowB[j] >> 8) & 0xf;
1444 const GLint rowBb1 = (rowB[k] >> 8) & 0xf;
1445 const GLint rowAa0 = (rowA[j] >> 12) & 0xf;
1446 const GLint rowAa1 = (rowA[k] >> 12) & 0xf;
1447 const GLint rowBa0 = (rowB[j] >> 12) & 0xf;
1448 const GLint rowBa1 = (rowB[k] >> 12) & 0xf;
1449 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 4;
1450 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 4;
1451 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 4;
1452 const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 4;
1453 dst[i] = (alpha << 12) | (blue << 8) | (green << 4) | red;
1454 }
1455 }
1456 return;
1457 case MESA_FORMAT_ARGB1555:
1458 {
1459 GLuint i, j, k;
1460 const GLushort *rowA = (const GLushort *) srcRowA;
1461 const GLushort *rowB = (const GLushort *) srcRowB;
1462 GLushort *dst = (GLushort *) dstRow;
1463 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1464 i++, j += colStride, k += colStride) {
1465 const GLint rowAr0 = rowA[j] & 0x1f;
1466 const GLint rowAr1 = rowA[k] & 0x1f;
1467 const GLint rowBr0 = rowB[j] & 0x1f;
1468 const GLint rowBr1 = rowB[k] & 0xf;
1469 const GLint rowAg0 = (rowA[j] >> 5) & 0x1f;
1470 const GLint rowAg1 = (rowA[k] >> 5) & 0x1f;
1471 const GLint rowBg0 = (rowB[j] >> 5) & 0x1f;
1472 const GLint rowBg1 = (rowB[k] >> 5) & 0x1f;
1473 const GLint rowAb0 = (rowA[j] >> 10) & 0x1f;
1474 const GLint rowAb1 = (rowA[k] >> 10) & 0x1f;
1475 const GLint rowBb0 = (rowB[j] >> 10) & 0x1f;
1476 const GLint rowBb1 = (rowB[k] >> 10) & 0x1f;
1477 const GLint rowAa0 = (rowA[j] >> 15) & 0x1;
1478 const GLint rowAa1 = (rowA[k] >> 15) & 0x1;
1479 const GLint rowBa0 = (rowB[j] >> 15) & 0x1;
1480 const GLint rowBa1 = (rowB[k] >> 15) & 0x1;
1481 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 4;
1482 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 4;
1483 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 4;
1484 const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 4;
1485 dst[i] = (alpha << 15) | (blue << 10) | (green << 5) | red;
1486 }
1487 }
1488 return;
1489 case MESA_FORMAT_AL88:
1490 {
1491 GLuint i, j, k;
1492 const GLubyte (*rowA)[2] = (const GLubyte (*)[2]) srcRowA;
1493 const GLubyte (*rowB)[2] = (const GLubyte (*)[2]) srcRowB;
1494 GLubyte (*dst)[2] = (GLubyte (*)[2]) dstRow;
1495 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1496 i++, j += colStride, k += colStride) {
1497 dst[i][0] = (rowA[j][0] + rowA[k][0] +
1498 rowB[j][0] + rowB[k][0]) >> 2;
1499 dst[i][1] = (rowA[j][1] + rowA[k][1] +
1500 rowB[j][1] + rowB[k][1]) >> 2;
1501 }
1502 }
1503 return;
1504 case MESA_FORMAT_RGB332:
1505 {
1506 GLuint i, j, k;
1507 const GLubyte *rowA = (const GLubyte *) srcRowA;
1508 const GLubyte *rowB = (const GLubyte *) srcRowB;
1509 GLubyte *dst = (GLubyte *) dstRow;
1510 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1511 i++, j += colStride, k += colStride) {
1512 const GLint rowAr0 = rowA[j] & 0x3;
1513 const GLint rowAr1 = rowA[k] & 0x3;
1514 const GLint rowBr0 = rowB[j] & 0x3;
1515 const GLint rowBr1 = rowB[k] & 0x3;
1516 const GLint rowAg0 = (rowA[j] >> 2) & 0x7;
1517 const GLint rowAg1 = (rowA[k] >> 2) & 0x7;
1518 const GLint rowBg0 = (rowB[j] >> 2) & 0x7;
1519 const GLint rowBg1 = (rowB[k] >> 2) & 0x7;
1520 const GLint rowAb0 = (rowA[j] >> 5) & 0x7;
1521 const GLint rowAb1 = (rowA[k] >> 5) & 0x7;
1522 const GLint rowBb0 = (rowB[j] >> 5) & 0x7;
1523 const GLint rowBb1 = (rowB[k] >> 5) & 0x7;
1524 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 4;
1525 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 4;
1526 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 4;
1527 dst[i] = (blue << 5) | (green << 2) | red;
1528 }
1529 }
1530 return;
1531 case MESA_FORMAT_A8:
1532 case MESA_FORMAT_L8:
1533 case MESA_FORMAT_I8:
1534 case MESA_FORMAT_CI8:
1535 {
1536 GLuint i, j, k;
1537 const GLubyte *rowA = (const GLubyte *) srcRowA;
1538 const GLubyte *rowB = (const GLubyte *) srcRowB;
1539 GLubyte *dst = (GLubyte *) dstRow;
1540 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1541 i++, j += colStride, k += colStride) {
1542 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) >> 2;
1543 }
1544 }
1545 return;
1546 default:
1547 _mesa_problem(NULL, "bad format in do_row()");
1548 }
1549 }
1550
1551
1552 /*
1553 * These functions generate a 1/2-size mipmap image from a source image.
1554 * Texture borders are handled by copying or averaging the source image's
1555 * border texels, depending on the scale-down factor.
1556 */
1557
1558 static void
1559 make_1d_mipmap(const struct gl_texture_format *format, GLint border,
1560 GLint srcWidth, const GLubyte *srcPtr,
1561 GLint dstWidth, GLubyte *dstPtr)
1562 {
1563 const GLint bpt = format->TexelBytes;
1564 const GLubyte *src;
1565 GLubyte *dst;
1566
1567 /* skip the border pixel, if any */
1568 src = srcPtr + border * bpt;
1569 dst = dstPtr + border * bpt;
1570
1571 /* we just duplicate the input row, kind of hack, saves code */
1572 do_row(format, srcWidth - 2 * border, src, src,
1573 dstWidth - 2 * border, dst);
1574
1575 if (border) {
1576 /* copy left-most pixel from source */
1577 MEMCPY(dstPtr, srcPtr, bpt);
1578 /* copy right-most pixel from source */
1579 MEMCPY(dstPtr + (dstWidth - 1) * bpt,
1580 srcPtr + (srcWidth - 1) * bpt,
1581 bpt);
1582 }
1583 }
1584
1585
1586 static void
1587 make_2d_mipmap(const struct gl_texture_format *format, GLint border,
1588 GLint srcWidth, GLint srcHeight, const GLubyte *srcPtr,
1589 GLint dstWidth, GLint dstHeight, GLubyte *dstPtr)
1590 {
1591 const GLint bpt = format->TexelBytes;
1592 const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */
1593 const GLint dstWidthNB = dstWidth - 2 * border;
1594 const GLint dstHeightNB = dstHeight - 2 * border;
1595 const GLint srcRowStride = bpt * srcWidth;
1596 const GLint dstRowStride = bpt * dstWidth;
1597 const GLubyte *srcA, *srcB;
1598 GLubyte *dst;
1599 GLint row, colStride;
1600
1601 colStride = (srcWidth == dstWidth) ? 1 : 2;
1602
1603 /* Compute src and dst pointers, skipping any border */
1604 srcA = srcPtr + border * ((srcWidth + 1) * bpt);
1605 if (srcHeight > 1)
1606 srcB = srcA + srcRowStride;
1607 else
1608 srcB = srcA;
1609 dst = dstPtr + border * ((dstWidth + 1) * bpt);
1610
1611 for (row = 0; row < dstHeightNB; row++) {
1612 do_row(format, srcWidthNB, srcA, srcB,
1613 dstWidthNB, dst);
1614 srcA += 2 * srcRowStride;
1615 srcB += 2 * srcRowStride;
1616 dst += dstRowStride;
1617 }
1618
1619 /* This is ugly but probably won't be used much */
1620 if (border > 0) {
1621 /* fill in dest border */
1622 /* lower-left border pixel */
1623 MEMCPY(dstPtr, srcPtr, bpt);
1624 /* lower-right border pixel */
1625 MEMCPY(dstPtr + (dstWidth - 1) * bpt,
1626 srcPtr + (srcWidth - 1) * bpt, bpt);
1627 /* upper-left border pixel */
1628 MEMCPY(dstPtr + dstWidth * (dstHeight - 1) * bpt,
1629 srcPtr + srcWidth * (srcHeight - 1) * bpt, bpt);
1630 /* upper-right border pixel */
1631 MEMCPY(dstPtr + (dstWidth * dstHeight - 1) * bpt,
1632 srcPtr + (srcWidth * srcHeight - 1) * bpt, bpt);
1633 /* lower border */
1634 do_row(format, srcWidthNB,
1635 srcPtr + bpt,
1636 srcPtr + bpt,
1637 dstWidthNB, dstPtr + bpt);
1638 /* upper border */
1639 do_row(format, srcWidthNB,
1640 srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt,
1641 srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt,
1642 dstWidthNB,
1643 dstPtr + (dstWidth * (dstHeight - 1) + 1) * bpt);
1644 /* left and right borders */
1645 if (srcHeight == dstHeight) {
1646 /* copy border pixel from src to dst */
1647 for (row = 1; row < srcHeight; row++) {
1648 MEMCPY(dstPtr + dstWidth * row * bpt,
1649 srcPtr + srcWidth * row * bpt, bpt);
1650 MEMCPY(dstPtr + (dstWidth * row + dstWidth - 1) * bpt,
1651 srcPtr + (srcWidth * row + srcWidth - 1) * bpt, bpt);
1652 }
1653 }
1654 else {
1655 /* average two src pixels each dest pixel */
1656 for (row = 0; row < dstHeightNB; row += 2) {
1657 do_row(format, 1,
1658 srcPtr + (srcWidth * (row * 2 + 1)) * bpt,
1659 srcPtr + (srcWidth * (row * 2 + 2)) * bpt,
1660 1, dstPtr + (dstWidth * row + 1) * bpt);
1661 do_row(format, 1,
1662 srcPtr + (srcWidth * (row * 2 + 1) + srcWidth - 1) * bpt,
1663 srcPtr + (srcWidth * (row * 2 + 2) + srcWidth - 1) * bpt,
1664 1, dstPtr + (dstWidth * row + 1 + dstWidth - 1) * bpt);
1665 }
1666 }
1667 }
1668 }
1669
1670
1671 static void
1672 make_3d_mipmap(const struct gl_texture_format *format, GLint border,
1673 GLint srcWidth, GLint srcHeight, GLint srcDepth,
1674 const GLubyte *srcPtr,
1675 GLint dstWidth, GLint dstHeight, GLint dstDepth,
1676 GLubyte *dstPtr)
1677 {
1678 const GLint bpt = format->TexelBytes;
1679 const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */
1680 const GLint srcDepthNB = srcDepth - 2 * border;
1681 const GLint dstWidthNB = dstWidth - 2 * border;
1682 const GLint dstHeightNB = dstHeight - 2 * border;
1683 const GLint dstDepthNB = dstDepth - 2 * border;
1684 GLvoid *tmpRowA, *tmpRowB;
1685 GLint img, row;
1686 GLint bytesPerSrcImage, bytesPerDstImage;
1687 GLint bytesPerSrcRow, bytesPerDstRow;
1688 GLint srcImageOffset, srcRowOffset;
1689
1690 (void) srcDepthNB; /* silence warnings */
1691
1692 /* Need two temporary row buffers */
1693 tmpRowA = MALLOC(srcWidth * bpt);
1694 if (!tmpRowA)
1695 return;
1696 tmpRowB = MALLOC(srcWidth * bpt);
1697 if (!tmpRowB) {
1698 FREE(tmpRowA);
1699 return;
1700 }
1701
1702 bytesPerSrcImage = srcWidth * srcHeight * bpt;
1703 bytesPerDstImage = dstWidth * dstHeight * bpt;
1704
1705 bytesPerSrcRow = srcWidth * bpt;
1706 bytesPerDstRow = dstWidth * bpt;
1707
1708 /* Offset between adjacent src images to be averaged together */
1709 srcImageOffset = (srcDepth == dstDepth) ? 0 : bytesPerSrcImage;
1710
1711 /* Offset between adjacent src rows to be averaged together */
1712 srcRowOffset = (srcHeight == dstHeight) ? 0 : srcWidth * bpt;
1713
1714 /*
1715 * Need to average together up to 8 src pixels for each dest pixel.
1716 * Break that down into 3 operations:
1717 * 1. take two rows from source image and average them together.
1718 * 2. take two rows from next source image and average them together.
1719 * 3. take the two averaged rows and average them for the final dst row.
1720 */
1721
1722 /*
1723 _mesa_printf("mip3d %d x %d x %d -> %d x %d x %d\n",
1724 srcWidth, srcHeight, srcDepth, dstWidth, dstHeight, dstDepth);
1725 */
1726
1727 for (img = 0; img < dstDepthNB; img++) {
1728 /* first source image pointer, skipping border */
1729 const GLubyte *imgSrcA = srcPtr
1730 + (bytesPerSrcImage + bytesPerSrcRow + border) * bpt * border
1731 + img * (bytesPerSrcImage + srcImageOffset);
1732 /* second source image pointer, skipping border */
1733 const GLubyte *imgSrcB = imgSrcA + srcImageOffset;
1734 /* address of the dest image, skipping border */
1735 GLubyte *imgDst = dstPtr
1736 + (bytesPerDstImage + bytesPerDstRow + border) * bpt * border
1737 + img * bytesPerDstImage;
1738
1739 /* setup the four source row pointers and the dest row pointer */
1740 const GLubyte *srcImgARowA = imgSrcA;
1741 const GLubyte *srcImgARowB = imgSrcA + srcRowOffset;
1742 const GLubyte *srcImgBRowA = imgSrcB;
1743 const GLubyte *srcImgBRowB = imgSrcB + srcRowOffset;
1744 GLubyte *dstImgRow = imgDst;
1745
1746 for (row = 0; row < dstHeightNB; row++) {
1747 /* Average together two rows from first src image */
1748 do_row(format, srcWidthNB, srcImgARowA, srcImgARowB,
1749 srcWidthNB, tmpRowA);
1750 /* Average together two rows from second src image */
1751 do_row(format, srcWidthNB, srcImgBRowA, srcImgBRowB,
1752 srcWidthNB, tmpRowB);
1753 /* Average together the temp rows to make the final row */
1754 do_row(format, srcWidthNB, tmpRowA, tmpRowB,
1755 dstWidthNB, dstImgRow);
1756 /* advance to next rows */
1757 srcImgARowA += bytesPerSrcRow + srcRowOffset;
1758 srcImgARowB += bytesPerSrcRow + srcRowOffset;
1759 srcImgBRowA += bytesPerSrcRow + srcRowOffset;
1760 srcImgBRowB += bytesPerSrcRow + srcRowOffset;
1761 dstImgRow += bytesPerDstRow;
1762 }
1763 }
1764
1765 FREE(tmpRowA);
1766 FREE(tmpRowB);
1767
1768 /* Luckily we can leverage the make_2d_mipmap() function here! */
1769 if (border > 0) {
1770 /* do front border image */
1771 make_2d_mipmap(format, 1, srcWidth, srcHeight, srcPtr,
1772 dstWidth, dstHeight, dstPtr);
1773 /* do back border image */
1774 make_2d_mipmap(format, 1, srcWidth, srcHeight,
1775 srcPtr + bytesPerSrcImage * (srcDepth - 1),
1776 dstWidth, dstHeight,
1777 dstPtr + bytesPerDstImage * (dstDepth - 1));
1778 /* do four remaining border edges that span the image slices */
1779 if (srcDepth == dstDepth) {
1780 /* just copy border pixels from src to dst */
1781 for (img = 0; img < dstDepthNB; img++) {
1782 const GLubyte *src;
1783 GLubyte *dst;
1784
1785 /* do border along [img][row=0][col=0] */
1786 src = srcPtr + (img + 1) * bytesPerSrcImage;
1787 dst = dstPtr + (img + 1) * bytesPerDstImage;
1788 MEMCPY(dst, src, bpt);
1789
1790 /* do border along [img][row=dstHeight-1][col=0] */
1791 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
1792 + (srcHeight - 1) * bytesPerSrcRow;
1793 dst = dstPtr + (img + 1) * bytesPerDstImage
1794 + (dstHeight - 1) * bytesPerDstRow;
1795 MEMCPY(dst, src, bpt);
1796
1797 /* do border along [img][row=0][col=dstWidth-1] */
1798 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
1799 + (srcWidth - 1) * bpt;
1800 dst = dstPtr + (img + 1) * bytesPerDstImage
1801 + (dstWidth - 1) * bpt;
1802 MEMCPY(dst, src, bpt);
1803
1804 /* do border along [img][row=dstHeight-1][col=dstWidth-1] */
1805 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
1806 + (bytesPerSrcImage - bpt);
1807 dst = dstPtr + (img + 1) * bytesPerDstImage
1808 + (bytesPerDstImage - bpt);
1809 MEMCPY(dst, src, bpt);
1810 }
1811 }
1812 else {
1813 /* average border pixels from adjacent src image pairs */
1814 ASSERT(srcDepthNB == 2 * dstDepthNB);
1815 for (img = 0; img < dstDepthNB; img++) {
1816 const GLubyte *src;
1817 GLubyte *dst;
1818
1819 /* do border along [img][row=0][col=0] */
1820 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage;
1821 dst = dstPtr + (img + 1) * bytesPerDstImage;
1822 do_row(format, 1, src, src + srcImageOffset, 1, dst);
1823
1824 /* do border along [img][row=dstHeight-1][col=0] */
1825 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
1826 + (srcHeight - 1) * bytesPerSrcRow;
1827 dst = dstPtr + (img + 1) * bytesPerDstImage
1828 + (dstHeight - 1) * bytesPerDstRow;
1829 do_row(format, 1, src, src + srcImageOffset, 1, dst);
1830
1831 /* do border along [img][row=0][col=dstWidth-1] */
1832 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
1833 + (srcWidth - 1) * bpt;
1834 dst = dstPtr + (img + 1) * bytesPerDstImage
1835 + (dstWidth - 1) * bpt;
1836 do_row(format, 1, src, src + srcImageOffset, 1, dst);
1837
1838 /* do border along [img][row=dstHeight-1][col=dstWidth-1] */
1839 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
1840 + (bytesPerSrcImage - bpt);
1841 dst = dstPtr + (img + 1) * bytesPerDstImage
1842 + (bytesPerDstImage - bpt);
1843 do_row(format, 1, src, src + srcImageOffset, 1, dst);
1844 }
1845 }
1846 }
1847 }
1848
1849
1850 /*
1851 * For GL_SGIX_generate_mipmap:
1852 * Generate a complete set of mipmaps from texObj's base-level image.
1853 * Stop at texObj's MaxLevel or when we get to the 1x1 texture.
1854 */
1855 void
1856 _mesa_generate_mipmap(GLcontext *ctx, GLenum target,
1857 const struct gl_texture_unit *texUnit,
1858 struct gl_texture_object *texObj)
1859 {
1860 const struct gl_texture_image *srcImage;
1861 const struct gl_texture_format *convertFormat;
1862 const GLubyte *srcData = NULL;
1863 GLubyte *dstData = NULL;
1864 GLint level, maxLevels;
1865
1866 ASSERT(texObj);
1867 srcImage = texObj->Image[texObj->BaseLevel];
1868 ASSERT(srcImage);
1869
1870 maxLevels = _mesa_max_texture_levels(ctx, texObj->Target);
1871 ASSERT(maxLevels > 0); /* bad target */
1872
1873 /* Find convertFormat - the format that do_row() will process */
1874 if (srcImage->IsCompressed) {
1875 /* setup for compressed textures */
1876 GLuint row;
1877 GLint components, size;
1878 GLchan *dst;
1879
1880 assert(texObj->Target == GL_TEXTURE_2D);
1881
1882 if (srcImage->Format == GL_RGB) {
1883 convertFormat = &_mesa_texformat_rgb;
1884 components = 3;
1885 }
1886 else if (srcImage->Format == GL_RGBA) {
1887 convertFormat = &_mesa_texformat_rgba;
1888 components = 4;
1889 }
1890 else {
1891 _mesa_problem(ctx, "bad srcImage->Format in _mesa_generate_mipmaps");
1892 return;
1893 }
1894
1895 /* allocate storage for uncompressed GL_RGB or GL_RGBA images */
1896 size = _mesa_bytes_per_pixel(srcImage->Format, CHAN_TYPE)
1897 * srcImage->Width * srcImage->Height * srcImage->Depth + 20;
1898 /* 20 extra bytes, just be safe when calling last FetchTexel */
1899 srcData = (GLubyte *) MALLOC(size);
1900 if (!srcData) {
1901 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generate mipmaps");
1902 return;
1903 }
1904 dstData = (GLubyte *) MALLOC(size / 2); /* 1/4 would probably be OK */
1905 if (!dstData) {
1906 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generate mipmaps");
1907 FREE((void *) srcData);
1908 return;
1909 }
1910
1911 /* decompress base image here */
1912 dst = (GLchan *) srcData;
1913 for (row = 0; row < srcImage->Height; row++) {
1914 GLuint col;
1915 for (col = 0; col < srcImage->Width; col++) {
1916 (*srcImage->FetchTexel)(srcImage, col, row, 0, (GLvoid *) dst);
1917 dst += components;
1918 }
1919 }
1920 }
1921 else {
1922 /* uncompressed */
1923 convertFormat = srcImage->TexFormat;
1924 }
1925
1926 for (level = texObj->BaseLevel; level < texObj->MaxLevel
1927 && level < maxLevels - 1; level++) {
1928 /* generate image[level+1] from image[level] */
1929 const struct gl_texture_image *srcImage;
1930 struct gl_texture_image *dstImage;
1931 GLint srcWidth, srcHeight, srcDepth;
1932 GLint dstWidth, dstHeight, dstDepth;
1933 GLint border, bytesPerTexel;
1934
1935 /* get src image parameters */
1936 srcImage = _mesa_select_tex_image(ctx, texUnit, target, level);
1937 ASSERT(srcImage);
1938 srcWidth = srcImage->Width;
1939 srcHeight = srcImage->Height;
1940 srcDepth = srcImage->Depth;
1941 border = srcImage->Border;
1942
1943 /* compute next (level+1) image size */
1944 if (srcWidth - 2 * border > 1) {
1945 dstWidth = (srcWidth - 2 * border) / 2 + 2 * border;
1946 }
1947 else {
1948 dstWidth = srcWidth; /* can't go smaller */
1949 }
1950 if (srcHeight - 2 * border > 1) {
1951 dstHeight = (srcHeight - 2 * border) / 2 + 2 * border;
1952 }
1953 else {
1954 dstHeight = srcHeight; /* can't go smaller */
1955 }
1956 if (srcDepth - 2 * border > 1) {
1957 dstDepth = (srcDepth - 2 * border) / 2 + 2 * border;
1958 }
1959 else {
1960 dstDepth = srcDepth; /* can't go smaller */
1961 }
1962
1963 if (dstWidth == srcWidth &&
1964 dstHeight == srcHeight &&
1965 dstDepth == srcDepth) {
1966 /* all done */
1967 if (srcImage->IsCompressed) {
1968 FREE((void *) srcData);
1969 FREE(dstData);
1970 }
1971 return;
1972 }
1973
1974 /* get dest gl_texture_image */
1975 dstImage = _mesa_get_tex_image(ctx, texUnit, target, level + 1);
1976 if (!dstImage) {
1977 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generating mipmaps");
1978 return;
1979 }
1980
1981 /* Free old image data */
1982 if (dstImage->Data)
1983 MESA_PBUFFER_FREE(dstImage->Data);
1984
1985 /* initialize new image */
1986 _mesa_init_teximage_fields(ctx, target, dstImage, dstWidth, dstHeight,
1987 dstDepth, border, srcImage->IntFormat);
1988 dstImage->DriverData = NULL;
1989 dstImage->TexFormat = srcImage->TexFormat;
1990 dstImage->FetchTexel = srcImage->FetchTexel;
1991 ASSERT(dstImage->TexFormat);
1992 ASSERT(dstImage->FetchTexel);
1993
1994 /* Alloc new teximage data buffer.
1995 * Setup src and dest data pointers.
1996 */
1997 if (dstImage->IsCompressed) {
1998 ASSERT(dstImage->CompressedSize > 0); /* set by init_teximage_fields*/
1999 dstImage->Data = MESA_PBUFFER_ALLOC(dstImage->CompressedSize);
2000 if (!dstImage->Data) {
2001 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generating mipmaps");
2002 return;
2003 }
2004 /* srcData and dstData are already set */
2005 ASSERT(srcData);
2006 ASSERT(dstData);
2007 }
2008 else {
2009 bytesPerTexel = srcImage->TexFormat->TexelBytes;
2010 ASSERT(dstWidth * dstHeight * dstDepth * bytesPerTexel > 0);
2011 dstImage->Data = MESA_PBUFFER_ALLOC(dstWidth * dstHeight * dstDepth
2012 * bytesPerTexel);
2013 if (!dstImage->Data) {
2014 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generating mipmaps");
2015 return;
2016 }
2017 srcData = (const GLubyte *) srcImage->Data;
2018 dstData = (GLubyte *) dstImage->Data;
2019 }
2020
2021 /*
2022 * We use simple 2x2 averaging to compute the next mipmap level.
2023 */
2024 switch (target) {
2025 case GL_TEXTURE_1D:
2026 make_1d_mipmap(convertFormat, border,
2027 srcWidth, srcData,
2028 dstWidth, dstData);
2029 break;
2030 case GL_TEXTURE_2D:
2031 case GL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB:
2032 case GL_TEXTURE_CUBE_MAP_NEGATIVE_X_ARB:
2033 case GL_TEXTURE_CUBE_MAP_POSITIVE_Y_ARB:
2034 case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB:
2035 case GL_TEXTURE_CUBE_MAP_POSITIVE_Z_ARB:
2036 case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB:
2037 make_2d_mipmap(convertFormat, border,
2038 srcWidth, srcHeight, srcData,
2039 dstWidth, dstHeight, dstData);
2040 break;
2041 case GL_TEXTURE_3D:
2042 make_3d_mipmap(convertFormat, border,
2043 srcWidth, srcHeight, srcDepth, srcData,
2044 dstWidth, dstHeight, dstDepth, dstData);
2045 break;
2046 case GL_TEXTURE_RECTANGLE_NV:
2047 /* no mipmaps, do nothing */
2048 break;
2049 default:
2050 _mesa_problem(ctx, "bad dimensions in _mesa_generate_mipmaps");
2051 return;
2052 }
2053
2054 if (dstImage->IsCompressed) {
2055 GLubyte *temp;
2056 /* compress image from dstData into dstImage->Data */
2057 const GLenum srcFormat = convertFormat->BaseFormat;
2058 GLint dstRowStride = _mesa_compressed_row_stride(srcImage->IntFormat,
2059 dstWidth);
2060 ASSERT(srcFormat == GL_RGB || srcFormat == GL_RGBA);
2061 _mesa_compress_teximage(ctx,
2062 dstWidth, dstHeight, /* size */
2063 srcFormat, /* source format */
2064 (const GLchan *) dstData, /* source buffer */
2065 dstWidth, /* source row stride */
2066 dstImage->TexFormat, /* dest format */
2067 (GLubyte*) dstImage->Data, /* dest buffer */
2068 dstRowStride ); /* dest row stride */
2069
2070 /* swap src and dest pointers */
2071 temp = (GLubyte *) srcData;
2072 srcData = dstData;
2073 dstData = temp;
2074 }
2075
2076 } /* loop over mipmap levels */
2077 }