fixed a bunch of g++ warnings/errors. Compiling with g++ can help find lots of poten...
[mesa.git] / src / mesa / math / m_eval.c
1 /* $Id: m_eval.c,v 1.2 2001/03/07 05:06:12 brianp Exp $ */
2
3 /*
4 * Mesa 3-D graphics library
5 * Version: 3.5
6 *
7 * Copyright (C) 1999-2000 Brian Paul All Rights Reserved.
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included
17 * in all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
23 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 */
26
27
28 /*
29 * eval.c was written by
30 * Bernd Barsuhn (bdbarsuh@cip.informatik.uni-erlangen.de) and
31 * Volker Weiss (vrweiss@cip.informatik.uni-erlangen.de).
32 *
33 * My original implementation of evaluators was simplistic and didn't
34 * compute surface normal vectors properly. Bernd and Volker applied
35 * used more sophisticated methods to get better results.
36 *
37 * Thanks guys!
38 */
39
40
41 #include "glheader.h"
42 #include "config.h"
43 #include "m_eval.h"
44
45 static GLfloat inv_tab[MAX_EVAL_ORDER];
46
47
48
49 /*
50 * Horner scheme for Bezier curves
51 *
52 * Bezier curves can be computed via a Horner scheme.
53 * Horner is numerically less stable than the de Casteljau
54 * algorithm, but it is faster. For curves of degree n
55 * the complexity of Horner is O(n) and de Casteljau is O(n^2).
56 * Since stability is not important for displaying curve
57 * points I decided to use the Horner scheme.
58 *
59 * A cubic Bezier curve with control points b0, b1, b2, b3 can be
60 * written as
61 *
62 * (([3] [3] ) [3] ) [3]
63 * c(t) = (([0]*s*b0 + [1]*t*b1)*s + [2]*t^2*b2)*s + [3]*t^2*b3
64 *
65 * [n]
66 * where s=1-t and the binomial coefficients [i]. These can
67 * be computed iteratively using the identity:
68 *
69 * [n] [n ] [n]
70 * [i] = (n-i+1)/i * [i-1] and [0] = 1
71 */
72
73
74 void
75 _math_horner_bezier_curve(const GLfloat *cp, GLfloat *out, GLfloat t,
76 GLuint dim, GLuint order)
77 {
78 GLfloat s, powert;
79 GLuint i, k, bincoeff;
80
81 if(order >= 2)
82 {
83 bincoeff = order-1;
84 s = 1.0-t;
85
86 for(k=0; k<dim; k++)
87 out[k] = s*cp[k] + bincoeff*t*cp[dim+k];
88
89 for(i=2, cp+=2*dim, powert=t*t; i<order; i++, powert*=t, cp +=dim)
90 {
91 bincoeff *= order-i;
92 bincoeff *= (GLuint) inv_tab[i];
93
94 for(k=0; k<dim; k++)
95 out[k] = s*out[k] + bincoeff*powert*cp[k];
96 }
97 }
98 else /* order=1 -> constant curve */
99 {
100 for(k=0; k<dim; k++)
101 out[k] = cp[k];
102 }
103 }
104
105 /*
106 * Tensor product Bezier surfaces
107 *
108 * Again the Horner scheme is used to compute a point on a
109 * TP Bezier surface. First a control polygon for a curve
110 * on the surface in one parameter direction is computed,
111 * then the point on the curve for the other parameter
112 * direction is evaluated.
113 *
114 * To store the curve control polygon additional storage
115 * for max(uorder,vorder) points is needed in the
116 * control net cn.
117 */
118
119 void
120 _math_horner_bezier_surf(GLfloat *cn, GLfloat *out, GLfloat u, GLfloat v,
121 GLuint dim, GLuint uorder, GLuint vorder)
122 {
123 GLfloat *cp = cn + uorder*vorder*dim;
124 GLuint i, uinc = vorder*dim;
125
126 if(vorder > uorder)
127 {
128 if(uorder >= 2)
129 {
130 GLfloat s, poweru;
131 GLuint j, k, bincoeff;
132
133 /* Compute the control polygon for the surface-curve in u-direction */
134 for(j=0; j<vorder; j++)
135 {
136 GLfloat *ucp = &cn[j*dim];
137
138 /* Each control point is the point for parameter u on a */
139 /* curve defined by the control polygons in u-direction */
140 bincoeff = uorder-1;
141 s = 1.0-u;
142
143 for(k=0; k<dim; k++)
144 cp[j*dim+k] = s*ucp[k] + bincoeff*u*ucp[uinc+k];
145
146 for(i=2, ucp+=2*uinc, poweru=u*u; i<uorder;
147 i++, poweru*=u, ucp +=uinc)
148 {
149 bincoeff *= uorder-i;
150 bincoeff *= (GLuint) inv_tab[i];
151
152 for(k=0; k<dim; k++)
153 cp[j*dim+k] = s*cp[j*dim+k] + bincoeff*poweru*ucp[k];
154 }
155 }
156
157 /* Evaluate curve point in v */
158 _math_horner_bezier_curve(cp, out, v, dim, vorder);
159 }
160 else /* uorder=1 -> cn defines a curve in v */
161 _math_horner_bezier_curve(cn, out, v, dim, vorder);
162 }
163 else /* vorder <= uorder */
164 {
165 if(vorder > 1)
166 {
167 GLuint i;
168
169 /* Compute the control polygon for the surface-curve in u-direction */
170 for(i=0; i<uorder; i++, cn += uinc)
171 {
172 /* For constant i all cn[i][j] (j=0..vorder) are located */
173 /* on consecutive memory locations, so we can use */
174 /* horner_bezier_curve to compute the control points */
175
176 _math_horner_bezier_curve(cn, &cp[i*dim], v, dim, vorder);
177 }
178
179 /* Evaluate curve point in u */
180 _math_horner_bezier_curve(cp, out, u, dim, uorder);
181 }
182 else /* vorder=1 -> cn defines a curve in u */
183 _math_horner_bezier_curve(cn, out, u, dim, uorder);
184 }
185 }
186
187 /*
188 * The direct de Casteljau algorithm is used when a point on the
189 * surface and the tangent directions spanning the tangent plane
190 * should be computed (this is needed to compute normals to the
191 * surface). In this case the de Casteljau algorithm approach is
192 * nicer because a point and the partial derivatives can be computed
193 * at the same time. To get the correct tangent length du and dv
194 * must be multiplied with the (u2-u1)/uorder-1 and (v2-v1)/vorder-1.
195 * Since only the directions are needed, this scaling step is omitted.
196 *
197 * De Casteljau needs additional storage for uorder*vorder
198 * values in the control net cn.
199 */
200
201 void
202 _math_de_casteljau_surf(GLfloat *cn, GLfloat *out, GLfloat *du, GLfloat *dv,
203 GLfloat u, GLfloat v, GLuint dim,
204 GLuint uorder, GLuint vorder)
205 {
206 GLfloat *dcn = cn + uorder*vorder*dim;
207 GLfloat us = 1.0-u, vs = 1.0-v;
208 GLuint h, i, j, k;
209 GLuint minorder = uorder < vorder ? uorder : vorder;
210 GLuint uinc = vorder*dim;
211 GLuint dcuinc = vorder;
212
213 /* Each component is evaluated separately to save buffer space */
214 /* This does not drasticaly decrease the performance of the */
215 /* algorithm. If additional storage for (uorder-1)*(vorder-1) */
216 /* points would be available, the components could be accessed */
217 /* in the innermost loop which could lead to less cache misses. */
218
219 #define CN(I,J,K) cn[(I)*uinc+(J)*dim+(K)]
220 #define DCN(I, J) dcn[(I)*dcuinc+(J)]
221 if(minorder < 3)
222 {
223 if(uorder==vorder)
224 {
225 for(k=0; k<dim; k++)
226 {
227 /* Derivative direction in u */
228 du[k] = vs*(CN(1,0,k) - CN(0,0,k)) +
229 v*(CN(1,1,k) - CN(0,1,k));
230
231 /* Derivative direction in v */
232 dv[k] = us*(CN(0,1,k) - CN(0,0,k)) +
233 u*(CN(1,1,k) - CN(1,0,k));
234
235 /* bilinear de Casteljau step */
236 out[k] = us*(vs*CN(0,0,k) + v*CN(0,1,k)) +
237 u*(vs*CN(1,0,k) + v*CN(1,1,k));
238 }
239 }
240 else if(minorder == uorder)
241 {
242 for(k=0; k<dim; k++)
243 {
244 /* bilinear de Casteljau step */
245 DCN(1,0) = CN(1,0,k) - CN(0,0,k);
246 DCN(0,0) = us*CN(0,0,k) + u*CN(1,0,k);
247
248 for(j=0; j<vorder-1; j++)
249 {
250 /* for the derivative in u */
251 DCN(1,j+1) = CN(1,j+1,k) - CN(0,j+1,k);
252 DCN(1,j) = vs*DCN(1,j) + v*DCN(1,j+1);
253
254 /* for the `point' */
255 DCN(0,j+1) = us*CN(0,j+1,k) + u*CN(1,j+1,k);
256 DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
257 }
258
259 /* remaining linear de Casteljau steps until the second last step */
260 for(h=minorder; h<vorder-1; h++)
261 for(j=0; j<vorder-h; j++)
262 {
263 /* for the derivative in u */
264 DCN(1,j) = vs*DCN(1,j) + v*DCN(1,j+1);
265
266 /* for the `point' */
267 DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
268 }
269
270 /* derivative direction in v */
271 dv[k] = DCN(0,1) - DCN(0,0);
272
273 /* derivative direction in u */
274 du[k] = vs*DCN(1,0) + v*DCN(1,1);
275
276 /* last linear de Casteljau step */
277 out[k] = vs*DCN(0,0) + v*DCN(0,1);
278 }
279 }
280 else /* minorder == vorder */
281 {
282 for(k=0; k<dim; k++)
283 {
284 /* bilinear de Casteljau step */
285 DCN(0,1) = CN(0,1,k) - CN(0,0,k);
286 DCN(0,0) = vs*CN(0,0,k) + v*CN(0,1,k);
287 for(i=0; i<uorder-1; i++)
288 {
289 /* for the derivative in v */
290 DCN(i+1,1) = CN(i+1,1,k) - CN(i+1,0,k);
291 DCN(i,1) = us*DCN(i,1) + u*DCN(i+1,1);
292
293 /* for the `point' */
294 DCN(i+1,0) = vs*CN(i+1,0,k) + v*CN(i+1,1,k);
295 DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
296 }
297
298 /* remaining linear de Casteljau steps until the second last step */
299 for(h=minorder; h<uorder-1; h++)
300 for(i=0; i<uorder-h; i++)
301 {
302 /* for the derivative in v */
303 DCN(i,1) = us*DCN(i,1) + u*DCN(i+1,1);
304
305 /* for the `point' */
306 DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
307 }
308
309 /* derivative direction in u */
310 du[k] = DCN(1,0) - DCN(0,0);
311
312 /* derivative direction in v */
313 dv[k] = us*DCN(0,1) + u*DCN(1,1);
314
315 /* last linear de Casteljau step */
316 out[k] = us*DCN(0,0) + u*DCN(1,0);
317 }
318 }
319 }
320 else if(uorder == vorder)
321 {
322 for(k=0; k<dim; k++)
323 {
324 /* first bilinear de Casteljau step */
325 for(i=0; i<uorder-1; i++)
326 {
327 DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k);
328 for(j=0; j<vorder-1; j++)
329 {
330 DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k);
331 DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
332 }
333 }
334
335 /* remaining bilinear de Casteljau steps until the second last step */
336 for(h=2; h<minorder-1; h++)
337 for(i=0; i<uorder-h; i++)
338 {
339 DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
340 for(j=0; j<vorder-h; j++)
341 {
342 DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1);
343 DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
344 }
345 }
346
347 /* derivative direction in u */
348 du[k] = vs*(DCN(1,0) - DCN(0,0)) +
349 v*(DCN(1,1) - DCN(0,1));
350
351 /* derivative direction in v */
352 dv[k] = us*(DCN(0,1) - DCN(0,0)) +
353 u*(DCN(1,1) - DCN(1,0));
354
355 /* last bilinear de Casteljau step */
356 out[k] = us*(vs*DCN(0,0) + v*DCN(0,1)) +
357 u*(vs*DCN(1,0) + v*DCN(1,1));
358 }
359 }
360 else if(minorder == uorder)
361 {
362 for(k=0; k<dim; k++)
363 {
364 /* first bilinear de Casteljau step */
365 for(i=0; i<uorder-1; i++)
366 {
367 DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k);
368 for(j=0; j<vorder-1; j++)
369 {
370 DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k);
371 DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
372 }
373 }
374
375 /* remaining bilinear de Casteljau steps until the second last step */
376 for(h=2; h<minorder-1; h++)
377 for(i=0; i<uorder-h; i++)
378 {
379 DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
380 for(j=0; j<vorder-h; j++)
381 {
382 DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1);
383 DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
384 }
385 }
386
387 /* last bilinear de Casteljau step */
388 DCN(2,0) = DCN(1,0) - DCN(0,0);
389 DCN(0,0) = us*DCN(0,0) + u*DCN(1,0);
390 for(j=0; j<vorder-1; j++)
391 {
392 /* for the derivative in u */
393 DCN(2,j+1) = DCN(1,j+1) - DCN(0,j+1);
394 DCN(2,j) = vs*DCN(2,j) + v*DCN(2,j+1);
395
396 /* for the `point' */
397 DCN(0,j+1) = us*DCN(0,j+1 ) + u*DCN(1,j+1);
398 DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
399 }
400
401 /* remaining linear de Casteljau steps until the second last step */
402 for(h=minorder; h<vorder-1; h++)
403 for(j=0; j<vorder-h; j++)
404 {
405 /* for the derivative in u */
406 DCN(2,j) = vs*DCN(2,j) + v*DCN(2,j+1);
407
408 /* for the `point' */
409 DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
410 }
411
412 /* derivative direction in v */
413 dv[k] = DCN(0,1) - DCN(0,0);
414
415 /* derivative direction in u */
416 du[k] = vs*DCN(2,0) + v*DCN(2,1);
417
418 /* last linear de Casteljau step */
419 out[k] = vs*DCN(0,0) + v*DCN(0,1);
420 }
421 }
422 else /* minorder == vorder */
423 {
424 for(k=0; k<dim; k++)
425 {
426 /* first bilinear de Casteljau step */
427 for(i=0; i<uorder-1; i++)
428 {
429 DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k);
430 for(j=0; j<vorder-1; j++)
431 {
432 DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k);
433 DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
434 }
435 }
436
437 /* remaining bilinear de Casteljau steps until the second last step */
438 for(h=2; h<minorder-1; h++)
439 for(i=0; i<uorder-h; i++)
440 {
441 DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
442 for(j=0; j<vorder-h; j++)
443 {
444 DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1);
445 DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
446 }
447 }
448
449 /* last bilinear de Casteljau step */
450 DCN(0,2) = DCN(0,1) - DCN(0,0);
451 DCN(0,0) = vs*DCN(0,0) + v*DCN(0,1);
452 for(i=0; i<uorder-1; i++)
453 {
454 /* for the derivative in v */
455 DCN(i+1,2) = DCN(i+1,1) - DCN(i+1,0);
456 DCN(i,2) = us*DCN(i,2) + u*DCN(i+1,2);
457
458 /* for the `point' */
459 DCN(i+1,0) = vs*DCN(i+1,0) + v*DCN(i+1,1);
460 DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
461 }
462
463 /* remaining linear de Casteljau steps until the second last step */
464 for(h=minorder; h<uorder-1; h++)
465 for(i=0; i<uorder-h; i++)
466 {
467 /* for the derivative in v */
468 DCN(i,2) = us*DCN(i,2) + u*DCN(i+1,2);
469
470 /* for the `point' */
471 DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
472 }
473
474 /* derivative direction in u */
475 du[k] = DCN(1,0) - DCN(0,0);
476
477 /* derivative direction in v */
478 dv[k] = us*DCN(0,2) + u*DCN(1,2);
479
480 /* last linear de Casteljau step */
481 out[k] = us*DCN(0,0) + u*DCN(1,0);
482 }
483 }
484 #undef DCN
485 #undef CN
486 }
487
488
489 /*
490 * Do one-time initialization for evaluators.
491 */
492 void _math_init_eval( void )
493 {
494 GLuint i;
495
496 /* KW: precompute 1/x for useful x.
497 */
498 for (i = 1 ; i < MAX_EVAL_ORDER ; i++)
499 inv_tab[i] = 1.0 / i;
500 }
501