2 * Mesa 3-D graphics library
5 * Copyright (C) 1999-2005 Brian Paul All Rights Reserved.
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
31 * -# 4x4 transformation matrices are stored in memory in column major order.
32 * -# Points/vertices are to be thought of as column vectors.
33 * -# Transformation of a point p by a matrix M is: p' = M * p
37 #include "main/glheader.h"
38 #include "main/imports.h"
39 #include "main/macros.h"
45 * \defgroup MatFlags MAT_FLAG_XXX-flags
47 * Bitmasks to indicate different kinds of 4x4 matrices in GLmatrix::flags
50 #define MAT_FLAG_IDENTITY 0 /**< is an identity matrix flag.
51 * (Not actually used - the identity
52 * matrix is identified by the absense
53 * of all other flags.)
55 #define MAT_FLAG_GENERAL 0x1 /**< is a general matrix flag */
56 #define MAT_FLAG_ROTATION 0x2 /**< is a rotation matrix flag */
57 #define MAT_FLAG_TRANSLATION 0x4 /**< is a translation matrix flag */
58 #define MAT_FLAG_UNIFORM_SCALE 0x8 /**< is an uniform scaling matrix flag */
59 #define MAT_FLAG_GENERAL_SCALE 0x10 /**< is a general scaling matrix flag */
60 #define MAT_FLAG_GENERAL_3D 0x20 /**< general 3D matrix flag */
61 #define MAT_FLAG_PERSPECTIVE 0x40 /**< is a perspective proj matrix flag */
62 #define MAT_FLAG_SINGULAR 0x80 /**< is a singular matrix flag */
63 #define MAT_DIRTY_TYPE 0x100 /**< matrix type is dirty */
64 #define MAT_DIRTY_FLAGS 0x200 /**< matrix flags are dirty */
65 #define MAT_DIRTY_INVERSE 0x400 /**< matrix inverse is dirty */
67 /** angle preserving matrix flags mask */
68 #define MAT_FLAGS_ANGLE_PRESERVING (MAT_FLAG_ROTATION | \
69 MAT_FLAG_TRANSLATION | \
70 MAT_FLAG_UNIFORM_SCALE)
72 /** geometry related matrix flags mask */
73 #define MAT_FLAGS_GEOMETRY (MAT_FLAG_GENERAL | \
75 MAT_FLAG_TRANSLATION | \
76 MAT_FLAG_UNIFORM_SCALE | \
77 MAT_FLAG_GENERAL_SCALE | \
78 MAT_FLAG_GENERAL_3D | \
79 MAT_FLAG_PERSPECTIVE | \
82 /** length preserving matrix flags mask */
83 #define MAT_FLAGS_LENGTH_PRESERVING (MAT_FLAG_ROTATION | \
87 /** 3D (non-perspective) matrix flags mask */
88 #define MAT_FLAGS_3D (MAT_FLAG_ROTATION | \
89 MAT_FLAG_TRANSLATION | \
90 MAT_FLAG_UNIFORM_SCALE | \
91 MAT_FLAG_GENERAL_SCALE | \
94 /** dirty matrix flags mask */
95 #define MAT_DIRTY (MAT_DIRTY_TYPE | \
103 * Test geometry related matrix flags.
105 * \param mat a pointer to a GLmatrix structure.
106 * \param a flags mask.
108 * \returns non-zero if all geometry related matrix flags are contained within
109 * the mask, or zero otherwise.
111 #define TEST_MAT_FLAGS(mat, a) \
112 ((MAT_FLAGS_GEOMETRY & (~(a)) & ((mat)->flags) ) == 0)
117 * Names of the corresponding GLmatrixtype values.
119 static const char *types
[] = {
123 "MATRIX_PERSPECTIVE",
133 static GLfloat Identity
[16] = {
142 /**********************************************************************/
143 /** \name Matrix multiplication */
146 #define A(row,col) a[(col<<2)+row]
147 #define B(row,col) b[(col<<2)+row]
148 #define P(row,col) product[(col<<2)+row]
151 * Perform a full 4x4 matrix multiplication.
155 * \param product will receive the product of \p a and \p b.
157 * \warning Is assumed that \p product != \p b. \p product == \p a is allowed.
159 * \note KW: 4*16 = 64 multiplications
161 * \author This \c matmul was contributed by Thomas Malik
163 static void matmul4( GLfloat
*product
, const GLfloat
*a
, const GLfloat
*b
)
166 for (i
= 0; i
< 4; i
++) {
167 const GLfloat ai0
=A(i
,0), ai1
=A(i
,1), ai2
=A(i
,2), ai3
=A(i
,3);
168 P(i
,0) = ai0
* B(0,0) + ai1
* B(1,0) + ai2
* B(2,0) + ai3
* B(3,0);
169 P(i
,1) = ai0
* B(0,1) + ai1
* B(1,1) + ai2
* B(2,1) + ai3
* B(3,1);
170 P(i
,2) = ai0
* B(0,2) + ai1
* B(1,2) + ai2
* B(2,2) + ai3
* B(3,2);
171 P(i
,3) = ai0
* B(0,3) + ai1
* B(1,3) + ai2
* B(2,3) + ai3
* B(3,3);
176 * Multiply two matrices known to occupy only the top three rows, such
177 * as typical model matrices, and orthogonal matrices.
181 * \param product will receive the product of \p a and \p b.
183 static void matmul34( GLfloat
*product
, const GLfloat
*a
, const GLfloat
*b
)
186 for (i
= 0; i
< 3; i
++) {
187 const GLfloat ai0
=A(i
,0), ai1
=A(i
,1), ai2
=A(i
,2), ai3
=A(i
,3);
188 P(i
,0) = ai0
* B(0,0) + ai1
* B(1,0) + ai2
* B(2,0);
189 P(i
,1) = ai0
* B(0,1) + ai1
* B(1,1) + ai2
* B(2,1);
190 P(i
,2) = ai0
* B(0,2) + ai1
* B(1,2) + ai2
* B(2,2);
191 P(i
,3) = ai0
* B(0,3) + ai1
* B(1,3) + ai2
* B(2,3) + ai3
;
204 * Multiply a matrix by an array of floats with known properties.
206 * \param mat pointer to a GLmatrix structure containing the left multiplication
207 * matrix, and that will receive the product result.
208 * \param m right multiplication matrix array.
209 * \param flags flags of the matrix \p m.
211 * Joins both flags and marks the type and inverse as dirty. Calls matmul34()
212 * if both matrices are 3D, or matmul4() otherwise.
214 static void matrix_multf( GLmatrix
*mat
, const GLfloat
*m
, GLuint flags
)
216 mat
->flags
|= (flags
| MAT_DIRTY_TYPE
| MAT_DIRTY_INVERSE
);
218 if (TEST_MAT_FLAGS(mat
, MAT_FLAGS_3D
))
219 matmul34( mat
->m
, mat
->m
, m
);
221 matmul4( mat
->m
, mat
->m
, m
);
225 * Matrix multiplication.
227 * \param dest destination matrix.
228 * \param a left matrix.
229 * \param b right matrix.
231 * Joins both flags and marks the type and inverse as dirty. Calls matmul34()
232 * if both matrices are 3D, or matmul4() otherwise.
235 _math_matrix_mul_matrix( GLmatrix
*dest
, const GLmatrix
*a
, const GLmatrix
*b
)
237 dest
->flags
= (a
->flags
|
242 if (TEST_MAT_FLAGS(dest
, MAT_FLAGS_3D
))
243 matmul34( dest
->m
, a
->m
, b
->m
);
245 matmul4( dest
->m
, a
->m
, b
->m
);
249 * Matrix multiplication.
251 * \param dest left and destination matrix.
252 * \param m right matrix array.
254 * Marks the matrix flags with general flag, and type and inverse dirty flags.
255 * Calls matmul4() for the multiplication.
258 _math_matrix_mul_floats( GLmatrix
*dest
, const GLfloat
*m
)
260 dest
->flags
|= (MAT_FLAG_GENERAL
|
265 matmul4( dest
->m
, dest
->m
, m
);
271 /**********************************************************************/
272 /** \name Matrix output */
276 * Print a matrix array.
278 * \param m matrix array.
280 * Called by _math_matrix_print() to print a matrix or its inverse.
282 static void print_matrix_floats( const GLfloat m
[16] )
286 _mesa_debug(NULL
,"\t%f %f %f %f\n", m
[i
], m
[4+i
], m
[8+i
], m
[12+i
] );
291 * Dumps the contents of a GLmatrix structure.
293 * \param m pointer to the GLmatrix structure.
296 _math_matrix_print( const GLmatrix
*m
)
300 _mesa_debug(NULL
, "Matrix type: %s, flags: %x\n", types
[m
->type
], m
->flags
);
301 print_matrix_floats(m
->m
);
302 _mesa_debug(NULL
, "Inverse: \n");
303 print_matrix_floats(m
->inv
);
304 matmul4(prod
, m
->m
, m
->inv
);
305 _mesa_debug(NULL
, "Mat * Inverse:\n");
306 print_matrix_floats(prod
);
313 * References an element of 4x4 matrix.
315 * \param m matrix array.
316 * \param c column of the desired element.
317 * \param r row of the desired element.
319 * \return value of the desired element.
321 * Calculate the linear storage index of the element and references it.
323 #define MAT(m,r,c) (m)[(c)*4+(r)]
326 /**********************************************************************/
327 /** \name Matrix inversion */
331 * Swaps the values of two floating point variables.
333 * Used by invert_matrix_general() to swap the row pointers.
335 #define SWAP_ROWS(a, b) { GLfloat *_tmp = a; (a)=(b); (b)=_tmp; }
338 * Compute inverse of 4x4 transformation matrix.
340 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
341 * stored in the GLmatrix::inv attribute.
343 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
346 * Code contributed by Jacques Leroy jle@star.be
348 * Calculates the inverse matrix by performing the gaussian matrix reduction
349 * with partial pivoting followed by back/substitution with the loops manually
352 static GLboolean
invert_matrix_general( GLmatrix
*mat
)
354 const GLfloat
*m
= mat
->m
;
355 GLfloat
*out
= mat
->inv
;
357 GLfloat m0
, m1
, m2
, m3
, s
;
358 GLfloat
*r0
, *r1
, *r2
, *r3
;
360 r0
= wtmp
[0], r1
= wtmp
[1], r2
= wtmp
[2], r3
= wtmp
[3];
362 r0
[0] = MAT(m
,0,0), r0
[1] = MAT(m
,0,1),
363 r0
[2] = MAT(m
,0,2), r0
[3] = MAT(m
,0,3),
364 r0
[4] = 1.0, r0
[5] = r0
[6] = r0
[7] = 0.0,
366 r1
[0] = MAT(m
,1,0), r1
[1] = MAT(m
,1,1),
367 r1
[2] = MAT(m
,1,2), r1
[3] = MAT(m
,1,3),
368 r1
[5] = 1.0, r1
[4] = r1
[6] = r1
[7] = 0.0,
370 r2
[0] = MAT(m
,2,0), r2
[1] = MAT(m
,2,1),
371 r2
[2] = MAT(m
,2,2), r2
[3] = MAT(m
,2,3),
372 r2
[6] = 1.0, r2
[4] = r2
[5] = r2
[7] = 0.0,
374 r3
[0] = MAT(m
,3,0), r3
[1] = MAT(m
,3,1),
375 r3
[2] = MAT(m
,3,2), r3
[3] = MAT(m
,3,3),
376 r3
[7] = 1.0, r3
[4] = r3
[5] = r3
[6] = 0.0;
378 /* choose pivot - or die */
379 if (FABSF(r3
[0])>FABSF(r2
[0])) SWAP_ROWS(r3
, r2
);
380 if (FABSF(r2
[0])>FABSF(r1
[0])) SWAP_ROWS(r2
, r1
);
381 if (FABSF(r1
[0])>FABSF(r0
[0])) SWAP_ROWS(r1
, r0
);
382 if (0.0 == r0
[0]) return GL_FALSE
;
384 /* eliminate first variable */
385 m1
= r1
[0]/r0
[0]; m2
= r2
[0]/r0
[0]; m3
= r3
[0]/r0
[0];
386 s
= r0
[1]; r1
[1] -= m1
* s
; r2
[1] -= m2
* s
; r3
[1] -= m3
* s
;
387 s
= r0
[2]; r1
[2] -= m1
* s
; r2
[2] -= m2
* s
; r3
[2] -= m3
* s
;
388 s
= r0
[3]; r1
[3] -= m1
* s
; r2
[3] -= m2
* s
; r3
[3] -= m3
* s
;
390 if (s
!= 0.0) { r1
[4] -= m1
* s
; r2
[4] -= m2
* s
; r3
[4] -= m3
* s
; }
392 if (s
!= 0.0) { r1
[5] -= m1
* s
; r2
[5] -= m2
* s
; r3
[5] -= m3
* s
; }
394 if (s
!= 0.0) { r1
[6] -= m1
* s
; r2
[6] -= m2
* s
; r3
[6] -= m3
* s
; }
396 if (s
!= 0.0) { r1
[7] -= m1
* s
; r2
[7] -= m2
* s
; r3
[7] -= m3
* s
; }
398 /* choose pivot - or die */
399 if (FABSF(r3
[1])>FABSF(r2
[1])) SWAP_ROWS(r3
, r2
);
400 if (FABSF(r2
[1])>FABSF(r1
[1])) SWAP_ROWS(r2
, r1
);
401 if (0.0 == r1
[1]) return GL_FALSE
;
403 /* eliminate second variable */
404 m2
= r2
[1]/r1
[1]; m3
= r3
[1]/r1
[1];
405 r2
[2] -= m2
* r1
[2]; r3
[2] -= m3
* r1
[2];
406 r2
[3] -= m2
* r1
[3]; r3
[3] -= m3
* r1
[3];
407 s
= r1
[4]; if (0.0 != s
) { r2
[4] -= m2
* s
; r3
[4] -= m3
* s
; }
408 s
= r1
[5]; if (0.0 != s
) { r2
[5] -= m2
* s
; r3
[5] -= m3
* s
; }
409 s
= r1
[6]; if (0.0 != s
) { r2
[6] -= m2
* s
; r3
[6] -= m3
* s
; }
410 s
= r1
[7]; if (0.0 != s
) { r2
[7] -= m2
* s
; r3
[7] -= m3
* s
; }
412 /* choose pivot - or die */
413 if (FABSF(r3
[2])>FABSF(r2
[2])) SWAP_ROWS(r3
, r2
);
414 if (0.0 == r2
[2]) return GL_FALSE
;
416 /* eliminate third variable */
418 r3
[3] -= m3
* r2
[3], r3
[4] -= m3
* r2
[4],
419 r3
[5] -= m3
* r2
[5], r3
[6] -= m3
* r2
[6],
423 if (0.0 == r3
[3]) return GL_FALSE
;
425 s
= 1.0F
/r3
[3]; /* now back substitute row 3 */
426 r3
[4] *= s
; r3
[5] *= s
; r3
[6] *= s
; r3
[7] *= s
;
428 m2
= r2
[3]; /* now back substitute row 2 */
430 r2
[4] = s
* (r2
[4] - r3
[4] * m2
), r2
[5] = s
* (r2
[5] - r3
[5] * m2
),
431 r2
[6] = s
* (r2
[6] - r3
[6] * m2
), r2
[7] = s
* (r2
[7] - r3
[7] * m2
);
433 r1
[4] -= r3
[4] * m1
, r1
[5] -= r3
[5] * m1
,
434 r1
[6] -= r3
[6] * m1
, r1
[7] -= r3
[7] * m1
;
436 r0
[4] -= r3
[4] * m0
, r0
[5] -= r3
[5] * m0
,
437 r0
[6] -= r3
[6] * m0
, r0
[7] -= r3
[7] * m0
;
439 m1
= r1
[2]; /* now back substitute row 1 */
441 r1
[4] = s
* (r1
[4] - r2
[4] * m1
), r1
[5] = s
* (r1
[5] - r2
[5] * m1
),
442 r1
[6] = s
* (r1
[6] - r2
[6] * m1
), r1
[7] = s
* (r1
[7] - r2
[7] * m1
);
444 r0
[4] -= r2
[4] * m0
, r0
[5] -= r2
[5] * m0
,
445 r0
[6] -= r2
[6] * m0
, r0
[7] -= r2
[7] * m0
;
447 m0
= r0
[1]; /* now back substitute row 0 */
449 r0
[4] = s
* (r0
[4] - r1
[4] * m0
), r0
[5] = s
* (r0
[5] - r1
[5] * m0
),
450 r0
[6] = s
* (r0
[6] - r1
[6] * m0
), r0
[7] = s
* (r0
[7] - r1
[7] * m0
);
452 MAT(out
,0,0) = r0
[4]; MAT(out
,0,1) = r0
[5],
453 MAT(out
,0,2) = r0
[6]; MAT(out
,0,3) = r0
[7],
454 MAT(out
,1,0) = r1
[4]; MAT(out
,1,1) = r1
[5],
455 MAT(out
,1,2) = r1
[6]; MAT(out
,1,3) = r1
[7],
456 MAT(out
,2,0) = r2
[4]; MAT(out
,2,1) = r2
[5],
457 MAT(out
,2,2) = r2
[6]; MAT(out
,2,3) = r2
[7],
458 MAT(out
,3,0) = r3
[4]; MAT(out
,3,1) = r3
[5],
459 MAT(out
,3,2) = r3
[6]; MAT(out
,3,3) = r3
[7];
466 * Compute inverse of a general 3d transformation matrix.
468 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
469 * stored in the GLmatrix::inv attribute.
471 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
473 * \author Adapted from graphics gems II.
475 * Calculates the inverse of the upper left by first calculating its
476 * determinant and multiplying it to the symmetric adjust matrix of each
477 * element. Finally deals with the translation part by transforming the
478 * original translation vector using by the calculated submatrix inverse.
480 static GLboolean
invert_matrix_3d_general( GLmatrix
*mat
)
482 const GLfloat
*in
= mat
->m
;
483 GLfloat
*out
= mat
->inv
;
487 /* Calculate the determinant of upper left 3x3 submatrix and
488 * determine if the matrix is singular.
491 t
= MAT(in
,0,0) * MAT(in
,1,1) * MAT(in
,2,2);
492 if (t
>= 0.0) pos
+= t
; else neg
+= t
;
494 t
= MAT(in
,1,0) * MAT(in
,2,1) * MAT(in
,0,2);
495 if (t
>= 0.0) pos
+= t
; else neg
+= t
;
497 t
= MAT(in
,2,0) * MAT(in
,0,1) * MAT(in
,1,2);
498 if (t
>= 0.0) pos
+= t
; else neg
+= t
;
500 t
= -MAT(in
,2,0) * MAT(in
,1,1) * MAT(in
,0,2);
501 if (t
>= 0.0) pos
+= t
; else neg
+= t
;
503 t
= -MAT(in
,1,0) * MAT(in
,0,1) * MAT(in
,2,2);
504 if (t
>= 0.0) pos
+= t
; else neg
+= t
;
506 t
= -MAT(in
,0,0) * MAT(in
,2,1) * MAT(in
,1,2);
507 if (t
>= 0.0) pos
+= t
; else neg
+= t
;
511 if (FABSF(det
) < 1e-25)
515 MAT(out
,0,0) = ( (MAT(in
,1,1)*MAT(in
,2,2) - MAT(in
,2,1)*MAT(in
,1,2) )*det
);
516 MAT(out
,0,1) = (- (MAT(in
,0,1)*MAT(in
,2,2) - MAT(in
,2,1)*MAT(in
,0,2) )*det
);
517 MAT(out
,0,2) = ( (MAT(in
,0,1)*MAT(in
,1,2) - MAT(in
,1,1)*MAT(in
,0,2) )*det
);
518 MAT(out
,1,0) = (- (MAT(in
,1,0)*MAT(in
,2,2) - MAT(in
,2,0)*MAT(in
,1,2) )*det
);
519 MAT(out
,1,1) = ( (MAT(in
,0,0)*MAT(in
,2,2) - MAT(in
,2,0)*MAT(in
,0,2) )*det
);
520 MAT(out
,1,2) = (- (MAT(in
,0,0)*MAT(in
,1,2) - MAT(in
,1,0)*MAT(in
,0,2) )*det
);
521 MAT(out
,2,0) = ( (MAT(in
,1,0)*MAT(in
,2,1) - MAT(in
,2,0)*MAT(in
,1,1) )*det
);
522 MAT(out
,2,1) = (- (MAT(in
,0,0)*MAT(in
,2,1) - MAT(in
,2,0)*MAT(in
,0,1) )*det
);
523 MAT(out
,2,2) = ( (MAT(in
,0,0)*MAT(in
,1,1) - MAT(in
,1,0)*MAT(in
,0,1) )*det
);
525 /* Do the translation part */
526 MAT(out
,0,3) = - (MAT(in
,0,3) * MAT(out
,0,0) +
527 MAT(in
,1,3) * MAT(out
,0,1) +
528 MAT(in
,2,3) * MAT(out
,0,2) );
529 MAT(out
,1,3) = - (MAT(in
,0,3) * MAT(out
,1,0) +
530 MAT(in
,1,3) * MAT(out
,1,1) +
531 MAT(in
,2,3) * MAT(out
,1,2) );
532 MAT(out
,2,3) = - (MAT(in
,0,3) * MAT(out
,2,0) +
533 MAT(in
,1,3) * MAT(out
,2,1) +
534 MAT(in
,2,3) * MAT(out
,2,2) );
540 * Compute inverse of a 3d transformation matrix.
542 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
543 * stored in the GLmatrix::inv attribute.
545 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
547 * If the matrix is not an angle preserving matrix then calls
548 * invert_matrix_3d_general for the actual calculation. Otherwise calculates
549 * the inverse matrix analyzing and inverting each of the scaling, rotation and
552 static GLboolean
invert_matrix_3d( GLmatrix
*mat
)
554 const GLfloat
*in
= mat
->m
;
555 GLfloat
*out
= mat
->inv
;
557 if (!TEST_MAT_FLAGS(mat
, MAT_FLAGS_ANGLE_PRESERVING
)) {
558 return invert_matrix_3d_general( mat
);
561 if (mat
->flags
& MAT_FLAG_UNIFORM_SCALE
) {
562 GLfloat scale
= (MAT(in
,0,0) * MAT(in
,0,0) +
563 MAT(in
,0,1) * MAT(in
,0,1) +
564 MAT(in
,0,2) * MAT(in
,0,2));
569 scale
= 1.0F
/ scale
;
571 /* Transpose and scale the 3 by 3 upper-left submatrix. */
572 MAT(out
,0,0) = scale
* MAT(in
,0,0);
573 MAT(out
,1,0) = scale
* MAT(in
,0,1);
574 MAT(out
,2,0) = scale
* MAT(in
,0,2);
575 MAT(out
,0,1) = scale
* MAT(in
,1,0);
576 MAT(out
,1,1) = scale
* MAT(in
,1,1);
577 MAT(out
,2,1) = scale
* MAT(in
,1,2);
578 MAT(out
,0,2) = scale
* MAT(in
,2,0);
579 MAT(out
,1,2) = scale
* MAT(in
,2,1);
580 MAT(out
,2,2) = scale
* MAT(in
,2,2);
582 else if (mat
->flags
& MAT_FLAG_ROTATION
) {
583 /* Transpose the 3 by 3 upper-left submatrix. */
584 MAT(out
,0,0) = MAT(in
,0,0);
585 MAT(out
,1,0) = MAT(in
,0,1);
586 MAT(out
,2,0) = MAT(in
,0,2);
587 MAT(out
,0,1) = MAT(in
,1,0);
588 MAT(out
,1,1) = MAT(in
,1,1);
589 MAT(out
,2,1) = MAT(in
,1,2);
590 MAT(out
,0,2) = MAT(in
,2,0);
591 MAT(out
,1,2) = MAT(in
,2,1);
592 MAT(out
,2,2) = MAT(in
,2,2);
595 /* pure translation */
596 memcpy( out
, Identity
, sizeof(Identity
) );
597 MAT(out
,0,3) = - MAT(in
,0,3);
598 MAT(out
,1,3) = - MAT(in
,1,3);
599 MAT(out
,2,3) = - MAT(in
,2,3);
603 if (mat
->flags
& MAT_FLAG_TRANSLATION
) {
604 /* Do the translation part */
605 MAT(out
,0,3) = - (MAT(in
,0,3) * MAT(out
,0,0) +
606 MAT(in
,1,3) * MAT(out
,0,1) +
607 MAT(in
,2,3) * MAT(out
,0,2) );
608 MAT(out
,1,3) = - (MAT(in
,0,3) * MAT(out
,1,0) +
609 MAT(in
,1,3) * MAT(out
,1,1) +
610 MAT(in
,2,3) * MAT(out
,1,2) );
611 MAT(out
,2,3) = - (MAT(in
,0,3) * MAT(out
,2,0) +
612 MAT(in
,1,3) * MAT(out
,2,1) +
613 MAT(in
,2,3) * MAT(out
,2,2) );
616 MAT(out
,0,3) = MAT(out
,1,3) = MAT(out
,2,3) = 0.0;
623 * Compute inverse of an identity transformation matrix.
625 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
626 * stored in the GLmatrix::inv attribute.
628 * \return always GL_TRUE.
630 * Simply copies Identity into GLmatrix::inv.
632 static GLboolean
invert_matrix_identity( GLmatrix
*mat
)
634 memcpy( mat
->inv
, Identity
, sizeof(Identity
) );
639 * Compute inverse of a no-rotation 3d transformation matrix.
641 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
642 * stored in the GLmatrix::inv attribute.
644 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
648 static GLboolean
invert_matrix_3d_no_rot( GLmatrix
*mat
)
650 const GLfloat
*in
= mat
->m
;
651 GLfloat
*out
= mat
->inv
;
653 if (MAT(in
,0,0) == 0 || MAT(in
,1,1) == 0 || MAT(in
,2,2) == 0 )
656 memcpy( out
, Identity
, 16 * sizeof(GLfloat
) );
657 MAT(out
,0,0) = 1.0F
/ MAT(in
,0,0);
658 MAT(out
,1,1) = 1.0F
/ MAT(in
,1,1);
659 MAT(out
,2,2) = 1.0F
/ MAT(in
,2,2);
661 if (mat
->flags
& MAT_FLAG_TRANSLATION
) {
662 MAT(out
,0,3) = - (MAT(in
,0,3) * MAT(out
,0,0));
663 MAT(out
,1,3) = - (MAT(in
,1,3) * MAT(out
,1,1));
664 MAT(out
,2,3) = - (MAT(in
,2,3) * MAT(out
,2,2));
671 * Compute inverse of a no-rotation 2d transformation matrix.
673 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
674 * stored in the GLmatrix::inv attribute.
676 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
678 * Calculates the inverse matrix by applying the inverse scaling and
679 * translation to the identity matrix.
681 static GLboolean
invert_matrix_2d_no_rot( GLmatrix
*mat
)
683 const GLfloat
*in
= mat
->m
;
684 GLfloat
*out
= mat
->inv
;
686 if (MAT(in
,0,0) == 0 || MAT(in
,1,1) == 0)
689 memcpy( out
, Identity
, 16 * sizeof(GLfloat
) );
690 MAT(out
,0,0) = 1.0F
/ MAT(in
,0,0);
691 MAT(out
,1,1) = 1.0F
/ MAT(in
,1,1);
693 if (mat
->flags
& MAT_FLAG_TRANSLATION
) {
694 MAT(out
,0,3) = - (MAT(in
,0,3) * MAT(out
,0,0));
695 MAT(out
,1,3) = - (MAT(in
,1,3) * MAT(out
,1,1));
703 static GLboolean
invert_matrix_perspective( GLmatrix
*mat
)
705 const GLfloat
*in
= mat
->m
;
706 GLfloat
*out
= mat
->inv
;
708 if (MAT(in
,2,3) == 0)
711 memcpy( out
, Identity
, 16 * sizeof(GLfloat
) );
713 MAT(out
,0,0) = 1.0F
/ MAT(in
,0,0);
714 MAT(out
,1,1) = 1.0F
/ MAT(in
,1,1);
716 MAT(out
,0,3) = MAT(in
,0,2);
717 MAT(out
,1,3) = MAT(in
,1,2);
722 MAT(out
,3,2) = 1.0F
/ MAT(in
,2,3);
723 MAT(out
,3,3) = MAT(in
,2,2) * MAT(out
,3,2);
730 * Matrix inversion function pointer type.
732 typedef GLboolean (*inv_mat_func
)( GLmatrix
*mat
);
735 * Table of the matrix inversion functions according to the matrix type.
737 static inv_mat_func inv_mat_tab
[7] = {
738 invert_matrix_general
,
739 invert_matrix_identity
,
740 invert_matrix_3d_no_rot
,
742 /* Don't use this function for now - it fails when the projection matrix
743 * is premultiplied by a translation (ala Chromium's tilesort SPU).
745 invert_matrix_perspective
,
747 invert_matrix_general
,
749 invert_matrix_3d
, /* lazy! */
750 invert_matrix_2d_no_rot
,
755 * Compute inverse of a transformation matrix.
757 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
758 * stored in the GLmatrix::inv attribute.
760 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
762 * Calls the matrix inversion function in inv_mat_tab corresponding to the
763 * given matrix type. In case of failure, updates the MAT_FLAG_SINGULAR flag,
764 * and copies the identity matrix into GLmatrix::inv.
766 static GLboolean
matrix_invert( GLmatrix
*mat
)
768 if (inv_mat_tab
[mat
->type
](mat
)) {
769 mat
->flags
&= ~MAT_FLAG_SINGULAR
;
772 mat
->flags
|= MAT_FLAG_SINGULAR
;
773 memcpy( mat
->inv
, Identity
, sizeof(Identity
) );
781 /**********************************************************************/
782 /** \name Matrix generation */
786 * Generate a 4x4 transformation matrix from glRotate parameters, and
787 * post-multiply the input matrix by it.
790 * This function was contributed by Erich Boleyn (erich@uruk.org).
791 * Optimizations contributed by Rudolf Opalla (rudi@khm.de).
794 _math_matrix_rotate( GLmatrix
*mat
,
795 GLfloat angle
, GLfloat x
, GLfloat y
, GLfloat z
)
797 GLfloat xx
, yy
, zz
, xy
, yz
, zx
, xs
, ys
, zs
, one_c
, s
, c
;
801 s
= (GLfloat
) sin( angle
* DEG2RAD
);
802 c
= (GLfloat
) cos( angle
* DEG2RAD
);
804 memcpy(m
, Identity
, sizeof(GLfloat
)*16);
805 optimized
= GL_FALSE
;
807 #define M(row,col) m[col*4+row]
813 /* rotate only around z-axis */
826 else if (z
== 0.0F
) {
828 /* rotate only around y-axis */
841 else if (y
== 0.0F
) {
844 /* rotate only around x-axis */
859 const GLfloat mag
= sqrtf(x
* x
+ y
* y
+ z
* z
);
862 /* no rotation, leave mat as-is */
872 * Arbitrary axis rotation matrix.
874 * This is composed of 5 matrices, Rz, Ry, T, Ry', Rz', multiplied
875 * like so: Rz * Ry * T * Ry' * Rz'. T is the final rotation
876 * (which is about the X-axis), and the two composite transforms
877 * Ry' * Rz' and Rz * Ry are (respectively) the rotations necessary
878 * from the arbitrary axis to the X-axis then back. They are
879 * all elementary rotations.
881 * Rz' is a rotation about the Z-axis, to bring the axis vector
882 * into the x-z plane. Then Ry' is applied, rotating about the
883 * Y-axis to bring the axis vector parallel with the X-axis. The
884 * rotation about the X-axis is then performed. Ry and Rz are
885 * simply the respective inverse transforms to bring the arbitrary
886 * axis back to its original orientation. The first transforms
887 * Rz' and Ry' are considered inverses, since the data from the
888 * arbitrary axis gives you info on how to get to it, not how
889 * to get away from it, and an inverse must be applied.
891 * The basic calculation used is to recognize that the arbitrary
892 * axis vector (x, y, z), since it is of unit length, actually
893 * represents the sines and cosines of the angles to rotate the
894 * X-axis to the same orientation, with theta being the angle about
895 * Z and phi the angle about Y (in the order described above)
898 * cos ( theta ) = x / sqrt ( 1 - z^2 )
899 * sin ( theta ) = y / sqrt ( 1 - z^2 )
901 * cos ( phi ) = sqrt ( 1 - z^2 )
904 * Note that cos ( phi ) can further be inserted to the above
907 * cos ( theta ) = x / cos ( phi )
908 * sin ( theta ) = y / sin ( phi )
910 * ...etc. Because of those relations and the standard trigonometric
911 * relations, it is pssible to reduce the transforms down to what
912 * is used below. It may be that any primary axis chosen will give the
913 * same results (modulo a sign convention) using thie method.
915 * Particularly nice is to notice that all divisions that might
916 * have caused trouble when parallel to certain planes or
917 * axis go away with care paid to reducing the expressions.
918 * After checking, it does perform correctly under all cases, since
919 * in all the cases of division where the denominator would have
920 * been zero, the numerator would have been zero as well, giving
921 * the expected result.
935 /* We already hold the identity-matrix so we can skip some statements */
936 M(0,0) = (one_c
* xx
) + c
;
937 M(0,1) = (one_c
* xy
) - zs
;
938 M(0,2) = (one_c
* zx
) + ys
;
941 M(1,0) = (one_c
* xy
) + zs
;
942 M(1,1) = (one_c
* yy
) + c
;
943 M(1,2) = (one_c
* yz
) - xs
;
946 M(2,0) = (one_c
* zx
) - ys
;
947 M(2,1) = (one_c
* yz
) + xs
;
948 M(2,2) = (one_c
* zz
) + c
;
960 matrix_multf( mat
, m
, MAT_FLAG_ROTATION
);
964 * Apply a perspective projection matrix.
966 * \param mat matrix to apply the projection.
967 * \param left left clipping plane coordinate.
968 * \param right right clipping plane coordinate.
969 * \param bottom bottom clipping plane coordinate.
970 * \param top top clipping plane coordinate.
971 * \param nearval distance to the near clipping plane.
972 * \param farval distance to the far clipping plane.
974 * Creates the projection matrix and multiplies it with \p mat, marking the
975 * MAT_FLAG_PERSPECTIVE flag.
978 _math_matrix_frustum( GLmatrix
*mat
,
979 GLfloat left
, GLfloat right
,
980 GLfloat bottom
, GLfloat top
,
981 GLfloat nearval
, GLfloat farval
)
983 GLfloat x
, y
, a
, b
, c
, d
;
986 x
= (2.0F
*nearval
) / (right
-left
);
987 y
= (2.0F
*nearval
) / (top
-bottom
);
988 a
= (right
+left
) / (right
-left
);
989 b
= (top
+bottom
) / (top
-bottom
);
990 c
= -(farval
+nearval
) / ( farval
-nearval
);
991 d
= -(2.0F
*farval
*nearval
) / (farval
-nearval
); /* error? */
993 #define M(row,col) m[col*4+row]
994 M(0,0) = x
; M(0,1) = 0.0F
; M(0,2) = a
; M(0,3) = 0.0F
;
995 M(1,0) = 0.0F
; M(1,1) = y
; M(1,2) = b
; M(1,3) = 0.0F
;
996 M(2,0) = 0.0F
; M(2,1) = 0.0F
; M(2,2) = c
; M(2,3) = d
;
997 M(3,0) = 0.0F
; M(3,1) = 0.0F
; M(3,2) = -1.0F
; M(3,3) = 0.0F
;
1000 matrix_multf( mat
, m
, MAT_FLAG_PERSPECTIVE
);
1004 * Apply an orthographic projection matrix.
1006 * \param mat matrix to apply the projection.
1007 * \param left left clipping plane coordinate.
1008 * \param right right clipping plane coordinate.
1009 * \param bottom bottom clipping plane coordinate.
1010 * \param top top clipping plane coordinate.
1011 * \param nearval distance to the near clipping plane.
1012 * \param farval distance to the far clipping plane.
1014 * Creates the projection matrix and multiplies it with \p mat, marking the
1015 * MAT_FLAG_GENERAL_SCALE and MAT_FLAG_TRANSLATION flags.
1018 _math_matrix_ortho( GLmatrix
*mat
,
1019 GLfloat left
, GLfloat right
,
1020 GLfloat bottom
, GLfloat top
,
1021 GLfloat nearval
, GLfloat farval
)
1025 #define M(row,col) m[col*4+row]
1026 M(0,0) = 2.0F
/ (right
-left
);
1029 M(0,3) = -(right
+left
) / (right
-left
);
1032 M(1,1) = 2.0F
/ (top
-bottom
);
1034 M(1,3) = -(top
+bottom
) / (top
-bottom
);
1038 M(2,2) = -2.0F
/ (farval
-nearval
);
1039 M(2,3) = -(farval
+nearval
) / (farval
-nearval
);
1047 matrix_multf( mat
, m
, (MAT_FLAG_GENERAL_SCALE
|MAT_FLAG_TRANSLATION
));
1051 * Multiply a matrix with a general scaling matrix.
1053 * \param mat matrix.
1054 * \param x x axis scale factor.
1055 * \param y y axis scale factor.
1056 * \param z z axis scale factor.
1058 * Multiplies in-place the elements of \p mat by the scale factors. Checks if
1059 * the scales factors are roughly the same, marking the MAT_FLAG_UNIFORM_SCALE
1060 * flag, or MAT_FLAG_GENERAL_SCALE. Marks the MAT_DIRTY_TYPE and
1061 * MAT_DIRTY_INVERSE dirty flags.
1064 _math_matrix_scale( GLmatrix
*mat
, GLfloat x
, GLfloat y
, GLfloat z
)
1066 GLfloat
*m
= mat
->m
;
1067 m
[0] *= x
; m
[4] *= y
; m
[8] *= z
;
1068 m
[1] *= x
; m
[5] *= y
; m
[9] *= z
;
1069 m
[2] *= x
; m
[6] *= y
; m
[10] *= z
;
1070 m
[3] *= x
; m
[7] *= y
; m
[11] *= z
;
1072 if (FABSF(x
- y
) < 1e-8 && FABSF(x
- z
) < 1e-8)
1073 mat
->flags
|= MAT_FLAG_UNIFORM_SCALE
;
1075 mat
->flags
|= MAT_FLAG_GENERAL_SCALE
;
1077 mat
->flags
|= (MAT_DIRTY_TYPE
|
1082 * Multiply a matrix with a translation matrix.
1084 * \param mat matrix.
1085 * \param x translation vector x coordinate.
1086 * \param y translation vector y coordinate.
1087 * \param z translation vector z coordinate.
1089 * Adds the translation coordinates to the elements of \p mat in-place. Marks
1090 * the MAT_FLAG_TRANSLATION flag, and the MAT_DIRTY_TYPE and MAT_DIRTY_INVERSE
1094 _math_matrix_translate( GLmatrix
*mat
, GLfloat x
, GLfloat y
, GLfloat z
)
1096 GLfloat
*m
= mat
->m
;
1097 m
[12] = m
[0] * x
+ m
[4] * y
+ m
[8] * z
+ m
[12];
1098 m
[13] = m
[1] * x
+ m
[5] * y
+ m
[9] * z
+ m
[13];
1099 m
[14] = m
[2] * x
+ m
[6] * y
+ m
[10] * z
+ m
[14];
1100 m
[15] = m
[3] * x
+ m
[7] * y
+ m
[11] * z
+ m
[15];
1102 mat
->flags
|= (MAT_FLAG_TRANSLATION
|
1109 * Set matrix to do viewport and depthrange mapping.
1110 * Transforms Normalized Device Coords to window/Z values.
1113 _math_matrix_viewport(GLmatrix
*m
, GLint x
, GLint y
, GLint width
, GLint height
,
1114 GLfloat zNear
, GLfloat zFar
, GLfloat depthMax
)
1116 m
->m
[MAT_SX
] = (GLfloat
) width
/ 2.0F
;
1117 m
->m
[MAT_TX
] = m
->m
[MAT_SX
] + x
;
1118 m
->m
[MAT_SY
] = (GLfloat
) height
/ 2.0F
;
1119 m
->m
[MAT_TY
] = m
->m
[MAT_SY
] + y
;
1120 m
->m
[MAT_SZ
] = depthMax
* ((zFar
- zNear
) / 2.0F
);
1121 m
->m
[MAT_TZ
] = depthMax
* ((zFar
- zNear
) / 2.0F
+ zNear
);
1122 m
->flags
= MAT_FLAG_GENERAL_SCALE
| MAT_FLAG_TRANSLATION
;
1123 m
->type
= MATRIX_3D_NO_ROT
;
1128 * Set a matrix to the identity matrix.
1130 * \param mat matrix.
1132 * Copies ::Identity into \p GLmatrix::m, and into GLmatrix::inv if not NULL.
1133 * Sets the matrix type to identity, and clear the dirty flags.
1136 _math_matrix_set_identity( GLmatrix
*mat
)
1138 memcpy( mat
->m
, Identity
, 16*sizeof(GLfloat
) );
1139 memcpy( mat
->inv
, Identity
, 16*sizeof(GLfloat
) );
1141 mat
->type
= MATRIX_IDENTITY
;
1142 mat
->flags
&= ~(MAT_DIRTY_FLAGS
|
1150 /**********************************************************************/
1151 /** \name Matrix analysis */
1154 #define ZERO(x) (1<<x)
1155 #define ONE(x) (1<<(x+16))
1157 #define MASK_NO_TRX (ZERO(12) | ZERO(13) | ZERO(14))
1158 #define MASK_NO_2D_SCALE ( ONE(0) | ONE(5))
1160 #define MASK_IDENTITY ( ONE(0) | ZERO(4) | ZERO(8) | ZERO(12) |\
1161 ZERO(1) | ONE(5) | ZERO(9) | ZERO(13) |\
1162 ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\
1163 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
1165 #define MASK_2D_NO_ROT ( ZERO(4) | ZERO(8) | \
1166 ZERO(1) | ZERO(9) | \
1167 ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\
1168 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
1170 #define MASK_2D ( ZERO(8) | \
1172 ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\
1173 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
1176 #define MASK_3D_NO_ROT ( ZERO(4) | ZERO(8) | \
1177 ZERO(1) | ZERO(9) | \
1178 ZERO(2) | ZERO(6) | \
1179 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
1184 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
1187 #define MASK_PERSPECTIVE ( ZERO(4) | ZERO(12) |\
1188 ZERO(1) | ZERO(13) |\
1189 ZERO(2) | ZERO(6) | \
1190 ZERO(3) | ZERO(7) | ZERO(15) )
1192 #define SQ(x) ((x)*(x))
1195 * Determine type and flags from scratch.
1197 * \param mat matrix.
1199 * This is expensive enough to only want to do it once.
1201 static void analyse_from_scratch( GLmatrix
*mat
)
1203 const GLfloat
*m
= mat
->m
;
1207 for (i
= 0 ; i
< 16 ; i
++) {
1208 if (m
[i
] == 0.0) mask
|= (1<<i
);
1211 if (m
[0] == 1.0F
) mask
|= (1<<16);
1212 if (m
[5] == 1.0F
) mask
|= (1<<21);
1213 if (m
[10] == 1.0F
) mask
|= (1<<26);
1214 if (m
[15] == 1.0F
) mask
|= (1<<31);
1216 mat
->flags
&= ~MAT_FLAGS_GEOMETRY
;
1218 /* Check for translation - no-one really cares
1220 if ((mask
& MASK_NO_TRX
) != MASK_NO_TRX
)
1221 mat
->flags
|= MAT_FLAG_TRANSLATION
;
1225 if (mask
== (GLuint
) MASK_IDENTITY
) {
1226 mat
->type
= MATRIX_IDENTITY
;
1228 else if ((mask
& MASK_2D_NO_ROT
) == (GLuint
) MASK_2D_NO_ROT
) {
1229 mat
->type
= MATRIX_2D_NO_ROT
;
1231 if ((mask
& MASK_NO_2D_SCALE
) != MASK_NO_2D_SCALE
)
1232 mat
->flags
|= MAT_FLAG_GENERAL_SCALE
;
1234 else if ((mask
& MASK_2D
) == (GLuint
) MASK_2D
) {
1235 GLfloat mm
= DOT2(m
, m
);
1236 GLfloat m4m4
= DOT2(m
+4,m
+4);
1237 GLfloat mm4
= DOT2(m
,m
+4);
1239 mat
->type
= MATRIX_2D
;
1241 /* Check for scale */
1242 if (SQ(mm
-1) > SQ(1e-6) ||
1243 SQ(m4m4
-1) > SQ(1e-6))
1244 mat
->flags
|= MAT_FLAG_GENERAL_SCALE
;
1246 /* Check for rotation */
1247 if (SQ(mm4
) > SQ(1e-6))
1248 mat
->flags
|= MAT_FLAG_GENERAL_3D
;
1250 mat
->flags
|= MAT_FLAG_ROTATION
;
1253 else if ((mask
& MASK_3D_NO_ROT
) == (GLuint
) MASK_3D_NO_ROT
) {
1254 mat
->type
= MATRIX_3D_NO_ROT
;
1256 /* Check for scale */
1257 if (SQ(m
[0]-m
[5]) < SQ(1e-6) &&
1258 SQ(m
[0]-m
[10]) < SQ(1e-6)) {
1259 if (SQ(m
[0]-1.0) > SQ(1e-6)) {
1260 mat
->flags
|= MAT_FLAG_UNIFORM_SCALE
;
1264 mat
->flags
|= MAT_FLAG_GENERAL_SCALE
;
1267 else if ((mask
& MASK_3D
) == (GLuint
) MASK_3D
) {
1268 GLfloat c1
= DOT3(m
,m
);
1269 GLfloat c2
= DOT3(m
+4,m
+4);
1270 GLfloat c3
= DOT3(m
+8,m
+8);
1271 GLfloat d1
= DOT3(m
, m
+4);
1274 mat
->type
= MATRIX_3D
;
1276 /* Check for scale */
1277 if (SQ(c1
-c2
) < SQ(1e-6) && SQ(c1
-c3
) < SQ(1e-6)) {
1278 if (SQ(c1
-1.0) > SQ(1e-6))
1279 mat
->flags
|= MAT_FLAG_UNIFORM_SCALE
;
1280 /* else no scale at all */
1283 mat
->flags
|= MAT_FLAG_GENERAL_SCALE
;
1286 /* Check for rotation */
1287 if (SQ(d1
) < SQ(1e-6)) {
1288 CROSS3( cp
, m
, m
+4 );
1289 SUB_3V( cp
, cp
, (m
+8) );
1290 if (LEN_SQUARED_3FV(cp
) < SQ(1e-6))
1291 mat
->flags
|= MAT_FLAG_ROTATION
;
1293 mat
->flags
|= MAT_FLAG_GENERAL_3D
;
1296 mat
->flags
|= MAT_FLAG_GENERAL_3D
; /* shear, etc */
1299 else if ((mask
& MASK_PERSPECTIVE
) == MASK_PERSPECTIVE
&& m
[11]==-1.0F
) {
1300 mat
->type
= MATRIX_PERSPECTIVE
;
1301 mat
->flags
|= MAT_FLAG_GENERAL
;
1304 mat
->type
= MATRIX_GENERAL
;
1305 mat
->flags
|= MAT_FLAG_GENERAL
;
1310 * Analyze a matrix given that its flags are accurate.
1312 * This is the more common operation, hopefully.
1314 static void analyse_from_flags( GLmatrix
*mat
)
1316 const GLfloat
*m
= mat
->m
;
1318 if (TEST_MAT_FLAGS(mat
, 0)) {
1319 mat
->type
= MATRIX_IDENTITY
;
1321 else if (TEST_MAT_FLAGS(mat
, (MAT_FLAG_TRANSLATION
|
1322 MAT_FLAG_UNIFORM_SCALE
|
1323 MAT_FLAG_GENERAL_SCALE
))) {
1324 if ( m
[10]==1.0F
&& m
[14]==0.0F
) {
1325 mat
->type
= MATRIX_2D_NO_ROT
;
1328 mat
->type
= MATRIX_3D_NO_ROT
;
1331 else if (TEST_MAT_FLAGS(mat
, MAT_FLAGS_3D
)) {
1334 && m
[2]==0.0F
&& m
[6]==0.0F
&& m
[10]==1.0F
&& m
[14]==0.0F
) {
1335 mat
->type
= MATRIX_2D
;
1338 mat
->type
= MATRIX_3D
;
1341 else if ( m
[4]==0.0F
&& m
[12]==0.0F
1342 && m
[1]==0.0F
&& m
[13]==0.0F
1343 && m
[2]==0.0F
&& m
[6]==0.0F
1344 && m
[3]==0.0F
&& m
[7]==0.0F
&& m
[11]==-1.0F
&& m
[15]==0.0F
) {
1345 mat
->type
= MATRIX_PERSPECTIVE
;
1348 mat
->type
= MATRIX_GENERAL
;
1353 * Analyze and update a matrix.
1355 * \param mat matrix.
1357 * If the matrix type is dirty then calls either analyse_from_scratch() or
1358 * analyse_from_flags() to determine its type, according to whether the flags
1359 * are dirty or not, respectively. If the matrix has an inverse and it's dirty
1360 * then calls matrix_invert(). Finally clears the dirty flags.
1363 _math_matrix_analyse( GLmatrix
*mat
)
1365 if (mat
->flags
& MAT_DIRTY_TYPE
) {
1366 if (mat
->flags
& MAT_DIRTY_FLAGS
)
1367 analyse_from_scratch( mat
);
1369 analyse_from_flags( mat
);
1372 if (mat
->inv
&& (mat
->flags
& MAT_DIRTY_INVERSE
)) {
1373 matrix_invert( mat
);
1374 mat
->flags
&= ~MAT_DIRTY_INVERSE
;
1377 mat
->flags
&= ~(MAT_DIRTY_FLAGS
| MAT_DIRTY_TYPE
);
1384 * Test if the given matrix preserves vector lengths.
1387 _math_matrix_is_length_preserving( const GLmatrix
*m
)
1389 return TEST_MAT_FLAGS( m
, MAT_FLAGS_LENGTH_PRESERVING
);
1394 * Test if the given matrix does any rotation.
1395 * (or perhaps if the upper-left 3x3 is non-identity)
1398 _math_matrix_has_rotation( const GLmatrix
*m
)
1400 if (m
->flags
& (MAT_FLAG_GENERAL
|
1402 MAT_FLAG_GENERAL_3D
|
1403 MAT_FLAG_PERSPECTIVE
))
1411 _math_matrix_is_general_scale( const GLmatrix
*m
)
1413 return (m
->flags
& MAT_FLAG_GENERAL_SCALE
) ? GL_TRUE
: GL_FALSE
;
1418 _math_matrix_is_dirty( const GLmatrix
*m
)
1420 return (m
->flags
& MAT_DIRTY
) ? GL_TRUE
: GL_FALSE
;
1424 /**********************************************************************/
1425 /** \name Matrix setup */
1431 * \param to destination matrix.
1432 * \param from source matrix.
1434 * Copies all fields in GLmatrix, creating an inverse array if necessary.
1437 _math_matrix_copy( GLmatrix
*to
, const GLmatrix
*from
)
1439 memcpy( to
->m
, from
->m
, sizeof(Identity
) );
1440 memcpy(to
->inv
, from
->inv
, 16 * sizeof(GLfloat
));
1441 to
->flags
= from
->flags
;
1442 to
->type
= from
->type
;
1446 * Loads a matrix array into GLmatrix.
1448 * \param m matrix array.
1449 * \param mat matrix.
1451 * Copies \p m into GLmatrix::m and marks the MAT_FLAG_GENERAL and MAT_DIRTY
1455 _math_matrix_loadf( GLmatrix
*mat
, const GLfloat
*m
)
1457 memcpy( mat
->m
, m
, 16*sizeof(GLfloat
) );
1458 mat
->flags
= (MAT_FLAG_GENERAL
| MAT_DIRTY
);
1462 * Matrix constructor.
1466 * Initialize the GLmatrix fields.
1469 _math_matrix_ctr( GLmatrix
*m
)
1471 m
->m
= _mesa_align_malloc( 16 * sizeof(GLfloat
), 16 );
1473 memcpy( m
->m
, Identity
, sizeof(Identity
) );
1474 m
->inv
= _mesa_align_malloc( 16 * sizeof(GLfloat
), 16 );
1476 memcpy( m
->inv
, Identity
, sizeof(Identity
) );
1477 m
->type
= MATRIX_IDENTITY
;
1482 * Matrix destructor.
1486 * Frees the data in a GLmatrix.
1489 _math_matrix_dtr( GLmatrix
*m
)
1492 _mesa_align_free( m
->m
);
1496 _mesa_align_free( m
->inv
);
1504 /**********************************************************************/
1505 /** \name Matrix transpose */
1509 * Transpose a GLfloat matrix.
1511 * \param to destination array.
1512 * \param from source array.
1515 _math_transposef( GLfloat to
[16], const GLfloat from
[16] )
1536 * Transpose a GLdouble matrix.
1538 * \param to destination array.
1539 * \param from source array.
1542 _math_transposed( GLdouble to
[16], const GLdouble from
[16] )
1563 * Transpose a GLdouble matrix and convert to GLfloat.
1565 * \param to destination array.
1566 * \param from source array.
1569 _math_transposefd( GLfloat to
[16], const GLdouble from
[16] )
1571 to
[0] = (GLfloat
) from
[0];
1572 to
[1] = (GLfloat
) from
[4];
1573 to
[2] = (GLfloat
) from
[8];
1574 to
[3] = (GLfloat
) from
[12];
1575 to
[4] = (GLfloat
) from
[1];
1576 to
[5] = (GLfloat
) from
[5];
1577 to
[6] = (GLfloat
) from
[9];
1578 to
[7] = (GLfloat
) from
[13];
1579 to
[8] = (GLfloat
) from
[2];
1580 to
[9] = (GLfloat
) from
[6];
1581 to
[10] = (GLfloat
) from
[10];
1582 to
[11] = (GLfloat
) from
[14];
1583 to
[12] = (GLfloat
) from
[3];
1584 to
[13] = (GLfloat
) from
[7];
1585 to
[14] = (GLfloat
) from
[11];
1586 to
[15] = (GLfloat
) from
[15];
1593 * Transform a 4-element row vector (1x4 matrix) by a 4x4 matrix. This
1594 * function is used for transforming clipping plane equations and spotlight
1596 * Mathematically, u = v * m.
1597 * Input: v - input vector
1598 * m - transformation matrix
1599 * Output: u - transformed vector
1602 _mesa_transform_vector( GLfloat u
[4], const GLfloat v
[4], const GLfloat m
[16] )
1604 const GLfloat v0
= v
[0], v1
= v
[1], v2
= v
[2], v3
= v
[3];
1605 #define M(row,col) m[row + col*4]
1606 u
[0] = v0
* M(0,0) + v1
* M(1,0) + v2
* M(2,0) + v3
* M(3,0);
1607 u
[1] = v0
* M(0,1) + v1
* M(1,1) + v2
* M(2,1) + v3
* M(3,1);
1608 u
[2] = v0
* M(0,2) + v1
* M(1,2) + v2
* M(2,2) + v3
* M(3,2);
1609 u
[3] = v0
* M(0,3) + v1
* M(1,3) + v2
* M(2,3) + v3
* M(3,3);