Merge remote branch 'origin/master' into lp-setup-llvm
[mesa.git] / src / mesa / math / m_matrix.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 6.3
4 *
5 * Copyright (C) 1999-2005 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /**
27 * \file m_matrix.c
28 * Matrix operations.
29 *
30 * \note
31 * -# 4x4 transformation matrices are stored in memory in column major order.
32 * -# Points/vertices are to be thought of as column vectors.
33 * -# Transformation of a point p by a matrix M is: p' = M * p
34 */
35
36
37 #include "main/glheader.h"
38 #include "main/imports.h"
39 #include "main/macros.h"
40
41 #include "m_matrix.h"
42
43
44 /**
45 * \defgroup MatFlags MAT_FLAG_XXX-flags
46 *
47 * Bitmasks to indicate different kinds of 4x4 matrices in GLmatrix::flags
48 * It would be nice to make all these flags private to m_matrix.c
49 */
50 /*@{*/
51 #define MAT_FLAG_IDENTITY 0 /**< is an identity matrix flag.
52 * (Not actually used - the identity
53 * matrix is identified by the absense
54 * of all other flags.)
55 */
56 #define MAT_FLAG_GENERAL 0x1 /**< is a general matrix flag */
57 #define MAT_FLAG_ROTATION 0x2 /**< is a rotation matrix flag */
58 #define MAT_FLAG_TRANSLATION 0x4 /**< is a translation matrix flag */
59 #define MAT_FLAG_UNIFORM_SCALE 0x8 /**< is an uniform scaling matrix flag */
60 #define MAT_FLAG_GENERAL_SCALE 0x10 /**< is a general scaling matrix flag */
61 #define MAT_FLAG_GENERAL_3D 0x20 /**< general 3D matrix flag */
62 #define MAT_FLAG_PERSPECTIVE 0x40 /**< is a perspective proj matrix flag */
63 #define MAT_FLAG_SINGULAR 0x80 /**< is a singular matrix flag */
64 #define MAT_DIRTY_TYPE 0x100 /**< matrix type is dirty */
65 #define MAT_DIRTY_FLAGS 0x200 /**< matrix flags are dirty */
66 #define MAT_DIRTY_INVERSE 0x400 /**< matrix inverse is dirty */
67
68 /** angle preserving matrix flags mask */
69 #define MAT_FLAGS_ANGLE_PRESERVING (MAT_FLAG_ROTATION | \
70 MAT_FLAG_TRANSLATION | \
71 MAT_FLAG_UNIFORM_SCALE)
72
73 /** geometry related matrix flags mask */
74 #define MAT_FLAGS_GEOMETRY (MAT_FLAG_GENERAL | \
75 MAT_FLAG_ROTATION | \
76 MAT_FLAG_TRANSLATION | \
77 MAT_FLAG_UNIFORM_SCALE | \
78 MAT_FLAG_GENERAL_SCALE | \
79 MAT_FLAG_GENERAL_3D | \
80 MAT_FLAG_PERSPECTIVE | \
81 MAT_FLAG_SINGULAR)
82
83 /** length preserving matrix flags mask */
84 #define MAT_FLAGS_LENGTH_PRESERVING (MAT_FLAG_ROTATION | \
85 MAT_FLAG_TRANSLATION)
86
87
88 /** 3D (non-perspective) matrix flags mask */
89 #define MAT_FLAGS_3D (MAT_FLAG_ROTATION | \
90 MAT_FLAG_TRANSLATION | \
91 MAT_FLAG_UNIFORM_SCALE | \
92 MAT_FLAG_GENERAL_SCALE | \
93 MAT_FLAG_GENERAL_3D)
94
95 /** dirty matrix flags mask */
96 #define MAT_DIRTY (MAT_DIRTY_TYPE | \
97 MAT_DIRTY_FLAGS | \
98 MAT_DIRTY_INVERSE)
99
100 /*@}*/
101
102
103 /**
104 * Test geometry related matrix flags.
105 *
106 * \param mat a pointer to a GLmatrix structure.
107 * \param a flags mask.
108 *
109 * \returns non-zero if all geometry related matrix flags are contained within
110 * the mask, or zero otherwise.
111 */
112 #define TEST_MAT_FLAGS(mat, a) \
113 ((MAT_FLAGS_GEOMETRY & (~(a)) & ((mat)->flags) ) == 0)
114
115
116
117 /**
118 * Names of the corresponding GLmatrixtype values.
119 */
120 static const char *types[] = {
121 "MATRIX_GENERAL",
122 "MATRIX_IDENTITY",
123 "MATRIX_3D_NO_ROT",
124 "MATRIX_PERSPECTIVE",
125 "MATRIX_2D",
126 "MATRIX_2D_NO_ROT",
127 "MATRIX_3D"
128 };
129
130
131 /**
132 * Identity matrix.
133 */
134 static GLfloat Identity[16] = {
135 1.0, 0.0, 0.0, 0.0,
136 0.0, 1.0, 0.0, 0.0,
137 0.0, 0.0, 1.0, 0.0,
138 0.0, 0.0, 0.0, 1.0
139 };
140
141
142
143 /**********************************************************************/
144 /** \name Matrix multiplication */
145 /*@{*/
146
147 #define A(row,col) a[(col<<2)+row]
148 #define B(row,col) b[(col<<2)+row]
149 #define P(row,col) product[(col<<2)+row]
150
151 /**
152 * Perform a full 4x4 matrix multiplication.
153 *
154 * \param a matrix.
155 * \param b matrix.
156 * \param product will receive the product of \p a and \p b.
157 *
158 * \warning Is assumed that \p product != \p b. \p product == \p a is allowed.
159 *
160 * \note KW: 4*16 = 64 multiplications
161 *
162 * \author This \c matmul was contributed by Thomas Malik
163 */
164 static void matmul4( GLfloat *product, const GLfloat *a, const GLfloat *b )
165 {
166 GLint i;
167 for (i = 0; i < 4; i++) {
168 const GLfloat ai0=A(i,0), ai1=A(i,1), ai2=A(i,2), ai3=A(i,3);
169 P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0);
170 P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1);
171 P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2);
172 P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3);
173 }
174 }
175
176 /**
177 * Multiply two matrices known to occupy only the top three rows, such
178 * as typical model matrices, and orthogonal matrices.
179 *
180 * \param a matrix.
181 * \param b matrix.
182 * \param product will receive the product of \p a and \p b.
183 */
184 static void matmul34( GLfloat *product, const GLfloat *a, const GLfloat *b )
185 {
186 GLint i;
187 for (i = 0; i < 3; i++) {
188 const GLfloat ai0=A(i,0), ai1=A(i,1), ai2=A(i,2), ai3=A(i,3);
189 P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0);
190 P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1);
191 P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2);
192 P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3;
193 }
194 P(3,0) = 0;
195 P(3,1) = 0;
196 P(3,2) = 0;
197 P(3,3) = 1;
198 }
199
200 #undef A
201 #undef B
202 #undef P
203
204 /**
205 * Multiply a matrix by an array of floats with known properties.
206 *
207 * \param mat pointer to a GLmatrix structure containing the left multiplication
208 * matrix, and that will receive the product result.
209 * \param m right multiplication matrix array.
210 * \param flags flags of the matrix \p m.
211 *
212 * Joins both flags and marks the type and inverse as dirty. Calls matmul34()
213 * if both matrices are 3D, or matmul4() otherwise.
214 */
215 static void matrix_multf( GLmatrix *mat, const GLfloat *m, GLuint flags )
216 {
217 mat->flags |= (flags | MAT_DIRTY_TYPE | MAT_DIRTY_INVERSE);
218
219 if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D))
220 matmul34( mat->m, mat->m, m );
221 else
222 matmul4( mat->m, mat->m, m );
223 }
224
225 /**
226 * Matrix multiplication.
227 *
228 * \param dest destination matrix.
229 * \param a left matrix.
230 * \param b right matrix.
231 *
232 * Joins both flags and marks the type and inverse as dirty. Calls matmul34()
233 * if both matrices are 3D, or matmul4() otherwise.
234 */
235 void
236 _math_matrix_mul_matrix( GLmatrix *dest, const GLmatrix *a, const GLmatrix *b )
237 {
238 dest->flags = (a->flags |
239 b->flags |
240 MAT_DIRTY_TYPE |
241 MAT_DIRTY_INVERSE);
242
243 if (TEST_MAT_FLAGS(dest, MAT_FLAGS_3D))
244 matmul34( dest->m, a->m, b->m );
245 else
246 matmul4( dest->m, a->m, b->m );
247 }
248
249 /**
250 * Matrix multiplication.
251 *
252 * \param dest left and destination matrix.
253 * \param m right matrix array.
254 *
255 * Marks the matrix flags with general flag, and type and inverse dirty flags.
256 * Calls matmul4() for the multiplication.
257 */
258 void
259 _math_matrix_mul_floats( GLmatrix *dest, const GLfloat *m )
260 {
261 dest->flags |= (MAT_FLAG_GENERAL |
262 MAT_DIRTY_TYPE |
263 MAT_DIRTY_INVERSE |
264 MAT_DIRTY_FLAGS);
265
266 matmul4( dest->m, dest->m, m );
267 }
268
269 /*@}*/
270
271
272 /**********************************************************************/
273 /** \name Matrix output */
274 /*@{*/
275
276 /**
277 * Print a matrix array.
278 *
279 * \param m matrix array.
280 *
281 * Called by _math_matrix_print() to print a matrix or its inverse.
282 */
283 static void print_matrix_floats( const GLfloat m[16] )
284 {
285 int i;
286 for (i=0;i<4;i++) {
287 _mesa_debug(NULL,"\t%f %f %f %f\n", m[i], m[4+i], m[8+i], m[12+i] );
288 }
289 }
290
291 /**
292 * Dumps the contents of a GLmatrix structure.
293 *
294 * \param m pointer to the GLmatrix structure.
295 */
296 void
297 _math_matrix_print( const GLmatrix *m )
298 {
299 _mesa_debug(NULL, "Matrix type: %s, flags: %x\n", types[m->type], m->flags);
300 print_matrix_floats(m->m);
301 _mesa_debug(NULL, "Inverse: \n");
302 if (m->inv) {
303 GLfloat prod[16];
304 print_matrix_floats(m->inv);
305 matmul4(prod, m->m, m->inv);
306 _mesa_debug(NULL, "Mat * Inverse:\n");
307 print_matrix_floats(prod);
308 }
309 else {
310 _mesa_debug(NULL, " - not available\n");
311 }
312 }
313
314 /*@}*/
315
316
317 /**
318 * References an element of 4x4 matrix.
319 *
320 * \param m matrix array.
321 * \param c column of the desired element.
322 * \param r row of the desired element.
323 *
324 * \return value of the desired element.
325 *
326 * Calculate the linear storage index of the element and references it.
327 */
328 #define MAT(m,r,c) (m)[(c)*4+(r)]
329
330
331 /**********************************************************************/
332 /** \name Matrix inversion */
333 /*@{*/
334
335 /**
336 * Swaps the values of two floating pointer variables.
337 *
338 * Used by invert_matrix_general() to swap the row pointers.
339 */
340 #define SWAP_ROWS(a, b) { GLfloat *_tmp = a; (a)=(b); (b)=_tmp; }
341
342 /**
343 * Compute inverse of 4x4 transformation matrix.
344 *
345 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
346 * stored in the GLmatrix::inv attribute.
347 *
348 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
349 *
350 * \author
351 * Code contributed by Jacques Leroy jle@star.be
352 *
353 * Calculates the inverse matrix by performing the gaussian matrix reduction
354 * with partial pivoting followed by back/substitution with the loops manually
355 * unrolled.
356 */
357 static GLboolean invert_matrix_general( GLmatrix *mat )
358 {
359 const GLfloat *m = mat->m;
360 GLfloat *out = mat->inv;
361 GLfloat wtmp[4][8];
362 GLfloat m0, m1, m2, m3, s;
363 GLfloat *r0, *r1, *r2, *r3;
364
365 r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3];
366
367 r0[0] = MAT(m,0,0), r0[1] = MAT(m,0,1),
368 r0[2] = MAT(m,0,2), r0[3] = MAT(m,0,3),
369 r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0,
370
371 r1[0] = MAT(m,1,0), r1[1] = MAT(m,1,1),
372 r1[2] = MAT(m,1,2), r1[3] = MAT(m,1,3),
373 r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0,
374
375 r2[0] = MAT(m,2,0), r2[1] = MAT(m,2,1),
376 r2[2] = MAT(m,2,2), r2[3] = MAT(m,2,3),
377 r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0,
378
379 r3[0] = MAT(m,3,0), r3[1] = MAT(m,3,1),
380 r3[2] = MAT(m,3,2), r3[3] = MAT(m,3,3),
381 r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0;
382
383 /* choose pivot - or die */
384 if (FABSF(r3[0])>FABSF(r2[0])) SWAP_ROWS(r3, r2);
385 if (FABSF(r2[0])>FABSF(r1[0])) SWAP_ROWS(r2, r1);
386 if (FABSF(r1[0])>FABSF(r0[0])) SWAP_ROWS(r1, r0);
387 if (0.0 == r0[0]) return GL_FALSE;
388
389 /* eliminate first variable */
390 m1 = r1[0]/r0[0]; m2 = r2[0]/r0[0]; m3 = r3[0]/r0[0];
391 s = r0[1]; r1[1] -= m1 * s; r2[1] -= m2 * s; r3[1] -= m3 * s;
392 s = r0[2]; r1[2] -= m1 * s; r2[2] -= m2 * s; r3[2] -= m3 * s;
393 s = r0[3]; r1[3] -= m1 * s; r2[3] -= m2 * s; r3[3] -= m3 * s;
394 s = r0[4];
395 if (s != 0.0) { r1[4] -= m1 * s; r2[4] -= m2 * s; r3[4] -= m3 * s; }
396 s = r0[5];
397 if (s != 0.0) { r1[5] -= m1 * s; r2[5] -= m2 * s; r3[5] -= m3 * s; }
398 s = r0[6];
399 if (s != 0.0) { r1[6] -= m1 * s; r2[6] -= m2 * s; r3[6] -= m3 * s; }
400 s = r0[7];
401 if (s != 0.0) { r1[7] -= m1 * s; r2[7] -= m2 * s; r3[7] -= m3 * s; }
402
403 /* choose pivot - or die */
404 if (FABSF(r3[1])>FABSF(r2[1])) SWAP_ROWS(r3, r2);
405 if (FABSF(r2[1])>FABSF(r1[1])) SWAP_ROWS(r2, r1);
406 if (0.0 == r1[1]) return GL_FALSE;
407
408 /* eliminate second variable */
409 m2 = r2[1]/r1[1]; m3 = r3[1]/r1[1];
410 r2[2] -= m2 * r1[2]; r3[2] -= m3 * r1[2];
411 r2[3] -= m2 * r1[3]; r3[3] -= m3 * r1[3];
412 s = r1[4]; if (0.0 != s) { r2[4] -= m2 * s; r3[4] -= m3 * s; }
413 s = r1[5]; if (0.0 != s) { r2[5] -= m2 * s; r3[5] -= m3 * s; }
414 s = r1[6]; if (0.0 != s) { r2[6] -= m2 * s; r3[6] -= m3 * s; }
415 s = r1[7]; if (0.0 != s) { r2[7] -= m2 * s; r3[7] -= m3 * s; }
416
417 /* choose pivot - or die */
418 if (FABSF(r3[2])>FABSF(r2[2])) SWAP_ROWS(r3, r2);
419 if (0.0 == r2[2]) return GL_FALSE;
420
421 /* eliminate third variable */
422 m3 = r3[2]/r2[2];
423 r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4],
424 r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6],
425 r3[7] -= m3 * r2[7];
426
427 /* last check */
428 if (0.0 == r3[3]) return GL_FALSE;
429
430 s = 1.0F/r3[3]; /* now back substitute row 3 */
431 r3[4] *= s; r3[5] *= s; r3[6] *= s; r3[7] *= s;
432
433 m2 = r2[3]; /* now back substitute row 2 */
434 s = 1.0F/r2[2];
435 r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2),
436 r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2);
437 m1 = r1[3];
438 r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1,
439 r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1;
440 m0 = r0[3];
441 r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0,
442 r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0;
443
444 m1 = r1[2]; /* now back substitute row 1 */
445 s = 1.0F/r1[1];
446 r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1),
447 r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1);
448 m0 = r0[2];
449 r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0,
450 r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0;
451
452 m0 = r0[1]; /* now back substitute row 0 */
453 s = 1.0F/r0[0];
454 r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0),
455 r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0);
456
457 MAT(out,0,0) = r0[4]; MAT(out,0,1) = r0[5],
458 MAT(out,0,2) = r0[6]; MAT(out,0,3) = r0[7],
459 MAT(out,1,0) = r1[4]; MAT(out,1,1) = r1[5],
460 MAT(out,1,2) = r1[6]; MAT(out,1,3) = r1[7],
461 MAT(out,2,0) = r2[4]; MAT(out,2,1) = r2[5],
462 MAT(out,2,2) = r2[6]; MAT(out,2,3) = r2[7],
463 MAT(out,3,0) = r3[4]; MAT(out,3,1) = r3[5],
464 MAT(out,3,2) = r3[6]; MAT(out,3,3) = r3[7];
465
466 return GL_TRUE;
467 }
468 #undef SWAP_ROWS
469
470 /**
471 * Compute inverse of a general 3d transformation matrix.
472 *
473 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
474 * stored in the GLmatrix::inv attribute.
475 *
476 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
477 *
478 * \author Adapted from graphics gems II.
479 *
480 * Calculates the inverse of the upper left by first calculating its
481 * determinant and multiplying it to the symmetric adjust matrix of each
482 * element. Finally deals with the translation part by transforming the
483 * original translation vector using by the calculated submatrix inverse.
484 */
485 static GLboolean invert_matrix_3d_general( GLmatrix *mat )
486 {
487 const GLfloat *in = mat->m;
488 GLfloat *out = mat->inv;
489 GLfloat pos, neg, t;
490 GLfloat det;
491
492 /* Calculate the determinant of upper left 3x3 submatrix and
493 * determine if the matrix is singular.
494 */
495 pos = neg = 0.0;
496 t = MAT(in,0,0) * MAT(in,1,1) * MAT(in,2,2);
497 if (t >= 0.0) pos += t; else neg += t;
498
499 t = MAT(in,1,0) * MAT(in,2,1) * MAT(in,0,2);
500 if (t >= 0.0) pos += t; else neg += t;
501
502 t = MAT(in,2,0) * MAT(in,0,1) * MAT(in,1,2);
503 if (t >= 0.0) pos += t; else neg += t;
504
505 t = -MAT(in,2,0) * MAT(in,1,1) * MAT(in,0,2);
506 if (t >= 0.0) pos += t; else neg += t;
507
508 t = -MAT(in,1,0) * MAT(in,0,1) * MAT(in,2,2);
509 if (t >= 0.0) pos += t; else neg += t;
510
511 t = -MAT(in,0,0) * MAT(in,2,1) * MAT(in,1,2);
512 if (t >= 0.0) pos += t; else neg += t;
513
514 det = pos + neg;
515
516 if (det*det < 1e-25)
517 return GL_FALSE;
518
519 det = 1.0F / det;
520 MAT(out,0,0) = ( (MAT(in,1,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,1,2) )*det);
521 MAT(out,0,1) = (- (MAT(in,0,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,0,2) )*det);
522 MAT(out,0,2) = ( (MAT(in,0,1)*MAT(in,1,2) - MAT(in,1,1)*MAT(in,0,2) )*det);
523 MAT(out,1,0) = (- (MAT(in,1,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,1,2) )*det);
524 MAT(out,1,1) = ( (MAT(in,0,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,0,2) )*det);
525 MAT(out,1,2) = (- (MAT(in,0,0)*MAT(in,1,2) - MAT(in,1,0)*MAT(in,0,2) )*det);
526 MAT(out,2,0) = ( (MAT(in,1,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,1,1) )*det);
527 MAT(out,2,1) = (- (MAT(in,0,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,0,1) )*det);
528 MAT(out,2,2) = ( (MAT(in,0,0)*MAT(in,1,1) - MAT(in,1,0)*MAT(in,0,1) )*det);
529
530 /* Do the translation part */
531 MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) +
532 MAT(in,1,3) * MAT(out,0,1) +
533 MAT(in,2,3) * MAT(out,0,2) );
534 MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) +
535 MAT(in,1,3) * MAT(out,1,1) +
536 MAT(in,2,3) * MAT(out,1,2) );
537 MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) +
538 MAT(in,1,3) * MAT(out,2,1) +
539 MAT(in,2,3) * MAT(out,2,2) );
540
541 return GL_TRUE;
542 }
543
544 /**
545 * Compute inverse of a 3d transformation matrix.
546 *
547 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
548 * stored in the GLmatrix::inv attribute.
549 *
550 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
551 *
552 * If the matrix is not an angle preserving matrix then calls
553 * invert_matrix_3d_general for the actual calculation. Otherwise calculates
554 * the inverse matrix analyzing and inverting each of the scaling, rotation and
555 * translation parts.
556 */
557 static GLboolean invert_matrix_3d( GLmatrix *mat )
558 {
559 const GLfloat *in = mat->m;
560 GLfloat *out = mat->inv;
561
562 if (!TEST_MAT_FLAGS(mat, MAT_FLAGS_ANGLE_PRESERVING)) {
563 return invert_matrix_3d_general( mat );
564 }
565
566 if (mat->flags & MAT_FLAG_UNIFORM_SCALE) {
567 GLfloat scale = (MAT(in,0,0) * MAT(in,0,0) +
568 MAT(in,0,1) * MAT(in,0,1) +
569 MAT(in,0,2) * MAT(in,0,2));
570
571 if (scale == 0.0)
572 return GL_FALSE;
573
574 scale = 1.0F / scale;
575
576 /* Transpose and scale the 3 by 3 upper-left submatrix. */
577 MAT(out,0,0) = scale * MAT(in,0,0);
578 MAT(out,1,0) = scale * MAT(in,0,1);
579 MAT(out,2,0) = scale * MAT(in,0,2);
580 MAT(out,0,1) = scale * MAT(in,1,0);
581 MAT(out,1,1) = scale * MAT(in,1,1);
582 MAT(out,2,1) = scale * MAT(in,1,2);
583 MAT(out,0,2) = scale * MAT(in,2,0);
584 MAT(out,1,2) = scale * MAT(in,2,1);
585 MAT(out,2,2) = scale * MAT(in,2,2);
586 }
587 else if (mat->flags & MAT_FLAG_ROTATION) {
588 /* Transpose the 3 by 3 upper-left submatrix. */
589 MAT(out,0,0) = MAT(in,0,0);
590 MAT(out,1,0) = MAT(in,0,1);
591 MAT(out,2,0) = MAT(in,0,2);
592 MAT(out,0,1) = MAT(in,1,0);
593 MAT(out,1,1) = MAT(in,1,1);
594 MAT(out,2,1) = MAT(in,1,2);
595 MAT(out,0,2) = MAT(in,2,0);
596 MAT(out,1,2) = MAT(in,2,1);
597 MAT(out,2,2) = MAT(in,2,2);
598 }
599 else {
600 /* pure translation */
601 memcpy( out, Identity, sizeof(Identity) );
602 MAT(out,0,3) = - MAT(in,0,3);
603 MAT(out,1,3) = - MAT(in,1,3);
604 MAT(out,2,3) = - MAT(in,2,3);
605 return GL_TRUE;
606 }
607
608 if (mat->flags & MAT_FLAG_TRANSLATION) {
609 /* Do the translation part */
610 MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) +
611 MAT(in,1,3) * MAT(out,0,1) +
612 MAT(in,2,3) * MAT(out,0,2) );
613 MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) +
614 MAT(in,1,3) * MAT(out,1,1) +
615 MAT(in,2,3) * MAT(out,1,2) );
616 MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) +
617 MAT(in,1,3) * MAT(out,2,1) +
618 MAT(in,2,3) * MAT(out,2,2) );
619 }
620 else {
621 MAT(out,0,3) = MAT(out,1,3) = MAT(out,2,3) = 0.0;
622 }
623
624 return GL_TRUE;
625 }
626
627 /**
628 * Compute inverse of an identity transformation matrix.
629 *
630 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
631 * stored in the GLmatrix::inv attribute.
632 *
633 * \return always GL_TRUE.
634 *
635 * Simply copies Identity into GLmatrix::inv.
636 */
637 static GLboolean invert_matrix_identity( GLmatrix *mat )
638 {
639 memcpy( mat->inv, Identity, sizeof(Identity) );
640 return GL_TRUE;
641 }
642
643 /**
644 * Compute inverse of a no-rotation 3d transformation matrix.
645 *
646 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
647 * stored in the GLmatrix::inv attribute.
648 *
649 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
650 *
651 * Calculates the
652 */
653 static GLboolean invert_matrix_3d_no_rot( GLmatrix *mat )
654 {
655 const GLfloat *in = mat->m;
656 GLfloat *out = mat->inv;
657
658 if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0 || MAT(in,2,2) == 0 )
659 return GL_FALSE;
660
661 memcpy( out, Identity, 16 * sizeof(GLfloat) );
662 MAT(out,0,0) = 1.0F / MAT(in,0,0);
663 MAT(out,1,1) = 1.0F / MAT(in,1,1);
664 MAT(out,2,2) = 1.0F / MAT(in,2,2);
665
666 if (mat->flags & MAT_FLAG_TRANSLATION) {
667 MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0));
668 MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1));
669 MAT(out,2,3) = - (MAT(in,2,3) * MAT(out,2,2));
670 }
671
672 return GL_TRUE;
673 }
674
675 /**
676 * Compute inverse of a no-rotation 2d transformation matrix.
677 *
678 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
679 * stored in the GLmatrix::inv attribute.
680 *
681 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
682 *
683 * Calculates the inverse matrix by applying the inverse scaling and
684 * translation to the identity matrix.
685 */
686 static GLboolean invert_matrix_2d_no_rot( GLmatrix *mat )
687 {
688 const GLfloat *in = mat->m;
689 GLfloat *out = mat->inv;
690
691 if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0)
692 return GL_FALSE;
693
694 memcpy( out, Identity, 16 * sizeof(GLfloat) );
695 MAT(out,0,0) = 1.0F / MAT(in,0,0);
696 MAT(out,1,1) = 1.0F / MAT(in,1,1);
697
698 if (mat->flags & MAT_FLAG_TRANSLATION) {
699 MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0));
700 MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1));
701 }
702
703 return GL_TRUE;
704 }
705
706 #if 0
707 /* broken */
708 static GLboolean invert_matrix_perspective( GLmatrix *mat )
709 {
710 const GLfloat *in = mat->m;
711 GLfloat *out = mat->inv;
712
713 if (MAT(in,2,3) == 0)
714 return GL_FALSE;
715
716 memcpy( out, Identity, 16 * sizeof(GLfloat) );
717
718 MAT(out,0,0) = 1.0F / MAT(in,0,0);
719 MAT(out,1,1) = 1.0F / MAT(in,1,1);
720
721 MAT(out,0,3) = MAT(in,0,2);
722 MAT(out,1,3) = MAT(in,1,2);
723
724 MAT(out,2,2) = 0;
725 MAT(out,2,3) = -1;
726
727 MAT(out,3,2) = 1.0F / MAT(in,2,3);
728 MAT(out,3,3) = MAT(in,2,2) * MAT(out,3,2);
729
730 return GL_TRUE;
731 }
732 #endif
733
734 /**
735 * Matrix inversion function pointer type.
736 */
737 typedef GLboolean (*inv_mat_func)( GLmatrix *mat );
738
739 /**
740 * Table of the matrix inversion functions according to the matrix type.
741 */
742 static inv_mat_func inv_mat_tab[7] = {
743 invert_matrix_general,
744 invert_matrix_identity,
745 invert_matrix_3d_no_rot,
746 #if 0
747 /* Don't use this function for now - it fails when the projection matrix
748 * is premultiplied by a translation (ala Chromium's tilesort SPU).
749 */
750 invert_matrix_perspective,
751 #else
752 invert_matrix_general,
753 #endif
754 invert_matrix_3d, /* lazy! */
755 invert_matrix_2d_no_rot,
756 invert_matrix_3d
757 };
758
759 /**
760 * Compute inverse of a transformation matrix.
761 *
762 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
763 * stored in the GLmatrix::inv attribute.
764 *
765 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
766 *
767 * Calls the matrix inversion function in inv_mat_tab corresponding to the
768 * given matrix type. In case of failure, updates the MAT_FLAG_SINGULAR flag,
769 * and copies the identity matrix into GLmatrix::inv.
770 */
771 static GLboolean matrix_invert( GLmatrix *mat )
772 {
773 if (inv_mat_tab[mat->type](mat)) {
774 mat->flags &= ~MAT_FLAG_SINGULAR;
775 return GL_TRUE;
776 } else {
777 mat->flags |= MAT_FLAG_SINGULAR;
778 memcpy( mat->inv, Identity, sizeof(Identity) );
779 return GL_FALSE;
780 }
781 }
782
783 /*@}*/
784
785
786 /**********************************************************************/
787 /** \name Matrix generation */
788 /*@{*/
789
790 /**
791 * Generate a 4x4 transformation matrix from glRotate parameters, and
792 * post-multiply the input matrix by it.
793 *
794 * \author
795 * This function was contributed by Erich Boleyn (erich@uruk.org).
796 * Optimizations contributed by Rudolf Opalla (rudi@khm.de).
797 */
798 void
799 _math_matrix_rotate( GLmatrix *mat,
800 GLfloat angle, GLfloat x, GLfloat y, GLfloat z )
801 {
802 GLfloat xx, yy, zz, xy, yz, zx, xs, ys, zs, one_c, s, c;
803 GLfloat m[16];
804 GLboolean optimized;
805
806 s = (GLfloat) sin( angle * DEG2RAD );
807 c = (GLfloat) cos( angle * DEG2RAD );
808
809 memcpy(m, Identity, sizeof(GLfloat)*16);
810 optimized = GL_FALSE;
811
812 #define M(row,col) m[col*4+row]
813
814 if (x == 0.0F) {
815 if (y == 0.0F) {
816 if (z != 0.0F) {
817 optimized = GL_TRUE;
818 /* rotate only around z-axis */
819 M(0,0) = c;
820 M(1,1) = c;
821 if (z < 0.0F) {
822 M(0,1) = s;
823 M(1,0) = -s;
824 }
825 else {
826 M(0,1) = -s;
827 M(1,0) = s;
828 }
829 }
830 }
831 else if (z == 0.0F) {
832 optimized = GL_TRUE;
833 /* rotate only around y-axis */
834 M(0,0) = c;
835 M(2,2) = c;
836 if (y < 0.0F) {
837 M(0,2) = -s;
838 M(2,0) = s;
839 }
840 else {
841 M(0,2) = s;
842 M(2,0) = -s;
843 }
844 }
845 }
846 else if (y == 0.0F) {
847 if (z == 0.0F) {
848 optimized = GL_TRUE;
849 /* rotate only around x-axis */
850 M(1,1) = c;
851 M(2,2) = c;
852 if (x < 0.0F) {
853 M(1,2) = s;
854 M(2,1) = -s;
855 }
856 else {
857 M(1,2) = -s;
858 M(2,1) = s;
859 }
860 }
861 }
862
863 if (!optimized) {
864 const GLfloat mag = SQRTF(x * x + y * y + z * z);
865
866 if (mag <= 1.0e-4) {
867 /* no rotation, leave mat as-is */
868 return;
869 }
870
871 x /= mag;
872 y /= mag;
873 z /= mag;
874
875
876 /*
877 * Arbitrary axis rotation matrix.
878 *
879 * This is composed of 5 matrices, Rz, Ry, T, Ry', Rz', multiplied
880 * like so: Rz * Ry * T * Ry' * Rz'. T is the final rotation
881 * (which is about the X-axis), and the two composite transforms
882 * Ry' * Rz' and Rz * Ry are (respectively) the rotations necessary
883 * from the arbitrary axis to the X-axis then back. They are
884 * all elementary rotations.
885 *
886 * Rz' is a rotation about the Z-axis, to bring the axis vector
887 * into the x-z plane. Then Ry' is applied, rotating about the
888 * Y-axis to bring the axis vector parallel with the X-axis. The
889 * rotation about the X-axis is then performed. Ry and Rz are
890 * simply the respective inverse transforms to bring the arbitrary
891 * axis back to its original orientation. The first transforms
892 * Rz' and Ry' are considered inverses, since the data from the
893 * arbitrary axis gives you info on how to get to it, not how
894 * to get away from it, and an inverse must be applied.
895 *
896 * The basic calculation used is to recognize that the arbitrary
897 * axis vector (x, y, z), since it is of unit length, actually
898 * represents the sines and cosines of the angles to rotate the
899 * X-axis to the same orientation, with theta being the angle about
900 * Z and phi the angle about Y (in the order described above)
901 * as follows:
902 *
903 * cos ( theta ) = x / sqrt ( 1 - z^2 )
904 * sin ( theta ) = y / sqrt ( 1 - z^2 )
905 *
906 * cos ( phi ) = sqrt ( 1 - z^2 )
907 * sin ( phi ) = z
908 *
909 * Note that cos ( phi ) can further be inserted to the above
910 * formulas:
911 *
912 * cos ( theta ) = x / cos ( phi )
913 * sin ( theta ) = y / sin ( phi )
914 *
915 * ...etc. Because of those relations and the standard trigonometric
916 * relations, it is pssible to reduce the transforms down to what
917 * is used below. It may be that any primary axis chosen will give the
918 * same results (modulo a sign convention) using thie method.
919 *
920 * Particularly nice is to notice that all divisions that might
921 * have caused trouble when parallel to certain planes or
922 * axis go away with care paid to reducing the expressions.
923 * After checking, it does perform correctly under all cases, since
924 * in all the cases of division where the denominator would have
925 * been zero, the numerator would have been zero as well, giving
926 * the expected result.
927 */
928
929 xx = x * x;
930 yy = y * y;
931 zz = z * z;
932 xy = x * y;
933 yz = y * z;
934 zx = z * x;
935 xs = x * s;
936 ys = y * s;
937 zs = z * s;
938 one_c = 1.0F - c;
939
940 /* We already hold the identity-matrix so we can skip some statements */
941 M(0,0) = (one_c * xx) + c;
942 M(0,1) = (one_c * xy) - zs;
943 M(0,2) = (one_c * zx) + ys;
944 /* M(0,3) = 0.0F; */
945
946 M(1,0) = (one_c * xy) + zs;
947 M(1,1) = (one_c * yy) + c;
948 M(1,2) = (one_c * yz) - xs;
949 /* M(1,3) = 0.0F; */
950
951 M(2,0) = (one_c * zx) - ys;
952 M(2,1) = (one_c * yz) + xs;
953 M(2,2) = (one_c * zz) + c;
954 /* M(2,3) = 0.0F; */
955
956 /*
957 M(3,0) = 0.0F;
958 M(3,1) = 0.0F;
959 M(3,2) = 0.0F;
960 M(3,3) = 1.0F;
961 */
962 }
963 #undef M
964
965 matrix_multf( mat, m, MAT_FLAG_ROTATION );
966 }
967
968 /**
969 * Apply a perspective projection matrix.
970 *
971 * \param mat matrix to apply the projection.
972 * \param left left clipping plane coordinate.
973 * \param right right clipping plane coordinate.
974 * \param bottom bottom clipping plane coordinate.
975 * \param top top clipping plane coordinate.
976 * \param nearval distance to the near clipping plane.
977 * \param farval distance to the far clipping plane.
978 *
979 * Creates the projection matrix and multiplies it with \p mat, marking the
980 * MAT_FLAG_PERSPECTIVE flag.
981 */
982 void
983 _math_matrix_frustum( GLmatrix *mat,
984 GLfloat left, GLfloat right,
985 GLfloat bottom, GLfloat top,
986 GLfloat nearval, GLfloat farval )
987 {
988 GLfloat x, y, a, b, c, d;
989 GLfloat m[16];
990
991 x = (2.0F*nearval) / (right-left);
992 y = (2.0F*nearval) / (top-bottom);
993 a = (right+left) / (right-left);
994 b = (top+bottom) / (top-bottom);
995 c = -(farval+nearval) / ( farval-nearval);
996 d = -(2.0F*farval*nearval) / (farval-nearval); /* error? */
997
998 #define M(row,col) m[col*4+row]
999 M(0,0) = x; M(0,1) = 0.0F; M(0,2) = a; M(0,3) = 0.0F;
1000 M(1,0) = 0.0F; M(1,1) = y; M(1,2) = b; M(1,3) = 0.0F;
1001 M(2,0) = 0.0F; M(2,1) = 0.0F; M(2,2) = c; M(2,3) = d;
1002 M(3,0) = 0.0F; M(3,1) = 0.0F; M(3,2) = -1.0F; M(3,3) = 0.0F;
1003 #undef M
1004
1005 matrix_multf( mat, m, MAT_FLAG_PERSPECTIVE );
1006 }
1007
1008 /**
1009 * Apply an orthographic projection matrix.
1010 *
1011 * \param mat matrix to apply the projection.
1012 * \param left left clipping plane coordinate.
1013 * \param right right clipping plane coordinate.
1014 * \param bottom bottom clipping plane coordinate.
1015 * \param top top clipping plane coordinate.
1016 * \param nearval distance to the near clipping plane.
1017 * \param farval distance to the far clipping plane.
1018 *
1019 * Creates the projection matrix and multiplies it with \p mat, marking the
1020 * MAT_FLAG_GENERAL_SCALE and MAT_FLAG_TRANSLATION flags.
1021 */
1022 void
1023 _math_matrix_ortho( GLmatrix *mat,
1024 GLfloat left, GLfloat right,
1025 GLfloat bottom, GLfloat top,
1026 GLfloat nearval, GLfloat farval )
1027 {
1028 GLfloat m[16];
1029
1030 #define M(row,col) m[col*4+row]
1031 M(0,0) = 2.0F / (right-left);
1032 M(0,1) = 0.0F;
1033 M(0,2) = 0.0F;
1034 M(0,3) = -(right+left) / (right-left);
1035
1036 M(1,0) = 0.0F;
1037 M(1,1) = 2.0F / (top-bottom);
1038 M(1,2) = 0.0F;
1039 M(1,3) = -(top+bottom) / (top-bottom);
1040
1041 M(2,0) = 0.0F;
1042 M(2,1) = 0.0F;
1043 M(2,2) = -2.0F / (farval-nearval);
1044 M(2,3) = -(farval+nearval) / (farval-nearval);
1045
1046 M(3,0) = 0.0F;
1047 M(3,1) = 0.0F;
1048 M(3,2) = 0.0F;
1049 M(3,3) = 1.0F;
1050 #undef M
1051
1052 matrix_multf( mat, m, (MAT_FLAG_GENERAL_SCALE|MAT_FLAG_TRANSLATION));
1053 }
1054
1055 /**
1056 * Multiply a matrix with a general scaling matrix.
1057 *
1058 * \param mat matrix.
1059 * \param x x axis scale factor.
1060 * \param y y axis scale factor.
1061 * \param z z axis scale factor.
1062 *
1063 * Multiplies in-place the elements of \p mat by the scale factors. Checks if
1064 * the scales factors are roughly the same, marking the MAT_FLAG_UNIFORM_SCALE
1065 * flag, or MAT_FLAG_GENERAL_SCALE. Marks the MAT_DIRTY_TYPE and
1066 * MAT_DIRTY_INVERSE dirty flags.
1067 */
1068 void
1069 _math_matrix_scale( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z )
1070 {
1071 GLfloat *m = mat->m;
1072 m[0] *= x; m[4] *= y; m[8] *= z;
1073 m[1] *= x; m[5] *= y; m[9] *= z;
1074 m[2] *= x; m[6] *= y; m[10] *= z;
1075 m[3] *= x; m[7] *= y; m[11] *= z;
1076
1077 if (FABSF(x - y) < 1e-8 && FABSF(x - z) < 1e-8)
1078 mat->flags |= MAT_FLAG_UNIFORM_SCALE;
1079 else
1080 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1081
1082 mat->flags |= (MAT_DIRTY_TYPE |
1083 MAT_DIRTY_INVERSE);
1084 }
1085
1086 /**
1087 * Multiply a matrix with a translation matrix.
1088 *
1089 * \param mat matrix.
1090 * \param x translation vector x coordinate.
1091 * \param y translation vector y coordinate.
1092 * \param z translation vector z coordinate.
1093 *
1094 * Adds the translation coordinates to the elements of \p mat in-place. Marks
1095 * the MAT_FLAG_TRANSLATION flag, and the MAT_DIRTY_TYPE and MAT_DIRTY_INVERSE
1096 * dirty flags.
1097 */
1098 void
1099 _math_matrix_translate( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z )
1100 {
1101 GLfloat *m = mat->m;
1102 m[12] = m[0] * x + m[4] * y + m[8] * z + m[12];
1103 m[13] = m[1] * x + m[5] * y + m[9] * z + m[13];
1104 m[14] = m[2] * x + m[6] * y + m[10] * z + m[14];
1105 m[15] = m[3] * x + m[7] * y + m[11] * z + m[15];
1106
1107 mat->flags |= (MAT_FLAG_TRANSLATION |
1108 MAT_DIRTY_TYPE |
1109 MAT_DIRTY_INVERSE);
1110 }
1111
1112
1113 /**
1114 * Set matrix to do viewport and depthrange mapping.
1115 * Transforms Normalized Device Coords to window/Z values.
1116 */
1117 void
1118 _math_matrix_viewport(GLmatrix *m, GLint x, GLint y, GLint width, GLint height,
1119 GLfloat zNear, GLfloat zFar, GLfloat depthMax)
1120 {
1121 m->m[MAT_SX] = (GLfloat) width / 2.0F;
1122 m->m[MAT_TX] = m->m[MAT_SX] + x;
1123 m->m[MAT_SY] = (GLfloat) height / 2.0F;
1124 m->m[MAT_TY] = m->m[MAT_SY] + y;
1125 m->m[MAT_SZ] = depthMax * ((zFar - zNear) / 2.0F);
1126 m->m[MAT_TZ] = depthMax * ((zFar - zNear) / 2.0F + zNear);
1127 m->flags = MAT_FLAG_GENERAL_SCALE | MAT_FLAG_TRANSLATION;
1128 m->type = MATRIX_3D_NO_ROT;
1129 }
1130
1131
1132 /**
1133 * Set a matrix to the identity matrix.
1134 *
1135 * \param mat matrix.
1136 *
1137 * Copies ::Identity into \p GLmatrix::m, and into GLmatrix::inv if not NULL.
1138 * Sets the matrix type to identity, and clear the dirty flags.
1139 */
1140 void
1141 _math_matrix_set_identity( GLmatrix *mat )
1142 {
1143 memcpy( mat->m, Identity, 16*sizeof(GLfloat) );
1144
1145 if (mat->inv)
1146 memcpy( mat->inv, Identity, 16*sizeof(GLfloat) );
1147
1148 mat->type = MATRIX_IDENTITY;
1149 mat->flags &= ~(MAT_DIRTY_FLAGS|
1150 MAT_DIRTY_TYPE|
1151 MAT_DIRTY_INVERSE);
1152 }
1153
1154 /*@}*/
1155
1156
1157 /**********************************************************************/
1158 /** \name Matrix analysis */
1159 /*@{*/
1160
1161 #define ZERO(x) (1<<x)
1162 #define ONE(x) (1<<(x+16))
1163
1164 #define MASK_NO_TRX (ZERO(12) | ZERO(13) | ZERO(14))
1165 #define MASK_NO_2D_SCALE ( ONE(0) | ONE(5))
1166
1167 #define MASK_IDENTITY ( ONE(0) | ZERO(4) | ZERO(8) | ZERO(12) |\
1168 ZERO(1) | ONE(5) | ZERO(9) | ZERO(13) |\
1169 ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\
1170 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
1171
1172 #define MASK_2D_NO_ROT ( ZERO(4) | ZERO(8) | \
1173 ZERO(1) | ZERO(9) | \
1174 ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\
1175 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
1176
1177 #define MASK_2D ( ZERO(8) | \
1178 ZERO(9) | \
1179 ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\
1180 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
1181
1182
1183 #define MASK_3D_NO_ROT ( ZERO(4) | ZERO(8) | \
1184 ZERO(1) | ZERO(9) | \
1185 ZERO(2) | ZERO(6) | \
1186 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
1187
1188 #define MASK_3D ( \
1189 \
1190 \
1191 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
1192
1193
1194 #define MASK_PERSPECTIVE ( ZERO(4) | ZERO(12) |\
1195 ZERO(1) | ZERO(13) |\
1196 ZERO(2) | ZERO(6) | \
1197 ZERO(3) | ZERO(7) | ZERO(15) )
1198
1199 #define SQ(x) ((x)*(x))
1200
1201 /**
1202 * Determine type and flags from scratch.
1203 *
1204 * \param mat matrix.
1205 *
1206 * This is expensive enough to only want to do it once.
1207 */
1208 static void analyse_from_scratch( GLmatrix *mat )
1209 {
1210 const GLfloat *m = mat->m;
1211 GLuint mask = 0;
1212 GLuint i;
1213
1214 for (i = 0 ; i < 16 ; i++) {
1215 if (m[i] == 0.0) mask |= (1<<i);
1216 }
1217
1218 if (m[0] == 1.0F) mask |= (1<<16);
1219 if (m[5] == 1.0F) mask |= (1<<21);
1220 if (m[10] == 1.0F) mask |= (1<<26);
1221 if (m[15] == 1.0F) mask |= (1<<31);
1222
1223 mat->flags &= ~MAT_FLAGS_GEOMETRY;
1224
1225 /* Check for translation - no-one really cares
1226 */
1227 if ((mask & MASK_NO_TRX) != MASK_NO_TRX)
1228 mat->flags |= MAT_FLAG_TRANSLATION;
1229
1230 /* Do the real work
1231 */
1232 if (mask == (GLuint) MASK_IDENTITY) {
1233 mat->type = MATRIX_IDENTITY;
1234 }
1235 else if ((mask & MASK_2D_NO_ROT) == (GLuint) MASK_2D_NO_ROT) {
1236 mat->type = MATRIX_2D_NO_ROT;
1237
1238 if ((mask & MASK_NO_2D_SCALE) != MASK_NO_2D_SCALE)
1239 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1240 }
1241 else if ((mask & MASK_2D) == (GLuint) MASK_2D) {
1242 GLfloat mm = DOT2(m, m);
1243 GLfloat m4m4 = DOT2(m+4,m+4);
1244 GLfloat mm4 = DOT2(m,m+4);
1245
1246 mat->type = MATRIX_2D;
1247
1248 /* Check for scale */
1249 if (SQ(mm-1) > SQ(1e-6) ||
1250 SQ(m4m4-1) > SQ(1e-6))
1251 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1252
1253 /* Check for rotation */
1254 if (SQ(mm4) > SQ(1e-6))
1255 mat->flags |= MAT_FLAG_GENERAL_3D;
1256 else
1257 mat->flags |= MAT_FLAG_ROTATION;
1258
1259 }
1260 else if ((mask & MASK_3D_NO_ROT) == (GLuint) MASK_3D_NO_ROT) {
1261 mat->type = MATRIX_3D_NO_ROT;
1262
1263 /* Check for scale */
1264 if (SQ(m[0]-m[5]) < SQ(1e-6) &&
1265 SQ(m[0]-m[10]) < SQ(1e-6)) {
1266 if (SQ(m[0]-1.0) > SQ(1e-6)) {
1267 mat->flags |= MAT_FLAG_UNIFORM_SCALE;
1268 }
1269 }
1270 else {
1271 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1272 }
1273 }
1274 else if ((mask & MASK_3D) == (GLuint) MASK_3D) {
1275 GLfloat c1 = DOT3(m,m);
1276 GLfloat c2 = DOT3(m+4,m+4);
1277 GLfloat c3 = DOT3(m+8,m+8);
1278 GLfloat d1 = DOT3(m, m+4);
1279 GLfloat cp[3];
1280
1281 mat->type = MATRIX_3D;
1282
1283 /* Check for scale */
1284 if (SQ(c1-c2) < SQ(1e-6) && SQ(c1-c3) < SQ(1e-6)) {
1285 if (SQ(c1-1.0) > SQ(1e-6))
1286 mat->flags |= MAT_FLAG_UNIFORM_SCALE;
1287 /* else no scale at all */
1288 }
1289 else {
1290 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1291 }
1292
1293 /* Check for rotation */
1294 if (SQ(d1) < SQ(1e-6)) {
1295 CROSS3( cp, m, m+4 );
1296 SUB_3V( cp, cp, (m+8) );
1297 if (LEN_SQUARED_3FV(cp) < SQ(1e-6))
1298 mat->flags |= MAT_FLAG_ROTATION;
1299 else
1300 mat->flags |= MAT_FLAG_GENERAL_3D;
1301 }
1302 else {
1303 mat->flags |= MAT_FLAG_GENERAL_3D; /* shear, etc */
1304 }
1305 }
1306 else if ((mask & MASK_PERSPECTIVE) == MASK_PERSPECTIVE && m[11]==-1.0F) {
1307 mat->type = MATRIX_PERSPECTIVE;
1308 mat->flags |= MAT_FLAG_GENERAL;
1309 }
1310 else {
1311 mat->type = MATRIX_GENERAL;
1312 mat->flags |= MAT_FLAG_GENERAL;
1313 }
1314 }
1315
1316 /**
1317 * Analyze a matrix given that its flags are accurate.
1318 *
1319 * This is the more common operation, hopefully.
1320 */
1321 static void analyse_from_flags( GLmatrix *mat )
1322 {
1323 const GLfloat *m = mat->m;
1324
1325 if (TEST_MAT_FLAGS(mat, 0)) {
1326 mat->type = MATRIX_IDENTITY;
1327 }
1328 else if (TEST_MAT_FLAGS(mat, (MAT_FLAG_TRANSLATION |
1329 MAT_FLAG_UNIFORM_SCALE |
1330 MAT_FLAG_GENERAL_SCALE))) {
1331 if ( m[10]==1.0F && m[14]==0.0F ) {
1332 mat->type = MATRIX_2D_NO_ROT;
1333 }
1334 else {
1335 mat->type = MATRIX_3D_NO_ROT;
1336 }
1337 }
1338 else if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D)) {
1339 if ( m[ 8]==0.0F
1340 && m[ 9]==0.0F
1341 && m[2]==0.0F && m[6]==0.0F && m[10]==1.0F && m[14]==0.0F) {
1342 mat->type = MATRIX_2D;
1343 }
1344 else {
1345 mat->type = MATRIX_3D;
1346 }
1347 }
1348 else if ( m[4]==0.0F && m[12]==0.0F
1349 && m[1]==0.0F && m[13]==0.0F
1350 && m[2]==0.0F && m[6]==0.0F
1351 && m[3]==0.0F && m[7]==0.0F && m[11]==-1.0F && m[15]==0.0F) {
1352 mat->type = MATRIX_PERSPECTIVE;
1353 }
1354 else {
1355 mat->type = MATRIX_GENERAL;
1356 }
1357 }
1358
1359 /**
1360 * Analyze and update a matrix.
1361 *
1362 * \param mat matrix.
1363 *
1364 * If the matrix type is dirty then calls either analyse_from_scratch() or
1365 * analyse_from_flags() to determine its type, according to whether the flags
1366 * are dirty or not, respectively. If the matrix has an inverse and it's dirty
1367 * then calls matrix_invert(). Finally clears the dirty flags.
1368 */
1369 void
1370 _math_matrix_analyse( GLmatrix *mat )
1371 {
1372 if (mat->flags & MAT_DIRTY_TYPE) {
1373 if (mat->flags & MAT_DIRTY_FLAGS)
1374 analyse_from_scratch( mat );
1375 else
1376 analyse_from_flags( mat );
1377 }
1378
1379 if (mat->inv && (mat->flags & MAT_DIRTY_INVERSE)) {
1380 matrix_invert( mat );
1381 mat->flags &= ~MAT_DIRTY_INVERSE;
1382 }
1383
1384 mat->flags &= ~(MAT_DIRTY_FLAGS | MAT_DIRTY_TYPE);
1385 }
1386
1387 /*@}*/
1388
1389
1390 /**
1391 * Test if the given matrix preserves vector lengths.
1392 */
1393 GLboolean
1394 _math_matrix_is_length_preserving( const GLmatrix *m )
1395 {
1396 return TEST_MAT_FLAGS( m, MAT_FLAGS_LENGTH_PRESERVING);
1397 }
1398
1399
1400 /**
1401 * Test if the given matrix does any rotation.
1402 * (or perhaps if the upper-left 3x3 is non-identity)
1403 */
1404 GLboolean
1405 _math_matrix_has_rotation( const GLmatrix *m )
1406 {
1407 if (m->flags & (MAT_FLAG_GENERAL |
1408 MAT_FLAG_ROTATION |
1409 MAT_FLAG_GENERAL_3D |
1410 MAT_FLAG_PERSPECTIVE))
1411 return GL_TRUE;
1412 else
1413 return GL_FALSE;
1414 }
1415
1416
1417 GLboolean
1418 _math_matrix_is_general_scale( const GLmatrix *m )
1419 {
1420 return (m->flags & MAT_FLAG_GENERAL_SCALE) ? GL_TRUE : GL_FALSE;
1421 }
1422
1423
1424 GLboolean
1425 _math_matrix_is_dirty( const GLmatrix *m )
1426 {
1427 return (m->flags & MAT_DIRTY) ? GL_TRUE : GL_FALSE;
1428 }
1429
1430
1431 /**********************************************************************/
1432 /** \name Matrix setup */
1433 /*@{*/
1434
1435 /**
1436 * Copy a matrix.
1437 *
1438 * \param to destination matrix.
1439 * \param from source matrix.
1440 *
1441 * Copies all fields in GLmatrix, creating an inverse array if necessary.
1442 */
1443 void
1444 _math_matrix_copy( GLmatrix *to, const GLmatrix *from )
1445 {
1446 memcpy( to->m, from->m, sizeof(Identity) );
1447 to->flags = from->flags;
1448 to->type = from->type;
1449
1450 if (to->inv != 0) {
1451 if (from->inv == 0) {
1452 matrix_invert( to );
1453 }
1454 else {
1455 memcpy(to->inv, from->inv, sizeof(GLfloat)*16);
1456 }
1457 }
1458 }
1459
1460 /**
1461 * Loads a matrix array into GLmatrix.
1462 *
1463 * \param m matrix array.
1464 * \param mat matrix.
1465 *
1466 * Copies \p m into GLmatrix::m and marks the MAT_FLAG_GENERAL and MAT_DIRTY
1467 * flags.
1468 */
1469 void
1470 _math_matrix_loadf( GLmatrix *mat, const GLfloat *m )
1471 {
1472 memcpy( mat->m, m, 16*sizeof(GLfloat) );
1473 mat->flags = (MAT_FLAG_GENERAL | MAT_DIRTY);
1474 }
1475
1476 /**
1477 * Matrix constructor.
1478 *
1479 * \param m matrix.
1480 *
1481 * Initialize the GLmatrix fields.
1482 */
1483 void
1484 _math_matrix_ctr( GLmatrix *m )
1485 {
1486 m->m = (GLfloat *) _mesa_align_malloc( 16 * sizeof(GLfloat), 16 );
1487 if (m->m)
1488 memcpy( m->m, Identity, sizeof(Identity) );
1489 m->inv = NULL;
1490 m->type = MATRIX_IDENTITY;
1491 m->flags = 0;
1492 }
1493
1494 /**
1495 * Matrix destructor.
1496 *
1497 * \param m matrix.
1498 *
1499 * Frees the data in a GLmatrix.
1500 */
1501 void
1502 _math_matrix_dtr( GLmatrix *m )
1503 {
1504 if (m->m) {
1505 _mesa_align_free( m->m );
1506 m->m = NULL;
1507 }
1508 if (m->inv) {
1509 _mesa_align_free( m->inv );
1510 m->inv = NULL;
1511 }
1512 }
1513
1514 /**
1515 * Allocate a matrix inverse.
1516 *
1517 * \param m matrix.
1518 *
1519 * Allocates the matrix inverse, GLmatrix::inv, and sets it to Identity.
1520 */
1521 void
1522 _math_matrix_alloc_inv( GLmatrix *m )
1523 {
1524 if (!m->inv) {
1525 m->inv = (GLfloat *) _mesa_align_malloc( 16 * sizeof(GLfloat), 16 );
1526 if (m->inv)
1527 memcpy( m->inv, Identity, 16 * sizeof(GLfloat) );
1528 }
1529 }
1530
1531 /*@}*/
1532
1533
1534 /**********************************************************************/
1535 /** \name Matrix transpose */
1536 /*@{*/
1537
1538 /**
1539 * Transpose a GLfloat matrix.
1540 *
1541 * \param to destination array.
1542 * \param from source array.
1543 */
1544 void
1545 _math_transposef( GLfloat to[16], const GLfloat from[16] )
1546 {
1547 to[0] = from[0];
1548 to[1] = from[4];
1549 to[2] = from[8];
1550 to[3] = from[12];
1551 to[4] = from[1];
1552 to[5] = from[5];
1553 to[6] = from[9];
1554 to[7] = from[13];
1555 to[8] = from[2];
1556 to[9] = from[6];
1557 to[10] = from[10];
1558 to[11] = from[14];
1559 to[12] = from[3];
1560 to[13] = from[7];
1561 to[14] = from[11];
1562 to[15] = from[15];
1563 }
1564
1565 /**
1566 * Transpose a GLdouble matrix.
1567 *
1568 * \param to destination array.
1569 * \param from source array.
1570 */
1571 void
1572 _math_transposed( GLdouble to[16], const GLdouble from[16] )
1573 {
1574 to[0] = from[0];
1575 to[1] = from[4];
1576 to[2] = from[8];
1577 to[3] = from[12];
1578 to[4] = from[1];
1579 to[5] = from[5];
1580 to[6] = from[9];
1581 to[7] = from[13];
1582 to[8] = from[2];
1583 to[9] = from[6];
1584 to[10] = from[10];
1585 to[11] = from[14];
1586 to[12] = from[3];
1587 to[13] = from[7];
1588 to[14] = from[11];
1589 to[15] = from[15];
1590 }
1591
1592 /**
1593 * Transpose a GLdouble matrix and convert to GLfloat.
1594 *
1595 * \param to destination array.
1596 * \param from source array.
1597 */
1598 void
1599 _math_transposefd( GLfloat to[16], const GLdouble from[16] )
1600 {
1601 to[0] = (GLfloat) from[0];
1602 to[1] = (GLfloat) from[4];
1603 to[2] = (GLfloat) from[8];
1604 to[3] = (GLfloat) from[12];
1605 to[4] = (GLfloat) from[1];
1606 to[5] = (GLfloat) from[5];
1607 to[6] = (GLfloat) from[9];
1608 to[7] = (GLfloat) from[13];
1609 to[8] = (GLfloat) from[2];
1610 to[9] = (GLfloat) from[6];
1611 to[10] = (GLfloat) from[10];
1612 to[11] = (GLfloat) from[14];
1613 to[12] = (GLfloat) from[3];
1614 to[13] = (GLfloat) from[7];
1615 to[14] = (GLfloat) from[11];
1616 to[15] = (GLfloat) from[15];
1617 }
1618
1619 /*@}*/
1620
1621
1622 /**
1623 * Transform a 4-element row vector (1x4 matrix) by a 4x4 matrix. This
1624 * function is used for transforming clipping plane equations and spotlight
1625 * directions.
1626 * Mathematically, u = v * m.
1627 * Input: v - input vector
1628 * m - transformation matrix
1629 * Output: u - transformed vector
1630 */
1631 void
1632 _mesa_transform_vector( GLfloat u[4], const GLfloat v[4], const GLfloat m[16] )
1633 {
1634 const GLfloat v0 = v[0], v1 = v[1], v2 = v[2], v3 = v[3];
1635 #define M(row,col) m[row + col*4]
1636 u[0] = v0 * M(0,0) + v1 * M(1,0) + v2 * M(2,0) + v3 * M(3,0);
1637 u[1] = v0 * M(0,1) + v1 * M(1,1) + v2 * M(2,1) + v3 * M(3,1);
1638 u[2] = v0 * M(0,2) + v1 * M(1,2) + v2 * M(2,2) + v3 * M(3,2);
1639 u[3] = v0 * M(0,3) + v1 * M(1,3) + v2 * M(2,3) + v3 * M(3,3);
1640 #undef M
1641 }