8e43f5d04d328579603bc353e2c4a0bc7ce604ed
[mesa.git] / src / mesa / pipe / softpipe / sp_prim_setup.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /* Authors: Keith Whitwell <keith@tungstengraphics.com>
29 */
30
31 #include "imports.h"
32 #include "macros.h"
33
34 #include "sp_context.h"
35 #include "sp_headers.h"
36 #include "pipe/draw/draw_private.h"
37 #include "sp_quad.h"
38 #include "sp_prim_setup.h"
39
40
41
42 /**
43 * Emit/render a quad.
44 * This passes the quad to the first stage of per-fragment operations.
45 */
46 static INLINE void
47 quad_emit(struct softpipe_context *sp, struct quad_header *quad)
48 {
49 sp->quad.first->run(sp->quad.first, quad);
50 }
51
52
53 /**
54 * Triangle edge info
55 */
56 struct edge {
57 GLfloat dx; /* X(v1) - X(v0), used only during setup */
58 GLfloat dy; /* Y(v1) - Y(v0), used only during setup */
59 GLfloat dxdy; /* dx/dy */
60 GLfloat sx; /* first sample point x coord */
61 GLfloat sy;
62 GLint lines; /* number of lines on this edge */
63 };
64
65
66 /**
67 * Triangle setup info (derived from prim_stage).
68 * Also used for line drawing (taking some liberties).
69 */
70 struct setup_stage {
71 struct prim_stage stage; /**< This must be first (base class) */
72
73 /*XXX NEW */
74 struct softpipe_context *softpipe;
75
76 /* Vertices are just an array of floats making up each attribute in
77 * turn. Currently fixed at 4 floats, but should change in time.
78 * Codegen will help cope with this.
79 */
80 const struct vertex_header *vmax;
81 const struct vertex_header *vmid;
82 const struct vertex_header *vmin;
83 const struct vertex_header *vprovoke;
84
85 struct edge ebot;
86 struct edge etop;
87 struct edge emaj;
88
89 GLfloat oneoverarea;
90
91 struct setup_coefficient coef[FRAG_ATTRIB_MAX];
92 struct quad_header quad;
93
94 struct {
95 GLint left[2]; /**< [0] = row0, [1] = row1 */
96 GLint right[2];
97 GLint y;
98 GLuint y_flags;
99 GLuint mask; /**< mask of MASK_BOTTOM/TOP_LEFT/RIGHT bits */
100 } span;
101 };
102
103
104
105 /**
106 * Basically a cast wrapper.
107 */
108 static inline struct setup_stage *setup_stage( struct prim_stage *stage )
109 {
110 return (struct setup_stage *)stage;
111 }
112
113
114 /**
115 * Given an X or Y coordinate, return the block/quad coordinate that it
116 * belongs to.
117 */
118 static inline GLint block( GLint x )
119 {
120 return x & ~1;
121 }
122
123
124
125 static void setup_begin( struct prim_stage *stage )
126 {
127 struct setup_stage *setup = setup_stage(stage);
128
129 setup->quad.nr_attrs = setup->softpipe->nr_frag_attrs;
130 }
131
132
133 /**
134 * Run shader on a quad/block.
135 */
136 static void run_shader_block( struct setup_stage *setup,
137 GLint x, GLint y, GLuint mask )
138 {
139 setup->quad.x0 = x;
140 setup->quad.y0 = y;
141 setup->quad.mask = mask;
142
143 quad_emit(setup->softpipe, &setup->quad);
144 }
145
146
147 /**
148 * Compute mask which indicates which pixels in the 2x2 quad are actually inside
149 * the triangle's bounds.
150 *
151 * this is pretty nasty... may need to rework flush_spans again to
152 * fix it, if possible.
153 */
154 static GLuint calculate_mask( struct setup_stage *setup,
155 GLint x )
156 {
157 GLuint mask = 0;
158
159 if (x >= setup->span.left[0] && x < setup->span.right[0])
160 mask |= MASK_BOTTOM_LEFT;
161
162 if (x >= setup->span.left[1] && x < setup->span.right[1])
163 mask |= MASK_TOP_LEFT;
164
165 if (x+1 >= setup->span.left[0] && x+1 < setup->span.right[0])
166 mask |= MASK_BOTTOM_RIGHT;
167
168 if (x+1 >= setup->span.left[1] && x+1 < setup->span.right[1])
169 mask |= MASK_TOP_RIGHT;
170
171 return mask;
172 }
173
174
175 /**
176 * Render a horizontal span of quads
177 */
178 static void flush_spans( struct setup_stage *setup )
179 {
180 GLint minleft, maxright;
181 GLint x;
182
183 switch (setup->span.y_flags) {
184 case 3:
185 minleft = MIN2(setup->span.left[0], setup->span.left[1]);
186 maxright = MAX2(setup->span.right[0], setup->span.right[1]);
187 break;
188
189 case 1:
190 minleft = setup->span.left[0];
191 maxright = setup->span.right[0];
192 break;
193
194 case 2:
195 minleft = setup->span.left[1];
196 maxright = setup->span.right[1];
197 break;
198
199 default:
200 return;
201 }
202
203
204 for (x = block(minleft); x <= block(maxright); )
205 {
206 run_shader_block( setup, x,
207 setup->span.y,
208 calculate_mask( setup, x ) );
209 x += 2;
210 }
211
212 setup->span.y = 0;
213 setup->span.y_flags = 0;
214 setup->span.right[0] = 0;
215 setup->span.right[1] = 0;
216 }
217
218
219 static GLboolean setup_sort_vertices( struct setup_stage *setup,
220 const struct prim_header *prim )
221 {
222 const struct vertex_header *v0 = prim->v[0];
223 const struct vertex_header *v1 = prim->v[1];
224 const struct vertex_header *v2 = prim->v[2];
225
226 setup->vprovoke = v2;
227
228 /* determine bottom to top order of vertices */
229 {
230 GLfloat y0 = v0->data[0][1];
231 GLfloat y1 = v1->data[0][1];
232 GLfloat y2 = v2->data[0][1];
233 if (y0 <= y1) {
234 if (y1 <= y2) {
235 /* y0<=y1<=y2 */
236 setup->vmin = v0;
237 setup->vmid = v1;
238 setup->vmax = v2;
239 }
240 else if (y2 <= y0) {
241 /* y2<=y0<=y1 */
242 setup->vmin = v2;
243 setup->vmid = v0;
244 setup->vmax = v1;
245 }
246 else {
247 /* y0<=y2<=y1 */
248 setup->vmin = v0;
249 setup->vmid = v2;
250 setup->vmax = v1;
251 }
252 }
253 else {
254 if (y0 <= y2) {
255 /* y1<=y0<=y2 */
256 setup->vmin = v1;
257 setup->vmid = v0;
258 setup->vmax = v2;
259 }
260 else if (y2 <= y1) {
261 /* y2<=y1<=y0 */
262 setup->vmin = v2;
263 setup->vmid = v1;
264 setup->vmax = v0;
265 }
266 else {
267 /* y1<=y2<=y0 */
268 setup->vmin = v1;
269 setup->vmid = v2;
270 setup->vmax = v0;
271 }
272 }
273 }
274
275 setup->ebot.dx = setup->vmid->data[0][0] - setup->vmin->data[0][0];
276 setup->ebot.dy = setup->vmid->data[0][1] - setup->vmin->data[0][1];
277 setup->emaj.dx = setup->vmax->data[0][0] - setup->vmin->data[0][0];
278 setup->emaj.dy = setup->vmax->data[0][1] - setup->vmin->data[0][1];
279 setup->etop.dx = setup->vmax->data[0][0] - setup->vmid->data[0][0];
280 setup->etop.dy = setup->vmax->data[0][1] - setup->vmid->data[0][1];
281
282 /* xxx: may need to adjust this sign according to the if-tree
283 * above:
284 *
285 * XXX: this is like 'det', but calculated from screen coords??
286 */
287 {
288 const GLfloat area = (setup->emaj.dx * setup->ebot.dy -
289 setup->ebot.dx * setup->emaj.dy);
290
291 setup->oneoverarea = 1.0 / area;
292 }
293
294 /* XXX need to know if this is a front or back-facing triangle:
295 * - the GLSL gl_FrontFacing fragment attribute (bool)
296 * - two-sided stencil test
297 */
298 setup->quad.facing = 0;
299
300 _mesa_printf("%s one-over-area %f\n", __FUNCTION__, setup->oneoverarea );
301
302
303 return GL_TRUE;
304 }
305
306
307 /**
308 * Compute a0 for a constant-valued coefficient (GL_FLAT shading).
309 * The value value comes from vertex->data[slot][i].
310 * The result will be put into setup->coef[slot].a0[i].
311 * \param slot which attribute slot
312 * \param i which component of the slot (0..3)
313 */
314 static void const_coeff( struct setup_stage *setup,
315 GLuint slot,
316 GLuint i )
317 {
318 assert(slot < FRAG_ATTRIB_MAX);
319 assert(i <= 3);
320
321 setup->coef[slot].dadx[i] = 0;
322 setup->coef[slot].dady[i] = 0;
323
324 /* need provoking vertex info!
325 */
326 setup->coef[slot].a0[i] = setup->vprovoke->data[slot][i];
327 }
328
329
330 /**
331 * Compute a0, dadx and dady for a linearly interpolated coefficient,
332 * for a triangle.
333 */
334 static void tri_linear_coeff( struct setup_stage *setup,
335 GLuint slot,
336 GLuint i)
337 {
338 GLfloat botda = setup->vmid->data[slot][i] - setup->vmin->data[slot][i];
339 GLfloat majda = setup->vmax->data[slot][i] - setup->vmin->data[slot][i];
340 GLfloat a = setup->ebot.dy * majda - botda * setup->emaj.dy;
341 GLfloat b = setup->emaj.dx * botda - majda * setup->ebot.dx;
342
343 assert(slot < FRAG_ATTRIB_MAX);
344 assert(i <= 3);
345
346 setup->coef[slot].dadx[i] = a * setup->oneoverarea;
347 setup->coef[slot].dady[i] = b * setup->oneoverarea;
348
349 /* calculate a0 as the value which would be sampled for the
350 * fragment at (0,0), taking into account that we want to sample at
351 * pixel centers, in other words (0.5, 0.5).
352 *
353 * this is neat but unfortunately not a good way to do things for
354 * triangles with very large values of dadx or dady as it will
355 * result in the subtraction and re-addition from a0 of a very
356 * large number, which means we'll end up loosing a lot of the
357 * fractional bits and precision from a0. the way to fix this is
358 * to define a0 as the sample at a pixel center somewhere near vmin
359 * instead - i'll switch to this later.
360 */
361 setup->coef[slot].a0[i] = (setup->vmin->data[slot][i] -
362 (setup->coef[slot].dadx[i] * (setup->vmin->data[0][0] - 0.5) +
363 setup->coef[slot].dady[i] * (setup->vmin->data[0][1] - 0.5)));
364
365 _mesa_printf("attr[%d].%c: %f dx:%f dy:%f\n",
366 slot, "xyzw"[i],
367 setup->coef[slot].a0[i],
368 setup->coef[slot].dadx[i],
369 setup->coef[slot].dady[i]);
370 }
371
372
373 /**
374 * Compute a0, dadx and dady for a perspective-corrected interpolant,
375 * for a triangle.
376 */
377 static void tri_persp_coeff( struct setup_stage *setup,
378 GLuint slot,
379 GLuint i )
380 {
381 /* premultiply by 1/w:
382 */
383 GLfloat mina = setup->vmin->data[slot][i] * setup->vmin->data[0][3];
384 GLfloat mida = setup->vmid->data[slot][i] * setup->vmid->data[0][3];
385 GLfloat maxa = setup->vmax->data[slot][i] * setup->vmax->data[0][3];
386
387 GLfloat botda = mida - mina;
388 GLfloat majda = maxa - mina;
389 GLfloat a = setup->ebot.dy * majda - botda * setup->emaj.dy;
390 GLfloat b = setup->emaj.dx * botda - majda * setup->ebot.dx;
391
392 assert(slot < FRAG_ATTRIB_MAX);
393 assert(i <= 3);
394
395 setup->coef[slot].dadx[i] = a * setup->oneoverarea;
396 setup->coef[slot].dady[i] = b * setup->oneoverarea;
397 setup->coef[slot].a0[i] = (mina -
398 (setup->coef[slot].dadx[i] * (setup->vmin->data[0][0] - 0.5) +
399 setup->coef[slot].dady[i] * (setup->vmin->data[0][1] - 0.5)));
400 }
401
402
403
404 /**
405 * Compute the setup->coef[] array dadx, dady, a0 values.
406 * Must be called after setup->vmin,vmid,vmax,vprovoke are initialized.
407 */
408 static void setup_tri_coefficients( struct setup_stage *setup )
409 {
410 const enum interp_mode *interp = setup->softpipe->interp;
411 GLuint slot, j;
412
413 /* z and w are done by linear interpolation:
414 */
415 tri_linear_coeff(setup, 0, 2);
416 tri_linear_coeff(setup, 0, 3);
417
418 /* setup interpolation for all the remaining attributes:
419 */
420 for (slot = 1; slot < setup->quad.nr_attrs; slot++) {
421 switch (interp[slot]) {
422 case INTERP_CONSTANT:
423 for (j = 0; j < NUM_CHANNELS; j++)
424 const_coeff(setup, slot, j);
425 break;
426
427 case INTERP_LINEAR:
428 for (j = 0; j < NUM_CHANNELS; j++)
429 tri_linear_coeff(setup, slot, j);
430 break;
431
432 case INTERP_PERSPECTIVE:
433 for (j = 0; j < NUM_CHANNELS; j++)
434 tri_persp_coeff(setup, slot, j);
435 break;
436 }
437 }
438 }
439
440
441
442 static void setup_tri_edges( struct setup_stage *setup )
443 {
444 GLfloat vmin_x = setup->vmin->data[0][0] + 0.5;
445 GLfloat vmid_x = setup->vmid->data[0][0] + 0.5;
446
447 GLfloat vmin_y = setup->vmin->data[0][1] - 0.5;
448 GLfloat vmid_y = setup->vmid->data[0][1] - 0.5;
449 GLfloat vmax_y = setup->vmax->data[0][1] - 0.5;
450
451 setup->emaj.sy = ceilf(vmin_y);
452 setup->emaj.lines = (GLint) ceilf(vmax_y - setup->emaj.sy);
453 setup->emaj.dxdy = setup->emaj.dx / setup->emaj.dy;
454 setup->emaj.sx = vmin_x + (setup->emaj.sy - vmin_y) * setup->emaj.dxdy;
455
456 setup->etop.sy = ceilf(vmid_y);
457 setup->etop.lines = (GLint) ceilf(vmax_y - setup->etop.sy);
458 setup->etop.dxdy = setup->etop.dx / setup->etop.dy;
459 setup->etop.sx = vmid_x + (setup->etop.sy - vmid_y) * setup->etop.dxdy;
460
461 setup->ebot.sy = ceilf(vmin_y);
462 setup->ebot.lines = (GLint) ceilf(vmid_y - setup->ebot.sy);
463 setup->ebot.dxdy = setup->ebot.dx / setup->ebot.dy;
464 setup->ebot.sx = vmin_x + (setup->ebot.sy - vmin_y) * setup->ebot.dxdy;
465 }
466
467
468 /**
469 * Render the upper or lower half of a triangle.
470 * Scissoring is applied here too.
471 */
472 static void subtriangle( struct setup_stage *setup,
473 struct edge *eleft,
474 struct edge *eright,
475 GLuint lines )
476 {
477 GLint y, start_y, finish_y;
478 GLint sy = (GLint)eleft->sy;
479
480 assert((GLint)eleft->sy == (GLint) eright->sy);
481 assert((GLint)eleft->sy >= 0); /* catch bug in x64? */
482
483 /* scissor y:
484 */
485 if (setup->softpipe->setup.scissor) {
486 start_y = sy;
487 finish_y = start_y + lines;
488
489 if (start_y < setup->softpipe->scissor.miny)
490 start_y = setup->softpipe->scissor.miny;
491
492 if (finish_y > setup->softpipe->scissor.maxy)
493 finish_y = setup->softpipe->scissor.maxy;
494
495 start_y -= sy;
496 finish_y -= sy;
497 }
498 else {
499 start_y = 0;
500 finish_y = lines;
501 }
502
503 _mesa_printf("%s %d %d\n", __FUNCTION__, start_y, finish_y);
504
505 for (y = start_y; y < finish_y; y++) {
506
507 /* avoid accumulating adds as floats don't have the precision to
508 * accurately iterate large triangle edges that way. luckily we
509 * can just multiply these days.
510 *
511 * this is all drowned out by the attribute interpolation anyway.
512 */
513 GLint left = (GLint)(eleft->sx + y * eleft->dxdy);
514 GLint right = (GLint)(eright->sx + y * eright->dxdy);
515
516 /* scissor x:
517 */
518 if (setup->softpipe->setup.scissor) {
519 if (left < setup->softpipe->scissor.minx)
520 left = setup->softpipe->scissor.minx;
521
522 if (right > setup->softpipe->scissor.maxx)
523 right = setup->softpipe->scissor.maxx;
524 }
525
526 if (left < right) {
527 GLint _y = sy+y;
528 if (block(_y) != setup->span.y) {
529 flush_spans(setup);
530 setup->span.y = block(_y);
531 }
532
533 setup->span.left[_y&1] = left;
534 setup->span.right[_y&1] = right;
535 setup->span.y_flags |= 1<<(_y&1);
536 }
537 }
538
539
540 /* save the values so that emaj can be restarted:
541 */
542 eleft->sx += lines * eleft->dxdy;
543 eright->sx += lines * eright->dxdy;
544 eleft->sy += lines;
545 eright->sy += lines;
546 }
547
548
549 /**
550 * Do setup for triangle rasterization, then render the triangle.
551 */
552 static void setup_tri( struct prim_stage *stage,
553 struct prim_header *prim )
554 {
555 struct setup_stage *setup = setup_stage( stage );
556
557 _mesa_printf("%s\n", __FUNCTION__ );
558
559 setup_sort_vertices( setup, prim );
560 setup_tri_coefficients( setup );
561 setup_tri_edges( setup );
562
563 setup->span.y = 0;
564 setup->span.y_flags = 0;
565 setup->span.right[0] = 0;
566 setup->span.right[1] = 0;
567 // setup->span.z_mode = tri_z_mode( setup->ctx );
568
569 // init_constant_attribs( setup );
570
571 if (setup->oneoverarea < 0.0) {
572 /* emaj on left:
573 */
574 subtriangle( setup, &setup->emaj, &setup->ebot, setup->ebot.lines );
575 subtriangle( setup, &setup->emaj, &setup->etop, setup->etop.lines );
576 }
577 else {
578 /* emaj on right:
579 */
580 subtriangle( setup, &setup->ebot, &setup->emaj, setup->ebot.lines );
581 subtriangle( setup, &setup->etop, &setup->emaj, setup->etop.lines );
582 }
583
584 flush_spans( setup );
585 }
586
587
588
589 /**
590 * Compute a0, dadx and dady for a linearly interpolated coefficient,
591 * for a line.
592 */
593 static void
594 line_linear_coeff(struct setup_stage *setup, GLuint slot, GLuint i)
595 {
596 const GLfloat dz = setup->vmax->data[slot][i] - setup->vmin->data[slot][i];
597 const GLfloat dadx = dz * setup->emaj.dx * setup->oneoverarea;
598 const GLfloat dady = dz * setup->emaj.dy * setup->oneoverarea;
599 setup->coef[slot].dadx[i] = dadx;
600 setup->coef[slot].dady[i] = dady;
601 setup->coef[slot].a0[i]
602 = (setup->vmin->data[slot][i] -
603 (dadx * (setup->vmin->data[0][0] - 0.5) +
604 dady * (setup->vmin->data[0][1] - 0.5)));
605 }
606
607
608 /**
609 * Compute a0, dadx and dady for a perspective-corrected interpolant,
610 * for a line.
611 */
612 static void
613 line_persp_coeff(struct setup_stage *setup, GLuint slot, GLuint i)
614 {
615 /* XXX to do */
616 line_linear_coeff(setup, slot, i); /* XXX temporary */
617 }
618
619
620 /**
621 * Compute the setup->coef[] array dadx, dady, a0 values.
622 * Must be called after setup->vmin,vmax are initialized.
623 */
624 static INLINE void
625 setup_line_coefficients(struct setup_stage *setup, struct prim_header *prim)
626 {
627 const enum interp_mode *interp = setup->softpipe->interp;
628 GLuint slot, j;
629
630 /* use setup->vmin, vmax to point to vertices */
631 setup->vprovoke = prim->v[1];
632 setup->vmin = prim->v[0];
633 setup->vmax = prim->v[1];
634
635 setup->emaj.dx = setup->vmax->data[0][0] - setup->vmin->data[0][0];
636 setup->emaj.dy = setup->vmax->data[0][1] - setup->vmin->data[0][1];
637 /* NOTE: this is not really 1/area */
638 setup->oneoverarea = 1.0 / (setup->emaj.dx * setup->emaj.dx +
639 setup->emaj.dy * setup->emaj.dy);
640
641 /* z and w are done by linear interpolation:
642 */
643 line_linear_coeff(setup, 0, 2);
644 line_linear_coeff(setup, 0, 3);
645
646 /* setup interpolation for all the remaining attributes:
647 */
648 for (slot = 1; slot < setup->quad.nr_attrs; slot++) {
649 switch (interp[slot]) {
650 case INTERP_CONSTANT:
651 for (j = 0; j < NUM_CHANNELS; j++)
652 const_coeff(setup, slot, j);
653 break;
654
655 case INTERP_LINEAR:
656 for (j = 0; j < NUM_CHANNELS; j++)
657 line_linear_coeff(setup, slot, j);
658 break;
659
660 case INTERP_PERSPECTIVE:
661 for (j = 0; j < NUM_CHANNELS; j++)
662 line_persp_coeff(setup, slot, j);
663 break;
664 }
665 }
666 }
667
668
669 /**
670 * Plot a pixel in a line segment.
671 */
672 static INLINE void
673 plot(struct setup_stage *setup, GLint x, GLint y)
674 {
675 const GLint iy = y & 1;
676 const GLint ix = x & 1;
677 const GLint quadX = x - ix;
678 const GLint quadY = y - iy;
679 const GLint mask = (1 << ix) << (2 * iy);
680
681 if (quadX != setup->quad.x0 ||
682 quadY != setup->quad.y0)
683 {
684 /* flush prev quad, start new quad */
685
686 if (setup->quad.x0 != -1)
687 quad_emit(setup->softpipe, &setup->quad);
688
689 setup->quad.x0 = quadX;
690 setup->quad.y0 = quadY;
691 setup->quad.mask = 0x0;
692 }
693
694 setup->quad.mask |= mask;
695 }
696
697
698
699 /**
700 * Do setup for line rasterization, then render the line.
701 * XXX single-pixel width, no stipple, etc
702 * XXX no scissoring yet.
703 */
704 static void
705 setup_line(struct prim_stage *stage, struct prim_header *prim)
706 {
707 const struct vertex_header *v0 = prim->v[0];
708 const struct vertex_header *v1 = prim->v[1];
709 struct setup_stage *setup = setup_stage( stage );
710
711 GLint x0 = (GLint) v0->data[0][0];
712 GLint x1 = (GLint) v1->data[0][0];
713 GLint y0 = (GLint) v0->data[0][1];
714 GLint y1 = (GLint) v1->data[0][1];
715 GLint dx = x1 - x0;
716 GLint dy = y1 - y0;
717 GLint xstep, ystep;
718
719 if (dx == 0 && dy == 0)
720 return;
721
722 setup_line_coefficients(setup, prim);
723
724 if (dx < 0) {
725 dx = -dx; /* make positive */
726 xstep = -1;
727 }
728 else {
729 xstep = 1;
730 }
731
732 if (dy < 0) {
733 dy = -dy; /* make positive */
734 ystep = -1;
735 }
736 else {
737 ystep = 1;
738 }
739
740 assert(dx >= 0);
741 assert(dy >= 0);
742
743 setup->quad.x0 = setup->quad.y0 = -1;
744 setup->quad.mask = 0x0;
745
746 if (dx > dy) {
747 /*** X-major line ***/
748 GLint i;
749 const GLint errorInc = dy + dy;
750 GLint error = errorInc - dx;
751 const GLint errorDec = error - dx;
752
753 for (i = 0; i < dx; i++) {
754 plot(setup, x0, y0);
755
756 x0 += xstep;
757 if (error < 0) {
758 error += errorInc;
759 }
760 else {
761 error += errorDec;
762 y0 += ystep;
763 }
764 }
765 }
766 else {
767 /*** Y-major line ***/
768 GLint i;
769 const GLint errorInc = dx + dx;
770 GLint error = errorInc - dy;
771 const GLint errorDec = error - dy;
772
773 for (i = 0; i < dy; i++) {
774 plot(setup, x0, y0);
775
776 y0 += ystep;
777
778 if (error < 0) {
779 error += errorInc;
780 }
781 else {
782 error += errorDec;
783 x0 += xstep;
784 }
785 }
786 }
787
788 /* draw final quad */
789 if (setup->quad.mask) {
790 quad_emit(setup->softpipe, &setup->quad);
791 }
792 }
793
794
795 /**
796 * Do setup for point rasterization, then render the point.
797 * Round or square points...
798 * XXX could optimize a lot for 1-pixel points.
799 */
800 static void
801 setup_point(struct prim_stage *stage, struct prim_header *prim)
802 {
803 struct setup_stage *setup = setup_stage( stage );
804 /*XXX this should be a vertex attrib! */
805 GLfloat halfSize = 0.5 * setup->softpipe->setup.point_size;
806 GLboolean round = setup->softpipe->setup.point_smooth;
807 const struct vertex_header *v0 = prim->v[0];
808 const GLfloat x = v0->data[FRAG_ATTRIB_WPOS][0];
809 const GLfloat y = v0->data[FRAG_ATTRIB_WPOS][1];
810 GLuint slot, j;
811
812 /* For points, all interpolants are constant-valued.
813 * However, for point sprites, we'll need to setup texcoords appropriately.
814 * XXX: which coefficients are the texcoords???
815 * We may do point sprites as textured quads...
816 *
817 * KW: We don't know which coefficients are texcoords - ultimately
818 * the choice of what interpolation mode to use for each attribute
819 * should be determined by the fragment program, using
820 * per-attribute declaration statements that include interpolation
821 * mode as a parameter. So either the fragment program will have
822 * to be adjusted for pointsprite vs normal point behaviour, or
823 * otherwise a special interpolation mode will have to be defined
824 * which matches the required behaviour for point sprites. But -
825 * the latter is not a feature of normal hardware, and as such
826 * probably should be ruled out on that basis.
827 */
828 setup->vprovoke = prim->v[0];
829 const_coeff(setup, 0, 2);
830 const_coeff(setup, 0, 3);
831 for (slot = 1; slot < setup->quad.nr_attrs; slot++) {
832 for (j = 0; j < NUM_CHANNELS; j++)
833 const_coeff(setup, slot, j);
834 }
835
836 /* XXX need to clip against scissor bounds too */
837
838 if (halfSize <= 0.5 && !round) {
839 /* special case for 1-pixel points */
840 const GLint ix = ((GLint) x) & 1;
841 const GLint iy = ((GLint) y) & 1;
842 setup->quad.x0 = x - ix;
843 setup->quad.y0 = y - iy;
844 setup->quad.mask = (1 << ix) << (2 * iy);
845 quad_emit(setup->softpipe, &setup->quad);
846 }
847 else {
848 const GLint ixmin = block((GLint) (x - halfSize));
849 const GLint ixmax = block((GLint) (x + halfSize));
850 const GLint iymin = block((GLint) (y - halfSize));
851 const GLint iymax = block((GLint) (y + halfSize));
852 GLfloat halfSizeSquared = halfSize * halfSize;
853 GLint ix, iy;
854
855 for (iy = iymin; iy <= iymax; iy += 2) {
856 for (ix = ixmin; ix <= ixmax; ix += 2) {
857
858 if (round) {
859 /* rounded points */
860 /* XXX for GL_SMOOTH, need to compute per-fragment coverage too */
861 GLfloat dx, dy;
862
863 setup->quad.mask = 0x0;
864
865 dx = (ix + 0.5) - x;
866 dy = (iy + 0.5) - y;
867 if (dx * dx + dy * dy <= halfSizeSquared)
868 setup->quad.mask |= MASK_BOTTOM_LEFT;
869
870 dx = (ix + 1.5) - x;
871 dy = (iy + 0.5) - y;
872 if (dx * dx + dy * dy <= halfSizeSquared)
873 setup->quad.mask |= MASK_BOTTOM_RIGHT;
874
875 dx = (ix + 0.5) - x;
876 dy = (iy + 1.5) - y;
877 if (dx * dx + dy * dy <= halfSizeSquared)
878 setup->quad.mask |= MASK_TOP_LEFT;
879
880 dx = (ix + 1.5) - x;
881 dy = (iy + 1.5) - y;
882 if (dx * dx + dy * dy <= halfSizeSquared)
883 setup->quad.mask |= MASK_TOP_RIGHT;
884 }
885 else {
886 /* square points */
887 setup->quad.mask = 0xf;
888
889 if (ix + 0.5 < x - halfSize)
890 setup->quad.mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT);
891
892 if (ix + 1.5 > x + halfSize)
893 setup->quad.mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT);
894
895 if (iy + 0.5 < y - halfSize)
896 setup->quad.mask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT);
897
898 if (iy + 1.5 > y + halfSize)
899 setup->quad.mask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT);
900 }
901
902 if (setup->quad.mask) {
903 setup->quad.x0 = ix;
904 setup->quad.y0 = iy;
905 quad_emit( setup->softpipe, &setup->quad );
906 }
907 }
908 }
909 }
910 }
911
912
913
914 static void setup_end( struct prim_stage *stage )
915 {
916 }
917
918
919 struct prim_stage *prim_setup( struct softpipe_context *softpipe )
920 {
921 struct setup_stage *setup = CALLOC_STRUCT(setup_stage);
922
923 setup->softpipe = softpipe;
924 setup->stage.draw = softpipe->draw;
925 setup->stage.begin = setup_begin;
926 setup->stage.point = setup_point;
927 setup->stage.line = setup_line;
928 setup->stage.tri = setup_tri;
929 setup->stage.end = setup_end;
930
931 setup->quad.coef = setup->coef;
932
933 return &setup->stage;
934 }