Compute quad.facing from prim->det and polygon winding.
[mesa.git] / src / mesa / pipe / softpipe / sp_prim_setup.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /* Authors: Keith Whitwell <keith@tungstengraphics.com>
29 */
30
31 #include "imports.h"
32 #include "macros.h"
33
34 #include "sp_context.h"
35 #include "sp_headers.h"
36 #include "pipe/draw/draw_private.h"
37 #include "sp_quad.h"
38 #include "sp_prim_setup.h"
39
40
41
42 /**
43 * Emit/render a quad.
44 * This passes the quad to the first stage of per-fragment operations.
45 */
46 static INLINE void
47 quad_emit(struct softpipe_context *sp, struct quad_header *quad)
48 {
49 sp->quad.first->run(sp->quad.first, quad);
50 }
51
52
53 /**
54 * Triangle edge info
55 */
56 struct edge {
57 GLfloat dx; /* X(v1) - X(v0), used only during setup */
58 GLfloat dy; /* Y(v1) - Y(v0), used only during setup */
59 GLfloat dxdy; /* dx/dy */
60 GLfloat sx; /* first sample point x coord */
61 GLfloat sy;
62 GLint lines; /* number of lines on this edge */
63 };
64
65
66 /**
67 * Triangle setup info (derived from prim_stage).
68 * Also used for line drawing (taking some liberties).
69 */
70 struct setup_stage {
71 struct prim_stage stage; /**< This must be first (base class) */
72
73 /*XXX NEW */
74 struct softpipe_context *softpipe;
75
76 /* Vertices are just an array of floats making up each attribute in
77 * turn. Currently fixed at 4 floats, but should change in time.
78 * Codegen will help cope with this.
79 */
80 const struct vertex_header *vmax;
81 const struct vertex_header *vmid;
82 const struct vertex_header *vmin;
83 const struct vertex_header *vprovoke;
84
85 struct edge ebot;
86 struct edge etop;
87 struct edge emaj;
88
89 GLfloat oneoverarea;
90
91 struct setup_coefficient coef[FRAG_ATTRIB_MAX];
92 struct quad_header quad;
93
94 struct {
95 GLint left[2]; /**< [0] = row0, [1] = row1 */
96 GLint right[2];
97 GLint y;
98 GLuint y_flags;
99 GLuint mask; /**< mask of MASK_BOTTOM/TOP_LEFT/RIGHT bits */
100 } span;
101 };
102
103
104
105 /**
106 * Basically a cast wrapper.
107 */
108 static inline struct setup_stage *setup_stage( struct prim_stage *stage )
109 {
110 return (struct setup_stage *)stage;
111 }
112
113
114 /**
115 * Given an X or Y coordinate, return the block/quad coordinate that it
116 * belongs to.
117 */
118 static inline GLint block( GLint x )
119 {
120 return x & ~1;
121 }
122
123
124
125 static void setup_begin( struct prim_stage *stage )
126 {
127 struct setup_stage *setup = setup_stage(stage);
128
129 setup->quad.nr_attrs = setup->softpipe->nr_frag_attrs;
130 }
131
132
133 /**
134 * Run shader on a quad/block.
135 */
136 static void run_shader_block( struct setup_stage *setup,
137 GLint x, GLint y, GLuint mask )
138 {
139 setup->quad.x0 = x;
140 setup->quad.y0 = y;
141 setup->quad.mask = mask;
142
143 quad_emit(setup->softpipe, &setup->quad);
144 }
145
146
147 /**
148 * Compute mask which indicates which pixels in the 2x2 quad are actually inside
149 * the triangle's bounds.
150 *
151 * this is pretty nasty... may need to rework flush_spans again to
152 * fix it, if possible.
153 */
154 static GLuint calculate_mask( struct setup_stage *setup,
155 GLint x )
156 {
157 GLuint mask = 0;
158
159 if (x >= setup->span.left[0] && x < setup->span.right[0])
160 mask |= MASK_BOTTOM_LEFT;
161
162 if (x >= setup->span.left[1] && x < setup->span.right[1])
163 mask |= MASK_TOP_LEFT;
164
165 if (x+1 >= setup->span.left[0] && x+1 < setup->span.right[0])
166 mask |= MASK_BOTTOM_RIGHT;
167
168 if (x+1 >= setup->span.left[1] && x+1 < setup->span.right[1])
169 mask |= MASK_TOP_RIGHT;
170
171 return mask;
172 }
173
174
175 /**
176 * Render a horizontal span of quads
177 */
178 static void flush_spans( struct setup_stage *setup )
179 {
180 GLint minleft, maxright;
181 GLint x;
182
183 switch (setup->span.y_flags) {
184 case 3:
185 minleft = MIN2(setup->span.left[0], setup->span.left[1]);
186 maxright = MAX2(setup->span.right[0], setup->span.right[1]);
187 break;
188
189 case 1:
190 minleft = setup->span.left[0];
191 maxright = setup->span.right[0];
192 break;
193
194 case 2:
195 minleft = setup->span.left[1];
196 maxright = setup->span.right[1];
197 break;
198
199 default:
200 return;
201 }
202
203
204 for (x = block(minleft); x <= block(maxright); )
205 {
206 run_shader_block( setup, x,
207 setup->span.y,
208 calculate_mask( setup, x ) );
209 x += 2;
210 }
211
212 setup->span.y = 0;
213 setup->span.y_flags = 0;
214 setup->span.right[0] = 0;
215 setup->span.right[1] = 0;
216 }
217
218
219 static GLboolean setup_sort_vertices( struct setup_stage *setup,
220 const struct prim_header *prim )
221 {
222 const struct vertex_header *v0 = prim->v[0];
223 const struct vertex_header *v1 = prim->v[1];
224 const struct vertex_header *v2 = prim->v[2];
225
226 setup->vprovoke = v2;
227
228 /* determine bottom to top order of vertices */
229 {
230 GLfloat y0 = v0->data[0][1];
231 GLfloat y1 = v1->data[0][1];
232 GLfloat y2 = v2->data[0][1];
233 if (y0 <= y1) {
234 if (y1 <= y2) {
235 /* y0<=y1<=y2 */
236 setup->vmin = v0;
237 setup->vmid = v1;
238 setup->vmax = v2;
239 }
240 else if (y2 <= y0) {
241 /* y2<=y0<=y1 */
242 setup->vmin = v2;
243 setup->vmid = v0;
244 setup->vmax = v1;
245 }
246 else {
247 /* y0<=y2<=y1 */
248 setup->vmin = v0;
249 setup->vmid = v2;
250 setup->vmax = v1;
251 }
252 }
253 else {
254 if (y0 <= y2) {
255 /* y1<=y0<=y2 */
256 setup->vmin = v1;
257 setup->vmid = v0;
258 setup->vmax = v2;
259 }
260 else if (y2 <= y1) {
261 /* y2<=y1<=y0 */
262 setup->vmin = v2;
263 setup->vmid = v1;
264 setup->vmax = v0;
265 }
266 else {
267 /* y1<=y2<=y0 */
268 setup->vmin = v1;
269 setup->vmid = v2;
270 setup->vmax = v0;
271 }
272 }
273 }
274
275 setup->ebot.dx = setup->vmid->data[0][0] - setup->vmin->data[0][0];
276 setup->ebot.dy = setup->vmid->data[0][1] - setup->vmin->data[0][1];
277 setup->emaj.dx = setup->vmax->data[0][0] - setup->vmin->data[0][0];
278 setup->emaj.dy = setup->vmax->data[0][1] - setup->vmin->data[0][1];
279 setup->etop.dx = setup->vmax->data[0][0] - setup->vmid->data[0][0];
280 setup->etop.dy = setup->vmax->data[0][1] - setup->vmid->data[0][1];
281
282 /*
283 * Compute triangle's area. Use 1/area to compute partial
284 * derivatives of attributes later.
285 *
286 * The area will be the same as prim->det, but the sign may be
287 * different depending on how the vertices get sorted above.
288 *
289 * To determine whether the primitive is front or back facing we
290 * use the prim->det value because its sign is correct.
291 */
292 {
293 const GLfloat area = (setup->emaj.dx * setup->ebot.dy -
294 setup->ebot.dx * setup->emaj.dy);
295
296 setup->oneoverarea = 1.0 / area;
297 /*
298 _mesa_printf("%s one-over-area %f area %f det %f\n",
299 __FUNCTION__, setup->oneoverarea, area, prim->det );
300 */
301 }
302
303 /* We need to know if this is a front or back-facing triangle for:
304 * - the GLSL gl_FrontFacing fragment attribute (bool)
305 * - two-sided stencil test
306 */
307 setup->quad.facing = (prim->det > 0.0) ^ (setup->softpipe->setup.front_winding == PIPE_WINDING_CW);
308
309 return GL_TRUE;
310 }
311
312
313 /**
314 * Compute a0 for a constant-valued coefficient (GL_FLAT shading).
315 * The value value comes from vertex->data[slot][i].
316 * The result will be put into setup->coef[slot].a0[i].
317 * \param slot which attribute slot
318 * \param i which component of the slot (0..3)
319 */
320 static void const_coeff( struct setup_stage *setup,
321 GLuint slot,
322 GLuint i )
323 {
324 assert(slot < FRAG_ATTRIB_MAX);
325 assert(i <= 3);
326
327 setup->coef[slot].dadx[i] = 0;
328 setup->coef[slot].dady[i] = 0;
329
330 /* need provoking vertex info!
331 */
332 setup->coef[slot].a0[i] = setup->vprovoke->data[slot][i];
333 }
334
335
336 /**
337 * Compute a0, dadx and dady for a linearly interpolated coefficient,
338 * for a triangle.
339 */
340 static void tri_linear_coeff( struct setup_stage *setup,
341 GLuint slot,
342 GLuint i)
343 {
344 GLfloat botda = setup->vmid->data[slot][i] - setup->vmin->data[slot][i];
345 GLfloat majda = setup->vmax->data[slot][i] - setup->vmin->data[slot][i];
346 GLfloat a = setup->ebot.dy * majda - botda * setup->emaj.dy;
347 GLfloat b = setup->emaj.dx * botda - majda * setup->ebot.dx;
348
349 assert(slot < FRAG_ATTRIB_MAX);
350 assert(i <= 3);
351
352 setup->coef[slot].dadx[i] = a * setup->oneoverarea;
353 setup->coef[slot].dady[i] = b * setup->oneoverarea;
354
355 /* calculate a0 as the value which would be sampled for the
356 * fragment at (0,0), taking into account that we want to sample at
357 * pixel centers, in other words (0.5, 0.5).
358 *
359 * this is neat but unfortunately not a good way to do things for
360 * triangles with very large values of dadx or dady as it will
361 * result in the subtraction and re-addition from a0 of a very
362 * large number, which means we'll end up loosing a lot of the
363 * fractional bits and precision from a0. the way to fix this is
364 * to define a0 as the sample at a pixel center somewhere near vmin
365 * instead - i'll switch to this later.
366 */
367 setup->coef[slot].a0[i] = (setup->vmin->data[slot][i] -
368 (setup->coef[slot].dadx[i] * (setup->vmin->data[0][0] - 0.5) +
369 setup->coef[slot].dady[i] * (setup->vmin->data[0][1] - 0.5)));
370
371 _mesa_printf("attr[%d].%c: %f dx:%f dy:%f\n",
372 slot, "xyzw"[i],
373 setup->coef[slot].a0[i],
374 setup->coef[slot].dadx[i],
375 setup->coef[slot].dady[i]);
376 }
377
378
379 /**
380 * Compute a0, dadx and dady for a perspective-corrected interpolant,
381 * for a triangle.
382 */
383 static void tri_persp_coeff( struct setup_stage *setup,
384 GLuint slot,
385 GLuint i )
386 {
387 /* premultiply by 1/w:
388 */
389 GLfloat mina = setup->vmin->data[slot][i] * setup->vmin->data[0][3];
390 GLfloat mida = setup->vmid->data[slot][i] * setup->vmid->data[0][3];
391 GLfloat maxa = setup->vmax->data[slot][i] * setup->vmax->data[0][3];
392
393 GLfloat botda = mida - mina;
394 GLfloat majda = maxa - mina;
395 GLfloat a = setup->ebot.dy * majda - botda * setup->emaj.dy;
396 GLfloat b = setup->emaj.dx * botda - majda * setup->ebot.dx;
397
398 assert(slot < FRAG_ATTRIB_MAX);
399 assert(i <= 3);
400
401 setup->coef[slot].dadx[i] = a * setup->oneoverarea;
402 setup->coef[slot].dady[i] = b * setup->oneoverarea;
403 setup->coef[slot].a0[i] = (mina -
404 (setup->coef[slot].dadx[i] * (setup->vmin->data[0][0] - 0.5) +
405 setup->coef[slot].dady[i] * (setup->vmin->data[0][1] - 0.5)));
406 }
407
408
409
410 /**
411 * Compute the setup->coef[] array dadx, dady, a0 values.
412 * Must be called after setup->vmin,vmid,vmax,vprovoke are initialized.
413 */
414 static void setup_tri_coefficients( struct setup_stage *setup )
415 {
416 const enum interp_mode *interp = setup->softpipe->interp;
417 GLuint slot, j;
418
419 /* z and w are done by linear interpolation:
420 */
421 tri_linear_coeff(setup, 0, 2);
422 tri_linear_coeff(setup, 0, 3);
423
424 /* setup interpolation for all the remaining attributes:
425 */
426 for (slot = 1; slot < setup->quad.nr_attrs; slot++) {
427 switch (interp[slot]) {
428 case INTERP_CONSTANT:
429 for (j = 0; j < NUM_CHANNELS; j++)
430 const_coeff(setup, slot, j);
431 break;
432
433 case INTERP_LINEAR:
434 for (j = 0; j < NUM_CHANNELS; j++)
435 tri_linear_coeff(setup, slot, j);
436 break;
437
438 case INTERP_PERSPECTIVE:
439 for (j = 0; j < NUM_CHANNELS; j++)
440 tri_persp_coeff(setup, slot, j);
441 break;
442 }
443 }
444 }
445
446
447
448 static void setup_tri_edges( struct setup_stage *setup )
449 {
450 GLfloat vmin_x = setup->vmin->data[0][0] + 0.5;
451 GLfloat vmid_x = setup->vmid->data[0][0] + 0.5;
452
453 GLfloat vmin_y = setup->vmin->data[0][1] - 0.5;
454 GLfloat vmid_y = setup->vmid->data[0][1] - 0.5;
455 GLfloat vmax_y = setup->vmax->data[0][1] - 0.5;
456
457 setup->emaj.sy = ceilf(vmin_y);
458 setup->emaj.lines = (GLint) ceilf(vmax_y - setup->emaj.sy);
459 setup->emaj.dxdy = setup->emaj.dx / setup->emaj.dy;
460 setup->emaj.sx = vmin_x + (setup->emaj.sy - vmin_y) * setup->emaj.dxdy;
461
462 setup->etop.sy = ceilf(vmid_y);
463 setup->etop.lines = (GLint) ceilf(vmax_y - setup->etop.sy);
464 setup->etop.dxdy = setup->etop.dx / setup->etop.dy;
465 setup->etop.sx = vmid_x + (setup->etop.sy - vmid_y) * setup->etop.dxdy;
466
467 setup->ebot.sy = ceilf(vmin_y);
468 setup->ebot.lines = (GLint) ceilf(vmid_y - setup->ebot.sy);
469 setup->ebot.dxdy = setup->ebot.dx / setup->ebot.dy;
470 setup->ebot.sx = vmin_x + (setup->ebot.sy - vmin_y) * setup->ebot.dxdy;
471 }
472
473
474 /**
475 * Render the upper or lower half of a triangle.
476 * Scissoring is applied here too.
477 */
478 static void subtriangle( struct setup_stage *setup,
479 struct edge *eleft,
480 struct edge *eright,
481 GLuint lines )
482 {
483 GLint y, start_y, finish_y;
484 GLint sy = (GLint)eleft->sy;
485
486 assert((GLint)eleft->sy == (GLint) eright->sy);
487 assert((GLint)eleft->sy >= 0); /* catch bug in x64? */
488
489 /* scissor y:
490 */
491 if (setup->softpipe->setup.scissor) {
492 start_y = sy;
493 finish_y = start_y + lines;
494
495 if (start_y < setup->softpipe->scissor.miny)
496 start_y = setup->softpipe->scissor.miny;
497
498 if (finish_y > setup->softpipe->scissor.maxy)
499 finish_y = setup->softpipe->scissor.maxy;
500
501 start_y -= sy;
502 finish_y -= sy;
503 }
504 else {
505 start_y = 0;
506 finish_y = lines;
507 }
508
509 _mesa_printf("%s %d %d\n", __FUNCTION__, start_y, finish_y);
510
511 for (y = start_y; y < finish_y; y++) {
512
513 /* avoid accumulating adds as floats don't have the precision to
514 * accurately iterate large triangle edges that way. luckily we
515 * can just multiply these days.
516 *
517 * this is all drowned out by the attribute interpolation anyway.
518 */
519 GLint left = (GLint)(eleft->sx + y * eleft->dxdy);
520 GLint right = (GLint)(eright->sx + y * eright->dxdy);
521
522 /* scissor x:
523 */
524 if (setup->softpipe->setup.scissor) {
525 if (left < setup->softpipe->scissor.minx)
526 left = setup->softpipe->scissor.minx;
527
528 if (right > setup->softpipe->scissor.maxx)
529 right = setup->softpipe->scissor.maxx;
530 }
531
532 if (left < right) {
533 GLint _y = sy+y;
534 if (block(_y) != setup->span.y) {
535 flush_spans(setup);
536 setup->span.y = block(_y);
537 }
538
539 setup->span.left[_y&1] = left;
540 setup->span.right[_y&1] = right;
541 setup->span.y_flags |= 1<<(_y&1);
542 }
543 }
544
545
546 /* save the values so that emaj can be restarted:
547 */
548 eleft->sx += lines * eleft->dxdy;
549 eright->sx += lines * eright->dxdy;
550 eleft->sy += lines;
551 eright->sy += lines;
552 }
553
554
555 /**
556 * Do setup for triangle rasterization, then render the triangle.
557 */
558 static void setup_tri( struct prim_stage *stage,
559 struct prim_header *prim )
560 {
561 struct setup_stage *setup = setup_stage( stage );
562
563 _mesa_printf("%s\n", __FUNCTION__ );
564
565 setup_sort_vertices( setup, prim );
566 setup_tri_coefficients( setup );
567 setup_tri_edges( setup );
568
569 setup->span.y = 0;
570 setup->span.y_flags = 0;
571 setup->span.right[0] = 0;
572 setup->span.right[1] = 0;
573 // setup->span.z_mode = tri_z_mode( setup->ctx );
574
575 // init_constant_attribs( setup );
576
577 if (setup->oneoverarea < 0.0) {
578 /* emaj on left:
579 */
580 subtriangle( setup, &setup->emaj, &setup->ebot, setup->ebot.lines );
581 subtriangle( setup, &setup->emaj, &setup->etop, setup->etop.lines );
582 }
583 else {
584 /* emaj on right:
585 */
586 subtriangle( setup, &setup->ebot, &setup->emaj, setup->ebot.lines );
587 subtriangle( setup, &setup->etop, &setup->emaj, setup->etop.lines );
588 }
589
590 flush_spans( setup );
591 }
592
593
594
595 /**
596 * Compute a0, dadx and dady for a linearly interpolated coefficient,
597 * for a line.
598 */
599 static void
600 line_linear_coeff(struct setup_stage *setup, GLuint slot, GLuint i)
601 {
602 const GLfloat dz = setup->vmax->data[slot][i] - setup->vmin->data[slot][i];
603 const GLfloat dadx = dz * setup->emaj.dx * setup->oneoverarea;
604 const GLfloat dady = dz * setup->emaj.dy * setup->oneoverarea;
605 setup->coef[slot].dadx[i] = dadx;
606 setup->coef[slot].dady[i] = dady;
607 setup->coef[slot].a0[i]
608 = (setup->vmin->data[slot][i] -
609 (dadx * (setup->vmin->data[0][0] - 0.5) +
610 dady * (setup->vmin->data[0][1] - 0.5)));
611 }
612
613
614 /**
615 * Compute a0, dadx and dady for a perspective-corrected interpolant,
616 * for a line.
617 */
618 static void
619 line_persp_coeff(struct setup_stage *setup, GLuint slot, GLuint i)
620 {
621 /* XXX to do */
622 line_linear_coeff(setup, slot, i); /* XXX temporary */
623 }
624
625
626 /**
627 * Compute the setup->coef[] array dadx, dady, a0 values.
628 * Must be called after setup->vmin,vmax are initialized.
629 */
630 static INLINE void
631 setup_line_coefficients(struct setup_stage *setup, struct prim_header *prim)
632 {
633 const enum interp_mode *interp = setup->softpipe->interp;
634 GLuint slot, j;
635
636 /* use setup->vmin, vmax to point to vertices */
637 setup->vprovoke = prim->v[1];
638 setup->vmin = prim->v[0];
639 setup->vmax = prim->v[1];
640
641 setup->emaj.dx = setup->vmax->data[0][0] - setup->vmin->data[0][0];
642 setup->emaj.dy = setup->vmax->data[0][1] - setup->vmin->data[0][1];
643 /* NOTE: this is not really 1/area */
644 setup->oneoverarea = 1.0 / (setup->emaj.dx * setup->emaj.dx +
645 setup->emaj.dy * setup->emaj.dy);
646
647 /* z and w are done by linear interpolation:
648 */
649 line_linear_coeff(setup, 0, 2);
650 line_linear_coeff(setup, 0, 3);
651
652 /* setup interpolation for all the remaining attributes:
653 */
654 for (slot = 1; slot < setup->quad.nr_attrs; slot++) {
655 switch (interp[slot]) {
656 case INTERP_CONSTANT:
657 for (j = 0; j < NUM_CHANNELS; j++)
658 const_coeff(setup, slot, j);
659 break;
660
661 case INTERP_LINEAR:
662 for (j = 0; j < NUM_CHANNELS; j++)
663 line_linear_coeff(setup, slot, j);
664 break;
665
666 case INTERP_PERSPECTIVE:
667 for (j = 0; j < NUM_CHANNELS; j++)
668 line_persp_coeff(setup, slot, j);
669 break;
670 }
671 }
672 }
673
674
675 /**
676 * Plot a pixel in a line segment.
677 */
678 static INLINE void
679 plot(struct setup_stage *setup, GLint x, GLint y)
680 {
681 const GLint iy = y & 1;
682 const GLint ix = x & 1;
683 const GLint quadX = x - ix;
684 const GLint quadY = y - iy;
685 const GLint mask = (1 << ix) << (2 * iy);
686
687 if (quadX != setup->quad.x0 ||
688 quadY != setup->quad.y0)
689 {
690 /* flush prev quad, start new quad */
691
692 if (setup->quad.x0 != -1)
693 quad_emit(setup->softpipe, &setup->quad);
694
695 setup->quad.x0 = quadX;
696 setup->quad.y0 = quadY;
697 setup->quad.mask = 0x0;
698 }
699
700 setup->quad.mask |= mask;
701 }
702
703
704
705 /**
706 * Do setup for line rasterization, then render the line.
707 * XXX single-pixel width, no stipple, etc
708 * XXX no scissoring yet.
709 */
710 static void
711 setup_line(struct prim_stage *stage, struct prim_header *prim)
712 {
713 const struct vertex_header *v0 = prim->v[0];
714 const struct vertex_header *v1 = prim->v[1];
715 struct setup_stage *setup = setup_stage( stage );
716
717 GLint x0 = (GLint) v0->data[0][0];
718 GLint x1 = (GLint) v1->data[0][0];
719 GLint y0 = (GLint) v0->data[0][1];
720 GLint y1 = (GLint) v1->data[0][1];
721 GLint dx = x1 - x0;
722 GLint dy = y1 - y0;
723 GLint xstep, ystep;
724
725 if (dx == 0 && dy == 0)
726 return;
727
728 setup_line_coefficients(setup, prim);
729
730 if (dx < 0) {
731 dx = -dx; /* make positive */
732 xstep = -1;
733 }
734 else {
735 xstep = 1;
736 }
737
738 if (dy < 0) {
739 dy = -dy; /* make positive */
740 ystep = -1;
741 }
742 else {
743 ystep = 1;
744 }
745
746 assert(dx >= 0);
747 assert(dy >= 0);
748
749 setup->quad.x0 = setup->quad.y0 = -1;
750 setup->quad.mask = 0x0;
751
752 if (dx > dy) {
753 /*** X-major line ***/
754 GLint i;
755 const GLint errorInc = dy + dy;
756 GLint error = errorInc - dx;
757 const GLint errorDec = error - dx;
758
759 for (i = 0; i < dx; i++) {
760 plot(setup, x0, y0);
761
762 x0 += xstep;
763 if (error < 0) {
764 error += errorInc;
765 }
766 else {
767 error += errorDec;
768 y0 += ystep;
769 }
770 }
771 }
772 else {
773 /*** Y-major line ***/
774 GLint i;
775 const GLint errorInc = dx + dx;
776 GLint error = errorInc - dy;
777 const GLint errorDec = error - dy;
778
779 for (i = 0; i < dy; i++) {
780 plot(setup, x0, y0);
781
782 y0 += ystep;
783
784 if (error < 0) {
785 error += errorInc;
786 }
787 else {
788 error += errorDec;
789 x0 += xstep;
790 }
791 }
792 }
793
794 /* draw final quad */
795 if (setup->quad.mask) {
796 quad_emit(setup->softpipe, &setup->quad);
797 }
798 }
799
800
801 /**
802 * Do setup for point rasterization, then render the point.
803 * Round or square points...
804 * XXX could optimize a lot for 1-pixel points.
805 */
806 static void
807 setup_point(struct prim_stage *stage, struct prim_header *prim)
808 {
809 struct setup_stage *setup = setup_stage( stage );
810 /*XXX this should be a vertex attrib! */
811 GLfloat halfSize = 0.5 * setup->softpipe->setup.point_size;
812 GLboolean round = setup->softpipe->setup.point_smooth;
813 const struct vertex_header *v0 = prim->v[0];
814 const GLfloat x = v0->data[FRAG_ATTRIB_WPOS][0];
815 const GLfloat y = v0->data[FRAG_ATTRIB_WPOS][1];
816 GLuint slot, j;
817
818 /* For points, all interpolants are constant-valued.
819 * However, for point sprites, we'll need to setup texcoords appropriately.
820 * XXX: which coefficients are the texcoords???
821 * We may do point sprites as textured quads...
822 *
823 * KW: We don't know which coefficients are texcoords - ultimately
824 * the choice of what interpolation mode to use for each attribute
825 * should be determined by the fragment program, using
826 * per-attribute declaration statements that include interpolation
827 * mode as a parameter. So either the fragment program will have
828 * to be adjusted for pointsprite vs normal point behaviour, or
829 * otherwise a special interpolation mode will have to be defined
830 * which matches the required behaviour for point sprites. But -
831 * the latter is not a feature of normal hardware, and as such
832 * probably should be ruled out on that basis.
833 */
834 setup->vprovoke = prim->v[0];
835 const_coeff(setup, 0, 2);
836 const_coeff(setup, 0, 3);
837 for (slot = 1; slot < setup->quad.nr_attrs; slot++) {
838 for (j = 0; j < NUM_CHANNELS; j++)
839 const_coeff(setup, slot, j);
840 }
841
842 /* XXX need to clip against scissor bounds too */
843
844 if (halfSize <= 0.5 && !round) {
845 /* special case for 1-pixel points */
846 const GLint ix = ((GLint) x) & 1;
847 const GLint iy = ((GLint) y) & 1;
848 setup->quad.x0 = x - ix;
849 setup->quad.y0 = y - iy;
850 setup->quad.mask = (1 << ix) << (2 * iy);
851 quad_emit(setup->softpipe, &setup->quad);
852 }
853 else {
854 const GLint ixmin = block((GLint) (x - halfSize));
855 const GLint ixmax = block((GLint) (x + halfSize));
856 const GLint iymin = block((GLint) (y - halfSize));
857 const GLint iymax = block((GLint) (y + halfSize));
858 GLfloat halfSizeSquared = halfSize * halfSize;
859 GLint ix, iy;
860
861 for (iy = iymin; iy <= iymax; iy += 2) {
862 for (ix = ixmin; ix <= ixmax; ix += 2) {
863
864 if (round) {
865 /* rounded points */
866 /* XXX for GL_SMOOTH, need to compute per-fragment coverage too */
867 GLfloat dx, dy;
868
869 setup->quad.mask = 0x0;
870
871 dx = (ix + 0.5) - x;
872 dy = (iy + 0.5) - y;
873 if (dx * dx + dy * dy <= halfSizeSquared)
874 setup->quad.mask |= MASK_BOTTOM_LEFT;
875
876 dx = (ix + 1.5) - x;
877 dy = (iy + 0.5) - y;
878 if (dx * dx + dy * dy <= halfSizeSquared)
879 setup->quad.mask |= MASK_BOTTOM_RIGHT;
880
881 dx = (ix + 0.5) - x;
882 dy = (iy + 1.5) - y;
883 if (dx * dx + dy * dy <= halfSizeSquared)
884 setup->quad.mask |= MASK_TOP_LEFT;
885
886 dx = (ix + 1.5) - x;
887 dy = (iy + 1.5) - y;
888 if (dx * dx + dy * dy <= halfSizeSquared)
889 setup->quad.mask |= MASK_TOP_RIGHT;
890 }
891 else {
892 /* square points */
893 setup->quad.mask = 0xf;
894
895 if (ix + 0.5 < x - halfSize)
896 setup->quad.mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT);
897
898 if (ix + 1.5 > x + halfSize)
899 setup->quad.mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT);
900
901 if (iy + 0.5 < y - halfSize)
902 setup->quad.mask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT);
903
904 if (iy + 1.5 > y + halfSize)
905 setup->quad.mask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT);
906 }
907
908 if (setup->quad.mask) {
909 setup->quad.x0 = ix;
910 setup->quad.y0 = iy;
911 quad_emit( setup->softpipe, &setup->quad );
912 }
913 }
914 }
915 }
916 }
917
918
919
920 static void setup_end( struct prim_stage *stage )
921 {
922 }
923
924
925 struct prim_stage *prim_setup( struct softpipe_context *softpipe )
926 {
927 struct setup_stage *setup = CALLOC_STRUCT(setup_stage);
928
929 setup->softpipe = softpipe;
930 setup->stage.draw = softpipe->draw;
931 setup->stage.begin = setup_begin;
932 setup->stage.point = setup_point;
933 setup->stage.line = setup_line;
934 setup->stage.tri = setup_tri;
935 setup->stage.end = setup_end;
936
937 setup->quad.coef = setup->coef;
938
939 return &setup->stage;
940 }