New 'draw' module for primitive drawing (clipping, culling, etc).
[mesa.git] / src / mesa / pipe / softpipe / sp_prim_setup.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /* Authors: Keith Whitwell <keith@tungstengraphics.com>
29 */
30
31 #include "imports.h"
32 #include "macros.h"
33
34 #include "sp_context.h"
35 #include "sp_headers.h"
36 #include "pipe/draw/draw_private.h"
37 #include "sp_quad.h"
38 #include "sp_prim_setup.h"
39
40
41
42 /**
43 * Emit/render a quad.
44 * This passes the quad to the first stage of per-fragment operations.
45 */
46 static INLINE void
47 quad_emit(struct softpipe_context *sp, struct quad_header *quad)
48 {
49 sp->quad.first->run(sp->quad.first, quad);
50 }
51
52
53 /**
54 * Triangle edge info
55 */
56 struct edge {
57 GLfloat dx; /* X(v1) - X(v0), used only during setup */
58 GLfloat dy; /* Y(v1) - Y(v0), used only during setup */
59 GLfloat dxdy; /* dx/dy */
60 GLfloat sx; /* first sample point x coord */
61 GLfloat sy;
62 GLint lines; /* number of lines on this edge */
63 };
64
65
66 /**
67 * Triangle setup info (derived from prim_stage).
68 * Also used for line drawing (taking some liberties).
69 */
70 struct setup_stage {
71 struct prim_stage stage; /**< This must be first (base class) */
72
73 /*XXX NEW */
74 struct softpipe_context *softpipe;
75
76 /* Vertices are just an array of floats making up each attribute in
77 * turn. Currently fixed at 4 floats, but should change in time.
78 * Codegen will help cope with this.
79 */
80 const struct vertex_header *vmax;
81 const struct vertex_header *vmid;
82 const struct vertex_header *vmin;
83 const struct vertex_header *vprovoke;
84
85 struct edge ebot;
86 struct edge etop;
87 struct edge emaj;
88
89 GLfloat oneoverarea;
90
91 struct setup_coefficient coef[FRAG_ATTRIB_MAX];
92 struct quad_header quad;
93
94 struct {
95 GLint left[2]; /**< [0] = row0, [1] = row1 */
96 GLint right[2];
97 GLint y;
98 GLuint y_flags;
99 GLuint mask; /**< mask of MASK_BOTTOM/TOP_LEFT/RIGHT bits */
100 } span;
101 };
102
103
104
105 /**
106 * Basically a cast wrapper.
107 */
108 static inline struct setup_stage *setup_stage( struct prim_stage *stage )
109 {
110 return (struct setup_stage *)stage;
111 }
112
113
114 /**
115 * Given an X or Y coordinate, return the block/quad coordinate that it
116 * belongs to.
117 */
118 static inline GLint block( GLint x )
119 {
120 return x & ~1;
121 }
122
123
124
125 static void setup_begin( struct prim_stage *stage )
126 {
127 struct setup_stage *setup = setup_stage(stage);
128
129 setup->quad.nr_attrs = setup->softpipe->nr_frag_attrs;
130 }
131
132
133 /**
134 * Run shader on a quad/block.
135 */
136 static void run_shader_block( struct setup_stage *setup,
137 GLint x, GLint y, GLuint mask )
138 {
139 setup->quad.x0 = x;
140 setup->quad.y0 = y;
141 setup->quad.mask = mask;
142
143 quad_emit(setup->/*stage.*/softpipe, &setup->quad);
144 }
145
146
147 /**
148 * Compute mask which indicates which pixels in the 2x2 quad are actually inside
149 * the triangle's bounds.
150 *
151 * this is pretty nasty... may need to rework flush_spans again to
152 * fix it, if possible.
153 */
154 static GLuint calculate_mask( struct setup_stage *setup,
155 GLint x )
156 {
157 GLuint mask = 0;
158
159 if (x >= setup->span.left[0] && x < setup->span.right[0])
160 mask |= MASK_BOTTOM_LEFT;
161
162 if (x >= setup->span.left[1] && x < setup->span.right[1])
163 mask |= MASK_TOP_LEFT;
164
165 if (x+1 >= setup->span.left[0] && x+1 < setup->span.right[0])
166 mask |= MASK_BOTTOM_RIGHT;
167
168 if (x+1 >= setup->span.left[1] && x+1 < setup->span.right[1])
169 mask |= MASK_TOP_RIGHT;
170
171 return mask;
172 }
173
174
175 /**
176 * Render a horizontal span of quads
177 */
178 static void flush_spans( struct setup_stage *setup )
179 {
180 GLint minleft, maxright;
181 GLint x;
182
183 switch (setup->span.y_flags) {
184 case 3:
185 minleft = MIN2(setup->span.left[0], setup->span.left[1]);
186 maxright = MAX2(setup->span.right[0], setup->span.right[1]);
187 break;
188
189 case 1:
190 minleft = setup->span.left[0];
191 maxright = setup->span.right[0];
192 break;
193
194 case 2:
195 minleft = setup->span.left[1];
196 maxright = setup->span.right[1];
197 break;
198
199 default:
200 return;
201 }
202
203
204 for (x = block(minleft); x <= block(maxright); )
205 {
206 run_shader_block( setup, x,
207 setup->span.y,
208 calculate_mask( setup, x ) );
209 x += 2;
210 }
211
212 setup->span.y = 0;
213 setup->span.y_flags = 0;
214 setup->span.right[0] = 0;
215 setup->span.right[1] = 0;
216 }
217
218
219 static GLboolean setup_sort_vertices( struct setup_stage *setup,
220 const struct prim_header *prim )
221 {
222 const struct vertex_header *v0 = prim->v[0];
223 const struct vertex_header *v1 = prim->v[1];
224 const struct vertex_header *v2 = prim->v[2];
225
226 setup->vprovoke = v2;
227
228 /* determine bottom to top order of vertices */
229 {
230 GLfloat y0 = v0->data[0][1];
231 GLfloat y1 = v1->data[0][1];
232 GLfloat y2 = v2->data[0][1];
233 if (y0 <= y1) {
234 if (y1 <= y2) {
235 /* y0<=y1<=y2 */
236 setup->vmin = v0;
237 setup->vmid = v1;
238 setup->vmax = v2;
239 }
240 else if (y2 <= y0) {
241 /* y2<=y0<=y1 */
242 setup->vmin = v2;
243 setup->vmid = v0;
244 setup->vmax = v1;
245 }
246 else {
247 /* y0<=y2<=y1 */
248 setup->vmin = v0;
249 setup->vmid = v2;
250 setup->vmax = v1;
251 }
252 }
253 else {
254 if (y0 <= y2) {
255 /* y1<=y0<=y2 */
256 setup->vmin = v1;
257 setup->vmid = v0;
258 setup->vmax = v2;
259 }
260 else if (y2 <= y1) {
261 /* y2<=y1<=y0 */
262 setup->vmin = v2;
263 setup->vmid = v1;
264 setup->vmax = v0;
265 }
266 else {
267 /* y1<=y2<=y0 */
268 setup->vmin = v1;
269 setup->vmid = v2;
270 setup->vmax = v0;
271 }
272 }
273 }
274
275 setup->ebot.dx = setup->vmid->data[0][0] - setup->vmin->data[0][0];
276 setup->ebot.dy = setup->vmid->data[0][1] - setup->vmin->data[0][1];
277 setup->emaj.dx = setup->vmax->data[0][0] - setup->vmin->data[0][0];
278 setup->emaj.dy = setup->vmax->data[0][1] - setup->vmin->data[0][1];
279 setup->etop.dx = setup->vmax->data[0][0] - setup->vmid->data[0][0];
280 setup->etop.dy = setup->vmax->data[0][1] - setup->vmid->data[0][1];
281
282 /* xxx: may need to adjust this sign according to the if-tree
283 * above:
284 *
285 * XXX: this is like 'det', but calculated from screen coords??
286 */
287 {
288 const GLfloat area = (setup->emaj.dx * setup->ebot.dy -
289 setup->ebot.dx * setup->emaj.dy);
290
291 setup->oneoverarea = 1.0 / area;
292 }
293
294 /* XXX need to know if this is a front or back-facing triangle:
295 * - the GLSL gl_FrontFacing fragment attribute (bool)
296 * - two-sided stencil test
297 */
298 setup->quad.facing = 0;
299
300 _mesa_printf("%s one-over-area %f\n", __FUNCTION__, setup->oneoverarea );
301
302
303 return GL_TRUE;
304 }
305
306
307 /**
308 * Compute a0 for a constant-valued coefficient (GL_FLAT shading).
309 */
310 static void const_coeff( struct setup_stage *setup,
311 GLuint slot,
312 GLuint i )
313 {
314 setup->coef[slot].dadx[i] = 0;
315 setup->coef[slot].dady[i] = 0;
316
317 /* need provoking vertex info!
318 */
319 setup->coef[slot].a0[i] = setup->vprovoke->data[slot][i];
320 }
321
322
323 /**
324 * Compute a0, dadx and dady for a linearly interpolated coefficient,
325 * for a triangle.
326 */
327 static void tri_linear_coeff( struct setup_stage *setup,
328 GLuint slot,
329 GLuint i)
330 {
331 GLfloat botda = setup->vmid->data[slot][i] - setup->vmin->data[slot][i];
332 GLfloat majda = setup->vmax->data[slot][i] - setup->vmin->data[slot][i];
333 GLfloat a = setup->ebot.dy * majda - botda * setup->emaj.dy;
334 GLfloat b = setup->emaj.dx * botda - majda * setup->ebot.dx;
335
336 setup->coef[slot].dadx[i] = a * setup->oneoverarea;
337 setup->coef[slot].dady[i] = b * setup->oneoverarea;
338
339 /* calculate a0 as the value which would be sampled for the
340 * fragment at (0,0), taking into account that we want to sample at
341 * pixel centers, in other words (0.5, 0.5).
342 *
343 * this is neat but unfortunately not a good way to do things for
344 * triangles with very large values of dadx or dady as it will
345 * result in the subtraction and re-addition from a0 of a very
346 * large number, which means we'll end up loosing a lot of the
347 * fractional bits and precision from a0. the way to fix this is
348 * to define a0 as the sample at a pixel center somewhere near vmin
349 * instead - i'll switch to this later.
350 */
351 setup->coef[slot].a0[i] = (setup->vmin->data[slot][i] -
352 (setup->coef[slot].dadx[i] * (setup->vmin->data[0][0] - 0.5) +
353 setup->coef[slot].dady[i] * (setup->vmin->data[0][1] - 0.5)));
354
355 _mesa_printf("attr[%d].%c: %f dx:%f dy:%f\n",
356 slot, "xyzw"[i],
357 setup->coef[slot].a0[i],
358 setup->coef[slot].dadx[i],
359 setup->coef[slot].dady[i]);
360 }
361
362
363 /**
364 * Compute a0, dadx and dady for a perspective-corrected interpolant,
365 * for a triangle.
366 */
367 static void tri_persp_coeff( struct setup_stage *setup,
368 GLuint slot,
369 GLuint i )
370 {
371 /* premultiply by 1/w:
372 */
373 GLfloat mina = setup->vmin->data[slot][i] * setup->vmin->data[0][3];
374 GLfloat mida = setup->vmid->data[slot][i] * setup->vmid->data[0][3];
375 GLfloat maxa = setup->vmax->data[slot][i] * setup->vmax->data[0][3];
376
377 GLfloat botda = mida - mina;
378 GLfloat majda = maxa - mina;
379 GLfloat a = setup->ebot.dy * majda - botda * setup->emaj.dy;
380 GLfloat b = setup->emaj.dx * botda - majda * setup->ebot.dx;
381
382 setup->coef[slot].dadx[i] = a * setup->oneoverarea;
383 setup->coef[slot].dady[i] = b * setup->oneoverarea;
384 setup->coef[slot].a0[i] = (mina -
385 (setup->coef[slot].dadx[i] * (setup->vmin->data[0][0] - 0.5) +
386 setup->coef[slot].dady[i] * (setup->vmin->data[0][1] - 0.5)));
387 }
388
389
390
391 /**
392 * Compute the setup->coef[] array dadx, dady, a0 values.
393 * Must be called after setup->vmin,vmid,vmax,vprovoke are initialized.
394 */
395 static void setup_tri_coefficients( struct setup_stage *setup )
396 {
397 const enum interp_mode *interp = setup->/*stage.*/softpipe->interp;
398 GLuint slot, j;
399
400 /* z and w are done by linear interpolation:
401 */
402 tri_linear_coeff(setup, 0, 2);
403 tri_linear_coeff(setup, 0, 3);
404
405 /* setup interpolation for all the remaining attributes:
406 */
407 for (slot = 1; slot < setup->quad.nr_attrs; slot++) {
408 switch (interp[slot]) {
409 case INTERP_CONSTANT:
410 for (j = 0; j < NUM_CHANNELS; j++)
411 const_coeff(setup, slot, j);
412 break;
413
414 case INTERP_LINEAR:
415 for (j = 0; j < NUM_CHANNELS; j++)
416 tri_linear_coeff(setup, slot, j);
417 break;
418
419 case INTERP_PERSPECTIVE:
420 for (j = 0; j < NUM_CHANNELS; j++)
421 tri_persp_coeff(setup, slot, j);
422 break;
423 }
424 }
425 }
426
427
428
429 static void setup_tri_edges( struct setup_stage *setup )
430 {
431 GLfloat vmin_x = setup->vmin->data[0][0] + 0.5;
432 GLfloat vmid_x = setup->vmid->data[0][0] + 0.5;
433
434 GLfloat vmin_y = setup->vmin->data[0][1] - 0.5;
435 GLfloat vmid_y = setup->vmid->data[0][1] - 0.5;
436 GLfloat vmax_y = setup->vmax->data[0][1] - 0.5;
437
438 setup->emaj.sy = ceilf(vmin_y);
439 setup->emaj.lines = (GLint) ceilf(vmax_y - setup->emaj.sy);
440 setup->emaj.dxdy = setup->emaj.dx / setup->emaj.dy;
441 setup->emaj.sx = vmin_x + (setup->emaj.sy - vmin_y) * setup->emaj.dxdy;
442
443 setup->etop.sy = ceilf(vmid_y);
444 setup->etop.lines = (GLint) ceilf(vmax_y - setup->etop.sy);
445 setup->etop.dxdy = setup->etop.dx / setup->etop.dy;
446 setup->etop.sx = vmid_x + (setup->etop.sy - vmid_y) * setup->etop.dxdy;
447
448 setup->ebot.sy = ceilf(vmin_y);
449 setup->ebot.lines = (GLint) ceilf(vmid_y - setup->ebot.sy);
450 setup->ebot.dxdy = setup->ebot.dx / setup->ebot.dy;
451 setup->ebot.sx = vmin_x + (setup->ebot.sy - vmin_y) * setup->ebot.dxdy;
452 }
453
454
455 /**
456 * Render the upper or lower half of a triangle.
457 * Scissoring is applied here too.
458 */
459 static void subtriangle( struct setup_stage *setup,
460 struct edge *eleft,
461 struct edge *eright,
462 GLuint lines )
463 {
464 GLint y, start_y, finish_y;
465 GLint sy = (GLint)eleft->sy;
466
467 assert((GLint)eleft->sy == (GLint) eright->sy);
468 assert((GLint)eleft->sy >= 0); /* catch bug in x64? */
469
470 /* scissor y:
471 */
472 if (setup->/*stage.*/softpipe->setup.scissor) {
473 start_y = sy;
474 finish_y = start_y + lines;
475
476 if (start_y < setup->/*stage.*/softpipe->scissor.miny)
477 start_y = setup->/*stage.*/softpipe->scissor.miny;
478
479 if (finish_y > setup->/*stage.*/softpipe->scissor.maxy)
480 finish_y = setup->/*stage.*/softpipe->scissor.maxy;
481
482 start_y -= sy;
483 finish_y -= sy;
484 }
485 else {
486 start_y = 0;
487 finish_y = lines;
488 }
489
490 _mesa_printf("%s %d %d\n", __FUNCTION__, start_y, finish_y);
491
492 for (y = start_y; y < finish_y; y++) {
493
494 /* avoid accumulating adds as floats don't have the precision to
495 * accurately iterate large triangle edges that way. luckily we
496 * can just multiply these days.
497 *
498 * this is all drowned out by the attribute interpolation anyway.
499 */
500 GLint left = (GLint)(eleft->sx + y * eleft->dxdy);
501 GLint right = (GLint)(eright->sx + y * eright->dxdy);
502
503 /* scissor x:
504 */
505 if (setup->/*stage.*/softpipe->setup.scissor) {
506 if (left < setup->/*stage.*/softpipe->scissor.minx)
507 left = setup->/*stage.*/softpipe->scissor.minx;
508
509 if (right > setup->/*stage.*/softpipe->scissor.maxx)
510 right = setup->/*stage.*/softpipe->scissor.maxx;
511 }
512
513 if (left < right) {
514 GLint _y = sy+y;
515 if (block(_y) != setup->span.y) {
516 flush_spans(setup);
517 setup->span.y = block(_y);
518 }
519
520 setup->span.left[_y&1] = left;
521 setup->span.right[_y&1] = right;
522 setup->span.y_flags |= 1<<(_y&1);
523 }
524 }
525
526
527 /* save the values so that emaj can be restarted:
528 */
529 eleft->sx += lines * eleft->dxdy;
530 eright->sx += lines * eright->dxdy;
531 eleft->sy += lines;
532 eright->sy += lines;
533 }
534
535
536 /**
537 * Do setup for triangle rasterization, then render the triangle.
538 */
539 static void setup_tri( struct prim_stage *stage,
540 struct prim_header *prim )
541 {
542 struct setup_stage *setup = setup_stage( stage );
543
544 _mesa_printf("%s\n", __FUNCTION__ );
545
546 setup_sort_vertices( setup, prim );
547 setup_tri_coefficients( setup );
548 setup_tri_edges( setup );
549
550 setup->span.y = 0;
551 setup->span.y_flags = 0;
552 setup->span.right[0] = 0;
553 setup->span.right[1] = 0;
554 // setup->span.z_mode = tri_z_mode( setup->ctx );
555
556 // init_constant_attribs( setup );
557
558 if (setup->oneoverarea < 0.0) {
559 /* emaj on left:
560 */
561 subtriangle( setup, &setup->emaj, &setup->ebot, setup->ebot.lines );
562 subtriangle( setup, &setup->emaj, &setup->etop, setup->etop.lines );
563 }
564 else {
565 /* emaj on right:
566 */
567 subtriangle( setup, &setup->ebot, &setup->emaj, setup->ebot.lines );
568 subtriangle( setup, &setup->etop, &setup->emaj, setup->etop.lines );
569 }
570
571 flush_spans( setup );
572 }
573
574
575
576 /**
577 * Compute a0, dadx and dady for a linearly interpolated coefficient,
578 * for a line.
579 */
580 static void
581 line_linear_coeff(struct setup_stage *setup, GLuint slot, GLuint i)
582 {
583 const GLfloat dz = setup->vmax->data[slot][i] - setup->vmin->data[slot][i];
584 const GLfloat dadx = dz * setup->emaj.dx * setup->oneoverarea;
585 const GLfloat dady = dz * setup->emaj.dy * setup->oneoverarea;
586 setup->coef[slot].dadx[i] = dadx;
587 setup->coef[slot].dady[i] = dady;
588 setup->coef[slot].a0[i]
589 = (setup->vmin->data[slot][i] -
590 (dadx * (setup->vmin->data[0][0] - 0.5) +
591 dady * (setup->vmin->data[0][1] - 0.5)));
592 }
593
594
595 /**
596 * Compute a0, dadx and dady for a perspective-corrected interpolant,
597 * for a line.
598 */
599 static void
600 line_persp_coeff(struct setup_stage *setup, GLuint slot, GLuint i)
601 {
602 /* XXX to do */
603 line_linear_coeff(setup, slot, i); /* XXX temporary */
604 }
605
606
607 /**
608 * Compute the setup->coef[] array dadx, dady, a0 values.
609 * Must be called after setup->vmin,vmax are initialized.
610 */
611 static INLINE void
612 setup_line_coefficients(struct setup_stage *setup, struct prim_header *prim)
613 {
614 const enum interp_mode *interp = setup->/*stage.*/softpipe->interp;
615 GLuint slot, j;
616
617 /* use setup->vmin, vmax to point to vertices */
618 setup->vprovoke = prim->v[1];
619 setup->vmin = prim->v[0];
620 setup->vmax = prim->v[1];
621
622 setup->emaj.dx = setup->vmax->data[0][0] - setup->vmin->data[0][0];
623 setup->emaj.dy = setup->vmax->data[0][1] - setup->vmin->data[0][1];
624 /* NOTE: this is not really 1/area */
625 setup->oneoverarea = 1.0 / (setup->emaj.dx * setup->emaj.dx +
626 setup->emaj.dy * setup->emaj.dy);
627
628 /* z and w are done by linear interpolation:
629 */
630 line_linear_coeff(setup, 0, 2);
631 line_linear_coeff(setup, 0, 3);
632
633 /* setup interpolation for all the remaining attributes:
634 */
635 for (slot = 1; slot < setup->quad.nr_attrs; slot++) {
636 switch (interp[slot]) {
637 case INTERP_CONSTANT:
638 for (j = 0; j < NUM_CHANNELS; j++)
639 const_coeff(setup, slot, j);
640 break;
641
642 case INTERP_LINEAR:
643 for (j = 0; j < NUM_CHANNELS; j++)
644 line_linear_coeff(setup, slot, j);
645 break;
646
647 case INTERP_PERSPECTIVE:
648 for (j = 0; j < NUM_CHANNELS; j++)
649 line_persp_coeff(setup, slot, j);
650 break;
651 }
652 }
653 }
654
655
656 /**
657 * Plot a pixel in a line segment.
658 */
659 static INLINE void
660 plot(struct setup_stage *setup, GLint x, GLint y)
661 {
662 const GLint iy = y & 1;
663 const GLint ix = x & 1;
664 const GLint quadX = x - ix;
665 const GLint quadY = y - iy;
666 const GLint mask = (1 << ix) << (2 * iy);
667
668 if (quadX != setup->quad.x0 ||
669 quadY != setup->quad.y0)
670 {
671 /* flush prev quad, start new quad */
672
673 if (setup->quad.x0 != -1)
674 quad_emit(setup->/*stage.*/softpipe, &setup->quad);
675
676 setup->quad.x0 = quadX;
677 setup->quad.y0 = quadY;
678 setup->quad.mask = 0x0;
679 }
680
681 setup->quad.mask |= mask;
682 }
683
684
685
686 /**
687 * Do setup for line rasterization, then render the line.
688 * XXX single-pixel width, no stipple, etc
689 * XXX no scissoring yet.
690 */
691 static void
692 setup_line(struct prim_stage *stage, struct prim_header *prim)
693 {
694 const struct vertex_header *v0 = prim->v[0];
695 const struct vertex_header *v1 = prim->v[1];
696 struct setup_stage *setup = setup_stage( stage );
697
698 GLint x0 = (GLint) v0->data[0][0];
699 GLint x1 = (GLint) v1->data[0][0];
700 GLint y0 = (GLint) v0->data[0][1];
701 GLint y1 = (GLint) v1->data[0][1];
702 GLint dx = x1 - x0;
703 GLint dy = y1 - y0;
704 GLint xstep, ystep;
705
706 if (dx == 0 && dy == 0)
707 return;
708
709 setup_line_coefficients(setup, prim);
710
711 if (dx < 0) {
712 dx = -dx; /* make positive */
713 xstep = -1;
714 }
715 else {
716 xstep = 1;
717 }
718
719 if (dy < 0) {
720 dy = -dy; /* make positive */
721 ystep = -1;
722 }
723 else {
724 ystep = 1;
725 }
726
727 assert(dx >= 0);
728 assert(dy >= 0);
729
730 setup->quad.x0 = setup->quad.y0 = -1;
731 setup->quad.mask = 0x0;
732
733 if (dx > dy) {
734 /*** X-major line ***/
735 GLint i;
736 const GLint errorInc = dy + dy;
737 GLint error = errorInc - dx;
738 const GLint errorDec = error - dx;
739
740 for (i = 0; i < dx; i++) {
741 plot(setup, x0, y0);
742
743 x0 += xstep;
744 if (error < 0) {
745 error += errorInc;
746 }
747 else {
748 error += errorDec;
749 y0 += ystep;
750 }
751 }
752 }
753 else {
754 /*** Y-major line ***/
755 GLint i;
756 const GLint errorInc = dx + dx;
757 GLint error = errorInc - dy;
758 const GLint errorDec = error - dy;
759
760 for (i = 0; i < dy; i++) {
761 plot(setup, x0, y0);
762
763 y0 += ystep;
764
765 if (error < 0) {
766 error += errorInc;
767 }
768 else {
769 error += errorDec;
770 x0 += xstep;
771 }
772 }
773 }
774
775 /* draw final quad */
776 if (setup->quad.mask) {
777 quad_emit(setup->/*stage.*/softpipe, &setup->quad);
778 }
779 }
780
781
782 /**
783 * Do setup for point rasterization, then render the point.
784 * Round or square points...
785 * XXX could optimize a lot for 1-pixel points.
786 */
787 static void
788 setup_point(struct prim_stage *stage, struct prim_header *prim)
789 {
790 struct setup_stage *setup = setup_stage( stage );
791 /*XXX this should be a vertex attrib! */
792 GLfloat halfSize = 0.5 * setup->/*stage.*/softpipe->setup.point_size;
793 GLboolean round = setup->/*stage.*/softpipe->setup.point_smooth;
794 const struct vertex_header *v0 = prim->v[0];
795 const GLfloat x = v0->data[FRAG_ATTRIB_WPOS][0];
796 const GLfloat y = v0->data[FRAG_ATTRIB_WPOS][1];
797 GLuint slot, j;
798
799 /* For points, all interpolants are constant-valued.
800 * However, for point sprites, we'll need to setup texcoords appropriately.
801 * XXX: which coefficients are the texcoords???
802 * We may do point sprites as textured quads...
803 *
804 * KW: We don't know which coefficients are texcoords - ultimately
805 * the choice of what interpolation mode to use for each attribute
806 * should be determined by the fragment program, using
807 * per-attribute declaration statements that include interpolation
808 * mode as a parameter. So either the fragment program will have
809 * to be adjusted for pointsprite vs normal point behaviour, or
810 * otherwise a special interpolation mode will have to be defined
811 * which matches the required behaviour for point sprites. But -
812 * the latter is not a feature of normal hardware, and as such
813 * probably should be ruled out on that basis.
814 */
815 setup->vprovoke = prim->v[0];
816 const_coeff(setup, 0, 2);
817 const_coeff(setup, 0, 3);
818 for (slot = 1; slot < setup->quad.nr_attrs; slot++) {
819 for (j = 0; j < NUM_CHANNELS; j++)
820 const_coeff(setup, slot, j);
821 }
822
823 /* XXX need to clip against scissor bounds too */
824
825 if (halfSize <= 0.5 && !round) {
826 /* special case for 1-pixel points */
827 const GLint ix = ((GLint) x) & 1;
828 const GLint iy = ((GLint) y) & 1;
829 setup->quad.x0 = x - ix;
830 setup->quad.y0 = y - iy;
831 setup->quad.mask = (1 << ix) << (2 * iy);
832 quad_emit(setup->/*stage.*/softpipe, &setup->quad);
833 }
834 else {
835 const GLint ixmin = block((GLint) (x - halfSize));
836 const GLint ixmax = block((GLint) (x + halfSize));
837 const GLint iymin = block((GLint) (y - halfSize));
838 const GLint iymax = block((GLint) (y + halfSize));
839 GLfloat halfSizeSquared = halfSize * halfSize;
840 GLint ix, iy;
841
842 for (iy = iymin; iy <= iymax; iy += 2) {
843 for (ix = ixmin; ix <= ixmax; ix += 2) {
844
845 if (round) {
846 /* rounded points */
847 /* XXX for GL_SMOOTH, need to compute per-fragment coverage too */
848 GLfloat dx, dy;
849
850 setup->quad.mask = 0x0;
851
852 dx = (ix + 0.5) - x;
853 dy = (iy + 0.5) - y;
854 if (dx * dx + dy * dy <= halfSizeSquared)
855 setup->quad.mask |= MASK_BOTTOM_LEFT;
856
857 dx = (ix + 1.5) - x;
858 dy = (iy + 0.5) - y;
859 if (dx * dx + dy * dy <= halfSizeSquared)
860 setup->quad.mask |= MASK_BOTTOM_RIGHT;
861
862 dx = (ix + 0.5) - x;
863 dy = (iy + 1.5) - y;
864 if (dx * dx + dy * dy <= halfSizeSquared)
865 setup->quad.mask |= MASK_TOP_LEFT;
866
867 dx = (ix + 1.5) - x;
868 dy = (iy + 1.5) - y;
869 if (dx * dx + dy * dy <= halfSizeSquared)
870 setup->quad.mask |= MASK_TOP_RIGHT;
871 }
872 else {
873 /* square points */
874 setup->quad.mask = 0xf;
875
876 if (ix + 0.5 < x - halfSize)
877 setup->quad.mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT);
878
879 if (ix + 1.5 > x + halfSize)
880 setup->quad.mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT);
881
882 if (iy + 0.5 < y - halfSize)
883 setup->quad.mask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT);
884
885 if (iy + 1.5 > y + halfSize)
886 setup->quad.mask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT);
887 }
888
889 if (setup->quad.mask) {
890 setup->quad.x0 = ix;
891 setup->quad.y0 = iy;
892 quad_emit( setup->/*stage.*/softpipe, &setup->quad );
893 }
894 }
895 }
896 }
897 }
898
899
900
901 static void setup_end( struct prim_stage *stage )
902 {
903 }
904
905
906 struct prim_stage *prim_setup( struct softpipe_context *softpipe )
907 {
908 struct setup_stage *setup = CALLOC_STRUCT(setup_stage);
909
910 setup->softpipe = softpipe;
911 setup->stage.draw = softpipe->draw;
912 setup->stage.begin = setup_begin;
913 setup->stage.point = setup_point;
914 setup->stage.line = setup_line;
915 setup->stage.tri = setup_tri;
916 setup->stage.end = setup_end;
917
918 setup->quad.coef = setup->coef;
919
920 return &setup->stage;
921 }