mesa/program: Add unused ir operations.
[mesa.git] / src / mesa / program / ir_to_mesa.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
24 */
25
26 /**
27 * \file ir_to_mesa.cpp
28 *
29 * Translate GLSL IR to Mesa's gl_program representation.
30 */
31
32 #include <stdio.h>
33 #include "main/compiler.h"
34 #include "main/macros.h"
35 #include "main/mtypes.h"
36 #include "main/shaderapi.h"
37 #include "main/shaderobj.h"
38 #include "main/uniforms.h"
39 #include "compiler/glsl/ast.h"
40 #include "compiler/glsl/ir.h"
41 #include "compiler/glsl/ir_expression_flattening.h"
42 #include "compiler/glsl/ir_visitor.h"
43 #include "compiler/glsl/ir_optimization.h"
44 #include "compiler/glsl/ir_uniform.h"
45 #include "compiler/glsl/glsl_parser_extras.h"
46 #include "compiler/glsl_types.h"
47 #include "compiler/glsl/linker.h"
48 #include "compiler/glsl/program.h"
49 #include "program/prog_instruction.h"
50 #include "program/prog_optimize.h"
51 #include "program/prog_print.h"
52 #include "program/program.h"
53 #include "program/prog_parameter.h"
54 #include "util/string_to_uint_map.h"
55
56
57 static int swizzle_for_size(int size);
58
59 namespace {
60
61 class src_reg;
62 class dst_reg;
63
64 /**
65 * This struct is a corresponding struct to Mesa prog_src_register, with
66 * wider fields.
67 */
68 class src_reg {
69 public:
70 src_reg(gl_register_file file, int index, const glsl_type *type)
71 {
72 this->file = file;
73 this->index = index;
74 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
75 this->swizzle = swizzle_for_size(type->vector_elements);
76 else
77 this->swizzle = SWIZZLE_XYZW;
78 this->negate = 0;
79 this->reladdr = NULL;
80 }
81
82 src_reg()
83 {
84 this->file = PROGRAM_UNDEFINED;
85 this->index = 0;
86 this->swizzle = 0;
87 this->negate = 0;
88 this->reladdr = NULL;
89 }
90
91 explicit src_reg(dst_reg reg);
92
93 gl_register_file file; /**< PROGRAM_* from Mesa */
94 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
95 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
96 int negate; /**< NEGATE_XYZW mask from mesa */
97 /** Register index should be offset by the integer in this reg. */
98 src_reg *reladdr;
99 };
100
101 class dst_reg {
102 public:
103 dst_reg(gl_register_file file, int writemask)
104 {
105 this->file = file;
106 this->index = 0;
107 this->writemask = writemask;
108 this->reladdr = NULL;
109 }
110
111 dst_reg()
112 {
113 this->file = PROGRAM_UNDEFINED;
114 this->index = 0;
115 this->writemask = 0;
116 this->reladdr = NULL;
117 }
118
119 explicit dst_reg(src_reg reg);
120
121 gl_register_file file; /**< PROGRAM_* from Mesa */
122 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
123 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
124 /** Register index should be offset by the integer in this reg. */
125 src_reg *reladdr;
126 };
127
128 } /* anonymous namespace */
129
130 src_reg::src_reg(dst_reg reg)
131 {
132 this->file = reg.file;
133 this->index = reg.index;
134 this->swizzle = SWIZZLE_XYZW;
135 this->negate = 0;
136 this->reladdr = reg.reladdr;
137 }
138
139 dst_reg::dst_reg(src_reg reg)
140 {
141 this->file = reg.file;
142 this->index = reg.index;
143 this->writemask = WRITEMASK_XYZW;
144 this->reladdr = reg.reladdr;
145 }
146
147 namespace {
148
149 class ir_to_mesa_instruction : public exec_node {
150 public:
151 DECLARE_RALLOC_CXX_OPERATORS(ir_to_mesa_instruction)
152
153 enum prog_opcode op;
154 dst_reg dst;
155 src_reg src[3];
156 /** Pointer to the ir source this tree came from for debugging */
157 ir_instruction *ir;
158 bool saturate;
159 int sampler; /**< sampler index */
160 int tex_target; /**< One of TEXTURE_*_INDEX */
161 GLboolean tex_shadow;
162 };
163
164 class variable_storage : public exec_node {
165 public:
166 variable_storage(ir_variable *var, gl_register_file file, int index)
167 : file(file), index(index), var(var)
168 {
169 /* empty */
170 }
171
172 gl_register_file file;
173 int index;
174 ir_variable *var; /* variable that maps to this, if any */
175 };
176
177 class function_entry : public exec_node {
178 public:
179 ir_function_signature *sig;
180
181 /**
182 * identifier of this function signature used by the program.
183 *
184 * At the point that Mesa instructions for function calls are
185 * generated, we don't know the address of the first instruction of
186 * the function body. So we make the BranchTarget that is called a
187 * small integer and rewrite them during set_branchtargets().
188 */
189 int sig_id;
190
191 /**
192 * Pointer to first instruction of the function body.
193 *
194 * Set during function body emits after main() is processed.
195 */
196 ir_to_mesa_instruction *bgn_inst;
197
198 /**
199 * Index of the first instruction of the function body in actual
200 * Mesa IR.
201 *
202 * Set after convertion from ir_to_mesa_instruction to prog_instruction.
203 */
204 int inst;
205
206 /** Storage for the return value. */
207 src_reg return_reg;
208 };
209
210 class ir_to_mesa_visitor : public ir_visitor {
211 public:
212 ir_to_mesa_visitor();
213 ~ir_to_mesa_visitor();
214
215 function_entry *current_function;
216
217 struct gl_context *ctx;
218 struct gl_program *prog;
219 struct gl_shader_program *shader_program;
220 struct gl_shader_compiler_options *options;
221
222 int next_temp;
223
224 variable_storage *find_variable_storage(const ir_variable *var);
225
226 src_reg get_temp(const glsl_type *type);
227 void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);
228
229 src_reg src_reg_for_float(float val);
230
231 /**
232 * \name Visit methods
233 *
234 * As typical for the visitor pattern, there must be one \c visit method for
235 * each concrete subclass of \c ir_instruction. Virtual base classes within
236 * the hierarchy should not have \c visit methods.
237 */
238 /*@{*/
239 virtual void visit(ir_variable *);
240 virtual void visit(ir_loop *);
241 virtual void visit(ir_loop_jump *);
242 virtual void visit(ir_function_signature *);
243 virtual void visit(ir_function *);
244 virtual void visit(ir_expression *);
245 virtual void visit(ir_swizzle *);
246 virtual void visit(ir_dereference_variable *);
247 virtual void visit(ir_dereference_array *);
248 virtual void visit(ir_dereference_record *);
249 virtual void visit(ir_assignment *);
250 virtual void visit(ir_constant *);
251 virtual void visit(ir_call *);
252 virtual void visit(ir_return *);
253 virtual void visit(ir_discard *);
254 virtual void visit(ir_texture *);
255 virtual void visit(ir_if *);
256 virtual void visit(ir_emit_vertex *);
257 virtual void visit(ir_end_primitive *);
258 virtual void visit(ir_barrier *);
259 /*@}*/
260
261 src_reg result;
262
263 /** List of variable_storage */
264 exec_list variables;
265
266 /** List of function_entry */
267 exec_list function_signatures;
268 int next_signature_id;
269
270 /** List of ir_to_mesa_instruction */
271 exec_list instructions;
272
273 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);
274
275 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
276 dst_reg dst, src_reg src0);
277
278 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
279 dst_reg dst, src_reg src0, src_reg src1);
280
281 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
282 dst_reg dst,
283 src_reg src0, src_reg src1, src_reg src2);
284
285 /**
286 * Emit the correct dot-product instruction for the type of arguments
287 */
288 ir_to_mesa_instruction * emit_dp(ir_instruction *ir,
289 dst_reg dst,
290 src_reg src0,
291 src_reg src1,
292 unsigned elements);
293
294 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
295 dst_reg dst, src_reg src0);
296
297 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
298 dst_reg dst, src_reg src0, src_reg src1);
299
300 bool try_emit_mad(ir_expression *ir,
301 int mul_operand);
302 bool try_emit_mad_for_and_not(ir_expression *ir,
303 int mul_operand);
304
305 void emit_swz(ir_expression *ir);
306
307 void emit_equality_comparison(ir_expression *ir, enum prog_opcode op,
308 dst_reg dst,
309 const src_reg &src0, const src_reg &src1);
310
311 inline void emit_sne(ir_expression *ir, dst_reg dst,
312 const src_reg &src0, const src_reg &src1)
313 {
314 emit_equality_comparison(ir, OPCODE_SLT, dst, src0, src1);
315 }
316
317 inline void emit_seq(ir_expression *ir, dst_reg dst,
318 const src_reg &src0, const src_reg &src1)
319 {
320 emit_equality_comparison(ir, OPCODE_SGE, dst, src0, src1);
321 }
322
323 bool process_move_condition(ir_rvalue *ir);
324
325 void copy_propagate(void);
326
327 void *mem_ctx;
328 };
329
330 } /* anonymous namespace */
331
332 static src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);
333
334 static dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);
335
336 static dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);
337
338 static int
339 swizzle_for_size(int size)
340 {
341 static const int size_swizzles[4] = {
342 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
343 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
344 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
345 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
346 };
347
348 assert((size >= 1) && (size <= 4));
349 return size_swizzles[size - 1];
350 }
351
352 ir_to_mesa_instruction *
353 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
354 dst_reg dst,
355 src_reg src0, src_reg src1, src_reg src2)
356 {
357 ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
358 int num_reladdr = 0;
359
360 /* If we have to do relative addressing, we want to load the ARL
361 * reg directly for one of the regs, and preload the other reladdr
362 * sources into temps.
363 */
364 num_reladdr += dst.reladdr != NULL;
365 num_reladdr += src0.reladdr != NULL;
366 num_reladdr += src1.reladdr != NULL;
367 num_reladdr += src2.reladdr != NULL;
368
369 reladdr_to_temp(ir, &src2, &num_reladdr);
370 reladdr_to_temp(ir, &src1, &num_reladdr);
371 reladdr_to_temp(ir, &src0, &num_reladdr);
372
373 if (dst.reladdr) {
374 emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
375 num_reladdr--;
376 }
377 assert(num_reladdr == 0);
378
379 inst->op = op;
380 inst->dst = dst;
381 inst->src[0] = src0;
382 inst->src[1] = src1;
383 inst->src[2] = src2;
384 inst->ir = ir;
385
386 this->instructions.push_tail(inst);
387
388 return inst;
389 }
390
391
392 ir_to_mesa_instruction *
393 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
394 dst_reg dst, src_reg src0, src_reg src1)
395 {
396 return emit(ir, op, dst, src0, src1, undef_src);
397 }
398
399 ir_to_mesa_instruction *
400 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
401 dst_reg dst, src_reg src0)
402 {
403 assert(dst.writemask != 0);
404 return emit(ir, op, dst, src0, undef_src, undef_src);
405 }
406
407 ir_to_mesa_instruction *
408 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
409 {
410 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
411 }
412
413 ir_to_mesa_instruction *
414 ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
415 dst_reg dst, src_reg src0, src_reg src1,
416 unsigned elements)
417 {
418 static const enum prog_opcode dot_opcodes[] = {
419 OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
420 };
421
422 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
423 }
424
425 /**
426 * Emits Mesa scalar opcodes to produce unique answers across channels.
427 *
428 * Some Mesa opcodes are scalar-only, like ARB_fp/vp. The src X
429 * channel determines the result across all channels. So to do a vec4
430 * of this operation, we want to emit a scalar per source channel used
431 * to produce dest channels.
432 */
433 void
434 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
435 dst_reg dst,
436 src_reg orig_src0, src_reg orig_src1)
437 {
438 int i, j;
439 int done_mask = ~dst.writemask;
440
441 /* Mesa RCP is a scalar operation splatting results to all channels,
442 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
443 * dst channels.
444 */
445 for (i = 0; i < 4; i++) {
446 GLuint this_mask = (1 << i);
447 ir_to_mesa_instruction *inst;
448 src_reg src0 = orig_src0;
449 src_reg src1 = orig_src1;
450
451 if (done_mask & this_mask)
452 continue;
453
454 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
455 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
456 for (j = i + 1; j < 4; j++) {
457 /* If there is another enabled component in the destination that is
458 * derived from the same inputs, generate its value on this pass as
459 * well.
460 */
461 if (!(done_mask & (1 << j)) &&
462 GET_SWZ(src0.swizzle, j) == src0_swiz &&
463 GET_SWZ(src1.swizzle, j) == src1_swiz) {
464 this_mask |= (1 << j);
465 }
466 }
467 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
468 src0_swiz, src0_swiz);
469 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
470 src1_swiz, src1_swiz);
471
472 inst = emit(ir, op, dst, src0, src1);
473 inst->dst.writemask = this_mask;
474 done_mask |= this_mask;
475 }
476 }
477
478 void
479 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
480 dst_reg dst, src_reg src0)
481 {
482 src_reg undef = undef_src;
483
484 undef.swizzle = SWIZZLE_XXXX;
485
486 emit_scalar(ir, op, dst, src0, undef);
487 }
488
489 src_reg
490 ir_to_mesa_visitor::src_reg_for_float(float val)
491 {
492 src_reg src(PROGRAM_CONSTANT, -1, NULL);
493
494 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
495 (const gl_constant_value *)&val, 1, &src.swizzle);
496
497 return src;
498 }
499
500 static int
501 type_size(const struct glsl_type *type)
502 {
503 unsigned int i;
504 int size;
505
506 switch (type->base_type) {
507 case GLSL_TYPE_UINT:
508 case GLSL_TYPE_INT:
509 case GLSL_TYPE_FLOAT:
510 case GLSL_TYPE_BOOL:
511 if (type->is_matrix()) {
512 return type->matrix_columns;
513 } else {
514 /* Regardless of size of vector, it gets a vec4. This is bad
515 * packing for things like floats, but otherwise arrays become a
516 * mess. Hopefully a later pass over the code can pack scalars
517 * down if appropriate.
518 */
519 return 1;
520 }
521 break;
522 case GLSL_TYPE_DOUBLE:
523 if (type->is_matrix()) {
524 if (type->vector_elements > 2)
525 return type->matrix_columns * 2;
526 else
527 return type->matrix_columns;
528 } else {
529 if (type->vector_elements > 2)
530 return 2;
531 else
532 return 1;
533 }
534 break;
535 case GLSL_TYPE_UINT64:
536 case GLSL_TYPE_INT64:
537 if (type->vector_elements > 2)
538 return 2;
539 else
540 return 1;
541 case GLSL_TYPE_ARRAY:
542 assert(type->length > 0);
543 return type_size(type->fields.array) * type->length;
544 case GLSL_TYPE_STRUCT:
545 size = 0;
546 for (i = 0; i < type->length; i++) {
547 size += type_size(type->fields.structure[i].type);
548 }
549 return size;
550 case GLSL_TYPE_SAMPLER:
551 case GLSL_TYPE_IMAGE:
552 case GLSL_TYPE_SUBROUTINE:
553 /* Samplers take up one slot in UNIFORMS[], but they're baked in
554 * at link time.
555 */
556 return 1;
557 case GLSL_TYPE_ATOMIC_UINT:
558 case GLSL_TYPE_VOID:
559 case GLSL_TYPE_ERROR:
560 case GLSL_TYPE_INTERFACE:
561 case GLSL_TYPE_FUNCTION:
562 assert(!"Invalid type in type_size");
563 break;
564 }
565
566 return 0;
567 }
568
569 /**
570 * In the initial pass of codegen, we assign temporary numbers to
571 * intermediate results. (not SSA -- variable assignments will reuse
572 * storage). Actual register allocation for the Mesa VM occurs in a
573 * pass over the Mesa IR later.
574 */
575 src_reg
576 ir_to_mesa_visitor::get_temp(const glsl_type *type)
577 {
578 src_reg src;
579
580 src.file = PROGRAM_TEMPORARY;
581 src.index = next_temp;
582 src.reladdr = NULL;
583 next_temp += type_size(type);
584
585 if (type->is_array() || type->is_record()) {
586 src.swizzle = SWIZZLE_NOOP;
587 } else {
588 src.swizzle = swizzle_for_size(type->vector_elements);
589 }
590 src.negate = 0;
591
592 return src;
593 }
594
595 variable_storage *
596 ir_to_mesa_visitor::find_variable_storage(const ir_variable *var)
597 {
598 foreach_in_list(variable_storage, entry, &this->variables) {
599 if (entry->var == var)
600 return entry;
601 }
602
603 return NULL;
604 }
605
606 void
607 ir_to_mesa_visitor::visit(ir_variable *ir)
608 {
609 if (strcmp(ir->name, "gl_FragCoord") == 0) {
610 this->prog->OriginUpperLeft = ir->data.origin_upper_left;
611 this->prog->PixelCenterInteger = ir->data.pixel_center_integer;
612 }
613
614 if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
615 unsigned int i;
616 const ir_state_slot *const slots = ir->get_state_slots();
617 assert(slots != NULL);
618
619 /* Check if this statevar's setup in the STATE file exactly
620 * matches how we'll want to reference it as a
621 * struct/array/whatever. If not, then we need to move it into
622 * temporary storage and hope that it'll get copy-propagated
623 * out.
624 */
625 for (i = 0; i < ir->get_num_state_slots(); i++) {
626 if (slots[i].swizzle != SWIZZLE_XYZW) {
627 break;
628 }
629 }
630
631 variable_storage *storage;
632 dst_reg dst;
633 if (i == ir->get_num_state_slots()) {
634 /* We'll set the index later. */
635 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
636 this->variables.push_tail(storage);
637
638 dst = undef_dst;
639 } else {
640 /* The variable_storage constructor allocates slots based on the size
641 * of the type. However, this had better match the number of state
642 * elements that we're going to copy into the new temporary.
643 */
644 assert((int) ir->get_num_state_slots() == type_size(ir->type));
645
646 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
647 this->next_temp);
648 this->variables.push_tail(storage);
649 this->next_temp += type_size(ir->type);
650
651 dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
652 }
653
654
655 for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
656 int index = _mesa_add_state_reference(this->prog->Parameters,
657 (gl_state_index *)slots[i].tokens);
658
659 if (storage->file == PROGRAM_STATE_VAR) {
660 if (storage->index == -1) {
661 storage->index = index;
662 } else {
663 assert(index == storage->index + (int)i);
664 }
665 } else {
666 src_reg src(PROGRAM_STATE_VAR, index, NULL);
667 src.swizzle = slots[i].swizzle;
668 emit(ir, OPCODE_MOV, dst, src);
669 /* even a float takes up a whole vec4 reg in a struct/array. */
670 dst.index++;
671 }
672 }
673
674 if (storage->file == PROGRAM_TEMPORARY &&
675 dst.index != storage->index + (int) ir->get_num_state_slots()) {
676 linker_error(this->shader_program,
677 "failed to load builtin uniform `%s' "
678 "(%d/%d regs loaded)\n",
679 ir->name, dst.index - storage->index,
680 type_size(ir->type));
681 }
682 }
683 }
684
685 void
686 ir_to_mesa_visitor::visit(ir_loop *ir)
687 {
688 emit(NULL, OPCODE_BGNLOOP);
689
690 visit_exec_list(&ir->body_instructions, this);
691
692 emit(NULL, OPCODE_ENDLOOP);
693 }
694
695 void
696 ir_to_mesa_visitor::visit(ir_loop_jump *ir)
697 {
698 switch (ir->mode) {
699 case ir_loop_jump::jump_break:
700 emit(NULL, OPCODE_BRK);
701 break;
702 case ir_loop_jump::jump_continue:
703 emit(NULL, OPCODE_CONT);
704 break;
705 }
706 }
707
708
709 void
710 ir_to_mesa_visitor::visit(ir_function_signature *ir)
711 {
712 assert(0);
713 (void)ir;
714 }
715
716 void
717 ir_to_mesa_visitor::visit(ir_function *ir)
718 {
719 /* Ignore function bodies other than main() -- we shouldn't see calls to
720 * them since they should all be inlined before we get to ir_to_mesa.
721 */
722 if (strcmp(ir->name, "main") == 0) {
723 const ir_function_signature *sig;
724 exec_list empty;
725
726 sig = ir->matching_signature(NULL, &empty, false);
727
728 assert(sig);
729
730 foreach_in_list(ir_instruction, ir, &sig->body) {
731 ir->accept(this);
732 }
733 }
734 }
735
736 bool
737 ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
738 {
739 int nonmul_operand = 1 - mul_operand;
740 src_reg a, b, c;
741
742 ir_expression *expr = ir->operands[mul_operand]->as_expression();
743 if (!expr || expr->operation != ir_binop_mul)
744 return false;
745
746 expr->operands[0]->accept(this);
747 a = this->result;
748 expr->operands[1]->accept(this);
749 b = this->result;
750 ir->operands[nonmul_operand]->accept(this);
751 c = this->result;
752
753 this->result = get_temp(ir->type);
754 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);
755
756 return true;
757 }
758
759 /**
760 * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b))
761 *
762 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
763 * implemented using multiplication, and logical-or is implemented using
764 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
765 * As result, the logical expression (a & !b) can be rewritten as:
766 *
767 * - a * !b
768 * - a * (1 - b)
769 * - (a * 1) - (a * b)
770 * - a + -(a * b)
771 * - a + (a * -b)
772 *
773 * This final expression can be implemented as a single MAD(a, -b, a)
774 * instruction.
775 */
776 bool
777 ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
778 {
779 const int other_operand = 1 - try_operand;
780 src_reg a, b;
781
782 ir_expression *expr = ir->operands[try_operand]->as_expression();
783 if (!expr || expr->operation != ir_unop_logic_not)
784 return false;
785
786 ir->operands[other_operand]->accept(this);
787 a = this->result;
788 expr->operands[0]->accept(this);
789 b = this->result;
790
791 b.negate = ~b.negate;
792
793 this->result = get_temp(ir->type);
794 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a);
795
796 return true;
797 }
798
799 void
800 ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
801 src_reg *reg, int *num_reladdr)
802 {
803 if (!reg->reladdr)
804 return;
805
806 emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);
807
808 if (*num_reladdr != 1) {
809 src_reg temp = get_temp(glsl_type::vec4_type);
810
811 emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
812 *reg = temp;
813 }
814
815 (*num_reladdr)--;
816 }
817
818 void
819 ir_to_mesa_visitor::emit_swz(ir_expression *ir)
820 {
821 /* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
822 * This means that each of the operands is either an immediate value of -1,
823 * 0, or 1, or is a component from one source register (possibly with
824 * negation).
825 */
826 uint8_t components[4] = { 0 };
827 bool negate[4] = { false };
828 ir_variable *var = NULL;
829
830 for (unsigned i = 0; i < ir->type->vector_elements; i++) {
831 ir_rvalue *op = ir->operands[i];
832
833 assert(op->type->is_scalar());
834
835 while (op != NULL) {
836 switch (op->ir_type) {
837 case ir_type_constant: {
838
839 assert(op->type->is_scalar());
840
841 const ir_constant *const c = op->as_constant();
842 if (c->is_one()) {
843 components[i] = SWIZZLE_ONE;
844 } else if (c->is_zero()) {
845 components[i] = SWIZZLE_ZERO;
846 } else if (c->is_negative_one()) {
847 components[i] = SWIZZLE_ONE;
848 negate[i] = true;
849 } else {
850 assert(!"SWZ constant must be 0.0 or 1.0.");
851 }
852
853 op = NULL;
854 break;
855 }
856
857 case ir_type_dereference_variable: {
858 ir_dereference_variable *const deref =
859 (ir_dereference_variable *) op;
860
861 assert((var == NULL) || (deref->var == var));
862 components[i] = SWIZZLE_X;
863 var = deref->var;
864 op = NULL;
865 break;
866 }
867
868 case ir_type_expression: {
869 ir_expression *const expr = (ir_expression *) op;
870
871 assert(expr->operation == ir_unop_neg);
872 negate[i] = true;
873
874 op = expr->operands[0];
875 break;
876 }
877
878 case ir_type_swizzle: {
879 ir_swizzle *const swiz = (ir_swizzle *) op;
880
881 components[i] = swiz->mask.x;
882 op = swiz->val;
883 break;
884 }
885
886 default:
887 assert(!"Should not get here.");
888 return;
889 }
890 }
891 }
892
893 assert(var != NULL);
894
895 ir_dereference_variable *const deref =
896 new(mem_ctx) ir_dereference_variable(var);
897
898 this->result.file = PROGRAM_UNDEFINED;
899 deref->accept(this);
900 if (this->result.file == PROGRAM_UNDEFINED) {
901 printf("Failed to get tree for expression operand:\n");
902 deref->print();
903 printf("\n");
904 exit(1);
905 }
906
907 src_reg src;
908
909 src = this->result;
910 src.swizzle = MAKE_SWIZZLE4(components[0],
911 components[1],
912 components[2],
913 components[3]);
914 src.negate = ((unsigned(negate[0]) << 0)
915 | (unsigned(negate[1]) << 1)
916 | (unsigned(negate[2]) << 2)
917 | (unsigned(negate[3]) << 3));
918
919 /* Storage for our result. Ideally for an assignment we'd be using the
920 * actual storage for the result here, instead.
921 */
922 const src_reg result_src = get_temp(ir->type);
923 dst_reg result_dst = dst_reg(result_src);
924
925 /* Limit writes to the channels that will be used by result_src later.
926 * This does limit this temp's use as a temporary for multi-instruction
927 * sequences.
928 */
929 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
930
931 emit(ir, OPCODE_SWZ, result_dst, src);
932 this->result = result_src;
933 }
934
935 void
936 ir_to_mesa_visitor::emit_equality_comparison(ir_expression *ir,
937 enum prog_opcode op,
938 dst_reg dst,
939 const src_reg &src0,
940 const src_reg &src1)
941 {
942 src_reg difference;
943 src_reg abs_difference = get_temp(glsl_type::vec4_type);
944 const src_reg zero = src_reg_for_float(0.0);
945
946 /* x == y is equivalent to -abs(x-y) >= 0. Since all of the code that
947 * consumes the generated IR is pretty dumb, take special care when one
948 * of the operands is zero.
949 *
950 * Similarly, x != y is equivalent to -abs(x-y) < 0.
951 */
952 if (src0.file == zero.file &&
953 src0.index == zero.index &&
954 src0.swizzle == zero.swizzle) {
955 difference = src1;
956 } else if (src1.file == zero.file &&
957 src1.index == zero.index &&
958 src1.swizzle == zero.swizzle) {
959 difference = src0;
960 } else {
961 difference = get_temp(glsl_type::vec4_type);
962
963 src_reg tmp_src = src0;
964 tmp_src.negate = ~tmp_src.negate;
965
966 emit(ir, OPCODE_ADD, dst_reg(difference), tmp_src, src1);
967 }
968
969 emit(ir, OPCODE_ABS, dst_reg(abs_difference), difference);
970
971 abs_difference.negate = ~abs_difference.negate;
972 emit(ir, op, dst, abs_difference, zero);
973 }
974
975 void
976 ir_to_mesa_visitor::visit(ir_expression *ir)
977 {
978 unsigned int operand;
979 src_reg op[ARRAY_SIZE(ir->operands)];
980 src_reg result_src;
981 dst_reg result_dst;
982
983 /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
984 */
985 if (ir->operation == ir_binop_add) {
986 if (try_emit_mad(ir, 1))
987 return;
988 if (try_emit_mad(ir, 0))
989 return;
990 }
991
992 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
993 */
994 if (ir->operation == ir_binop_logic_and) {
995 if (try_emit_mad_for_and_not(ir, 1))
996 return;
997 if (try_emit_mad_for_and_not(ir, 0))
998 return;
999 }
1000
1001 if (ir->operation == ir_quadop_vector) {
1002 this->emit_swz(ir);
1003 return;
1004 }
1005
1006 for (operand = 0; operand < ir->get_num_operands(); operand++) {
1007 this->result.file = PROGRAM_UNDEFINED;
1008 ir->operands[operand]->accept(this);
1009 if (this->result.file == PROGRAM_UNDEFINED) {
1010 printf("Failed to get tree for expression operand:\n");
1011 ir->operands[operand]->print();
1012 printf("\n");
1013 exit(1);
1014 }
1015 op[operand] = this->result;
1016
1017 /* Matrix expression operands should have been broken down to vector
1018 * operations already.
1019 */
1020 assert(!ir->operands[operand]->type->is_matrix());
1021 }
1022
1023 int vector_elements = ir->operands[0]->type->vector_elements;
1024 if (ir->operands[1]) {
1025 vector_elements = MAX2(vector_elements,
1026 ir->operands[1]->type->vector_elements);
1027 }
1028
1029 this->result.file = PROGRAM_UNDEFINED;
1030
1031 /* Storage for our result. Ideally for an assignment we'd be using
1032 * the actual storage for the result here, instead.
1033 */
1034 result_src = get_temp(ir->type);
1035 /* convenience for the emit functions below. */
1036 result_dst = dst_reg(result_src);
1037 /* Limit writes to the channels that will be used by result_src later.
1038 * This does limit this temp's use as a temporary for multi-instruction
1039 * sequences.
1040 */
1041 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1042
1043 switch (ir->operation) {
1044 case ir_unop_logic_not:
1045 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
1046 * older GPUs implement SEQ using multiple instructions (i915 uses two
1047 * SGE instructions and a MUL instruction). Since our logic values are
1048 * 0.0 and 1.0, 1-x also implements !x.
1049 */
1050 op[0].negate = ~op[0].negate;
1051 emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0));
1052 break;
1053 case ir_unop_neg:
1054 op[0].negate = ~op[0].negate;
1055 result_src = op[0];
1056 break;
1057 case ir_unop_abs:
1058 emit(ir, OPCODE_ABS, result_dst, op[0]);
1059 break;
1060 case ir_unop_sign:
1061 emit(ir, OPCODE_SSG, result_dst, op[0]);
1062 break;
1063 case ir_unop_rcp:
1064 emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
1065 break;
1066
1067 case ir_unop_exp2:
1068 emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
1069 break;
1070 case ir_unop_exp:
1071 case ir_unop_log:
1072 assert(!"not reached: should be handled by ir_explog_to_explog2");
1073 break;
1074 case ir_unop_log2:
1075 emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
1076 break;
1077 case ir_unop_sin:
1078 emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
1079 break;
1080 case ir_unop_cos:
1081 emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
1082 break;
1083
1084 case ir_unop_dFdx:
1085 emit(ir, OPCODE_DDX, result_dst, op[0]);
1086 break;
1087 case ir_unop_dFdy:
1088 emit(ir, OPCODE_DDY, result_dst, op[0]);
1089 break;
1090
1091 case ir_unop_saturate: {
1092 ir_to_mesa_instruction *inst = emit(ir, OPCODE_MOV,
1093 result_dst, op[0]);
1094 inst->saturate = true;
1095 break;
1096 }
1097 case ir_unop_noise: {
1098 const enum prog_opcode opcode =
1099 prog_opcode(OPCODE_NOISE1
1100 + (ir->operands[0]->type->vector_elements) - 1);
1101 assert((opcode >= OPCODE_NOISE1) && (opcode <= OPCODE_NOISE4));
1102
1103 emit(ir, opcode, result_dst, op[0]);
1104 break;
1105 }
1106
1107 case ir_binop_add:
1108 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1109 break;
1110 case ir_binop_sub:
1111 emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
1112 break;
1113
1114 case ir_binop_mul:
1115 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1116 break;
1117 case ir_binop_div:
1118 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1119 break;
1120 case ir_binop_mod:
1121 /* Floating point should be lowered by MOD_TO_FLOOR in the compiler. */
1122 assert(ir->type->is_integer());
1123 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1124 break;
1125
1126 case ir_binop_less:
1127 emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1128 break;
1129 case ir_binop_greater:
1130 /* Negating the operands (as opposed to switching the order of the
1131 * operands) produces the correct result when both are +/-Inf.
1132 */
1133 op[0].negate = ~op[0].negate;
1134 op[1].negate = ~op[1].negate;
1135 emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1136 break;
1137 case ir_binop_lequal:
1138 /* Negating the operands (as opposed to switching the order of the
1139 * operands) produces the correct result when both are +/-Inf.
1140 */
1141 op[0].negate = ~op[0].negate;
1142 op[1].negate = ~op[1].negate;
1143 emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1144 break;
1145 case ir_binop_gequal:
1146 emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1147 break;
1148 case ir_binop_equal:
1149 emit_seq(ir, result_dst, op[0], op[1]);
1150 break;
1151 case ir_binop_nequal:
1152 emit_sne(ir, result_dst, op[0], op[1]);
1153 break;
1154 case ir_binop_all_equal:
1155 /* "==" operator producing a scalar boolean. */
1156 if (ir->operands[0]->type->is_vector() ||
1157 ir->operands[1]->type->is_vector()) {
1158 src_reg temp = get_temp(glsl_type::vec4_type);
1159 emit_sne(ir, dst_reg(temp), op[0], op[1]);
1160
1161 /* After the dot-product, the value will be an integer on the
1162 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1163 */
1164 emit_dp(ir, result_dst, temp, temp, vector_elements);
1165
1166 /* Negating the result of the dot-product gives values on the range
1167 * [-4, 0]. Zero becomes 1.0, and negative values become zero. This
1168 * achieved using SGE.
1169 */
1170 src_reg sge_src = result_src;
1171 sge_src.negate = ~sge_src.negate;
1172 emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0));
1173 } else {
1174 emit_seq(ir, result_dst, op[0], op[1]);
1175 }
1176 break;
1177 case ir_binop_any_nequal:
1178 /* "!=" operator producing a scalar boolean. */
1179 if (ir->operands[0]->type->is_vector() ||
1180 ir->operands[1]->type->is_vector()) {
1181 src_reg temp = get_temp(glsl_type::vec4_type);
1182 if (ir->operands[0]->type->is_boolean() &&
1183 ir->operands[1]->as_constant() &&
1184 ir->operands[1]->as_constant()->is_zero()) {
1185 temp = op[0];
1186 } else {
1187 emit_sne(ir, dst_reg(temp), op[0], op[1]);
1188 }
1189
1190 /* After the dot-product, the value will be an integer on the
1191 * range [0,4]. Zero stays zero, and positive values become 1.0.
1192 */
1193 ir_to_mesa_instruction *const dp =
1194 emit_dp(ir, result_dst, temp, temp, vector_elements);
1195 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1196 /* The clamping to [0,1] can be done for free in the fragment
1197 * shader with a saturate.
1198 */
1199 dp->saturate = true;
1200 } else {
1201 /* Negating the result of the dot-product gives values on the range
1202 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1203 * achieved using SLT.
1204 */
1205 src_reg slt_src = result_src;
1206 slt_src.negate = ~slt_src.negate;
1207 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1208 }
1209 } else {
1210 emit_sne(ir, result_dst, op[0], op[1]);
1211 }
1212 break;
1213
1214 case ir_binop_logic_xor:
1215 emit_sne(ir, result_dst, op[0], op[1]);
1216 break;
1217
1218 case ir_binop_logic_or: {
1219 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1220 /* After the addition, the value will be an integer on the
1221 * range [0,2]. Zero stays zero, and positive values become 1.0.
1222 */
1223 ir_to_mesa_instruction *add =
1224 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1225 add->saturate = true;
1226 } else {
1227 /* The Boolean arguments are stored as float 0.0 and 1.0. If either
1228 * value is 1.0, the result of the logcal-or should be 1.0. If both
1229 * values are 0.0, the result should be 0.0. This is exactly what
1230 * MAX does.
1231 */
1232 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1233 }
1234 break;
1235 }
1236
1237 case ir_binop_logic_and:
1238 /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1239 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1240 break;
1241
1242 case ir_binop_dot:
1243 assert(ir->operands[0]->type->is_vector());
1244 assert(ir->operands[0]->type == ir->operands[1]->type);
1245 emit_dp(ir, result_dst, op[0], op[1],
1246 ir->operands[0]->type->vector_elements);
1247 break;
1248
1249 case ir_unop_sqrt:
1250 /* sqrt(x) = x * rsq(x). */
1251 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1252 emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
1253 /* For incoming channels <= 0, set the result to 0. */
1254 op[0].negate = ~op[0].negate;
1255 emit(ir, OPCODE_CMP, result_dst,
1256 op[0], result_src, src_reg_for_float(0.0));
1257 break;
1258 case ir_unop_rsq:
1259 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1260 break;
1261 case ir_unop_i2f:
1262 case ir_unop_u2f:
1263 case ir_unop_b2f:
1264 case ir_unop_b2i:
1265 case ir_unop_i2u:
1266 case ir_unop_u2i:
1267 /* Mesa IR lacks types, ints are stored as truncated floats. */
1268 result_src = op[0];
1269 break;
1270 case ir_unop_f2i:
1271 case ir_unop_f2u:
1272 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1273 break;
1274 case ir_unop_f2b:
1275 case ir_unop_i2b:
1276 emit_sne(ir, result_dst, op[0], src_reg_for_float(0.0));
1277 break;
1278 case ir_unop_bitcast_f2i: // Ignore these 4, they can't happen here anyway
1279 case ir_unop_bitcast_f2u:
1280 case ir_unop_bitcast_i2f:
1281 case ir_unop_bitcast_u2f:
1282 break;
1283 case ir_unop_trunc:
1284 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1285 break;
1286 case ir_unop_ceil:
1287 op[0].negate = ~op[0].negate;
1288 emit(ir, OPCODE_FLR, result_dst, op[0]);
1289 result_src.negate = ~result_src.negate;
1290 break;
1291 case ir_unop_floor:
1292 emit(ir, OPCODE_FLR, result_dst, op[0]);
1293 break;
1294 case ir_unop_fract:
1295 emit(ir, OPCODE_FRC, result_dst, op[0]);
1296 break;
1297 case ir_unop_pack_snorm_2x16:
1298 case ir_unop_pack_snorm_4x8:
1299 case ir_unop_pack_unorm_2x16:
1300 case ir_unop_pack_unorm_4x8:
1301 case ir_unop_pack_half_2x16:
1302 case ir_unop_pack_double_2x32:
1303 case ir_unop_unpack_snorm_2x16:
1304 case ir_unop_unpack_snorm_4x8:
1305 case ir_unop_unpack_unorm_2x16:
1306 case ir_unop_unpack_unorm_4x8:
1307 case ir_unop_unpack_half_2x16:
1308 case ir_unop_unpack_double_2x32:
1309 case ir_unop_bitfield_reverse:
1310 case ir_unop_bit_count:
1311 case ir_unop_find_msb:
1312 case ir_unop_find_lsb:
1313 case ir_unop_d2f:
1314 case ir_unop_f2d:
1315 case ir_unop_d2i:
1316 case ir_unop_i2d:
1317 case ir_unop_d2u:
1318 case ir_unop_u2d:
1319 case ir_unop_d2b:
1320 case ir_unop_frexp_sig:
1321 case ir_unop_frexp_exp:
1322 assert(!"not supported");
1323 break;
1324 case ir_binop_min:
1325 emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
1326 break;
1327 case ir_binop_max:
1328 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1329 break;
1330 case ir_binop_pow:
1331 emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
1332 break;
1333
1334 /* GLSL 1.30 integer ops are unsupported in Mesa IR, but since
1335 * hardware backends have no way to avoid Mesa IR generation
1336 * even if they don't use it, we need to emit "something" and
1337 * continue.
1338 */
1339 case ir_binop_lshift:
1340 case ir_binop_rshift:
1341 case ir_binop_bit_and:
1342 case ir_binop_bit_xor:
1343 case ir_binop_bit_or:
1344 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1345 break;
1346
1347 case ir_unop_bit_not:
1348 case ir_unop_round_even:
1349 emit(ir, OPCODE_MOV, result_dst, op[0]);
1350 break;
1351
1352 case ir_binop_ubo_load:
1353 assert(!"not supported");
1354 break;
1355
1356 case ir_triop_lrp:
1357 /* ir_triop_lrp operands are (x, y, a) while
1358 * OPCODE_LRP operands are (a, y, x) to match ARB_fragment_program.
1359 */
1360 emit(ir, OPCODE_LRP, result_dst, op[2], op[1], op[0]);
1361 break;
1362
1363 case ir_binop_vector_extract:
1364 case ir_triop_fma:
1365 case ir_triop_bitfield_extract:
1366 case ir_triop_vector_insert:
1367 case ir_quadop_bitfield_insert:
1368 case ir_binop_ldexp:
1369 case ir_triop_csel:
1370 case ir_binop_carry:
1371 case ir_binop_borrow:
1372 case ir_binop_imul_high:
1373 case ir_unop_interpolate_at_centroid:
1374 case ir_binop_interpolate_at_offset:
1375 case ir_binop_interpolate_at_sample:
1376 case ir_unop_dFdx_coarse:
1377 case ir_unop_dFdx_fine:
1378 case ir_unop_dFdy_coarse:
1379 case ir_unop_dFdy_fine:
1380 case ir_unop_subroutine_to_int:
1381 case ir_unop_get_buffer_size:
1382 case ir_unop_vote_any:
1383 case ir_unop_vote_all:
1384 case ir_unop_vote_eq:
1385 case ir_unop_bitcast_u642d:
1386 case ir_unop_bitcast_i642d:
1387 case ir_unop_bitcast_d2u64:
1388 case ir_unop_bitcast_d2i64:
1389 case ir_unop_i642i:
1390 case ir_unop_u642i:
1391 case ir_unop_i642u:
1392 case ir_unop_u642u:
1393 case ir_unop_i642b:
1394 case ir_unop_i642f:
1395 case ir_unop_u642f:
1396 case ir_unop_i642d:
1397 case ir_unop_u642d:
1398 case ir_unop_i2i64:
1399 case ir_unop_u2i64:
1400 case ir_unop_b2i64:
1401 case ir_unop_f2i64:
1402 case ir_unop_d2i64:
1403 case ir_unop_i2u64:
1404 case ir_unop_u2u64:
1405 case ir_unop_f2u64:
1406 case ir_unop_d2u64:
1407 case ir_unop_u642i64:
1408 case ir_unop_i642u64:
1409 case ir_unop_pack_int_2x32:
1410 case ir_unop_unpack_int_2x32:
1411 case ir_unop_pack_uint_2x32:
1412 case ir_unop_unpack_uint_2x32:
1413 assert(!"not supported");
1414 break;
1415
1416 case ir_unop_ssbo_unsized_array_length:
1417 case ir_quadop_vector:
1418 /* This operation should have already been handled.
1419 */
1420 assert(!"Should not get here.");
1421 break;
1422 }
1423
1424 this->result = result_src;
1425 }
1426
1427
1428 void
1429 ir_to_mesa_visitor::visit(ir_swizzle *ir)
1430 {
1431 src_reg src;
1432 int i;
1433 int swizzle[4];
1434
1435 /* Note that this is only swizzles in expressions, not those on the left
1436 * hand side of an assignment, which do write masking. See ir_assignment
1437 * for that.
1438 */
1439
1440 ir->val->accept(this);
1441 src = this->result;
1442 assert(src.file != PROGRAM_UNDEFINED);
1443 assert(ir->type->vector_elements > 0);
1444
1445 for (i = 0; i < 4; i++) {
1446 if (i < ir->type->vector_elements) {
1447 switch (i) {
1448 case 0:
1449 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1450 break;
1451 case 1:
1452 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1453 break;
1454 case 2:
1455 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1456 break;
1457 case 3:
1458 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1459 break;
1460 }
1461 } else {
1462 /* If the type is smaller than a vec4, replicate the last
1463 * channel out.
1464 */
1465 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1466 }
1467 }
1468
1469 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1470
1471 this->result = src;
1472 }
1473
1474 void
1475 ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
1476 {
1477 variable_storage *entry = find_variable_storage(ir->var);
1478 ir_variable *var = ir->var;
1479
1480 if (!entry) {
1481 switch (var->data.mode) {
1482 case ir_var_uniform:
1483 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1484 var->data.param_index);
1485 this->variables.push_tail(entry);
1486 break;
1487 case ir_var_shader_in:
1488 /* The linker assigns locations for varyings and attributes,
1489 * including deprecated builtins (like gl_Color),
1490 * user-assigned generic attributes (glBindVertexLocation),
1491 * and user-defined varyings.
1492 */
1493 assert(var->data.location != -1);
1494 entry = new(mem_ctx) variable_storage(var,
1495 PROGRAM_INPUT,
1496 var->data.location);
1497 break;
1498 case ir_var_shader_out:
1499 assert(var->data.location != -1);
1500 entry = new(mem_ctx) variable_storage(var,
1501 PROGRAM_OUTPUT,
1502 var->data.location);
1503 break;
1504 case ir_var_system_value:
1505 entry = new(mem_ctx) variable_storage(var,
1506 PROGRAM_SYSTEM_VALUE,
1507 var->data.location);
1508 break;
1509 case ir_var_auto:
1510 case ir_var_temporary:
1511 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1512 this->next_temp);
1513 this->variables.push_tail(entry);
1514
1515 next_temp += type_size(var->type);
1516 break;
1517 }
1518
1519 if (!entry) {
1520 printf("Failed to make storage for %s\n", var->name);
1521 exit(1);
1522 }
1523 }
1524
1525 this->result = src_reg(entry->file, entry->index, var->type);
1526 }
1527
1528 void
1529 ir_to_mesa_visitor::visit(ir_dereference_array *ir)
1530 {
1531 ir_constant *index;
1532 src_reg src;
1533 int element_size = type_size(ir->type);
1534
1535 index = ir->array_index->constant_expression_value();
1536
1537 ir->array->accept(this);
1538 src = this->result;
1539
1540 if (index) {
1541 src.index += index->value.i[0] * element_size;
1542 } else {
1543 /* Variable index array dereference. It eats the "vec4" of the
1544 * base of the array and an index that offsets the Mesa register
1545 * index.
1546 */
1547 ir->array_index->accept(this);
1548
1549 src_reg index_reg;
1550
1551 if (element_size == 1) {
1552 index_reg = this->result;
1553 } else {
1554 index_reg = get_temp(glsl_type::float_type);
1555
1556 emit(ir, OPCODE_MUL, dst_reg(index_reg),
1557 this->result, src_reg_for_float(element_size));
1558 }
1559
1560 /* If there was already a relative address register involved, add the
1561 * new and the old together to get the new offset.
1562 */
1563 if (src.reladdr != NULL) {
1564 src_reg accum_reg = get_temp(glsl_type::float_type);
1565
1566 emit(ir, OPCODE_ADD, dst_reg(accum_reg),
1567 index_reg, *src.reladdr);
1568
1569 index_reg = accum_reg;
1570 }
1571
1572 src.reladdr = ralloc(mem_ctx, src_reg);
1573 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1574 }
1575
1576 /* If the type is smaller than a vec4, replicate the last channel out. */
1577 if (ir->type->is_scalar() || ir->type->is_vector())
1578 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1579 else
1580 src.swizzle = SWIZZLE_NOOP;
1581
1582 this->result = src;
1583 }
1584
1585 void
1586 ir_to_mesa_visitor::visit(ir_dereference_record *ir)
1587 {
1588 unsigned int i;
1589 const glsl_type *struct_type = ir->record->type;
1590 int offset = 0;
1591
1592 ir->record->accept(this);
1593
1594 for (i = 0; i < struct_type->length; i++) {
1595 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1596 break;
1597 offset += type_size(struct_type->fields.structure[i].type);
1598 }
1599
1600 /* If the type is smaller than a vec4, replicate the last channel out. */
1601 if (ir->type->is_scalar() || ir->type->is_vector())
1602 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1603 else
1604 this->result.swizzle = SWIZZLE_NOOP;
1605
1606 this->result.index += offset;
1607 }
1608
1609 /**
1610 * We want to be careful in assignment setup to hit the actual storage
1611 * instead of potentially using a temporary like we might with the
1612 * ir_dereference handler.
1613 */
1614 static dst_reg
1615 get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
1616 {
1617 /* The LHS must be a dereference. If the LHS is a variable indexed array
1618 * access of a vector, it must be separated into a series conditional moves
1619 * before reaching this point (see ir_vec_index_to_cond_assign).
1620 */
1621 assert(ir->as_dereference());
1622 ir_dereference_array *deref_array = ir->as_dereference_array();
1623 if (deref_array) {
1624 assert(!deref_array->array->type->is_vector());
1625 }
1626
1627 /* Use the rvalue deref handler for the most part. We'll ignore
1628 * swizzles in it and write swizzles using writemask, though.
1629 */
1630 ir->accept(v);
1631 return dst_reg(v->result);
1632 }
1633
1634 /* Calculate the sampler index and also calculate the base uniform location
1635 * for struct members.
1636 */
1637 static void
1638 calc_sampler_offsets(struct gl_shader_program *prog, ir_dereference *deref,
1639 unsigned *offset, unsigned *array_elements,
1640 unsigned *location)
1641 {
1642 if (deref->ir_type == ir_type_dereference_variable)
1643 return;
1644
1645 switch (deref->ir_type) {
1646 case ir_type_dereference_array: {
1647 ir_dereference_array *deref_arr = deref->as_dereference_array();
1648 ir_constant *array_index =
1649 deref_arr->array_index->constant_expression_value();
1650
1651 if (!array_index) {
1652 /* GLSL 1.10 and 1.20 allowed variable sampler array indices,
1653 * while GLSL 1.30 requires that the array indices be
1654 * constant integer expressions. We don't expect any driver
1655 * to actually work with a really variable array index, so
1656 * all that would work would be an unrolled loop counter that ends
1657 * up being constant above.
1658 */
1659 ralloc_strcat(&prog->data->InfoLog,
1660 "warning: Variable sampler array index unsupported.\n"
1661 "This feature of the language was removed in GLSL 1.20 "
1662 "and is unlikely to be supported for 1.10 in Mesa.\n");
1663 } else {
1664 *offset += array_index->value.u[0] * *array_elements;
1665 }
1666
1667 *array_elements *= deref_arr->array->type->length;
1668
1669 calc_sampler_offsets(prog, deref_arr->array->as_dereference(),
1670 offset, array_elements, location);
1671 break;
1672 }
1673
1674 case ir_type_dereference_record: {
1675 ir_dereference_record *deref_record = deref->as_dereference_record();
1676 unsigned field_index =
1677 deref_record->record->type->field_index(deref_record->field);
1678 *location +=
1679 deref_record->record->type->record_location_offset(field_index);
1680 calc_sampler_offsets(prog, deref_record->record->as_dereference(),
1681 offset, array_elements, location);
1682 break;
1683 }
1684
1685 default:
1686 unreachable("Invalid deref type");
1687 break;
1688 }
1689 }
1690
1691 static int
1692 get_sampler_uniform_value(class ir_dereference *sampler,
1693 struct gl_shader_program *shader_program,
1694 const struct gl_program *prog)
1695 {
1696 GLuint shader = _mesa_program_enum_to_shader_stage(prog->Target);
1697 ir_variable *var = sampler->variable_referenced();
1698 unsigned location = var->data.location;
1699 unsigned array_elements = 1;
1700 unsigned offset = 0;
1701
1702 calc_sampler_offsets(shader_program, sampler, &offset, &array_elements,
1703 &location);
1704
1705 assert(shader_program->data->UniformStorage[location].opaque[shader].active);
1706 return shader_program->data->UniformStorage[location].opaque[shader].index +
1707 offset;
1708 }
1709
1710 /**
1711 * Process the condition of a conditional assignment
1712 *
1713 * Examines the condition of a conditional assignment to generate the optimal
1714 * first operand of a \c CMP instruction. If the condition is a relational
1715 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1716 * used as the source for the \c CMP instruction. Otherwise the comparison
1717 * is processed to a boolean result, and the boolean result is used as the
1718 * operand to the CMP instruction.
1719 */
1720 bool
1721 ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
1722 {
1723 ir_rvalue *src_ir = ir;
1724 bool negate = true;
1725 bool switch_order = false;
1726
1727 ir_expression *const expr = ir->as_expression();
1728 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
1729 bool zero_on_left = false;
1730
1731 if (expr->operands[0]->is_zero()) {
1732 src_ir = expr->operands[1];
1733 zero_on_left = true;
1734 } else if (expr->operands[1]->is_zero()) {
1735 src_ir = expr->operands[0];
1736 zero_on_left = false;
1737 }
1738
1739 /* a is - 0 + - 0 +
1740 * (a < 0) T F F ( a < 0) T F F
1741 * (0 < a) F F T (-a < 0) F F T
1742 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
1743 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
1744 * (a > 0) F F T (-a < 0) F F T
1745 * (0 > a) T F F ( a < 0) T F F
1746 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
1747 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
1748 *
1749 * Note that exchanging the order of 0 and 'a' in the comparison simply
1750 * means that the value of 'a' should be negated.
1751 */
1752 if (src_ir != ir) {
1753 switch (expr->operation) {
1754 case ir_binop_less:
1755 switch_order = false;
1756 negate = zero_on_left;
1757 break;
1758
1759 case ir_binop_greater:
1760 switch_order = false;
1761 negate = !zero_on_left;
1762 break;
1763
1764 case ir_binop_lequal:
1765 switch_order = true;
1766 negate = !zero_on_left;
1767 break;
1768
1769 case ir_binop_gequal:
1770 switch_order = true;
1771 negate = zero_on_left;
1772 break;
1773
1774 default:
1775 /* This isn't the right kind of comparison afterall, so make sure
1776 * the whole condition is visited.
1777 */
1778 src_ir = ir;
1779 break;
1780 }
1781 }
1782 }
1783
1784 src_ir->accept(this);
1785
1786 /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1787 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
1788 * choose which value OPCODE_CMP produces without an extra instruction
1789 * computing the condition.
1790 */
1791 if (negate)
1792 this->result.negate = ~this->result.negate;
1793
1794 return switch_order;
1795 }
1796
1797 void
1798 ir_to_mesa_visitor::visit(ir_assignment *ir)
1799 {
1800 dst_reg l;
1801 src_reg r;
1802 int i;
1803
1804 ir->rhs->accept(this);
1805 r = this->result;
1806
1807 l = get_assignment_lhs(ir->lhs, this);
1808
1809 /* FINISHME: This should really set to the correct maximal writemask for each
1810 * FINISHME: component written (in the loops below). This case can only
1811 * FINISHME: occur for matrices, arrays, and structures.
1812 */
1813 if (ir->write_mask == 0) {
1814 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1815 l.writemask = WRITEMASK_XYZW;
1816 } else if (ir->lhs->type->is_scalar()) {
1817 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1818 * FINISHME: W component of fragment shader output zero, work correctly.
1819 */
1820 l.writemask = WRITEMASK_XYZW;
1821 } else {
1822 int swizzles[4];
1823 int first_enabled_chan = 0;
1824 int rhs_chan = 0;
1825
1826 assert(ir->lhs->type->is_vector());
1827 l.writemask = ir->write_mask;
1828
1829 for (int i = 0; i < 4; i++) {
1830 if (l.writemask & (1 << i)) {
1831 first_enabled_chan = GET_SWZ(r.swizzle, i);
1832 break;
1833 }
1834 }
1835
1836 /* Swizzle a small RHS vector into the channels being written.
1837 *
1838 * glsl ir treats write_mask as dictating how many channels are
1839 * present on the RHS while Mesa IR treats write_mask as just
1840 * showing which channels of the vec4 RHS get written.
1841 */
1842 for (int i = 0; i < 4; i++) {
1843 if (l.writemask & (1 << i))
1844 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1845 else
1846 swizzles[i] = first_enabled_chan;
1847 }
1848 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1849 swizzles[2], swizzles[3]);
1850 }
1851
1852 assert(l.file != PROGRAM_UNDEFINED);
1853 assert(r.file != PROGRAM_UNDEFINED);
1854
1855 if (ir->condition) {
1856 const bool switch_order = this->process_move_condition(ir->condition);
1857 src_reg condition = this->result;
1858
1859 for (i = 0; i < type_size(ir->lhs->type); i++) {
1860 if (switch_order) {
1861 emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
1862 } else {
1863 emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
1864 }
1865
1866 l.index++;
1867 r.index++;
1868 }
1869 } else {
1870 for (i = 0; i < type_size(ir->lhs->type); i++) {
1871 emit(ir, OPCODE_MOV, l, r);
1872 l.index++;
1873 r.index++;
1874 }
1875 }
1876 }
1877
1878
1879 void
1880 ir_to_mesa_visitor::visit(ir_constant *ir)
1881 {
1882 src_reg src;
1883 GLfloat stack_vals[4] = { 0 };
1884 GLfloat *values = stack_vals;
1885 unsigned int i;
1886
1887 /* Unfortunately, 4 floats is all we can get into
1888 * _mesa_add_unnamed_constant. So, make a temp to store an
1889 * aggregate constant and move each constant value into it. If we
1890 * get lucky, copy propagation will eliminate the extra moves.
1891 */
1892
1893 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
1894 src_reg temp_base = get_temp(ir->type);
1895 dst_reg temp = dst_reg(temp_base);
1896
1897 foreach_in_list(ir_constant, field_value, &ir->components) {
1898 int size = type_size(field_value->type);
1899
1900 assert(size > 0);
1901
1902 field_value->accept(this);
1903 src = this->result;
1904
1905 for (i = 0; i < (unsigned int)size; i++) {
1906 emit(ir, OPCODE_MOV, temp, src);
1907
1908 src.index++;
1909 temp.index++;
1910 }
1911 }
1912 this->result = temp_base;
1913 return;
1914 }
1915
1916 if (ir->type->is_array()) {
1917 src_reg temp_base = get_temp(ir->type);
1918 dst_reg temp = dst_reg(temp_base);
1919 int size = type_size(ir->type->fields.array);
1920
1921 assert(size > 0);
1922
1923 for (i = 0; i < ir->type->length; i++) {
1924 ir->array_elements[i]->accept(this);
1925 src = this->result;
1926 for (int j = 0; j < size; j++) {
1927 emit(ir, OPCODE_MOV, temp, src);
1928
1929 src.index++;
1930 temp.index++;
1931 }
1932 }
1933 this->result = temp_base;
1934 return;
1935 }
1936
1937 if (ir->type->is_matrix()) {
1938 src_reg mat = get_temp(ir->type);
1939 dst_reg mat_column = dst_reg(mat);
1940
1941 for (i = 0; i < ir->type->matrix_columns; i++) {
1942 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
1943 values = &ir->value.f[i * ir->type->vector_elements];
1944
1945 src = src_reg(PROGRAM_CONSTANT, -1, NULL);
1946 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1947 (gl_constant_value *) values,
1948 ir->type->vector_elements,
1949 &src.swizzle);
1950 emit(ir, OPCODE_MOV, mat_column, src);
1951
1952 mat_column.index++;
1953 }
1954
1955 this->result = mat;
1956 return;
1957 }
1958
1959 src.file = PROGRAM_CONSTANT;
1960 switch (ir->type->base_type) {
1961 case GLSL_TYPE_FLOAT:
1962 values = &ir->value.f[0];
1963 break;
1964 case GLSL_TYPE_UINT:
1965 for (i = 0; i < ir->type->vector_elements; i++) {
1966 values[i] = ir->value.u[i];
1967 }
1968 break;
1969 case GLSL_TYPE_INT:
1970 for (i = 0; i < ir->type->vector_elements; i++) {
1971 values[i] = ir->value.i[i];
1972 }
1973 break;
1974 case GLSL_TYPE_BOOL:
1975 for (i = 0; i < ir->type->vector_elements; i++) {
1976 values[i] = ir->value.b[i];
1977 }
1978 break;
1979 default:
1980 assert(!"Non-float/uint/int/bool constant");
1981 }
1982
1983 this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
1984 this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1985 (gl_constant_value *) values,
1986 ir->type->vector_elements,
1987 &this->result.swizzle);
1988 }
1989
1990 void
1991 ir_to_mesa_visitor::visit(ir_call *)
1992 {
1993 assert(!"ir_to_mesa: All function calls should have been inlined by now.");
1994 }
1995
1996 void
1997 ir_to_mesa_visitor::visit(ir_texture *ir)
1998 {
1999 src_reg result_src, coord, lod_info, projector, dx, dy;
2000 dst_reg result_dst, coord_dst;
2001 ir_to_mesa_instruction *inst = NULL;
2002 prog_opcode opcode = OPCODE_NOP;
2003
2004 if (ir->op == ir_txs)
2005 this->result = src_reg_for_float(0.0);
2006 else
2007 ir->coordinate->accept(this);
2008
2009 /* Put our coords in a temp. We'll need to modify them for shadow,
2010 * projection, or LOD, so the only case we'd use it as-is is if
2011 * we're doing plain old texturing. Mesa IR optimization should
2012 * handle cleaning up our mess in that case.
2013 */
2014 coord = get_temp(glsl_type::vec4_type);
2015 coord_dst = dst_reg(coord);
2016 emit(ir, OPCODE_MOV, coord_dst, this->result);
2017
2018 if (ir->projector) {
2019 ir->projector->accept(this);
2020 projector = this->result;
2021 }
2022
2023 /* Storage for our result. Ideally for an assignment we'd be using
2024 * the actual storage for the result here, instead.
2025 */
2026 result_src = get_temp(glsl_type::vec4_type);
2027 result_dst = dst_reg(result_src);
2028
2029 switch (ir->op) {
2030 case ir_tex:
2031 case ir_txs:
2032 opcode = OPCODE_TEX;
2033 break;
2034 case ir_txb:
2035 opcode = OPCODE_TXB;
2036 ir->lod_info.bias->accept(this);
2037 lod_info = this->result;
2038 break;
2039 case ir_txf:
2040 /* Pretend to be TXL so the sampler, coordinate, lod are available */
2041 case ir_txl:
2042 opcode = OPCODE_TXL;
2043 ir->lod_info.lod->accept(this);
2044 lod_info = this->result;
2045 break;
2046 case ir_txd:
2047 opcode = OPCODE_TXD;
2048 ir->lod_info.grad.dPdx->accept(this);
2049 dx = this->result;
2050 ir->lod_info.grad.dPdy->accept(this);
2051 dy = this->result;
2052 break;
2053 case ir_txf_ms:
2054 assert(!"Unexpected ir_txf_ms opcode");
2055 break;
2056 case ir_lod:
2057 assert(!"Unexpected ir_lod opcode");
2058 break;
2059 case ir_tg4:
2060 assert(!"Unexpected ir_tg4 opcode");
2061 break;
2062 case ir_query_levels:
2063 assert(!"Unexpected ir_query_levels opcode");
2064 break;
2065 case ir_samples_identical:
2066 unreachable("Unexpected ir_samples_identical opcode");
2067 case ir_texture_samples:
2068 unreachable("Unexpected ir_texture_samples opcode");
2069 }
2070
2071 const glsl_type *sampler_type = ir->sampler->type;
2072
2073 if (ir->projector) {
2074 if (opcode == OPCODE_TEX) {
2075 /* Slot the projector in as the last component of the coord. */
2076 coord_dst.writemask = WRITEMASK_W;
2077 emit(ir, OPCODE_MOV, coord_dst, projector);
2078 coord_dst.writemask = WRITEMASK_XYZW;
2079 opcode = OPCODE_TXP;
2080 } else {
2081 src_reg coord_w = coord;
2082 coord_w.swizzle = SWIZZLE_WWWW;
2083
2084 /* For the other TEX opcodes there's no projective version
2085 * since the last slot is taken up by lod info. Do the
2086 * projective divide now.
2087 */
2088 coord_dst.writemask = WRITEMASK_W;
2089 emit(ir, OPCODE_RCP, coord_dst, projector);
2090
2091 /* In the case where we have to project the coordinates "by hand,"
2092 * the shadow comparator value must also be projected.
2093 */
2094 src_reg tmp_src = coord;
2095 if (ir->shadow_comparator) {
2096 /* Slot the shadow value in as the second to last component of the
2097 * coord.
2098 */
2099 ir->shadow_comparator->accept(this);
2100
2101 tmp_src = get_temp(glsl_type::vec4_type);
2102 dst_reg tmp_dst = dst_reg(tmp_src);
2103
2104 /* Projective division not allowed for array samplers. */
2105 assert(!sampler_type->sampler_array);
2106
2107 tmp_dst.writemask = WRITEMASK_Z;
2108 emit(ir, OPCODE_MOV, tmp_dst, this->result);
2109
2110 tmp_dst.writemask = WRITEMASK_XY;
2111 emit(ir, OPCODE_MOV, tmp_dst, coord);
2112 }
2113
2114 coord_dst.writemask = WRITEMASK_XYZ;
2115 emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);
2116
2117 coord_dst.writemask = WRITEMASK_XYZW;
2118 coord.swizzle = SWIZZLE_XYZW;
2119 }
2120 }
2121
2122 /* If projection is done and the opcode is not OPCODE_TXP, then the shadow
2123 * comparator was put in the correct place (and projected) by the code,
2124 * above, that handles by-hand projection.
2125 */
2126 if (ir->shadow_comparator && (!ir->projector || opcode == OPCODE_TXP)) {
2127 /* Slot the shadow value in as the second to last component of the
2128 * coord.
2129 */
2130 ir->shadow_comparator->accept(this);
2131
2132 /* XXX This will need to be updated for cubemap array samplers. */
2133 if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2134 sampler_type->sampler_array) {
2135 coord_dst.writemask = WRITEMASK_W;
2136 } else {
2137 coord_dst.writemask = WRITEMASK_Z;
2138 }
2139
2140 emit(ir, OPCODE_MOV, coord_dst, this->result);
2141 coord_dst.writemask = WRITEMASK_XYZW;
2142 }
2143
2144 if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
2145 /* Mesa IR stores lod or lod bias in the last channel of the coords. */
2146 coord_dst.writemask = WRITEMASK_W;
2147 emit(ir, OPCODE_MOV, coord_dst, lod_info);
2148 coord_dst.writemask = WRITEMASK_XYZW;
2149 }
2150
2151 if (opcode == OPCODE_TXD)
2152 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2153 else
2154 inst = emit(ir, opcode, result_dst, coord);
2155
2156 if (ir->shadow_comparator)
2157 inst->tex_shadow = GL_TRUE;
2158
2159 inst->sampler = get_sampler_uniform_value(ir->sampler, shader_program,
2160 prog);
2161
2162 switch (sampler_type->sampler_dimensionality) {
2163 case GLSL_SAMPLER_DIM_1D:
2164 inst->tex_target = (sampler_type->sampler_array)
2165 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2166 break;
2167 case GLSL_SAMPLER_DIM_2D:
2168 inst->tex_target = (sampler_type->sampler_array)
2169 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2170 break;
2171 case GLSL_SAMPLER_DIM_3D:
2172 inst->tex_target = TEXTURE_3D_INDEX;
2173 break;
2174 case GLSL_SAMPLER_DIM_CUBE:
2175 inst->tex_target = TEXTURE_CUBE_INDEX;
2176 break;
2177 case GLSL_SAMPLER_DIM_RECT:
2178 inst->tex_target = TEXTURE_RECT_INDEX;
2179 break;
2180 case GLSL_SAMPLER_DIM_BUF:
2181 assert(!"FINISHME: Implement ARB_texture_buffer_object");
2182 break;
2183 case GLSL_SAMPLER_DIM_EXTERNAL:
2184 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2185 break;
2186 default:
2187 assert(!"Should not get here.");
2188 }
2189
2190 this->result = result_src;
2191 }
2192
2193 void
2194 ir_to_mesa_visitor::visit(ir_return *ir)
2195 {
2196 /* Non-void functions should have been inlined. We may still emit RETs
2197 * from main() unless the EmitNoMainReturn option is set.
2198 */
2199 assert(!ir->get_value());
2200 emit(ir, OPCODE_RET);
2201 }
2202
2203 void
2204 ir_to_mesa_visitor::visit(ir_discard *ir)
2205 {
2206 if (!ir->condition)
2207 ir->condition = new(mem_ctx) ir_constant(true);
2208
2209 ir->condition->accept(this);
2210 this->result.negate = ~this->result.negate;
2211 emit(ir, OPCODE_KIL, undef_dst, this->result);
2212 }
2213
2214 void
2215 ir_to_mesa_visitor::visit(ir_if *ir)
2216 {
2217 ir_to_mesa_instruction *if_inst;
2218
2219 ir->condition->accept(this);
2220 assert(this->result.file != PROGRAM_UNDEFINED);
2221
2222 if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);
2223
2224 this->instructions.push_tail(if_inst);
2225
2226 visit_exec_list(&ir->then_instructions, this);
2227
2228 if (!ir->else_instructions.is_empty()) {
2229 emit(ir->condition, OPCODE_ELSE);
2230 visit_exec_list(&ir->else_instructions, this);
2231 }
2232
2233 emit(ir->condition, OPCODE_ENDIF);
2234 }
2235
2236 void
2237 ir_to_mesa_visitor::visit(ir_emit_vertex *)
2238 {
2239 assert(!"Geometry shaders not supported.");
2240 }
2241
2242 void
2243 ir_to_mesa_visitor::visit(ir_end_primitive *)
2244 {
2245 assert(!"Geometry shaders not supported.");
2246 }
2247
2248 void
2249 ir_to_mesa_visitor::visit(ir_barrier *)
2250 {
2251 unreachable("GLSL barrier() not supported.");
2252 }
2253
2254 ir_to_mesa_visitor::ir_to_mesa_visitor()
2255 {
2256 result.file = PROGRAM_UNDEFINED;
2257 next_temp = 1;
2258 next_signature_id = 1;
2259 current_function = NULL;
2260 mem_ctx = ralloc_context(NULL);
2261 }
2262
2263 ir_to_mesa_visitor::~ir_to_mesa_visitor()
2264 {
2265 ralloc_free(mem_ctx);
2266 }
2267
2268 static struct prog_src_register
2269 mesa_src_reg_from_ir_src_reg(src_reg reg)
2270 {
2271 struct prog_src_register mesa_reg;
2272
2273 mesa_reg.File = reg.file;
2274 assert(reg.index < (1 << INST_INDEX_BITS));
2275 mesa_reg.Index = reg.index;
2276 mesa_reg.Swizzle = reg.swizzle;
2277 mesa_reg.RelAddr = reg.reladdr != NULL;
2278 mesa_reg.Negate = reg.negate;
2279
2280 return mesa_reg;
2281 }
2282
2283 static void
2284 set_branchtargets(ir_to_mesa_visitor *v,
2285 struct prog_instruction *mesa_instructions,
2286 int num_instructions)
2287 {
2288 int if_count = 0, loop_count = 0;
2289 int *if_stack, *loop_stack;
2290 int if_stack_pos = 0, loop_stack_pos = 0;
2291 int i, j;
2292
2293 for (i = 0; i < num_instructions; i++) {
2294 switch (mesa_instructions[i].Opcode) {
2295 case OPCODE_IF:
2296 if_count++;
2297 break;
2298 case OPCODE_BGNLOOP:
2299 loop_count++;
2300 break;
2301 case OPCODE_BRK:
2302 case OPCODE_CONT:
2303 mesa_instructions[i].BranchTarget = -1;
2304 break;
2305 default:
2306 break;
2307 }
2308 }
2309
2310 if_stack = rzalloc_array(v->mem_ctx, int, if_count);
2311 loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);
2312
2313 for (i = 0; i < num_instructions; i++) {
2314 switch (mesa_instructions[i].Opcode) {
2315 case OPCODE_IF:
2316 if_stack[if_stack_pos] = i;
2317 if_stack_pos++;
2318 break;
2319 case OPCODE_ELSE:
2320 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2321 if_stack[if_stack_pos - 1] = i;
2322 break;
2323 case OPCODE_ENDIF:
2324 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2325 if_stack_pos--;
2326 break;
2327 case OPCODE_BGNLOOP:
2328 loop_stack[loop_stack_pos] = i;
2329 loop_stack_pos++;
2330 break;
2331 case OPCODE_ENDLOOP:
2332 loop_stack_pos--;
2333 /* Rewrite any breaks/conts at this nesting level (haven't
2334 * already had a BranchTarget assigned) to point to the end
2335 * of the loop.
2336 */
2337 for (j = loop_stack[loop_stack_pos]; j < i; j++) {
2338 if (mesa_instructions[j].Opcode == OPCODE_BRK ||
2339 mesa_instructions[j].Opcode == OPCODE_CONT) {
2340 if (mesa_instructions[j].BranchTarget == -1) {
2341 mesa_instructions[j].BranchTarget = i;
2342 }
2343 }
2344 }
2345 /* The loop ends point at each other. */
2346 mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
2347 mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
2348 break;
2349 case OPCODE_CAL:
2350 foreach_in_list(function_entry, entry, &v->function_signatures) {
2351 if (entry->sig_id == mesa_instructions[i].BranchTarget) {
2352 mesa_instructions[i].BranchTarget = entry->inst;
2353 break;
2354 }
2355 }
2356 break;
2357 default:
2358 break;
2359 }
2360 }
2361 }
2362
2363 static void
2364 print_program(struct prog_instruction *mesa_instructions,
2365 ir_instruction **mesa_instruction_annotation,
2366 int num_instructions)
2367 {
2368 ir_instruction *last_ir = NULL;
2369 int i;
2370 int indent = 0;
2371
2372 for (i = 0; i < num_instructions; i++) {
2373 struct prog_instruction *mesa_inst = mesa_instructions + i;
2374 ir_instruction *ir = mesa_instruction_annotation[i];
2375
2376 fprintf(stdout, "%3d: ", i);
2377
2378 if (last_ir != ir && ir) {
2379 int j;
2380
2381 for (j = 0; j < indent; j++) {
2382 fprintf(stdout, " ");
2383 }
2384 ir->print();
2385 printf("\n");
2386 last_ir = ir;
2387
2388 fprintf(stdout, " "); /* line number spacing. */
2389 }
2390
2391 indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
2392 PROG_PRINT_DEBUG, NULL);
2393 }
2394 }
2395
2396 namespace {
2397
2398 class add_uniform_to_shader : public program_resource_visitor {
2399 public:
2400 add_uniform_to_shader(struct gl_shader_program *shader_program,
2401 struct gl_program_parameter_list *params,
2402 gl_shader_stage shader_type)
2403 : shader_program(shader_program), params(params), idx(-1),
2404 shader_type(shader_type)
2405 {
2406 /* empty */
2407 }
2408
2409 void process(ir_variable *var)
2410 {
2411 this->idx = -1;
2412 this->program_resource_visitor::process(var);
2413 var->data.param_index = this->idx;
2414 }
2415
2416 private:
2417 virtual void visit_field(const glsl_type *type, const char *name,
2418 bool row_major, const glsl_type *record_type,
2419 const enum glsl_interface_packing packing,
2420 bool last_field);
2421
2422 struct gl_shader_program *shader_program;
2423 struct gl_program_parameter_list *params;
2424 int idx;
2425 gl_shader_stage shader_type;
2426 };
2427
2428 } /* anonymous namespace */
2429
2430 void
2431 add_uniform_to_shader::visit_field(const glsl_type *type, const char *name,
2432 bool /* row_major */,
2433 const glsl_type * /* record_type */,
2434 const enum glsl_interface_packing,
2435 bool /* last_field */)
2436 {
2437 unsigned int size;
2438
2439 /* atomics don't get real storage */
2440 if (type->contains_atomic())
2441 return;
2442
2443 if (type->is_vector() || type->is_scalar()) {
2444 size = type->vector_elements;
2445 if (type->is_64bit())
2446 size *= 2;
2447 } else {
2448 size = type_size(type) * 4;
2449 }
2450
2451 gl_register_file file;
2452 if (type->without_array()->is_sampler()) {
2453 file = PROGRAM_SAMPLER;
2454 } else {
2455 file = PROGRAM_UNIFORM;
2456 }
2457
2458 int index = _mesa_lookup_parameter_index(params, name);
2459 if (index < 0) {
2460 index = _mesa_add_parameter(params, file, name, size, type->gl_type,
2461 NULL, NULL);
2462
2463 /* Sampler uniform values are stored in prog->SamplerUnits,
2464 * and the entry in that array is selected by this index we
2465 * store in ParameterValues[].
2466 */
2467 if (file == PROGRAM_SAMPLER) {
2468 unsigned location;
2469 const bool found =
2470 this->shader_program->UniformHash->get(location,
2471 params->Parameters[index].Name);
2472 assert(found);
2473
2474 if (!found)
2475 return;
2476
2477 struct gl_uniform_storage *storage =
2478 &this->shader_program->data->UniformStorage[location];
2479
2480 assert(storage->type->is_sampler() &&
2481 storage->opaque[shader_type].active);
2482
2483 for (unsigned int j = 0; j < size / 4; j++)
2484 params->ParameterValues[index + j][0].f =
2485 storage->opaque[shader_type].index + j;
2486 }
2487 }
2488
2489 /* The first part of the uniform that's processed determines the base
2490 * location of the whole uniform (for structures).
2491 */
2492 if (this->idx < 0)
2493 this->idx = index;
2494 }
2495
2496 /**
2497 * Generate the program parameters list for the user uniforms in a shader
2498 *
2499 * \param shader_program Linked shader program. This is only used to
2500 * emit possible link errors to the info log.
2501 * \param sh Shader whose uniforms are to be processed.
2502 * \param params Parameter list to be filled in.
2503 */
2504 void
2505 _mesa_generate_parameters_list_for_uniforms(struct gl_shader_program
2506 *shader_program,
2507 struct gl_linked_shader *sh,
2508 struct gl_program_parameter_list
2509 *params)
2510 {
2511 add_uniform_to_shader add(shader_program, params, sh->Stage);
2512
2513 foreach_in_list(ir_instruction, node, sh->ir) {
2514 ir_variable *var = node->as_variable();
2515
2516 if ((var == NULL) || (var->data.mode != ir_var_uniform)
2517 || var->is_in_buffer_block() || (strncmp(var->name, "gl_", 3) == 0))
2518 continue;
2519
2520 add.process(var);
2521 }
2522 }
2523
2524 void
2525 _mesa_associate_uniform_storage(struct gl_context *ctx,
2526 struct gl_shader_program *shader_program,
2527 struct gl_program_parameter_list *params)
2528 {
2529 /* After adding each uniform to the parameter list, connect the storage for
2530 * the parameter with the tracking structure used by the API for the
2531 * uniform.
2532 */
2533 unsigned last_location = unsigned(~0);
2534 for (unsigned i = 0; i < params->NumParameters; i++) {
2535 if (params->Parameters[i].Type != PROGRAM_UNIFORM)
2536 continue;
2537
2538 unsigned location;
2539 const bool found =
2540 shader_program->UniformHash->get(location, params->Parameters[i].Name);
2541 assert(found);
2542
2543 if (!found)
2544 continue;
2545
2546 struct gl_uniform_storage *storage =
2547 &shader_program->data->UniformStorage[location];
2548
2549 /* Do not associate any uniform storage to built-in uniforms */
2550 if (storage->builtin)
2551 continue;
2552
2553 if (location != last_location) {
2554 enum gl_uniform_driver_format format = uniform_native;
2555
2556 unsigned columns = 0;
2557 int dmul = 4 * sizeof(float);
2558 switch (storage->type->base_type) {
2559 case GLSL_TYPE_UINT64:
2560 if (storage->type->vector_elements > 2)
2561 dmul *= 2;
2562 /* fallthrough */
2563 case GLSL_TYPE_UINT:
2564 assert(ctx->Const.NativeIntegers);
2565 format = uniform_native;
2566 columns = 1;
2567 break;
2568 case GLSL_TYPE_INT64:
2569 if (storage->type->vector_elements > 2)
2570 dmul *= 2;
2571 /* fallthrough */
2572 case GLSL_TYPE_INT:
2573 format =
2574 (ctx->Const.NativeIntegers) ? uniform_native : uniform_int_float;
2575 columns = 1;
2576 break;
2577
2578 case GLSL_TYPE_DOUBLE:
2579 if (storage->type->vector_elements > 2)
2580 dmul *= 2;
2581 /* fallthrough */
2582 case GLSL_TYPE_FLOAT:
2583 format = uniform_native;
2584 columns = storage->type->matrix_columns;
2585 break;
2586 case GLSL_TYPE_BOOL:
2587 format = uniform_native;
2588 columns = 1;
2589 break;
2590 case GLSL_TYPE_SAMPLER:
2591 case GLSL_TYPE_IMAGE:
2592 case GLSL_TYPE_SUBROUTINE:
2593 format = uniform_native;
2594 columns = 1;
2595 break;
2596 case GLSL_TYPE_ATOMIC_UINT:
2597 case GLSL_TYPE_ARRAY:
2598 case GLSL_TYPE_VOID:
2599 case GLSL_TYPE_STRUCT:
2600 case GLSL_TYPE_ERROR:
2601 case GLSL_TYPE_INTERFACE:
2602 case GLSL_TYPE_FUNCTION:
2603 assert(!"Should not get here.");
2604 break;
2605 }
2606
2607 _mesa_uniform_attach_driver_storage(storage,
2608 dmul * columns,
2609 dmul,
2610 format,
2611 &params->ParameterValues[i]);
2612
2613 /* After attaching the driver's storage to the uniform, propagate any
2614 * data from the linker's backing store. This will cause values from
2615 * initializers in the source code to be copied over.
2616 */
2617 _mesa_propagate_uniforms_to_driver_storage(storage,
2618 0,
2619 MAX2(1, storage->array_elements));
2620
2621 last_location = location;
2622 }
2623 }
2624 }
2625
2626 /*
2627 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
2628 * channels for copy propagation and updates following instructions to
2629 * use the original versions.
2630 *
2631 * The ir_to_mesa_visitor lazily produces code assuming that this pass
2632 * will occur. As an example, a TXP production before this pass:
2633 *
2634 * 0: MOV TEMP[1], INPUT[4].xyyy;
2635 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2636 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
2637 *
2638 * and after:
2639 *
2640 * 0: MOV TEMP[1], INPUT[4].xyyy;
2641 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2642 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
2643 *
2644 * which allows for dead code elimination on TEMP[1]'s writes.
2645 */
2646 void
2647 ir_to_mesa_visitor::copy_propagate(void)
2648 {
2649 ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
2650 ir_to_mesa_instruction *,
2651 this->next_temp * 4);
2652 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
2653 int level = 0;
2654
2655 foreach_in_list(ir_to_mesa_instruction, inst, &this->instructions) {
2656 assert(inst->dst.file != PROGRAM_TEMPORARY
2657 || inst->dst.index < this->next_temp);
2658
2659 /* First, do any copy propagation possible into the src regs. */
2660 for (int r = 0; r < 3; r++) {
2661 ir_to_mesa_instruction *first = NULL;
2662 bool good = true;
2663 int acp_base = inst->src[r].index * 4;
2664
2665 if (inst->src[r].file != PROGRAM_TEMPORARY ||
2666 inst->src[r].reladdr)
2667 continue;
2668
2669 /* See if we can find entries in the ACP consisting of MOVs
2670 * from the same src register for all the swizzled channels
2671 * of this src register reference.
2672 */
2673 for (int i = 0; i < 4; i++) {
2674 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2675 ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];
2676
2677 if (!copy_chan) {
2678 good = false;
2679 break;
2680 }
2681
2682 assert(acp_level[acp_base + src_chan] <= level);
2683
2684 if (!first) {
2685 first = copy_chan;
2686 } else {
2687 if (first->src[0].file != copy_chan->src[0].file ||
2688 first->src[0].index != copy_chan->src[0].index) {
2689 good = false;
2690 break;
2691 }
2692 }
2693 }
2694
2695 if (good) {
2696 /* We've now validated that we can copy-propagate to
2697 * replace this src register reference. Do it.
2698 */
2699 inst->src[r].file = first->src[0].file;
2700 inst->src[r].index = first->src[0].index;
2701
2702 int swizzle = 0;
2703 for (int i = 0; i < 4; i++) {
2704 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2705 ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
2706 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
2707 (3 * i));
2708 }
2709 inst->src[r].swizzle = swizzle;
2710 }
2711 }
2712
2713 switch (inst->op) {
2714 case OPCODE_BGNLOOP:
2715 case OPCODE_ENDLOOP:
2716 /* End of a basic block, clear the ACP entirely. */
2717 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2718 break;
2719
2720 case OPCODE_IF:
2721 ++level;
2722 break;
2723
2724 case OPCODE_ENDIF:
2725 case OPCODE_ELSE:
2726 /* Clear all channels written inside the block from the ACP, but
2727 * leaving those that were not touched.
2728 */
2729 for (int r = 0; r < this->next_temp; r++) {
2730 for (int c = 0; c < 4; c++) {
2731 if (!acp[4 * r + c])
2732 continue;
2733
2734 if (acp_level[4 * r + c] >= level)
2735 acp[4 * r + c] = NULL;
2736 }
2737 }
2738 if (inst->op == OPCODE_ENDIF)
2739 --level;
2740 break;
2741
2742 default:
2743 /* Continuing the block, clear any written channels from
2744 * the ACP.
2745 */
2746 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
2747 /* Any temporary might be written, so no copy propagation
2748 * across this instruction.
2749 */
2750 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2751 } else if (inst->dst.file == PROGRAM_OUTPUT &&
2752 inst->dst.reladdr) {
2753 /* Any output might be written, so no copy propagation
2754 * from outputs across this instruction.
2755 */
2756 for (int r = 0; r < this->next_temp; r++) {
2757 for (int c = 0; c < 4; c++) {
2758 if (!acp[4 * r + c])
2759 continue;
2760
2761 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
2762 acp[4 * r + c] = NULL;
2763 }
2764 }
2765 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
2766 inst->dst.file == PROGRAM_OUTPUT) {
2767 /* Clear where it's used as dst. */
2768 if (inst->dst.file == PROGRAM_TEMPORARY) {
2769 for (int c = 0; c < 4; c++) {
2770 if (inst->dst.writemask & (1 << c)) {
2771 acp[4 * inst->dst.index + c] = NULL;
2772 }
2773 }
2774 }
2775
2776 /* Clear where it's used as src. */
2777 for (int r = 0; r < this->next_temp; r++) {
2778 for (int c = 0; c < 4; c++) {
2779 if (!acp[4 * r + c])
2780 continue;
2781
2782 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
2783
2784 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
2785 acp[4 * r + c]->src[0].index == inst->dst.index &&
2786 inst->dst.writemask & (1 << src_chan))
2787 {
2788 acp[4 * r + c] = NULL;
2789 }
2790 }
2791 }
2792 }
2793 break;
2794 }
2795
2796 /* If this is a copy, add it to the ACP. */
2797 if (inst->op == OPCODE_MOV &&
2798 inst->dst.file == PROGRAM_TEMPORARY &&
2799 !(inst->dst.file == inst->src[0].file &&
2800 inst->dst.index == inst->src[0].index) &&
2801 !inst->dst.reladdr &&
2802 !inst->saturate &&
2803 !inst->src[0].reladdr &&
2804 !inst->src[0].negate) {
2805 for (int i = 0; i < 4; i++) {
2806 if (inst->dst.writemask & (1 << i)) {
2807 acp[4 * inst->dst.index + i] = inst;
2808 acp_level[4 * inst->dst.index + i] = level;
2809 }
2810 }
2811 }
2812 }
2813
2814 ralloc_free(acp_level);
2815 ralloc_free(acp);
2816 }
2817
2818
2819 /**
2820 * Convert a shader's GLSL IR into a Mesa gl_program.
2821 */
2822 static struct gl_program *
2823 get_mesa_program(struct gl_context *ctx,
2824 struct gl_shader_program *shader_program,
2825 struct gl_linked_shader *shader)
2826 {
2827 ir_to_mesa_visitor v;
2828 struct prog_instruction *mesa_instructions, *mesa_inst;
2829 ir_instruction **mesa_instruction_annotation;
2830 int i;
2831 struct gl_program *prog;
2832 GLenum target = _mesa_shader_stage_to_program(shader->Stage);
2833 const char *target_string = _mesa_shader_stage_to_string(shader->Stage);
2834 struct gl_shader_compiler_options *options =
2835 &ctx->Const.ShaderCompilerOptions[shader->Stage];
2836
2837 validate_ir_tree(shader->ir);
2838
2839 prog = shader->Program;
2840 prog->Parameters = _mesa_new_parameter_list();
2841 v.ctx = ctx;
2842 v.prog = prog;
2843 v.shader_program = shader_program;
2844 v.options = options;
2845
2846 _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
2847 prog->Parameters);
2848
2849 /* Emit Mesa IR for main(). */
2850 visit_exec_list(shader->ir, &v);
2851 v.emit(NULL, OPCODE_END);
2852
2853 prog->arb.NumTemporaries = v.next_temp;
2854
2855 unsigned num_instructions = v.instructions.length();
2856
2857 mesa_instructions = rzalloc_array(prog, struct prog_instruction,
2858 num_instructions);
2859 mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
2860 num_instructions);
2861
2862 v.copy_propagate();
2863
2864 /* Convert ir_mesa_instructions into prog_instructions.
2865 */
2866 mesa_inst = mesa_instructions;
2867 i = 0;
2868 foreach_in_list(const ir_to_mesa_instruction, inst, &v.instructions) {
2869 mesa_inst->Opcode = inst->op;
2870 if (inst->saturate)
2871 mesa_inst->Saturate = GL_TRUE;
2872 mesa_inst->DstReg.File = inst->dst.file;
2873 mesa_inst->DstReg.Index = inst->dst.index;
2874 mesa_inst->DstReg.WriteMask = inst->dst.writemask;
2875 mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
2876 mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
2877 mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
2878 mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
2879 mesa_inst->TexSrcUnit = inst->sampler;
2880 mesa_inst->TexSrcTarget = inst->tex_target;
2881 mesa_inst->TexShadow = inst->tex_shadow;
2882 mesa_instruction_annotation[i] = inst->ir;
2883
2884 /* Set IndirectRegisterFiles. */
2885 if (mesa_inst->DstReg.RelAddr)
2886 prog->arb.IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;
2887
2888 /* Update program's bitmask of indirectly accessed register files */
2889 for (unsigned src = 0; src < 3; src++)
2890 if (mesa_inst->SrcReg[src].RelAddr)
2891 prog->arb.IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;
2892
2893 switch (mesa_inst->Opcode) {
2894 case OPCODE_IF:
2895 if (options->MaxIfDepth == 0) {
2896 linker_warning(shader_program,
2897 "Couldn't flatten if-statement. "
2898 "This will likely result in software "
2899 "rasterization.\n");
2900 }
2901 break;
2902 case OPCODE_BGNLOOP:
2903 if (options->EmitNoLoops) {
2904 linker_warning(shader_program,
2905 "Couldn't unroll loop. "
2906 "This will likely result in software "
2907 "rasterization.\n");
2908 }
2909 break;
2910 case OPCODE_CONT:
2911 if (options->EmitNoCont) {
2912 linker_warning(shader_program,
2913 "Couldn't lower continue-statement. "
2914 "This will likely result in software "
2915 "rasterization.\n");
2916 }
2917 break;
2918 case OPCODE_ARL:
2919 prog->arb.NumAddressRegs = 1;
2920 break;
2921 default:
2922 break;
2923 }
2924
2925 mesa_inst++;
2926 i++;
2927
2928 if (!shader_program->data->LinkStatus)
2929 break;
2930 }
2931
2932 if (!shader_program->data->LinkStatus) {
2933 goto fail_exit;
2934 }
2935
2936 set_branchtargets(&v, mesa_instructions, num_instructions);
2937
2938 if (ctx->_Shader->Flags & GLSL_DUMP) {
2939 fprintf(stderr, "\n");
2940 fprintf(stderr, "GLSL IR for linked %s program %d:\n", target_string,
2941 shader_program->Name);
2942 _mesa_print_ir(stderr, shader->ir, NULL);
2943 fprintf(stderr, "\n");
2944 fprintf(stderr, "\n");
2945 fprintf(stderr, "Mesa IR for linked %s program %d:\n", target_string,
2946 shader_program->Name);
2947 print_program(mesa_instructions, mesa_instruction_annotation,
2948 num_instructions);
2949 fflush(stderr);
2950 }
2951
2952 prog->arb.Instructions = mesa_instructions;
2953 prog->arb.NumInstructions = num_instructions;
2954
2955 /* Setting this to NULL prevents a possible double free in the fail_exit
2956 * path (far below).
2957 */
2958 mesa_instructions = NULL;
2959
2960 do_set_program_inouts(shader->ir, prog, shader->Stage);
2961
2962 prog->ShadowSamplers = shader->shadow_samplers;
2963 prog->ExternalSamplersUsed = gl_external_samplers(prog);
2964 _mesa_update_shader_textures_used(shader_program, prog);
2965
2966 /* Set the gl_FragDepth layout. */
2967 if (target == GL_FRAGMENT_PROGRAM_ARB) {
2968 prog->info.fs.depth_layout = shader_program->FragDepthLayout;
2969 }
2970
2971 if ((ctx->_Shader->Flags & GLSL_NO_OPT) == 0) {
2972 _mesa_optimize_program(ctx, prog, prog);
2973 }
2974
2975 /* This has to be done last. Any operation that can cause
2976 * prog->ParameterValues to get reallocated (e.g., anything that adds a
2977 * program constant) has to happen before creating this linkage.
2978 */
2979 _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
2980 if (!shader_program->data->LinkStatus) {
2981 goto fail_exit;
2982 }
2983
2984 return prog;
2985
2986 fail_exit:
2987 ralloc_free(mesa_instructions);
2988 _mesa_reference_program(ctx, &shader->Program, NULL);
2989 return NULL;
2990 }
2991
2992 extern "C" {
2993
2994 /**
2995 * Link a shader.
2996 * Called via ctx->Driver.LinkShader()
2997 * This actually involves converting GLSL IR into Mesa gl_programs with
2998 * code lowering and other optimizations.
2999 */
3000 GLboolean
3001 _mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3002 {
3003 assert(prog->data->LinkStatus);
3004
3005 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3006 if (prog->_LinkedShaders[i] == NULL)
3007 continue;
3008
3009 bool progress;
3010 exec_list *ir = prog->_LinkedShaders[i]->ir;
3011 const struct gl_shader_compiler_options *options =
3012 &ctx->Const.ShaderCompilerOptions[prog->_LinkedShaders[i]->Stage];
3013
3014 do {
3015 progress = false;
3016
3017 /* Lowering */
3018 do_mat_op_to_vec(ir);
3019 lower_instructions(ir, (MOD_TO_FLOOR | DIV_TO_MUL_RCP | EXP_TO_EXP2
3020 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
3021 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
3022
3023 progress = do_common_optimization(ir, true, true,
3024 options, ctx->Const.NativeIntegers)
3025 || progress;
3026
3027 progress = lower_quadop_vector(ir, true) || progress;
3028
3029 if (options->MaxIfDepth == 0)
3030 progress = lower_discard(ir) || progress;
3031
3032 progress = lower_if_to_cond_assign((gl_shader_stage)i, ir,
3033 options->MaxIfDepth) || progress;
3034
3035 progress = lower_noise(ir) || progress;
3036
3037 /* If there are forms of indirect addressing that the driver
3038 * cannot handle, perform the lowering pass.
3039 */
3040 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
3041 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
3042 progress =
3043 lower_variable_index_to_cond_assign(prog->_LinkedShaders[i]->Stage, ir,
3044 options->EmitNoIndirectInput,
3045 options->EmitNoIndirectOutput,
3046 options->EmitNoIndirectTemp,
3047 options->EmitNoIndirectUniform)
3048 || progress;
3049
3050 progress = do_vec_index_to_cond_assign(ir) || progress;
3051 progress = lower_vector_insert(ir, true) || progress;
3052 } while (progress);
3053
3054 validate_ir_tree(ir);
3055 }
3056
3057 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3058 struct gl_program *linked_prog;
3059
3060 if (prog->_LinkedShaders[i] == NULL)
3061 continue;
3062
3063 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
3064
3065 if (linked_prog) {
3066 _mesa_copy_linked_program_data(prog, prog->_LinkedShaders[i]);
3067
3068 if (!ctx->Driver.ProgramStringNotify(ctx,
3069 _mesa_shader_stage_to_program(i),
3070 linked_prog)) {
3071 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
3072 NULL);
3073 return GL_FALSE;
3074 }
3075 }
3076 }
3077
3078 build_program_resource_list(ctx, prog);
3079 return prog->data->LinkStatus;
3080 }
3081
3082 /**
3083 * Link a GLSL shader program. Called via glLinkProgram().
3084 */
3085 void
3086 _mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3087 {
3088 unsigned int i;
3089
3090 _mesa_clear_shader_program_data(ctx, prog);
3091
3092 prog->data->LinkStatus = GL_TRUE;
3093
3094 for (i = 0; i < prog->NumShaders; i++) {
3095 if (!prog->Shaders[i]->CompileStatus) {
3096 linker_error(prog, "linking with uncompiled shader");
3097 }
3098 }
3099
3100 if (prog->data->LinkStatus) {
3101 link_shaders(ctx, prog);
3102 }
3103
3104 if (prog->data->LinkStatus) {
3105 if (!ctx->Driver.LinkShader(ctx, prog)) {
3106 prog->data->LinkStatus = GL_FALSE;
3107 }
3108 }
3109
3110 if (ctx->_Shader->Flags & GLSL_DUMP) {
3111 if (!prog->data->LinkStatus) {
3112 fprintf(stderr, "GLSL shader program %d failed to link\n", prog->Name);
3113 }
3114
3115 if (prog->data->InfoLog && prog->data->InfoLog[0] != 0) {
3116 fprintf(stderr, "GLSL shader program %d info log:\n", prog->Name);
3117 fprintf(stderr, "%s\n", prog->data->InfoLog);
3118 }
3119 }
3120 }
3121
3122 } /* extern "C" */