29025d1c1777ed73acf4edc5d371d00ffb9a6439
[mesa.git] / src / mesa / program / ir_to_mesa.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
24 */
25
26 /**
27 * \file ir_to_mesa.cpp
28 *
29 * Translate GLSL IR to Mesa's gl_program representation.
30 */
31
32 #include <stdio.h>
33 #include "main/macros.h"
34 #include "main/mtypes.h"
35 #include "main/shaderapi.h"
36 #include "main/shaderobj.h"
37 #include "main/uniforms.h"
38 #include "compiler/glsl/ast.h"
39 #include "compiler/glsl/ir.h"
40 #include "compiler/glsl/ir_expression_flattening.h"
41 #include "compiler/glsl/ir_visitor.h"
42 #include "compiler/glsl/ir_optimization.h"
43 #include "compiler/glsl/ir_uniform.h"
44 #include "compiler/glsl/glsl_parser_extras.h"
45 #include "compiler/glsl_types.h"
46 #include "compiler/glsl/linker.h"
47 #include "compiler/glsl/program.h"
48 #include "compiler/glsl/shader_cache.h"
49 #include "compiler/glsl/string_to_uint_map.h"
50 #include "program/prog_instruction.h"
51 #include "program/prog_optimize.h"
52 #include "program/prog_print.h"
53 #include "program/program.h"
54 #include "program/prog_parameter.h"
55
56
57 static int swizzle_for_size(int size);
58
59 namespace {
60
61 class src_reg;
62 class dst_reg;
63
64 /**
65 * This struct is a corresponding struct to Mesa prog_src_register, with
66 * wider fields.
67 */
68 class src_reg {
69 public:
70 src_reg(gl_register_file file, int index, const glsl_type *type)
71 {
72 this->file = file;
73 this->index = index;
74 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
75 this->swizzle = swizzle_for_size(type->vector_elements);
76 else
77 this->swizzle = SWIZZLE_XYZW;
78 this->negate = 0;
79 this->reladdr = NULL;
80 }
81
82 src_reg()
83 {
84 this->file = PROGRAM_UNDEFINED;
85 this->index = 0;
86 this->swizzle = 0;
87 this->negate = 0;
88 this->reladdr = NULL;
89 }
90
91 explicit src_reg(dst_reg reg);
92
93 gl_register_file file; /**< PROGRAM_* from Mesa */
94 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
95 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
96 int negate; /**< NEGATE_XYZW mask from mesa */
97 /** Register index should be offset by the integer in this reg. */
98 src_reg *reladdr;
99 };
100
101 class dst_reg {
102 public:
103 dst_reg(gl_register_file file, int writemask)
104 {
105 this->file = file;
106 this->index = 0;
107 this->writemask = writemask;
108 this->reladdr = NULL;
109 }
110
111 dst_reg()
112 {
113 this->file = PROGRAM_UNDEFINED;
114 this->index = 0;
115 this->writemask = 0;
116 this->reladdr = NULL;
117 }
118
119 explicit dst_reg(src_reg reg);
120
121 gl_register_file file; /**< PROGRAM_* from Mesa */
122 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
123 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
124 /** Register index should be offset by the integer in this reg. */
125 src_reg *reladdr;
126 };
127
128 } /* anonymous namespace */
129
130 src_reg::src_reg(dst_reg reg)
131 {
132 this->file = reg.file;
133 this->index = reg.index;
134 this->swizzle = SWIZZLE_XYZW;
135 this->negate = 0;
136 this->reladdr = reg.reladdr;
137 }
138
139 dst_reg::dst_reg(src_reg reg)
140 {
141 this->file = reg.file;
142 this->index = reg.index;
143 this->writemask = WRITEMASK_XYZW;
144 this->reladdr = reg.reladdr;
145 }
146
147 namespace {
148
149 class ir_to_mesa_instruction : public exec_node {
150 public:
151 DECLARE_RALLOC_CXX_OPERATORS(ir_to_mesa_instruction)
152
153 enum prog_opcode op;
154 dst_reg dst;
155 src_reg src[3];
156 /** Pointer to the ir source this tree came from for debugging */
157 ir_instruction *ir;
158 bool saturate;
159 int sampler; /**< sampler index */
160 int tex_target; /**< One of TEXTURE_*_INDEX */
161 GLboolean tex_shadow;
162 };
163
164 class variable_storage : public exec_node {
165 public:
166 variable_storage(ir_variable *var, gl_register_file file, int index)
167 : file(file), index(index), var(var)
168 {
169 /* empty */
170 }
171
172 gl_register_file file;
173 int index;
174 ir_variable *var; /* variable that maps to this, if any */
175 };
176
177 class function_entry : public exec_node {
178 public:
179 ir_function_signature *sig;
180
181 /**
182 * identifier of this function signature used by the program.
183 *
184 * At the point that Mesa instructions for function calls are
185 * generated, we don't know the address of the first instruction of
186 * the function body. So we make the BranchTarget that is called a
187 * small integer and rewrite them during set_branchtargets().
188 */
189 int sig_id;
190
191 /**
192 * Pointer to first instruction of the function body.
193 *
194 * Set during function body emits after main() is processed.
195 */
196 ir_to_mesa_instruction *bgn_inst;
197
198 /**
199 * Index of the first instruction of the function body in actual
200 * Mesa IR.
201 *
202 * Set after convertion from ir_to_mesa_instruction to prog_instruction.
203 */
204 int inst;
205
206 /** Storage for the return value. */
207 src_reg return_reg;
208 };
209
210 class ir_to_mesa_visitor : public ir_visitor {
211 public:
212 ir_to_mesa_visitor();
213 ~ir_to_mesa_visitor();
214
215 function_entry *current_function;
216
217 struct gl_context *ctx;
218 struct gl_program *prog;
219 struct gl_shader_program *shader_program;
220 struct gl_shader_compiler_options *options;
221
222 int next_temp;
223
224 variable_storage *find_variable_storage(const ir_variable *var);
225
226 src_reg get_temp(const glsl_type *type);
227 void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);
228
229 src_reg src_reg_for_float(float val);
230
231 /**
232 * \name Visit methods
233 *
234 * As typical for the visitor pattern, there must be one \c visit method for
235 * each concrete subclass of \c ir_instruction. Virtual base classes within
236 * the hierarchy should not have \c visit methods.
237 */
238 /*@{*/
239 virtual void visit(ir_variable *);
240 virtual void visit(ir_loop *);
241 virtual void visit(ir_loop_jump *);
242 virtual void visit(ir_function_signature *);
243 virtual void visit(ir_function *);
244 virtual void visit(ir_expression *);
245 virtual void visit(ir_swizzle *);
246 virtual void visit(ir_dereference_variable *);
247 virtual void visit(ir_dereference_array *);
248 virtual void visit(ir_dereference_record *);
249 virtual void visit(ir_assignment *);
250 virtual void visit(ir_constant *);
251 virtual void visit(ir_call *);
252 virtual void visit(ir_return *);
253 virtual void visit(ir_discard *);
254 virtual void visit(ir_texture *);
255 virtual void visit(ir_if *);
256 virtual void visit(ir_emit_vertex *);
257 virtual void visit(ir_end_primitive *);
258 virtual void visit(ir_barrier *);
259 /*@}*/
260
261 src_reg result;
262
263 /** List of variable_storage */
264 exec_list variables;
265
266 /** List of function_entry */
267 exec_list function_signatures;
268 int next_signature_id;
269
270 /** List of ir_to_mesa_instruction */
271 exec_list instructions;
272
273 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);
274
275 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
276 dst_reg dst, src_reg src0);
277
278 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
279 dst_reg dst, src_reg src0, src_reg src1);
280
281 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
282 dst_reg dst,
283 src_reg src0, src_reg src1, src_reg src2);
284
285 /**
286 * Emit the correct dot-product instruction for the type of arguments
287 */
288 ir_to_mesa_instruction * emit_dp(ir_instruction *ir,
289 dst_reg dst,
290 src_reg src0,
291 src_reg src1,
292 unsigned elements);
293
294 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
295 dst_reg dst, src_reg src0);
296
297 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
298 dst_reg dst, src_reg src0, src_reg src1);
299
300 bool try_emit_mad(ir_expression *ir,
301 int mul_operand);
302 bool try_emit_mad_for_and_not(ir_expression *ir,
303 int mul_operand);
304
305 void emit_swz(ir_expression *ir);
306
307 void emit_equality_comparison(ir_expression *ir, enum prog_opcode op,
308 dst_reg dst,
309 const src_reg &src0, const src_reg &src1);
310
311 inline void emit_sne(ir_expression *ir, dst_reg dst,
312 const src_reg &src0, const src_reg &src1)
313 {
314 emit_equality_comparison(ir, OPCODE_SLT, dst, src0, src1);
315 }
316
317 inline void emit_seq(ir_expression *ir, dst_reg dst,
318 const src_reg &src0, const src_reg &src1)
319 {
320 emit_equality_comparison(ir, OPCODE_SGE, dst, src0, src1);
321 }
322
323 bool process_move_condition(ir_rvalue *ir);
324
325 void copy_propagate(void);
326
327 void *mem_ctx;
328 };
329
330 } /* anonymous namespace */
331
332 static src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);
333
334 static dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);
335
336 static dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);
337
338 static int
339 swizzle_for_size(int size)
340 {
341 static const int size_swizzles[4] = {
342 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
343 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
344 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
345 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
346 };
347
348 assert((size >= 1) && (size <= 4));
349 return size_swizzles[size - 1];
350 }
351
352 ir_to_mesa_instruction *
353 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
354 dst_reg dst,
355 src_reg src0, src_reg src1, src_reg src2)
356 {
357 ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
358 int num_reladdr = 0;
359
360 /* If we have to do relative addressing, we want to load the ARL
361 * reg directly for one of the regs, and preload the other reladdr
362 * sources into temps.
363 */
364 num_reladdr += dst.reladdr != NULL;
365 num_reladdr += src0.reladdr != NULL;
366 num_reladdr += src1.reladdr != NULL;
367 num_reladdr += src2.reladdr != NULL;
368
369 reladdr_to_temp(ir, &src2, &num_reladdr);
370 reladdr_to_temp(ir, &src1, &num_reladdr);
371 reladdr_to_temp(ir, &src0, &num_reladdr);
372
373 if (dst.reladdr) {
374 emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
375 num_reladdr--;
376 }
377 assert(num_reladdr == 0);
378
379 inst->op = op;
380 inst->dst = dst;
381 inst->src[0] = src0;
382 inst->src[1] = src1;
383 inst->src[2] = src2;
384 inst->ir = ir;
385
386 this->instructions.push_tail(inst);
387
388 return inst;
389 }
390
391
392 ir_to_mesa_instruction *
393 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
394 dst_reg dst, src_reg src0, src_reg src1)
395 {
396 return emit(ir, op, dst, src0, src1, undef_src);
397 }
398
399 ir_to_mesa_instruction *
400 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
401 dst_reg dst, src_reg src0)
402 {
403 assert(dst.writemask != 0);
404 return emit(ir, op, dst, src0, undef_src, undef_src);
405 }
406
407 ir_to_mesa_instruction *
408 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
409 {
410 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
411 }
412
413 ir_to_mesa_instruction *
414 ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
415 dst_reg dst, src_reg src0, src_reg src1,
416 unsigned elements)
417 {
418 static const enum prog_opcode dot_opcodes[] = {
419 OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
420 };
421
422 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
423 }
424
425 /**
426 * Emits Mesa scalar opcodes to produce unique answers across channels.
427 *
428 * Some Mesa opcodes are scalar-only, like ARB_fp/vp. The src X
429 * channel determines the result across all channels. So to do a vec4
430 * of this operation, we want to emit a scalar per source channel used
431 * to produce dest channels.
432 */
433 void
434 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
435 dst_reg dst,
436 src_reg orig_src0, src_reg orig_src1)
437 {
438 int i, j;
439 int done_mask = ~dst.writemask;
440
441 /* Mesa RCP is a scalar operation splatting results to all channels,
442 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
443 * dst channels.
444 */
445 for (i = 0; i < 4; i++) {
446 GLuint this_mask = (1 << i);
447 ir_to_mesa_instruction *inst;
448 src_reg src0 = orig_src0;
449 src_reg src1 = orig_src1;
450
451 if (done_mask & this_mask)
452 continue;
453
454 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
455 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
456 for (j = i + 1; j < 4; j++) {
457 /* If there is another enabled component in the destination that is
458 * derived from the same inputs, generate its value on this pass as
459 * well.
460 */
461 if (!(done_mask & (1 << j)) &&
462 GET_SWZ(src0.swizzle, j) == src0_swiz &&
463 GET_SWZ(src1.swizzle, j) == src1_swiz) {
464 this_mask |= (1 << j);
465 }
466 }
467 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
468 src0_swiz, src0_swiz);
469 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
470 src1_swiz, src1_swiz);
471
472 inst = emit(ir, op, dst, src0, src1);
473 inst->dst.writemask = this_mask;
474 done_mask |= this_mask;
475 }
476 }
477
478 void
479 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
480 dst_reg dst, src_reg src0)
481 {
482 src_reg undef = undef_src;
483
484 undef.swizzle = SWIZZLE_XXXX;
485
486 emit_scalar(ir, op, dst, src0, undef);
487 }
488
489 src_reg
490 ir_to_mesa_visitor::src_reg_for_float(float val)
491 {
492 src_reg src(PROGRAM_CONSTANT, -1, NULL);
493
494 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
495 (const gl_constant_value *)&val, 1, &src.swizzle);
496
497 return src;
498 }
499
500 static int
501 storage_type_size(const struct glsl_type *type, bool bindless)
502 {
503 unsigned int i;
504 int size;
505
506 switch (type->base_type) {
507 case GLSL_TYPE_UINT:
508 case GLSL_TYPE_INT:
509 case GLSL_TYPE_UINT8:
510 case GLSL_TYPE_INT8:
511 case GLSL_TYPE_UINT16:
512 case GLSL_TYPE_INT16:
513 case GLSL_TYPE_FLOAT:
514 case GLSL_TYPE_FLOAT16:
515 case GLSL_TYPE_BOOL:
516 if (type->is_matrix()) {
517 return type->matrix_columns;
518 } else {
519 /* Regardless of size of vector, it gets a vec4. This is bad
520 * packing for things like floats, but otherwise arrays become a
521 * mess. Hopefully a later pass over the code can pack scalars
522 * down if appropriate.
523 */
524 return 1;
525 }
526 break;
527 case GLSL_TYPE_DOUBLE:
528 if (type->is_matrix()) {
529 if (type->vector_elements > 2)
530 return type->matrix_columns * 2;
531 else
532 return type->matrix_columns;
533 } else {
534 if (type->vector_elements > 2)
535 return 2;
536 else
537 return 1;
538 }
539 break;
540 case GLSL_TYPE_UINT64:
541 case GLSL_TYPE_INT64:
542 if (type->vector_elements > 2)
543 return 2;
544 else
545 return 1;
546 case GLSL_TYPE_ARRAY:
547 assert(type->length > 0);
548 return storage_type_size(type->fields.array, bindless) * type->length;
549 case GLSL_TYPE_STRUCT:
550 size = 0;
551 for (i = 0; i < type->length; i++) {
552 size += storage_type_size(type->fields.structure[i].type, bindless);
553 }
554 return size;
555 case GLSL_TYPE_SAMPLER:
556 case GLSL_TYPE_IMAGE:
557 if (!bindless)
558 return 0;
559 /* fall through */
560 case GLSL_TYPE_SUBROUTINE:
561 return 1;
562 case GLSL_TYPE_ATOMIC_UINT:
563 case GLSL_TYPE_VOID:
564 case GLSL_TYPE_ERROR:
565 case GLSL_TYPE_INTERFACE:
566 case GLSL_TYPE_FUNCTION:
567 assert(!"Invalid type in type_size");
568 break;
569 }
570
571 return 0;
572 }
573
574 static int
575 type_size(const struct glsl_type *type)
576 {
577 return storage_type_size(type, false);
578 }
579
580 /**
581 * In the initial pass of codegen, we assign temporary numbers to
582 * intermediate results. (not SSA -- variable assignments will reuse
583 * storage). Actual register allocation for the Mesa VM occurs in a
584 * pass over the Mesa IR later.
585 */
586 src_reg
587 ir_to_mesa_visitor::get_temp(const glsl_type *type)
588 {
589 src_reg src;
590
591 src.file = PROGRAM_TEMPORARY;
592 src.index = next_temp;
593 src.reladdr = NULL;
594 next_temp += type_size(type);
595
596 if (type->is_array() || type->is_record()) {
597 src.swizzle = SWIZZLE_NOOP;
598 } else {
599 src.swizzle = swizzle_for_size(type->vector_elements);
600 }
601 src.negate = 0;
602
603 return src;
604 }
605
606 variable_storage *
607 ir_to_mesa_visitor::find_variable_storage(const ir_variable *var)
608 {
609 foreach_in_list(variable_storage, entry, &this->variables) {
610 if (entry->var == var)
611 return entry;
612 }
613
614 return NULL;
615 }
616
617 void
618 ir_to_mesa_visitor::visit(ir_variable *ir)
619 {
620 if (strcmp(ir->name, "gl_FragCoord") == 0) {
621 this->prog->OriginUpperLeft = ir->data.origin_upper_left;
622 this->prog->PixelCenterInteger = ir->data.pixel_center_integer;
623 }
624
625 if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
626 unsigned int i;
627 const ir_state_slot *const slots = ir->get_state_slots();
628 assert(slots != NULL);
629
630 /* Check if this statevar's setup in the STATE file exactly
631 * matches how we'll want to reference it as a
632 * struct/array/whatever. If not, then we need to move it into
633 * temporary storage and hope that it'll get copy-propagated
634 * out.
635 */
636 for (i = 0; i < ir->get_num_state_slots(); i++) {
637 if (slots[i].swizzle != SWIZZLE_XYZW) {
638 break;
639 }
640 }
641
642 variable_storage *storage;
643 dst_reg dst;
644 if (i == ir->get_num_state_slots()) {
645 /* We'll set the index later. */
646 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
647 this->variables.push_tail(storage);
648
649 dst = undef_dst;
650 } else {
651 /* The variable_storage constructor allocates slots based on the size
652 * of the type. However, this had better match the number of state
653 * elements that we're going to copy into the new temporary.
654 */
655 assert((int) ir->get_num_state_slots() == type_size(ir->type));
656
657 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
658 this->next_temp);
659 this->variables.push_tail(storage);
660 this->next_temp += type_size(ir->type);
661
662 dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
663 }
664
665
666 for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
667 int index = _mesa_add_state_reference(this->prog->Parameters,
668 slots[i].tokens);
669
670 if (storage->file == PROGRAM_STATE_VAR) {
671 if (storage->index == -1) {
672 storage->index = index;
673 } else {
674 assert(index == storage->index + (int)i);
675 }
676 } else {
677 src_reg src(PROGRAM_STATE_VAR, index, NULL);
678 src.swizzle = slots[i].swizzle;
679 emit(ir, OPCODE_MOV, dst, src);
680 /* even a float takes up a whole vec4 reg in a struct/array. */
681 dst.index++;
682 }
683 }
684
685 if (storage->file == PROGRAM_TEMPORARY &&
686 dst.index != storage->index + (int) ir->get_num_state_slots()) {
687 linker_error(this->shader_program,
688 "failed to load builtin uniform `%s' "
689 "(%d/%d regs loaded)\n",
690 ir->name, dst.index - storage->index,
691 type_size(ir->type));
692 }
693 }
694 }
695
696 void
697 ir_to_mesa_visitor::visit(ir_loop *ir)
698 {
699 emit(NULL, OPCODE_BGNLOOP);
700
701 visit_exec_list(&ir->body_instructions, this);
702
703 emit(NULL, OPCODE_ENDLOOP);
704 }
705
706 void
707 ir_to_mesa_visitor::visit(ir_loop_jump *ir)
708 {
709 switch (ir->mode) {
710 case ir_loop_jump::jump_break:
711 emit(NULL, OPCODE_BRK);
712 break;
713 case ir_loop_jump::jump_continue:
714 emit(NULL, OPCODE_CONT);
715 break;
716 }
717 }
718
719
720 void
721 ir_to_mesa_visitor::visit(ir_function_signature *ir)
722 {
723 assert(0);
724 (void)ir;
725 }
726
727 void
728 ir_to_mesa_visitor::visit(ir_function *ir)
729 {
730 /* Ignore function bodies other than main() -- we shouldn't see calls to
731 * them since they should all be inlined before we get to ir_to_mesa.
732 */
733 if (strcmp(ir->name, "main") == 0) {
734 const ir_function_signature *sig;
735 exec_list empty;
736
737 sig = ir->matching_signature(NULL, &empty, false);
738
739 assert(sig);
740
741 foreach_in_list(ir_instruction, ir, &sig->body) {
742 ir->accept(this);
743 }
744 }
745 }
746
747 bool
748 ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
749 {
750 int nonmul_operand = 1 - mul_operand;
751 src_reg a, b, c;
752
753 ir_expression *expr = ir->operands[mul_operand]->as_expression();
754 if (!expr || expr->operation != ir_binop_mul)
755 return false;
756
757 expr->operands[0]->accept(this);
758 a = this->result;
759 expr->operands[1]->accept(this);
760 b = this->result;
761 ir->operands[nonmul_operand]->accept(this);
762 c = this->result;
763
764 this->result = get_temp(ir->type);
765 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);
766
767 return true;
768 }
769
770 /**
771 * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b))
772 *
773 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
774 * implemented using multiplication, and logical-or is implemented using
775 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
776 * As result, the logical expression (a & !b) can be rewritten as:
777 *
778 * - a * !b
779 * - a * (1 - b)
780 * - (a * 1) - (a * b)
781 * - a + -(a * b)
782 * - a + (a * -b)
783 *
784 * This final expression can be implemented as a single MAD(a, -b, a)
785 * instruction.
786 */
787 bool
788 ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
789 {
790 const int other_operand = 1 - try_operand;
791 src_reg a, b;
792
793 ir_expression *expr = ir->operands[try_operand]->as_expression();
794 if (!expr || expr->operation != ir_unop_logic_not)
795 return false;
796
797 ir->operands[other_operand]->accept(this);
798 a = this->result;
799 expr->operands[0]->accept(this);
800 b = this->result;
801
802 b.negate = ~b.negate;
803
804 this->result = get_temp(ir->type);
805 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a);
806
807 return true;
808 }
809
810 void
811 ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
812 src_reg *reg, int *num_reladdr)
813 {
814 if (!reg->reladdr)
815 return;
816
817 emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);
818
819 if (*num_reladdr != 1) {
820 src_reg temp = get_temp(glsl_type::vec4_type);
821
822 emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
823 *reg = temp;
824 }
825
826 (*num_reladdr)--;
827 }
828
829 void
830 ir_to_mesa_visitor::emit_swz(ir_expression *ir)
831 {
832 /* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
833 * This means that each of the operands is either an immediate value of -1,
834 * 0, or 1, or is a component from one source register (possibly with
835 * negation).
836 */
837 uint8_t components[4] = { 0 };
838 bool negate[4] = { false };
839 ir_variable *var = NULL;
840
841 for (unsigned i = 0; i < ir->type->vector_elements; i++) {
842 ir_rvalue *op = ir->operands[i];
843
844 assert(op->type->is_scalar());
845
846 while (op != NULL) {
847 switch (op->ir_type) {
848 case ir_type_constant: {
849
850 assert(op->type->is_scalar());
851
852 const ir_constant *const c = op->as_constant();
853 if (c->is_one()) {
854 components[i] = SWIZZLE_ONE;
855 } else if (c->is_zero()) {
856 components[i] = SWIZZLE_ZERO;
857 } else if (c->is_negative_one()) {
858 components[i] = SWIZZLE_ONE;
859 negate[i] = true;
860 } else {
861 assert(!"SWZ constant must be 0.0 or 1.0.");
862 }
863
864 op = NULL;
865 break;
866 }
867
868 case ir_type_dereference_variable: {
869 ir_dereference_variable *const deref =
870 (ir_dereference_variable *) op;
871
872 assert((var == NULL) || (deref->var == var));
873 components[i] = SWIZZLE_X;
874 var = deref->var;
875 op = NULL;
876 break;
877 }
878
879 case ir_type_expression: {
880 ir_expression *const expr = (ir_expression *) op;
881
882 assert(expr->operation == ir_unop_neg);
883 negate[i] = true;
884
885 op = expr->operands[0];
886 break;
887 }
888
889 case ir_type_swizzle: {
890 ir_swizzle *const swiz = (ir_swizzle *) op;
891
892 components[i] = swiz->mask.x;
893 op = swiz->val;
894 break;
895 }
896
897 default:
898 assert(!"Should not get here.");
899 return;
900 }
901 }
902 }
903
904 assert(var != NULL);
905
906 ir_dereference_variable *const deref =
907 new(mem_ctx) ir_dereference_variable(var);
908
909 this->result.file = PROGRAM_UNDEFINED;
910 deref->accept(this);
911 if (this->result.file == PROGRAM_UNDEFINED) {
912 printf("Failed to get tree for expression operand:\n");
913 deref->print();
914 printf("\n");
915 exit(1);
916 }
917
918 src_reg src;
919
920 src = this->result;
921 src.swizzle = MAKE_SWIZZLE4(components[0],
922 components[1],
923 components[2],
924 components[3]);
925 src.negate = ((unsigned(negate[0]) << 0)
926 | (unsigned(negate[1]) << 1)
927 | (unsigned(negate[2]) << 2)
928 | (unsigned(negate[3]) << 3));
929
930 /* Storage for our result. Ideally for an assignment we'd be using the
931 * actual storage for the result here, instead.
932 */
933 const src_reg result_src = get_temp(ir->type);
934 dst_reg result_dst = dst_reg(result_src);
935
936 /* Limit writes to the channels that will be used by result_src later.
937 * This does limit this temp's use as a temporary for multi-instruction
938 * sequences.
939 */
940 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
941
942 emit(ir, OPCODE_SWZ, result_dst, src);
943 this->result = result_src;
944 }
945
946 void
947 ir_to_mesa_visitor::emit_equality_comparison(ir_expression *ir,
948 enum prog_opcode op,
949 dst_reg dst,
950 const src_reg &src0,
951 const src_reg &src1)
952 {
953 src_reg difference;
954 src_reg abs_difference = get_temp(glsl_type::vec4_type);
955 const src_reg zero = src_reg_for_float(0.0);
956
957 /* x == y is equivalent to -abs(x-y) >= 0. Since all of the code that
958 * consumes the generated IR is pretty dumb, take special care when one
959 * of the operands is zero.
960 *
961 * Similarly, x != y is equivalent to -abs(x-y) < 0.
962 */
963 if (src0.file == zero.file &&
964 src0.index == zero.index &&
965 src0.swizzle == zero.swizzle) {
966 difference = src1;
967 } else if (src1.file == zero.file &&
968 src1.index == zero.index &&
969 src1.swizzle == zero.swizzle) {
970 difference = src0;
971 } else {
972 difference = get_temp(glsl_type::vec4_type);
973
974 src_reg tmp_src = src0;
975 tmp_src.negate = ~tmp_src.negate;
976
977 emit(ir, OPCODE_ADD, dst_reg(difference), tmp_src, src1);
978 }
979
980 emit(ir, OPCODE_ABS, dst_reg(abs_difference), difference);
981
982 abs_difference.negate = ~abs_difference.negate;
983 emit(ir, op, dst, abs_difference, zero);
984 }
985
986 void
987 ir_to_mesa_visitor::visit(ir_expression *ir)
988 {
989 unsigned int operand;
990 src_reg op[ARRAY_SIZE(ir->operands)];
991 src_reg result_src;
992 dst_reg result_dst;
993
994 /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
995 */
996 if (ir->operation == ir_binop_add) {
997 if (try_emit_mad(ir, 1))
998 return;
999 if (try_emit_mad(ir, 0))
1000 return;
1001 }
1002
1003 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1004 */
1005 if (ir->operation == ir_binop_logic_and) {
1006 if (try_emit_mad_for_and_not(ir, 1))
1007 return;
1008 if (try_emit_mad_for_and_not(ir, 0))
1009 return;
1010 }
1011
1012 if (ir->operation == ir_quadop_vector) {
1013 this->emit_swz(ir);
1014 return;
1015 }
1016
1017 for (operand = 0; operand < ir->num_operands; operand++) {
1018 this->result.file = PROGRAM_UNDEFINED;
1019 ir->operands[operand]->accept(this);
1020 if (this->result.file == PROGRAM_UNDEFINED) {
1021 printf("Failed to get tree for expression operand:\n");
1022 ir->operands[operand]->print();
1023 printf("\n");
1024 exit(1);
1025 }
1026 op[operand] = this->result;
1027
1028 /* Matrix expression operands should have been broken down to vector
1029 * operations already.
1030 */
1031 assert(!ir->operands[operand]->type->is_matrix());
1032 }
1033
1034 int vector_elements = ir->operands[0]->type->vector_elements;
1035 if (ir->operands[1]) {
1036 vector_elements = MAX2(vector_elements,
1037 ir->operands[1]->type->vector_elements);
1038 }
1039
1040 this->result.file = PROGRAM_UNDEFINED;
1041
1042 /* Storage for our result. Ideally for an assignment we'd be using
1043 * the actual storage for the result here, instead.
1044 */
1045 result_src = get_temp(ir->type);
1046 /* convenience for the emit functions below. */
1047 result_dst = dst_reg(result_src);
1048 /* Limit writes to the channels that will be used by result_src later.
1049 * This does limit this temp's use as a temporary for multi-instruction
1050 * sequences.
1051 */
1052 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1053
1054 switch (ir->operation) {
1055 case ir_unop_logic_not:
1056 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
1057 * older GPUs implement SEQ using multiple instructions (i915 uses two
1058 * SGE instructions and a MUL instruction). Since our logic values are
1059 * 0.0 and 1.0, 1-x also implements !x.
1060 */
1061 op[0].negate = ~op[0].negate;
1062 emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0));
1063 break;
1064 case ir_unop_neg:
1065 op[0].negate = ~op[0].negate;
1066 result_src = op[0];
1067 break;
1068 case ir_unop_abs:
1069 emit(ir, OPCODE_ABS, result_dst, op[0]);
1070 break;
1071 case ir_unop_sign:
1072 emit(ir, OPCODE_SSG, result_dst, op[0]);
1073 break;
1074 case ir_unop_rcp:
1075 emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
1076 break;
1077
1078 case ir_unop_exp2:
1079 emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
1080 break;
1081 case ir_unop_exp:
1082 assert(!"not reached: should be handled by exp_to_exp2");
1083 break;
1084 case ir_unop_log:
1085 assert(!"not reached: should be handled by log_to_log2");
1086 break;
1087 case ir_unop_log2:
1088 emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
1089 break;
1090 case ir_unop_sin:
1091 emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
1092 break;
1093 case ir_unop_cos:
1094 emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
1095 break;
1096
1097 case ir_unop_dFdx:
1098 emit(ir, OPCODE_DDX, result_dst, op[0]);
1099 break;
1100 case ir_unop_dFdy:
1101 emit(ir, OPCODE_DDY, result_dst, op[0]);
1102 break;
1103
1104 case ir_unop_saturate: {
1105 ir_to_mesa_instruction *inst = emit(ir, OPCODE_MOV,
1106 result_dst, op[0]);
1107 inst->saturate = true;
1108 break;
1109 }
1110 case ir_unop_noise: {
1111 const enum prog_opcode opcode =
1112 prog_opcode(OPCODE_NOISE1
1113 + (ir->operands[0]->type->vector_elements) - 1);
1114 assert((opcode >= OPCODE_NOISE1) && (opcode <= OPCODE_NOISE4));
1115
1116 emit(ir, opcode, result_dst, op[0]);
1117 break;
1118 }
1119
1120 case ir_binop_add:
1121 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1122 break;
1123 case ir_binop_sub:
1124 emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
1125 break;
1126
1127 case ir_binop_mul:
1128 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1129 break;
1130 case ir_binop_div:
1131 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1132 break;
1133 case ir_binop_mod:
1134 /* Floating point should be lowered by MOD_TO_FLOOR in the compiler. */
1135 assert(ir->type->is_integer());
1136 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1137 break;
1138
1139 case ir_binop_less:
1140 emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1141 break;
1142 case ir_binop_gequal:
1143 emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1144 break;
1145 case ir_binop_equal:
1146 emit_seq(ir, result_dst, op[0], op[1]);
1147 break;
1148 case ir_binop_nequal:
1149 emit_sne(ir, result_dst, op[0], op[1]);
1150 break;
1151 case ir_binop_all_equal:
1152 /* "==" operator producing a scalar boolean. */
1153 if (ir->operands[0]->type->is_vector() ||
1154 ir->operands[1]->type->is_vector()) {
1155 src_reg temp = get_temp(glsl_type::vec4_type);
1156 emit_sne(ir, dst_reg(temp), op[0], op[1]);
1157
1158 /* After the dot-product, the value will be an integer on the
1159 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1160 */
1161 emit_dp(ir, result_dst, temp, temp, vector_elements);
1162
1163 /* Negating the result of the dot-product gives values on the range
1164 * [-4, 0]. Zero becomes 1.0, and negative values become zero. This
1165 * achieved using SGE.
1166 */
1167 src_reg sge_src = result_src;
1168 sge_src.negate = ~sge_src.negate;
1169 emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0));
1170 } else {
1171 emit_seq(ir, result_dst, op[0], op[1]);
1172 }
1173 break;
1174 case ir_binop_any_nequal:
1175 /* "!=" operator producing a scalar boolean. */
1176 if (ir->operands[0]->type->is_vector() ||
1177 ir->operands[1]->type->is_vector()) {
1178 src_reg temp = get_temp(glsl_type::vec4_type);
1179 if (ir->operands[0]->type->is_boolean() &&
1180 ir->operands[1]->as_constant() &&
1181 ir->operands[1]->as_constant()->is_zero()) {
1182 temp = op[0];
1183 } else {
1184 emit_sne(ir, dst_reg(temp), op[0], op[1]);
1185 }
1186
1187 /* After the dot-product, the value will be an integer on the
1188 * range [0,4]. Zero stays zero, and positive values become 1.0.
1189 */
1190 ir_to_mesa_instruction *const dp =
1191 emit_dp(ir, result_dst, temp, temp, vector_elements);
1192 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1193 /* The clamping to [0,1] can be done for free in the fragment
1194 * shader with a saturate.
1195 */
1196 dp->saturate = true;
1197 } else {
1198 /* Negating the result of the dot-product gives values on the range
1199 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1200 * achieved using SLT.
1201 */
1202 src_reg slt_src = result_src;
1203 slt_src.negate = ~slt_src.negate;
1204 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1205 }
1206 } else {
1207 emit_sne(ir, result_dst, op[0], op[1]);
1208 }
1209 break;
1210
1211 case ir_binop_logic_xor:
1212 emit_sne(ir, result_dst, op[0], op[1]);
1213 break;
1214
1215 case ir_binop_logic_or: {
1216 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1217 /* After the addition, the value will be an integer on the
1218 * range [0,2]. Zero stays zero, and positive values become 1.0.
1219 */
1220 ir_to_mesa_instruction *add =
1221 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1222 add->saturate = true;
1223 } else {
1224 /* The Boolean arguments are stored as float 0.0 and 1.0. If either
1225 * value is 1.0, the result of the logcal-or should be 1.0. If both
1226 * values are 0.0, the result should be 0.0. This is exactly what
1227 * MAX does.
1228 */
1229 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1230 }
1231 break;
1232 }
1233
1234 case ir_binop_logic_and:
1235 /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1236 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1237 break;
1238
1239 case ir_binop_dot:
1240 assert(ir->operands[0]->type->is_vector());
1241 assert(ir->operands[0]->type == ir->operands[1]->type);
1242 emit_dp(ir, result_dst, op[0], op[1],
1243 ir->operands[0]->type->vector_elements);
1244 break;
1245
1246 case ir_unop_sqrt:
1247 /* sqrt(x) = x * rsq(x). */
1248 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1249 emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
1250 /* For incoming channels <= 0, set the result to 0. */
1251 op[0].negate = ~op[0].negate;
1252 emit(ir, OPCODE_CMP, result_dst,
1253 op[0], result_src, src_reg_for_float(0.0));
1254 break;
1255 case ir_unop_rsq:
1256 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1257 break;
1258 case ir_unop_i2f:
1259 case ir_unop_u2f:
1260 case ir_unop_b2f:
1261 case ir_unop_b2i:
1262 case ir_unop_i2u:
1263 case ir_unop_u2i:
1264 /* Mesa IR lacks types, ints are stored as truncated floats. */
1265 result_src = op[0];
1266 break;
1267 case ir_unop_f2i:
1268 case ir_unop_f2u:
1269 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1270 break;
1271 case ir_unop_f2b:
1272 case ir_unop_i2b:
1273 emit_sne(ir, result_dst, op[0], src_reg_for_float(0.0));
1274 break;
1275 case ir_unop_bitcast_f2i: // Ignore these 4, they can't happen here anyway
1276 case ir_unop_bitcast_f2u:
1277 case ir_unop_bitcast_i2f:
1278 case ir_unop_bitcast_u2f:
1279 break;
1280 case ir_unop_trunc:
1281 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1282 break;
1283 case ir_unop_ceil:
1284 op[0].negate = ~op[0].negate;
1285 emit(ir, OPCODE_FLR, result_dst, op[0]);
1286 result_src.negate = ~result_src.negate;
1287 break;
1288 case ir_unop_floor:
1289 emit(ir, OPCODE_FLR, result_dst, op[0]);
1290 break;
1291 case ir_unop_fract:
1292 emit(ir, OPCODE_FRC, result_dst, op[0]);
1293 break;
1294 case ir_unop_pack_snorm_2x16:
1295 case ir_unop_pack_snorm_4x8:
1296 case ir_unop_pack_unorm_2x16:
1297 case ir_unop_pack_unorm_4x8:
1298 case ir_unop_pack_half_2x16:
1299 case ir_unop_pack_double_2x32:
1300 case ir_unop_unpack_snorm_2x16:
1301 case ir_unop_unpack_snorm_4x8:
1302 case ir_unop_unpack_unorm_2x16:
1303 case ir_unop_unpack_unorm_4x8:
1304 case ir_unop_unpack_half_2x16:
1305 case ir_unop_unpack_double_2x32:
1306 case ir_unop_bitfield_reverse:
1307 case ir_unop_bit_count:
1308 case ir_unop_find_msb:
1309 case ir_unop_find_lsb:
1310 case ir_unop_d2f:
1311 case ir_unop_f2d:
1312 case ir_unop_d2i:
1313 case ir_unop_i2d:
1314 case ir_unop_d2u:
1315 case ir_unop_u2d:
1316 case ir_unop_d2b:
1317 case ir_unop_frexp_sig:
1318 case ir_unop_frexp_exp:
1319 assert(!"not supported");
1320 break;
1321 case ir_binop_min:
1322 emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
1323 break;
1324 case ir_binop_max:
1325 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1326 break;
1327 case ir_binop_pow:
1328 emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
1329 break;
1330
1331 /* GLSL 1.30 integer ops are unsupported in Mesa IR, but since
1332 * hardware backends have no way to avoid Mesa IR generation
1333 * even if they don't use it, we need to emit "something" and
1334 * continue.
1335 */
1336 case ir_binop_lshift:
1337 case ir_binop_rshift:
1338 case ir_binop_bit_and:
1339 case ir_binop_bit_xor:
1340 case ir_binop_bit_or:
1341 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1342 break;
1343
1344 case ir_unop_bit_not:
1345 case ir_unop_round_even:
1346 emit(ir, OPCODE_MOV, result_dst, op[0]);
1347 break;
1348
1349 case ir_binop_ubo_load:
1350 assert(!"not supported");
1351 break;
1352
1353 case ir_triop_lrp:
1354 /* ir_triop_lrp operands are (x, y, a) while
1355 * OPCODE_LRP operands are (a, y, x) to match ARB_fragment_program.
1356 */
1357 emit(ir, OPCODE_LRP, result_dst, op[2], op[1], op[0]);
1358 break;
1359
1360 case ir_triop_csel:
1361 /* We assume that boolean true and false are 1.0 and 0.0. OPCODE_CMP
1362 * selects src1 if src0 is < 0, src2 otherwise.
1363 */
1364 op[0].negate = ~op[0].negate;
1365 emit(ir, OPCODE_CMP, result_dst, op[0], op[1], op[2]);
1366 break;
1367
1368 case ir_binop_vector_extract:
1369 case ir_triop_fma:
1370 case ir_triop_bitfield_extract:
1371 case ir_triop_vector_insert:
1372 case ir_quadop_bitfield_insert:
1373 case ir_binop_ldexp:
1374 case ir_binop_carry:
1375 case ir_binop_borrow:
1376 case ir_binop_imul_high:
1377 case ir_unop_interpolate_at_centroid:
1378 case ir_binop_interpolate_at_offset:
1379 case ir_binop_interpolate_at_sample:
1380 case ir_unop_dFdx_coarse:
1381 case ir_unop_dFdx_fine:
1382 case ir_unop_dFdy_coarse:
1383 case ir_unop_dFdy_fine:
1384 case ir_unop_subroutine_to_int:
1385 case ir_unop_get_buffer_size:
1386 case ir_unop_bitcast_u642d:
1387 case ir_unop_bitcast_i642d:
1388 case ir_unop_bitcast_d2u64:
1389 case ir_unop_bitcast_d2i64:
1390 case ir_unop_i642i:
1391 case ir_unop_u642i:
1392 case ir_unop_i642u:
1393 case ir_unop_u642u:
1394 case ir_unop_i642b:
1395 case ir_unop_i642f:
1396 case ir_unop_u642f:
1397 case ir_unop_i642d:
1398 case ir_unop_u642d:
1399 case ir_unop_i2i64:
1400 case ir_unop_u2i64:
1401 case ir_unop_b2i64:
1402 case ir_unop_f2i64:
1403 case ir_unop_d2i64:
1404 case ir_unop_i2u64:
1405 case ir_unop_u2u64:
1406 case ir_unop_f2u64:
1407 case ir_unop_d2u64:
1408 case ir_unop_u642i64:
1409 case ir_unop_i642u64:
1410 case ir_unop_pack_int_2x32:
1411 case ir_unop_unpack_int_2x32:
1412 case ir_unop_pack_uint_2x32:
1413 case ir_unop_unpack_uint_2x32:
1414 case ir_unop_pack_sampler_2x32:
1415 case ir_unop_unpack_sampler_2x32:
1416 case ir_unop_pack_image_2x32:
1417 case ir_unop_unpack_image_2x32:
1418 assert(!"not supported");
1419 break;
1420
1421 case ir_unop_ssbo_unsized_array_length:
1422 case ir_quadop_vector:
1423 /* This operation should have already been handled.
1424 */
1425 assert(!"Should not get here.");
1426 break;
1427 }
1428
1429 this->result = result_src;
1430 }
1431
1432
1433 void
1434 ir_to_mesa_visitor::visit(ir_swizzle *ir)
1435 {
1436 src_reg src;
1437 int i;
1438 int swizzle[4];
1439
1440 /* Note that this is only swizzles in expressions, not those on the left
1441 * hand side of an assignment, which do write masking. See ir_assignment
1442 * for that.
1443 */
1444
1445 ir->val->accept(this);
1446 src = this->result;
1447 assert(src.file != PROGRAM_UNDEFINED);
1448 assert(ir->type->vector_elements > 0);
1449
1450 for (i = 0; i < 4; i++) {
1451 if (i < ir->type->vector_elements) {
1452 switch (i) {
1453 case 0:
1454 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1455 break;
1456 case 1:
1457 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1458 break;
1459 case 2:
1460 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1461 break;
1462 case 3:
1463 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1464 break;
1465 }
1466 } else {
1467 /* If the type is smaller than a vec4, replicate the last
1468 * channel out.
1469 */
1470 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1471 }
1472 }
1473
1474 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1475
1476 this->result = src;
1477 }
1478
1479 void
1480 ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
1481 {
1482 variable_storage *entry = find_variable_storage(ir->var);
1483 ir_variable *var = ir->var;
1484
1485 if (!entry) {
1486 switch (var->data.mode) {
1487 case ir_var_uniform:
1488 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1489 var->data.param_index);
1490 this->variables.push_tail(entry);
1491 break;
1492 case ir_var_shader_in:
1493 /* The linker assigns locations for varyings and attributes,
1494 * including deprecated builtins (like gl_Color),
1495 * user-assigned generic attributes (glBindVertexLocation),
1496 * and user-defined varyings.
1497 */
1498 assert(var->data.location != -1);
1499 entry = new(mem_ctx) variable_storage(var,
1500 PROGRAM_INPUT,
1501 var->data.location);
1502 break;
1503 case ir_var_shader_out:
1504 assert(var->data.location != -1);
1505 entry = new(mem_ctx) variable_storage(var,
1506 PROGRAM_OUTPUT,
1507 var->data.location);
1508 break;
1509 case ir_var_system_value:
1510 entry = new(mem_ctx) variable_storage(var,
1511 PROGRAM_SYSTEM_VALUE,
1512 var->data.location);
1513 break;
1514 case ir_var_auto:
1515 case ir_var_temporary:
1516 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1517 this->next_temp);
1518 this->variables.push_tail(entry);
1519
1520 next_temp += type_size(var->type);
1521 break;
1522 }
1523
1524 if (!entry) {
1525 printf("Failed to make storage for %s\n", var->name);
1526 exit(1);
1527 }
1528 }
1529
1530 this->result = src_reg(entry->file, entry->index, var->type);
1531 }
1532
1533 void
1534 ir_to_mesa_visitor::visit(ir_dereference_array *ir)
1535 {
1536 ir_constant *index;
1537 src_reg src;
1538 int element_size = type_size(ir->type);
1539
1540 index = ir->array_index->constant_expression_value(ralloc_parent(ir));
1541
1542 ir->array->accept(this);
1543 src = this->result;
1544
1545 if (index) {
1546 src.index += index->value.i[0] * element_size;
1547 } else {
1548 /* Variable index array dereference. It eats the "vec4" of the
1549 * base of the array and an index that offsets the Mesa register
1550 * index.
1551 */
1552 ir->array_index->accept(this);
1553
1554 src_reg index_reg;
1555
1556 if (element_size == 1) {
1557 index_reg = this->result;
1558 } else {
1559 index_reg = get_temp(glsl_type::float_type);
1560
1561 emit(ir, OPCODE_MUL, dst_reg(index_reg),
1562 this->result, src_reg_for_float(element_size));
1563 }
1564
1565 /* If there was already a relative address register involved, add the
1566 * new and the old together to get the new offset.
1567 */
1568 if (src.reladdr != NULL) {
1569 src_reg accum_reg = get_temp(glsl_type::float_type);
1570
1571 emit(ir, OPCODE_ADD, dst_reg(accum_reg),
1572 index_reg, *src.reladdr);
1573
1574 index_reg = accum_reg;
1575 }
1576
1577 src.reladdr = ralloc(mem_ctx, src_reg);
1578 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1579 }
1580
1581 /* If the type is smaller than a vec4, replicate the last channel out. */
1582 if (ir->type->is_scalar() || ir->type->is_vector())
1583 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1584 else
1585 src.swizzle = SWIZZLE_NOOP;
1586
1587 this->result = src;
1588 }
1589
1590 void
1591 ir_to_mesa_visitor::visit(ir_dereference_record *ir)
1592 {
1593 unsigned int i;
1594 const glsl_type *struct_type = ir->record->type;
1595 int offset = 0;
1596
1597 ir->record->accept(this);
1598
1599 assert(ir->field_idx >= 0);
1600 for (i = 0; i < struct_type->length; i++) {
1601 if (i == (unsigned) ir->field_idx)
1602 break;
1603 offset += type_size(struct_type->fields.structure[i].type);
1604 }
1605
1606 /* If the type is smaller than a vec4, replicate the last channel out. */
1607 if (ir->type->is_scalar() || ir->type->is_vector())
1608 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1609 else
1610 this->result.swizzle = SWIZZLE_NOOP;
1611
1612 this->result.index += offset;
1613 }
1614
1615 /**
1616 * We want to be careful in assignment setup to hit the actual storage
1617 * instead of potentially using a temporary like we might with the
1618 * ir_dereference handler.
1619 */
1620 static dst_reg
1621 get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
1622 {
1623 /* The LHS must be a dereference. If the LHS is a variable indexed array
1624 * access of a vector, it must be separated into a series conditional moves
1625 * before reaching this point (see ir_vec_index_to_cond_assign).
1626 */
1627 assert(ir->as_dereference());
1628 ir_dereference_array *deref_array = ir->as_dereference_array();
1629 if (deref_array) {
1630 assert(!deref_array->array->type->is_vector());
1631 }
1632
1633 /* Use the rvalue deref handler for the most part. We'll ignore
1634 * swizzles in it and write swizzles using writemask, though.
1635 */
1636 ir->accept(v);
1637 return dst_reg(v->result);
1638 }
1639
1640 /* Calculate the sampler index and also calculate the base uniform location
1641 * for struct members.
1642 */
1643 static void
1644 calc_sampler_offsets(struct gl_shader_program *prog, ir_dereference *deref,
1645 unsigned *offset, unsigned *array_elements,
1646 unsigned *location)
1647 {
1648 if (deref->ir_type == ir_type_dereference_variable)
1649 return;
1650
1651 switch (deref->ir_type) {
1652 case ir_type_dereference_array: {
1653 ir_dereference_array *deref_arr = deref->as_dereference_array();
1654
1655 void *mem_ctx = ralloc_parent(deref_arr);
1656 ir_constant *array_index =
1657 deref_arr->array_index->constant_expression_value(mem_ctx);
1658
1659 if (!array_index) {
1660 /* GLSL 1.10 and 1.20 allowed variable sampler array indices,
1661 * while GLSL 1.30 requires that the array indices be
1662 * constant integer expressions. We don't expect any driver
1663 * to actually work with a really variable array index, so
1664 * all that would work would be an unrolled loop counter that ends
1665 * up being constant above.
1666 */
1667 ralloc_strcat(&prog->data->InfoLog,
1668 "warning: Variable sampler array index unsupported.\n"
1669 "This feature of the language was removed in GLSL 1.20 "
1670 "and is unlikely to be supported for 1.10 in Mesa.\n");
1671 } else {
1672 *offset += array_index->value.u[0] * *array_elements;
1673 }
1674
1675 *array_elements *= deref_arr->array->type->length;
1676
1677 calc_sampler_offsets(prog, deref_arr->array->as_dereference(),
1678 offset, array_elements, location);
1679 break;
1680 }
1681
1682 case ir_type_dereference_record: {
1683 ir_dereference_record *deref_record = deref->as_dereference_record();
1684 unsigned field_index = deref_record->field_idx;
1685 *location +=
1686 deref_record->record->type->record_location_offset(field_index);
1687 calc_sampler_offsets(prog, deref_record->record->as_dereference(),
1688 offset, array_elements, location);
1689 break;
1690 }
1691
1692 default:
1693 unreachable("Invalid deref type");
1694 break;
1695 }
1696 }
1697
1698 static int
1699 get_sampler_uniform_value(class ir_dereference *sampler,
1700 struct gl_shader_program *shader_program,
1701 const struct gl_program *prog)
1702 {
1703 GLuint shader = _mesa_program_enum_to_shader_stage(prog->Target);
1704 ir_variable *var = sampler->variable_referenced();
1705 unsigned location = var->data.location;
1706 unsigned array_elements = 1;
1707 unsigned offset = 0;
1708
1709 calc_sampler_offsets(shader_program, sampler, &offset, &array_elements,
1710 &location);
1711
1712 assert(shader_program->data->UniformStorage[location].opaque[shader].active);
1713 return shader_program->data->UniformStorage[location].opaque[shader].index +
1714 offset;
1715 }
1716
1717 /**
1718 * Process the condition of a conditional assignment
1719 *
1720 * Examines the condition of a conditional assignment to generate the optimal
1721 * first operand of a \c CMP instruction. If the condition is a relational
1722 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1723 * used as the source for the \c CMP instruction. Otherwise the comparison
1724 * is processed to a boolean result, and the boolean result is used as the
1725 * operand to the CMP instruction.
1726 */
1727 bool
1728 ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
1729 {
1730 ir_rvalue *src_ir = ir;
1731 bool negate = true;
1732 bool switch_order = false;
1733
1734 ir_expression *const expr = ir->as_expression();
1735 if ((expr != NULL) && (expr->num_operands == 2)) {
1736 bool zero_on_left = false;
1737
1738 if (expr->operands[0]->is_zero()) {
1739 src_ir = expr->operands[1];
1740 zero_on_left = true;
1741 } else if (expr->operands[1]->is_zero()) {
1742 src_ir = expr->operands[0];
1743 zero_on_left = false;
1744 }
1745
1746 /* a is - 0 + - 0 +
1747 * (a < 0) T F F ( a < 0) T F F
1748 * (0 < a) F F T (-a < 0) F F T
1749 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
1750 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
1751 *
1752 * Note that exchanging the order of 0 and 'a' in the comparison simply
1753 * means that the value of 'a' should be negated.
1754 */
1755 if (src_ir != ir) {
1756 switch (expr->operation) {
1757 case ir_binop_less:
1758 switch_order = false;
1759 negate = zero_on_left;
1760 break;
1761
1762 case ir_binop_gequal:
1763 switch_order = true;
1764 negate = zero_on_left;
1765 break;
1766
1767 default:
1768 /* This isn't the right kind of comparison afterall, so make sure
1769 * the whole condition is visited.
1770 */
1771 src_ir = ir;
1772 break;
1773 }
1774 }
1775 }
1776
1777 src_ir->accept(this);
1778
1779 /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1780 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
1781 * choose which value OPCODE_CMP produces without an extra instruction
1782 * computing the condition.
1783 */
1784 if (negate)
1785 this->result.negate = ~this->result.negate;
1786
1787 return switch_order;
1788 }
1789
1790 void
1791 ir_to_mesa_visitor::visit(ir_assignment *ir)
1792 {
1793 dst_reg l;
1794 src_reg r;
1795 int i;
1796
1797 ir->rhs->accept(this);
1798 r = this->result;
1799
1800 l = get_assignment_lhs(ir->lhs, this);
1801
1802 /* FINISHME: This should really set to the correct maximal writemask for each
1803 * FINISHME: component written (in the loops below). This case can only
1804 * FINISHME: occur for matrices, arrays, and structures.
1805 */
1806 if (ir->write_mask == 0) {
1807 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1808 l.writemask = WRITEMASK_XYZW;
1809 } else if (ir->lhs->type->is_scalar()) {
1810 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1811 * FINISHME: W component of fragment shader output zero, work correctly.
1812 */
1813 l.writemask = WRITEMASK_XYZW;
1814 } else {
1815 int swizzles[4];
1816 int first_enabled_chan = 0;
1817 int rhs_chan = 0;
1818
1819 assert(ir->lhs->type->is_vector());
1820 l.writemask = ir->write_mask;
1821
1822 for (int i = 0; i < 4; i++) {
1823 if (l.writemask & (1 << i)) {
1824 first_enabled_chan = GET_SWZ(r.swizzle, i);
1825 break;
1826 }
1827 }
1828
1829 /* Swizzle a small RHS vector into the channels being written.
1830 *
1831 * glsl ir treats write_mask as dictating how many channels are
1832 * present on the RHS while Mesa IR treats write_mask as just
1833 * showing which channels of the vec4 RHS get written.
1834 */
1835 for (int i = 0; i < 4; i++) {
1836 if (l.writemask & (1 << i))
1837 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1838 else
1839 swizzles[i] = first_enabled_chan;
1840 }
1841 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1842 swizzles[2], swizzles[3]);
1843 }
1844
1845 assert(l.file != PROGRAM_UNDEFINED);
1846 assert(r.file != PROGRAM_UNDEFINED);
1847
1848 if (ir->condition) {
1849 const bool switch_order = this->process_move_condition(ir->condition);
1850 src_reg condition = this->result;
1851
1852 for (i = 0; i < type_size(ir->lhs->type); i++) {
1853 if (switch_order) {
1854 emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
1855 } else {
1856 emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
1857 }
1858
1859 l.index++;
1860 r.index++;
1861 }
1862 } else {
1863 for (i = 0; i < type_size(ir->lhs->type); i++) {
1864 emit(ir, OPCODE_MOV, l, r);
1865 l.index++;
1866 r.index++;
1867 }
1868 }
1869 }
1870
1871
1872 void
1873 ir_to_mesa_visitor::visit(ir_constant *ir)
1874 {
1875 src_reg src;
1876 GLfloat stack_vals[4] = { 0 };
1877 GLfloat *values = stack_vals;
1878 unsigned int i;
1879
1880 /* Unfortunately, 4 floats is all we can get into
1881 * _mesa_add_unnamed_constant. So, make a temp to store an
1882 * aggregate constant and move each constant value into it. If we
1883 * get lucky, copy propagation will eliminate the extra moves.
1884 */
1885
1886 if (ir->type->is_record()) {
1887 src_reg temp_base = get_temp(ir->type);
1888 dst_reg temp = dst_reg(temp_base);
1889
1890 for (i = 0; i < ir->type->length; i++) {
1891 ir_constant *const field_value = ir->get_record_field(i);
1892 int size = type_size(field_value->type);
1893
1894 assert(size > 0);
1895
1896 field_value->accept(this);
1897 src = this->result;
1898
1899 for (unsigned j = 0; j < (unsigned int)size; j++) {
1900 emit(ir, OPCODE_MOV, temp, src);
1901
1902 src.index++;
1903 temp.index++;
1904 }
1905 }
1906 this->result = temp_base;
1907 return;
1908 }
1909
1910 if (ir->type->is_array()) {
1911 src_reg temp_base = get_temp(ir->type);
1912 dst_reg temp = dst_reg(temp_base);
1913 int size = type_size(ir->type->fields.array);
1914
1915 assert(size > 0);
1916
1917 for (i = 0; i < ir->type->length; i++) {
1918 ir->const_elements[i]->accept(this);
1919 src = this->result;
1920 for (int j = 0; j < size; j++) {
1921 emit(ir, OPCODE_MOV, temp, src);
1922
1923 src.index++;
1924 temp.index++;
1925 }
1926 }
1927 this->result = temp_base;
1928 return;
1929 }
1930
1931 if (ir->type->is_matrix()) {
1932 src_reg mat = get_temp(ir->type);
1933 dst_reg mat_column = dst_reg(mat);
1934
1935 for (i = 0; i < ir->type->matrix_columns; i++) {
1936 assert(ir->type->is_float());
1937 values = &ir->value.f[i * ir->type->vector_elements];
1938
1939 src = src_reg(PROGRAM_CONSTANT, -1, NULL);
1940 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1941 (gl_constant_value *) values,
1942 ir->type->vector_elements,
1943 &src.swizzle);
1944 emit(ir, OPCODE_MOV, mat_column, src);
1945
1946 mat_column.index++;
1947 }
1948
1949 this->result = mat;
1950 return;
1951 }
1952
1953 src.file = PROGRAM_CONSTANT;
1954 switch (ir->type->base_type) {
1955 case GLSL_TYPE_FLOAT:
1956 values = &ir->value.f[0];
1957 break;
1958 case GLSL_TYPE_UINT:
1959 for (i = 0; i < ir->type->vector_elements; i++) {
1960 values[i] = ir->value.u[i];
1961 }
1962 break;
1963 case GLSL_TYPE_INT:
1964 for (i = 0; i < ir->type->vector_elements; i++) {
1965 values[i] = ir->value.i[i];
1966 }
1967 break;
1968 case GLSL_TYPE_BOOL:
1969 for (i = 0; i < ir->type->vector_elements; i++) {
1970 values[i] = ir->value.b[i];
1971 }
1972 break;
1973 default:
1974 assert(!"Non-float/uint/int/bool constant");
1975 }
1976
1977 this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
1978 this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1979 (gl_constant_value *) values,
1980 ir->type->vector_elements,
1981 &this->result.swizzle);
1982 }
1983
1984 void
1985 ir_to_mesa_visitor::visit(ir_call *)
1986 {
1987 assert(!"ir_to_mesa: All function calls should have been inlined by now.");
1988 }
1989
1990 void
1991 ir_to_mesa_visitor::visit(ir_texture *ir)
1992 {
1993 src_reg result_src, coord, lod_info, projector, dx, dy;
1994 dst_reg result_dst, coord_dst;
1995 ir_to_mesa_instruction *inst = NULL;
1996 prog_opcode opcode = OPCODE_NOP;
1997
1998 if (ir->op == ir_txs)
1999 this->result = src_reg_for_float(0.0);
2000 else
2001 ir->coordinate->accept(this);
2002
2003 /* Put our coords in a temp. We'll need to modify them for shadow,
2004 * projection, or LOD, so the only case we'd use it as-is is if
2005 * we're doing plain old texturing. Mesa IR optimization should
2006 * handle cleaning up our mess in that case.
2007 */
2008 coord = get_temp(glsl_type::vec4_type);
2009 coord_dst = dst_reg(coord);
2010 emit(ir, OPCODE_MOV, coord_dst, this->result);
2011
2012 if (ir->projector) {
2013 ir->projector->accept(this);
2014 projector = this->result;
2015 }
2016
2017 /* Storage for our result. Ideally for an assignment we'd be using
2018 * the actual storage for the result here, instead.
2019 */
2020 result_src = get_temp(glsl_type::vec4_type);
2021 result_dst = dst_reg(result_src);
2022
2023 switch (ir->op) {
2024 case ir_tex:
2025 case ir_txs:
2026 opcode = OPCODE_TEX;
2027 break;
2028 case ir_txb:
2029 opcode = OPCODE_TXB;
2030 ir->lod_info.bias->accept(this);
2031 lod_info = this->result;
2032 break;
2033 case ir_txf:
2034 /* Pretend to be TXL so the sampler, coordinate, lod are available */
2035 case ir_txl:
2036 opcode = OPCODE_TXL;
2037 ir->lod_info.lod->accept(this);
2038 lod_info = this->result;
2039 break;
2040 case ir_txd:
2041 opcode = OPCODE_TXD;
2042 ir->lod_info.grad.dPdx->accept(this);
2043 dx = this->result;
2044 ir->lod_info.grad.dPdy->accept(this);
2045 dy = this->result;
2046 break;
2047 case ir_txf_ms:
2048 assert(!"Unexpected ir_txf_ms opcode");
2049 break;
2050 case ir_lod:
2051 assert(!"Unexpected ir_lod opcode");
2052 break;
2053 case ir_tg4:
2054 assert(!"Unexpected ir_tg4 opcode");
2055 break;
2056 case ir_query_levels:
2057 assert(!"Unexpected ir_query_levels opcode");
2058 break;
2059 case ir_samples_identical:
2060 unreachable("Unexpected ir_samples_identical opcode");
2061 case ir_texture_samples:
2062 unreachable("Unexpected ir_texture_samples opcode");
2063 }
2064
2065 const glsl_type *sampler_type = ir->sampler->type;
2066
2067 if (ir->projector) {
2068 if (opcode == OPCODE_TEX) {
2069 /* Slot the projector in as the last component of the coord. */
2070 coord_dst.writemask = WRITEMASK_W;
2071 emit(ir, OPCODE_MOV, coord_dst, projector);
2072 coord_dst.writemask = WRITEMASK_XYZW;
2073 opcode = OPCODE_TXP;
2074 } else {
2075 src_reg coord_w = coord;
2076 coord_w.swizzle = SWIZZLE_WWWW;
2077
2078 /* For the other TEX opcodes there's no projective version
2079 * since the last slot is taken up by lod info. Do the
2080 * projective divide now.
2081 */
2082 coord_dst.writemask = WRITEMASK_W;
2083 emit(ir, OPCODE_RCP, coord_dst, projector);
2084
2085 /* In the case where we have to project the coordinates "by hand,"
2086 * the shadow comparator value must also be projected.
2087 */
2088 src_reg tmp_src = coord;
2089 if (ir->shadow_comparator) {
2090 /* Slot the shadow value in as the second to last component of the
2091 * coord.
2092 */
2093 ir->shadow_comparator->accept(this);
2094
2095 tmp_src = get_temp(glsl_type::vec4_type);
2096 dst_reg tmp_dst = dst_reg(tmp_src);
2097
2098 /* Projective division not allowed for array samplers. */
2099 assert(!sampler_type->sampler_array);
2100
2101 tmp_dst.writemask = WRITEMASK_Z;
2102 emit(ir, OPCODE_MOV, tmp_dst, this->result);
2103
2104 tmp_dst.writemask = WRITEMASK_XY;
2105 emit(ir, OPCODE_MOV, tmp_dst, coord);
2106 }
2107
2108 coord_dst.writemask = WRITEMASK_XYZ;
2109 emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);
2110
2111 coord_dst.writemask = WRITEMASK_XYZW;
2112 coord.swizzle = SWIZZLE_XYZW;
2113 }
2114 }
2115
2116 /* If projection is done and the opcode is not OPCODE_TXP, then the shadow
2117 * comparator was put in the correct place (and projected) by the code,
2118 * above, that handles by-hand projection.
2119 */
2120 if (ir->shadow_comparator && (!ir->projector || opcode == OPCODE_TXP)) {
2121 /* Slot the shadow value in as the second to last component of the
2122 * coord.
2123 */
2124 ir->shadow_comparator->accept(this);
2125
2126 /* XXX This will need to be updated for cubemap array samplers. */
2127 if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2128 sampler_type->sampler_array) {
2129 coord_dst.writemask = WRITEMASK_W;
2130 } else {
2131 coord_dst.writemask = WRITEMASK_Z;
2132 }
2133
2134 emit(ir, OPCODE_MOV, coord_dst, this->result);
2135 coord_dst.writemask = WRITEMASK_XYZW;
2136 }
2137
2138 if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
2139 /* Mesa IR stores lod or lod bias in the last channel of the coords. */
2140 coord_dst.writemask = WRITEMASK_W;
2141 emit(ir, OPCODE_MOV, coord_dst, lod_info);
2142 coord_dst.writemask = WRITEMASK_XYZW;
2143 }
2144
2145 if (opcode == OPCODE_TXD)
2146 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2147 else
2148 inst = emit(ir, opcode, result_dst, coord);
2149
2150 if (ir->shadow_comparator)
2151 inst->tex_shadow = GL_TRUE;
2152
2153 inst->sampler = get_sampler_uniform_value(ir->sampler, shader_program,
2154 prog);
2155
2156 switch (sampler_type->sampler_dimensionality) {
2157 case GLSL_SAMPLER_DIM_1D:
2158 inst->tex_target = (sampler_type->sampler_array)
2159 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2160 break;
2161 case GLSL_SAMPLER_DIM_2D:
2162 inst->tex_target = (sampler_type->sampler_array)
2163 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2164 break;
2165 case GLSL_SAMPLER_DIM_3D:
2166 inst->tex_target = TEXTURE_3D_INDEX;
2167 break;
2168 case GLSL_SAMPLER_DIM_CUBE:
2169 inst->tex_target = TEXTURE_CUBE_INDEX;
2170 break;
2171 case GLSL_SAMPLER_DIM_RECT:
2172 inst->tex_target = TEXTURE_RECT_INDEX;
2173 break;
2174 case GLSL_SAMPLER_DIM_BUF:
2175 assert(!"FINISHME: Implement ARB_texture_buffer_object");
2176 break;
2177 case GLSL_SAMPLER_DIM_EXTERNAL:
2178 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2179 break;
2180 default:
2181 assert(!"Should not get here.");
2182 }
2183
2184 this->result = result_src;
2185 }
2186
2187 void
2188 ir_to_mesa_visitor::visit(ir_return *ir)
2189 {
2190 /* Non-void functions should have been inlined. We may still emit RETs
2191 * from main() unless the EmitNoMainReturn option is set.
2192 */
2193 assert(!ir->get_value());
2194 emit(ir, OPCODE_RET);
2195 }
2196
2197 void
2198 ir_to_mesa_visitor::visit(ir_discard *ir)
2199 {
2200 if (!ir->condition)
2201 ir->condition = new(mem_ctx) ir_constant(true);
2202
2203 ir->condition->accept(this);
2204 this->result.negate = ~this->result.negate;
2205 emit(ir, OPCODE_KIL, undef_dst, this->result);
2206 }
2207
2208 void
2209 ir_to_mesa_visitor::visit(ir_if *ir)
2210 {
2211 ir_to_mesa_instruction *if_inst;
2212
2213 ir->condition->accept(this);
2214 assert(this->result.file != PROGRAM_UNDEFINED);
2215
2216 if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);
2217
2218 this->instructions.push_tail(if_inst);
2219
2220 visit_exec_list(&ir->then_instructions, this);
2221
2222 if (!ir->else_instructions.is_empty()) {
2223 emit(ir->condition, OPCODE_ELSE);
2224 visit_exec_list(&ir->else_instructions, this);
2225 }
2226
2227 emit(ir->condition, OPCODE_ENDIF);
2228 }
2229
2230 void
2231 ir_to_mesa_visitor::visit(ir_emit_vertex *)
2232 {
2233 assert(!"Geometry shaders not supported.");
2234 }
2235
2236 void
2237 ir_to_mesa_visitor::visit(ir_end_primitive *)
2238 {
2239 assert(!"Geometry shaders not supported.");
2240 }
2241
2242 void
2243 ir_to_mesa_visitor::visit(ir_barrier *)
2244 {
2245 unreachable("GLSL barrier() not supported.");
2246 }
2247
2248 ir_to_mesa_visitor::ir_to_mesa_visitor()
2249 {
2250 result.file = PROGRAM_UNDEFINED;
2251 next_temp = 1;
2252 next_signature_id = 1;
2253 current_function = NULL;
2254 mem_ctx = ralloc_context(NULL);
2255 }
2256
2257 ir_to_mesa_visitor::~ir_to_mesa_visitor()
2258 {
2259 ralloc_free(mem_ctx);
2260 }
2261
2262 static struct prog_src_register
2263 mesa_src_reg_from_ir_src_reg(src_reg reg)
2264 {
2265 struct prog_src_register mesa_reg;
2266
2267 mesa_reg.File = reg.file;
2268 assert(reg.index < (1 << INST_INDEX_BITS));
2269 mesa_reg.Index = reg.index;
2270 mesa_reg.Swizzle = reg.swizzle;
2271 mesa_reg.RelAddr = reg.reladdr != NULL;
2272 mesa_reg.Negate = reg.negate;
2273
2274 return mesa_reg;
2275 }
2276
2277 static void
2278 set_branchtargets(ir_to_mesa_visitor *v,
2279 struct prog_instruction *mesa_instructions,
2280 int num_instructions)
2281 {
2282 int if_count = 0, loop_count = 0;
2283 int *if_stack, *loop_stack;
2284 int if_stack_pos = 0, loop_stack_pos = 0;
2285 int i, j;
2286
2287 for (i = 0; i < num_instructions; i++) {
2288 switch (mesa_instructions[i].Opcode) {
2289 case OPCODE_IF:
2290 if_count++;
2291 break;
2292 case OPCODE_BGNLOOP:
2293 loop_count++;
2294 break;
2295 case OPCODE_BRK:
2296 case OPCODE_CONT:
2297 mesa_instructions[i].BranchTarget = -1;
2298 break;
2299 default:
2300 break;
2301 }
2302 }
2303
2304 if_stack = rzalloc_array(v->mem_ctx, int, if_count);
2305 loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);
2306
2307 for (i = 0; i < num_instructions; i++) {
2308 switch (mesa_instructions[i].Opcode) {
2309 case OPCODE_IF:
2310 if_stack[if_stack_pos] = i;
2311 if_stack_pos++;
2312 break;
2313 case OPCODE_ELSE:
2314 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2315 if_stack[if_stack_pos - 1] = i;
2316 break;
2317 case OPCODE_ENDIF:
2318 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2319 if_stack_pos--;
2320 break;
2321 case OPCODE_BGNLOOP:
2322 loop_stack[loop_stack_pos] = i;
2323 loop_stack_pos++;
2324 break;
2325 case OPCODE_ENDLOOP:
2326 loop_stack_pos--;
2327 /* Rewrite any breaks/conts at this nesting level (haven't
2328 * already had a BranchTarget assigned) to point to the end
2329 * of the loop.
2330 */
2331 for (j = loop_stack[loop_stack_pos]; j < i; j++) {
2332 if (mesa_instructions[j].Opcode == OPCODE_BRK ||
2333 mesa_instructions[j].Opcode == OPCODE_CONT) {
2334 if (mesa_instructions[j].BranchTarget == -1) {
2335 mesa_instructions[j].BranchTarget = i;
2336 }
2337 }
2338 }
2339 /* The loop ends point at each other. */
2340 mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
2341 mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
2342 break;
2343 case OPCODE_CAL:
2344 foreach_in_list(function_entry, entry, &v->function_signatures) {
2345 if (entry->sig_id == mesa_instructions[i].BranchTarget) {
2346 mesa_instructions[i].BranchTarget = entry->inst;
2347 break;
2348 }
2349 }
2350 break;
2351 default:
2352 break;
2353 }
2354 }
2355 }
2356
2357 static void
2358 print_program(struct prog_instruction *mesa_instructions,
2359 ir_instruction **mesa_instruction_annotation,
2360 int num_instructions)
2361 {
2362 ir_instruction *last_ir = NULL;
2363 int i;
2364 int indent = 0;
2365
2366 for (i = 0; i < num_instructions; i++) {
2367 struct prog_instruction *mesa_inst = mesa_instructions + i;
2368 ir_instruction *ir = mesa_instruction_annotation[i];
2369
2370 fprintf(stdout, "%3d: ", i);
2371
2372 if (last_ir != ir && ir) {
2373 int j;
2374
2375 for (j = 0; j < indent; j++) {
2376 fprintf(stdout, " ");
2377 }
2378 ir->print();
2379 printf("\n");
2380 last_ir = ir;
2381
2382 fprintf(stdout, " "); /* line number spacing. */
2383 }
2384
2385 indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
2386 PROG_PRINT_DEBUG, NULL);
2387 }
2388 }
2389
2390 namespace {
2391
2392 class add_uniform_to_shader : public program_resource_visitor {
2393 public:
2394 add_uniform_to_shader(struct gl_context *ctx,
2395 struct gl_shader_program *shader_program,
2396 struct gl_program_parameter_list *params)
2397 : ctx(ctx), params(params), idx(-1)
2398 {
2399 /* empty */
2400 }
2401
2402 void process(ir_variable *var)
2403 {
2404 this->idx = -1;
2405 this->var = var;
2406 this->program_resource_visitor::process(var,
2407 ctx->Const.UseSTD430AsDefaultPacking);
2408 var->data.param_index = this->idx;
2409 }
2410
2411 private:
2412 virtual void visit_field(const glsl_type *type, const char *name,
2413 bool row_major, const glsl_type *record_type,
2414 const enum glsl_interface_packing packing,
2415 bool last_field);
2416
2417 struct gl_context *ctx;
2418 struct gl_program_parameter_list *params;
2419 int idx;
2420 ir_variable *var;
2421 };
2422
2423 } /* anonymous namespace */
2424
2425 void
2426 add_uniform_to_shader::visit_field(const glsl_type *type, const char *name,
2427 bool /* row_major */,
2428 const glsl_type * /* record_type */,
2429 const enum glsl_interface_packing,
2430 bool /* last_field */)
2431 {
2432 /* opaque types don't use storage in the param list unless they are
2433 * bindless samplers or images.
2434 */
2435 if (type->contains_opaque() && !var->data.bindless)
2436 return;
2437
2438 /* Add the uniform to the param list */
2439 assert(_mesa_lookup_parameter_index(params, name) < 0);
2440 int index = _mesa_lookup_parameter_index(params, name);
2441
2442 unsigned num_params = type->arrays_of_arrays_size();
2443 num_params = MAX2(num_params, 1);
2444 num_params *= type->without_array()->matrix_columns;
2445
2446 bool is_dual_slot = type->without_array()->is_dual_slot();
2447 if (is_dual_slot)
2448 num_params *= 2;
2449
2450 _mesa_reserve_parameter_storage(params, num_params);
2451 index = params->NumParameters;
2452 for (unsigned i = 0; i < num_params; i++) {
2453 unsigned comps = 4;
2454 _mesa_add_parameter(params, PROGRAM_UNIFORM, name, comps,
2455 type->gl_type, NULL, NULL);
2456 }
2457
2458 /* The first part of the uniform that's processed determines the base
2459 * location of the whole uniform (for structures).
2460 */
2461 if (this->idx < 0)
2462 this->idx = index;
2463 }
2464
2465 /**
2466 * Generate the program parameters list for the user uniforms in a shader
2467 *
2468 * \param shader_program Linked shader program. This is only used to
2469 * emit possible link errors to the info log.
2470 * \param sh Shader whose uniforms are to be processed.
2471 * \param params Parameter list to be filled in.
2472 */
2473 void
2474 _mesa_generate_parameters_list_for_uniforms(struct gl_context *ctx,
2475 struct gl_shader_program
2476 *shader_program,
2477 struct gl_linked_shader *sh,
2478 struct gl_program_parameter_list
2479 *params)
2480 {
2481 add_uniform_to_shader add(ctx, shader_program, params);
2482
2483 foreach_in_list(ir_instruction, node, sh->ir) {
2484 ir_variable *var = node->as_variable();
2485
2486 if ((var == NULL) || (var->data.mode != ir_var_uniform)
2487 || var->is_in_buffer_block() || (strncmp(var->name, "gl_", 3) == 0))
2488 continue;
2489
2490 add.process(var);
2491 }
2492 }
2493
2494 void
2495 _mesa_associate_uniform_storage(struct gl_context *ctx,
2496 struct gl_shader_program *shader_program,
2497 struct gl_program *prog,
2498 bool propagate_to_storage)
2499 {
2500 struct gl_program_parameter_list *params = prog->Parameters;
2501 gl_shader_stage shader_type = prog->info.stage;
2502
2503 /* After adding each uniform to the parameter list, connect the storage for
2504 * the parameter with the tracking structure used by the API for the
2505 * uniform.
2506 */
2507 unsigned last_location = unsigned(~0);
2508 for (unsigned i = 0; i < params->NumParameters; i++) {
2509 if (params->Parameters[i].Type != PROGRAM_UNIFORM)
2510 continue;
2511
2512 unsigned location;
2513 const bool found =
2514 shader_program->UniformHash->get(location, params->Parameters[i].Name);
2515 assert(found);
2516
2517 if (!found)
2518 continue;
2519
2520 struct gl_uniform_storage *storage =
2521 &shader_program->data->UniformStorage[location];
2522
2523 /* Do not associate any uniform storage to built-in uniforms */
2524 if (storage->builtin)
2525 continue;
2526
2527 if (location != last_location) {
2528 enum gl_uniform_driver_format format = uniform_native;
2529 unsigned columns = 0;
2530 int dmul = 4 * sizeof(float);
2531
2532 switch (storage->type->base_type) {
2533 case GLSL_TYPE_UINT64:
2534 if (storage->type->vector_elements > 2)
2535 dmul *= 2;
2536 /* fallthrough */
2537 case GLSL_TYPE_UINT:
2538 case GLSL_TYPE_UINT16:
2539 case GLSL_TYPE_UINT8:
2540 assert(ctx->Const.NativeIntegers);
2541 format = uniform_native;
2542 columns = 1;
2543 break;
2544 case GLSL_TYPE_INT64:
2545 if (storage->type->vector_elements > 2)
2546 dmul *= 2;
2547 /* fallthrough */
2548 case GLSL_TYPE_INT:
2549 case GLSL_TYPE_INT16:
2550 case GLSL_TYPE_INT8:
2551 format =
2552 (ctx->Const.NativeIntegers) ? uniform_native : uniform_int_float;
2553 columns = 1;
2554 break;
2555 case GLSL_TYPE_DOUBLE:
2556 if (storage->type->vector_elements > 2)
2557 dmul *= 2;
2558 /* fallthrough */
2559 case GLSL_TYPE_FLOAT:
2560 case GLSL_TYPE_FLOAT16:
2561 format = uniform_native;
2562 columns = storage->type->matrix_columns;
2563 break;
2564 case GLSL_TYPE_BOOL:
2565 format = uniform_native;
2566 columns = 1;
2567 break;
2568 case GLSL_TYPE_SAMPLER:
2569 case GLSL_TYPE_IMAGE:
2570 case GLSL_TYPE_SUBROUTINE:
2571 format = uniform_native;
2572 columns = 1;
2573 break;
2574 case GLSL_TYPE_ATOMIC_UINT:
2575 case GLSL_TYPE_ARRAY:
2576 case GLSL_TYPE_VOID:
2577 case GLSL_TYPE_STRUCT:
2578 case GLSL_TYPE_ERROR:
2579 case GLSL_TYPE_INTERFACE:
2580 case GLSL_TYPE_FUNCTION:
2581 assert(!"Should not get here.");
2582 break;
2583 }
2584
2585 _mesa_uniform_attach_driver_storage(storage, dmul * columns, dmul,
2586 format,
2587 &params->ParameterValues[i]);
2588
2589 /* When a bindless sampler/image is bound to a texture/image unit, we
2590 * have to overwrite the constant value by the resident handle
2591 * directly in the constant buffer before the next draw. One solution
2592 * is to keep track a pointer to the base of the data.
2593 */
2594 if (storage->is_bindless && (prog->sh.NumBindlessSamplers ||
2595 prog->sh.NumBindlessImages)) {
2596 unsigned array_elements = MAX2(1, storage->array_elements);
2597
2598 for (unsigned j = 0; j < array_elements; ++j) {
2599 unsigned unit = storage->opaque[shader_type].index + j;
2600
2601 if (storage->type->without_array()->is_sampler()) {
2602 assert(unit >= 0 && unit < prog->sh.NumBindlessSamplers);
2603 prog->sh.BindlessSamplers[unit].data =
2604 &params->ParameterValues[i] + j;
2605 } else if (storage->type->without_array()->is_image()) {
2606 assert(unit >= 0 && unit < prog->sh.NumBindlessImages);
2607 prog->sh.BindlessImages[unit].data =
2608 &params->ParameterValues[i] + j;
2609 }
2610 }
2611 }
2612
2613 /* After attaching the driver's storage to the uniform, propagate any
2614 * data from the linker's backing store. This will cause values from
2615 * initializers in the source code to be copied over.
2616 */
2617 if (propagate_to_storage) {
2618 unsigned array_elements = MAX2(1, storage->array_elements);
2619 _mesa_propagate_uniforms_to_driver_storage(storage, 0,
2620 array_elements);
2621 }
2622
2623 last_location = location;
2624 }
2625 }
2626 }
2627
2628 /*
2629 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
2630 * channels for copy propagation and updates following instructions to
2631 * use the original versions.
2632 *
2633 * The ir_to_mesa_visitor lazily produces code assuming that this pass
2634 * will occur. As an example, a TXP production before this pass:
2635 *
2636 * 0: MOV TEMP[1], INPUT[4].xyyy;
2637 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2638 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
2639 *
2640 * and after:
2641 *
2642 * 0: MOV TEMP[1], INPUT[4].xyyy;
2643 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2644 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
2645 *
2646 * which allows for dead code elimination on TEMP[1]'s writes.
2647 */
2648 void
2649 ir_to_mesa_visitor::copy_propagate(void)
2650 {
2651 ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
2652 ir_to_mesa_instruction *,
2653 this->next_temp * 4);
2654 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
2655 int level = 0;
2656
2657 foreach_in_list(ir_to_mesa_instruction, inst, &this->instructions) {
2658 assert(inst->dst.file != PROGRAM_TEMPORARY
2659 || inst->dst.index < this->next_temp);
2660
2661 /* First, do any copy propagation possible into the src regs. */
2662 for (int r = 0; r < 3; r++) {
2663 ir_to_mesa_instruction *first = NULL;
2664 bool good = true;
2665 int acp_base = inst->src[r].index * 4;
2666
2667 if (inst->src[r].file != PROGRAM_TEMPORARY ||
2668 inst->src[r].reladdr)
2669 continue;
2670
2671 /* See if we can find entries in the ACP consisting of MOVs
2672 * from the same src register for all the swizzled channels
2673 * of this src register reference.
2674 */
2675 for (int i = 0; i < 4; i++) {
2676 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2677 ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];
2678
2679 if (!copy_chan) {
2680 good = false;
2681 break;
2682 }
2683
2684 assert(acp_level[acp_base + src_chan] <= level);
2685
2686 if (!first) {
2687 first = copy_chan;
2688 } else {
2689 if (first->src[0].file != copy_chan->src[0].file ||
2690 first->src[0].index != copy_chan->src[0].index) {
2691 good = false;
2692 break;
2693 }
2694 }
2695 }
2696
2697 if (good) {
2698 /* We've now validated that we can copy-propagate to
2699 * replace this src register reference. Do it.
2700 */
2701 inst->src[r].file = first->src[0].file;
2702 inst->src[r].index = first->src[0].index;
2703
2704 int swizzle = 0;
2705 for (int i = 0; i < 4; i++) {
2706 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2707 ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
2708 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
2709 (3 * i));
2710 }
2711 inst->src[r].swizzle = swizzle;
2712 }
2713 }
2714
2715 switch (inst->op) {
2716 case OPCODE_BGNLOOP:
2717 case OPCODE_ENDLOOP:
2718 /* End of a basic block, clear the ACP entirely. */
2719 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2720 break;
2721
2722 case OPCODE_IF:
2723 ++level;
2724 break;
2725
2726 case OPCODE_ENDIF:
2727 case OPCODE_ELSE:
2728 /* Clear all channels written inside the block from the ACP, but
2729 * leaving those that were not touched.
2730 */
2731 for (int r = 0; r < this->next_temp; r++) {
2732 for (int c = 0; c < 4; c++) {
2733 if (!acp[4 * r + c])
2734 continue;
2735
2736 if (acp_level[4 * r + c] >= level)
2737 acp[4 * r + c] = NULL;
2738 }
2739 }
2740 if (inst->op == OPCODE_ENDIF)
2741 --level;
2742 break;
2743
2744 default:
2745 /* Continuing the block, clear any written channels from
2746 * the ACP.
2747 */
2748 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
2749 /* Any temporary might be written, so no copy propagation
2750 * across this instruction.
2751 */
2752 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2753 } else if (inst->dst.file == PROGRAM_OUTPUT &&
2754 inst->dst.reladdr) {
2755 /* Any output might be written, so no copy propagation
2756 * from outputs across this instruction.
2757 */
2758 for (int r = 0; r < this->next_temp; r++) {
2759 for (int c = 0; c < 4; c++) {
2760 if (!acp[4 * r + c])
2761 continue;
2762
2763 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
2764 acp[4 * r + c] = NULL;
2765 }
2766 }
2767 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
2768 inst->dst.file == PROGRAM_OUTPUT) {
2769 /* Clear where it's used as dst. */
2770 if (inst->dst.file == PROGRAM_TEMPORARY) {
2771 for (int c = 0; c < 4; c++) {
2772 if (inst->dst.writemask & (1 << c)) {
2773 acp[4 * inst->dst.index + c] = NULL;
2774 }
2775 }
2776 }
2777
2778 /* Clear where it's used as src. */
2779 for (int r = 0; r < this->next_temp; r++) {
2780 for (int c = 0; c < 4; c++) {
2781 if (!acp[4 * r + c])
2782 continue;
2783
2784 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
2785
2786 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
2787 acp[4 * r + c]->src[0].index == inst->dst.index &&
2788 inst->dst.writemask & (1 << src_chan))
2789 {
2790 acp[4 * r + c] = NULL;
2791 }
2792 }
2793 }
2794 }
2795 break;
2796 }
2797
2798 /* If this is a copy, add it to the ACP. */
2799 if (inst->op == OPCODE_MOV &&
2800 inst->dst.file == PROGRAM_TEMPORARY &&
2801 !(inst->dst.file == inst->src[0].file &&
2802 inst->dst.index == inst->src[0].index) &&
2803 !inst->dst.reladdr &&
2804 !inst->saturate &&
2805 !inst->src[0].reladdr &&
2806 !inst->src[0].negate) {
2807 for (int i = 0; i < 4; i++) {
2808 if (inst->dst.writemask & (1 << i)) {
2809 acp[4 * inst->dst.index + i] = inst;
2810 acp_level[4 * inst->dst.index + i] = level;
2811 }
2812 }
2813 }
2814 }
2815
2816 ralloc_free(acp_level);
2817 ralloc_free(acp);
2818 }
2819
2820
2821 /**
2822 * Convert a shader's GLSL IR into a Mesa gl_program.
2823 */
2824 static struct gl_program *
2825 get_mesa_program(struct gl_context *ctx,
2826 struct gl_shader_program *shader_program,
2827 struct gl_linked_shader *shader)
2828 {
2829 ir_to_mesa_visitor v;
2830 struct prog_instruction *mesa_instructions, *mesa_inst;
2831 ir_instruction **mesa_instruction_annotation;
2832 int i;
2833 struct gl_program *prog;
2834 GLenum target = _mesa_shader_stage_to_program(shader->Stage);
2835 const char *target_string = _mesa_shader_stage_to_string(shader->Stage);
2836 struct gl_shader_compiler_options *options =
2837 &ctx->Const.ShaderCompilerOptions[shader->Stage];
2838
2839 validate_ir_tree(shader->ir);
2840
2841 prog = shader->Program;
2842 prog->Parameters = _mesa_new_parameter_list();
2843 v.ctx = ctx;
2844 v.prog = prog;
2845 v.shader_program = shader_program;
2846 v.options = options;
2847
2848 _mesa_generate_parameters_list_for_uniforms(ctx, shader_program, shader,
2849 prog->Parameters);
2850
2851 /* Emit Mesa IR for main(). */
2852 visit_exec_list(shader->ir, &v);
2853 v.emit(NULL, OPCODE_END);
2854
2855 prog->arb.NumTemporaries = v.next_temp;
2856
2857 unsigned num_instructions = v.instructions.length();
2858
2859 mesa_instructions = rzalloc_array(prog, struct prog_instruction,
2860 num_instructions);
2861 mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
2862 num_instructions);
2863
2864 v.copy_propagate();
2865
2866 /* Convert ir_mesa_instructions into prog_instructions.
2867 */
2868 mesa_inst = mesa_instructions;
2869 i = 0;
2870 foreach_in_list(const ir_to_mesa_instruction, inst, &v.instructions) {
2871 mesa_inst->Opcode = inst->op;
2872 if (inst->saturate)
2873 mesa_inst->Saturate = GL_TRUE;
2874 mesa_inst->DstReg.File = inst->dst.file;
2875 mesa_inst->DstReg.Index = inst->dst.index;
2876 mesa_inst->DstReg.WriteMask = inst->dst.writemask;
2877 mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
2878 mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
2879 mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
2880 mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
2881 mesa_inst->TexSrcUnit = inst->sampler;
2882 mesa_inst->TexSrcTarget = inst->tex_target;
2883 mesa_inst->TexShadow = inst->tex_shadow;
2884 mesa_instruction_annotation[i] = inst->ir;
2885
2886 /* Set IndirectRegisterFiles. */
2887 if (mesa_inst->DstReg.RelAddr)
2888 prog->arb.IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;
2889
2890 /* Update program's bitmask of indirectly accessed register files */
2891 for (unsigned src = 0; src < 3; src++)
2892 if (mesa_inst->SrcReg[src].RelAddr)
2893 prog->arb.IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;
2894
2895 switch (mesa_inst->Opcode) {
2896 case OPCODE_IF:
2897 if (options->MaxIfDepth == 0) {
2898 linker_warning(shader_program,
2899 "Couldn't flatten if-statement. "
2900 "This will likely result in software "
2901 "rasterization.\n");
2902 }
2903 break;
2904 case OPCODE_BGNLOOP:
2905 if (options->EmitNoLoops) {
2906 linker_warning(shader_program,
2907 "Couldn't unroll loop. "
2908 "This will likely result in software "
2909 "rasterization.\n");
2910 }
2911 break;
2912 case OPCODE_CONT:
2913 if (options->EmitNoCont) {
2914 linker_warning(shader_program,
2915 "Couldn't lower continue-statement. "
2916 "This will likely result in software "
2917 "rasterization.\n");
2918 }
2919 break;
2920 case OPCODE_ARL:
2921 prog->arb.NumAddressRegs = 1;
2922 break;
2923 default:
2924 break;
2925 }
2926
2927 mesa_inst++;
2928 i++;
2929
2930 if (!shader_program->data->LinkStatus)
2931 break;
2932 }
2933
2934 if (!shader_program->data->LinkStatus) {
2935 goto fail_exit;
2936 }
2937
2938 set_branchtargets(&v, mesa_instructions, num_instructions);
2939
2940 if (ctx->_Shader->Flags & GLSL_DUMP) {
2941 fprintf(stderr, "\n");
2942 fprintf(stderr, "GLSL IR for linked %s program %d:\n", target_string,
2943 shader_program->Name);
2944 _mesa_print_ir(stderr, shader->ir, NULL);
2945 fprintf(stderr, "\n");
2946 fprintf(stderr, "\n");
2947 fprintf(stderr, "Mesa IR for linked %s program %d:\n", target_string,
2948 shader_program->Name);
2949 print_program(mesa_instructions, mesa_instruction_annotation,
2950 num_instructions);
2951 fflush(stderr);
2952 }
2953
2954 prog->arb.Instructions = mesa_instructions;
2955 prog->arb.NumInstructions = num_instructions;
2956
2957 /* Setting this to NULL prevents a possible double free in the fail_exit
2958 * path (far below).
2959 */
2960 mesa_instructions = NULL;
2961
2962 do_set_program_inouts(shader->ir, prog, shader->Stage);
2963
2964 prog->ShadowSamplers = shader->shadow_samplers;
2965 prog->ExternalSamplersUsed = gl_external_samplers(prog);
2966 _mesa_update_shader_textures_used(shader_program, prog);
2967
2968 /* Set the gl_FragDepth layout. */
2969 if (target == GL_FRAGMENT_PROGRAM_ARB) {
2970 prog->info.fs.depth_layout = shader_program->FragDepthLayout;
2971 }
2972
2973 _mesa_optimize_program(prog, prog);
2974
2975 /* This has to be done last. Any operation that can cause
2976 * prog->ParameterValues to get reallocated (e.g., anything that adds a
2977 * program constant) has to happen before creating this linkage.
2978 */
2979 _mesa_associate_uniform_storage(ctx, shader_program, prog, true);
2980 if (!shader_program->data->LinkStatus) {
2981 goto fail_exit;
2982 }
2983
2984 return prog;
2985
2986 fail_exit:
2987 ralloc_free(mesa_instructions);
2988 _mesa_reference_program(ctx, &shader->Program, NULL);
2989 return NULL;
2990 }
2991
2992 extern "C" {
2993
2994 /**
2995 * Link a shader.
2996 * Called via ctx->Driver.LinkShader()
2997 * This actually involves converting GLSL IR into Mesa gl_programs with
2998 * code lowering and other optimizations.
2999 */
3000 GLboolean
3001 _mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3002 {
3003 assert(prog->data->LinkStatus);
3004
3005 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3006 if (prog->_LinkedShaders[i] == NULL)
3007 continue;
3008
3009 bool progress;
3010 exec_list *ir = prog->_LinkedShaders[i]->ir;
3011 const struct gl_shader_compiler_options *options =
3012 &ctx->Const.ShaderCompilerOptions[prog->_LinkedShaders[i]->Stage];
3013
3014 do {
3015 progress = false;
3016
3017 /* Lowering */
3018 do_mat_op_to_vec(ir);
3019 lower_instructions(ir, (MOD_TO_FLOOR | DIV_TO_MUL_RCP | EXP_TO_EXP2
3020 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
3021 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
3022
3023 progress = do_common_optimization(ir, true, true,
3024 options, ctx->Const.NativeIntegers)
3025 || progress;
3026
3027 progress = lower_quadop_vector(ir, true) || progress;
3028
3029 if (options->MaxIfDepth == 0)
3030 progress = lower_discard(ir) || progress;
3031
3032 progress = lower_if_to_cond_assign((gl_shader_stage)i, ir,
3033 options->MaxIfDepth) || progress;
3034
3035 progress = lower_noise(ir) || progress;
3036
3037 /* If there are forms of indirect addressing that the driver
3038 * cannot handle, perform the lowering pass.
3039 */
3040 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
3041 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
3042 progress =
3043 lower_variable_index_to_cond_assign(prog->_LinkedShaders[i]->Stage, ir,
3044 options->EmitNoIndirectInput,
3045 options->EmitNoIndirectOutput,
3046 options->EmitNoIndirectTemp,
3047 options->EmitNoIndirectUniform)
3048 || progress;
3049
3050 progress = do_vec_index_to_cond_assign(ir) || progress;
3051 progress = lower_vector_insert(ir, true) || progress;
3052 } while (progress);
3053
3054 validate_ir_tree(ir);
3055 }
3056
3057 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3058 struct gl_program *linked_prog;
3059
3060 if (prog->_LinkedShaders[i] == NULL)
3061 continue;
3062
3063 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
3064
3065 if (linked_prog) {
3066 _mesa_copy_linked_program_data(prog, prog->_LinkedShaders[i]);
3067
3068 if (!ctx->Driver.ProgramStringNotify(ctx,
3069 _mesa_shader_stage_to_program(i),
3070 linked_prog)) {
3071 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
3072 NULL);
3073 return GL_FALSE;
3074 }
3075 }
3076 }
3077
3078 build_program_resource_list(ctx, prog);
3079 return prog->data->LinkStatus;
3080 }
3081
3082 /**
3083 * Link a GLSL shader program. Called via glLinkProgram().
3084 */
3085 void
3086 _mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3087 {
3088 unsigned int i;
3089 bool spirv;
3090
3091 _mesa_clear_shader_program_data(ctx, prog);
3092
3093 prog->data = _mesa_create_shader_program_data();
3094
3095 prog->data->LinkStatus = LINKING_SUCCESS;
3096
3097 for (i = 0; i < prog->NumShaders; i++) {
3098 if (!prog->Shaders[i]->CompileStatus) {
3099 linker_error(prog, "linking with uncompiled/unspecialized shader");
3100 }
3101
3102 if (!i) {
3103 spirv = (prog->Shaders[i]->spirv_data != NULL);
3104 } else if (spirv && !prog->Shaders[i]->spirv_data) {
3105 /* The GL_ARB_gl_spirv spec adds a new bullet point to the list of
3106 * reasons LinkProgram can fail:
3107 *
3108 * "All the shader objects attached to <program> do not have the
3109 * same value for the SPIR_V_BINARY_ARB state."
3110 */
3111 linker_error(prog,
3112 "not all attached shaders have the same "
3113 "SPIR_V_BINARY_ARB state");
3114 }
3115 }
3116
3117 if (prog->data->LinkStatus) {
3118 link_shaders(ctx, prog);
3119 }
3120
3121 /* If LinkStatus is LINKING_SUCCESS, then reset sampler validated to true.
3122 * Validation happens via the LinkShader call below. If LinkStatus is
3123 * LINKING_SKIPPED, then SamplersValidated will have been restored from the
3124 * shader cache.
3125 */
3126 if (prog->data->LinkStatus == LINKING_SUCCESS) {
3127 prog->SamplersValidated = GL_TRUE;
3128 }
3129
3130 if (prog->data->LinkStatus && !ctx->Driver.LinkShader(ctx, prog)) {
3131 prog->data->LinkStatus = LINKING_FAILURE;
3132 }
3133
3134 /* Return early if we are loading the shader from on-disk cache */
3135 if (prog->data->LinkStatus == LINKING_SKIPPED)
3136 return;
3137
3138 if (ctx->_Shader->Flags & GLSL_DUMP) {
3139 if (!prog->data->LinkStatus) {
3140 fprintf(stderr, "GLSL shader program %d failed to link\n", prog->Name);
3141 }
3142
3143 if (prog->data->InfoLog && prog->data->InfoLog[0] != 0) {
3144 fprintf(stderr, "GLSL shader program %d info log:\n", prog->Name);
3145 fprintf(stderr, "%s\n", prog->data->InfoLog);
3146 }
3147 }
3148
3149 #ifdef ENABLE_SHADER_CACHE
3150 if (prog->data->LinkStatus)
3151 shader_cache_write_program_metadata(ctx, prog);
3152 #endif
3153 }
3154
3155 } /* extern "C" */