st/glsl_to_nir: use nir based program resource list builder
[mesa.git] / src / mesa / program / ir_to_mesa.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
24 */
25
26 /**
27 * \file ir_to_mesa.cpp
28 *
29 * Translate GLSL IR to Mesa's gl_program representation.
30 */
31
32 #include <stdio.h>
33 #include "main/macros.h"
34 #include "main/mtypes.h"
35 #include "main/shaderapi.h"
36 #include "main/shaderobj.h"
37 #include "main/uniforms.h"
38 #include "main/glspirv.h"
39 #include "compiler/glsl/ast.h"
40 #include "compiler/glsl/ir.h"
41 #include "compiler/glsl/ir_expression_flattening.h"
42 #include "compiler/glsl/ir_visitor.h"
43 #include "compiler/glsl/ir_optimization.h"
44 #include "compiler/glsl/ir_uniform.h"
45 #include "compiler/glsl/glsl_parser_extras.h"
46 #include "compiler/glsl_types.h"
47 #include "compiler/glsl/linker.h"
48 #include "compiler/glsl/program.h"
49 #include "compiler/glsl/shader_cache.h"
50 #include "compiler/glsl/string_to_uint_map.h"
51 #include "program/prog_instruction.h"
52 #include "program/prog_optimize.h"
53 #include "program/prog_print.h"
54 #include "program/program.h"
55 #include "program/prog_parameter.h"
56
57
58 static int swizzle_for_size(int size);
59
60 namespace {
61
62 class src_reg;
63 class dst_reg;
64
65 /**
66 * This struct is a corresponding struct to Mesa prog_src_register, with
67 * wider fields.
68 */
69 class src_reg {
70 public:
71 src_reg(gl_register_file file, int index, const glsl_type *type)
72 {
73 this->file = file;
74 this->index = index;
75 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
76 this->swizzle = swizzle_for_size(type->vector_elements);
77 else
78 this->swizzle = SWIZZLE_XYZW;
79 this->negate = 0;
80 this->reladdr = NULL;
81 }
82
83 src_reg()
84 {
85 this->file = PROGRAM_UNDEFINED;
86 this->index = 0;
87 this->swizzle = 0;
88 this->negate = 0;
89 this->reladdr = NULL;
90 }
91
92 explicit src_reg(dst_reg reg);
93
94 gl_register_file file; /**< PROGRAM_* from Mesa */
95 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
96 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
97 int negate; /**< NEGATE_XYZW mask from mesa */
98 /** Register index should be offset by the integer in this reg. */
99 src_reg *reladdr;
100 };
101
102 class dst_reg {
103 public:
104 dst_reg(gl_register_file file, int writemask)
105 {
106 this->file = file;
107 this->index = 0;
108 this->writemask = writemask;
109 this->reladdr = NULL;
110 }
111
112 dst_reg()
113 {
114 this->file = PROGRAM_UNDEFINED;
115 this->index = 0;
116 this->writemask = 0;
117 this->reladdr = NULL;
118 }
119
120 explicit dst_reg(src_reg reg);
121
122 gl_register_file file; /**< PROGRAM_* from Mesa */
123 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
124 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
125 /** Register index should be offset by the integer in this reg. */
126 src_reg *reladdr;
127 };
128
129 } /* anonymous namespace */
130
131 src_reg::src_reg(dst_reg reg)
132 {
133 this->file = reg.file;
134 this->index = reg.index;
135 this->swizzle = SWIZZLE_XYZW;
136 this->negate = 0;
137 this->reladdr = reg.reladdr;
138 }
139
140 dst_reg::dst_reg(src_reg reg)
141 {
142 this->file = reg.file;
143 this->index = reg.index;
144 this->writemask = WRITEMASK_XYZW;
145 this->reladdr = reg.reladdr;
146 }
147
148 namespace {
149
150 class ir_to_mesa_instruction : public exec_node {
151 public:
152 DECLARE_RALLOC_CXX_OPERATORS(ir_to_mesa_instruction)
153
154 enum prog_opcode op;
155 dst_reg dst;
156 src_reg src[3];
157 /** Pointer to the ir source this tree came from for debugging */
158 ir_instruction *ir;
159 bool saturate;
160 int sampler; /**< sampler index */
161 int tex_target; /**< One of TEXTURE_*_INDEX */
162 GLboolean tex_shadow;
163 };
164
165 class variable_storage : public exec_node {
166 public:
167 variable_storage(ir_variable *var, gl_register_file file, int index)
168 : file(file), index(index), var(var)
169 {
170 /* empty */
171 }
172
173 gl_register_file file;
174 int index;
175 ir_variable *var; /* variable that maps to this, if any */
176 };
177
178 class function_entry : public exec_node {
179 public:
180 ir_function_signature *sig;
181
182 /**
183 * identifier of this function signature used by the program.
184 *
185 * At the point that Mesa instructions for function calls are
186 * generated, we don't know the address of the first instruction of
187 * the function body. So we make the BranchTarget that is called a
188 * small integer and rewrite them during set_branchtargets().
189 */
190 int sig_id;
191
192 /**
193 * Pointer to first instruction of the function body.
194 *
195 * Set during function body emits after main() is processed.
196 */
197 ir_to_mesa_instruction *bgn_inst;
198
199 /**
200 * Index of the first instruction of the function body in actual
201 * Mesa IR.
202 *
203 * Set after convertion from ir_to_mesa_instruction to prog_instruction.
204 */
205 int inst;
206
207 /** Storage for the return value. */
208 src_reg return_reg;
209 };
210
211 class ir_to_mesa_visitor : public ir_visitor {
212 public:
213 ir_to_mesa_visitor();
214 ~ir_to_mesa_visitor();
215
216 function_entry *current_function;
217
218 struct gl_context *ctx;
219 struct gl_program *prog;
220 struct gl_shader_program *shader_program;
221 struct gl_shader_compiler_options *options;
222
223 int next_temp;
224
225 variable_storage *find_variable_storage(const ir_variable *var);
226
227 src_reg get_temp(const glsl_type *type);
228 void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);
229
230 src_reg src_reg_for_float(float val);
231
232 /**
233 * \name Visit methods
234 *
235 * As typical for the visitor pattern, there must be one \c visit method for
236 * each concrete subclass of \c ir_instruction. Virtual base classes within
237 * the hierarchy should not have \c visit methods.
238 */
239 /*@{*/
240 virtual void visit(ir_variable *);
241 virtual void visit(ir_loop *);
242 virtual void visit(ir_loop_jump *);
243 virtual void visit(ir_function_signature *);
244 virtual void visit(ir_function *);
245 virtual void visit(ir_expression *);
246 virtual void visit(ir_swizzle *);
247 virtual void visit(ir_dereference_variable *);
248 virtual void visit(ir_dereference_array *);
249 virtual void visit(ir_dereference_record *);
250 virtual void visit(ir_assignment *);
251 virtual void visit(ir_constant *);
252 virtual void visit(ir_call *);
253 virtual void visit(ir_return *);
254 virtual void visit(ir_discard *);
255 virtual void visit(ir_demote *);
256 virtual void visit(ir_texture *);
257 virtual void visit(ir_if *);
258 virtual void visit(ir_emit_vertex *);
259 virtual void visit(ir_end_primitive *);
260 virtual void visit(ir_barrier *);
261 /*@}*/
262
263 src_reg result;
264
265 /** List of variable_storage */
266 exec_list variables;
267
268 /** List of function_entry */
269 exec_list function_signatures;
270 int next_signature_id;
271
272 /** List of ir_to_mesa_instruction */
273 exec_list instructions;
274
275 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);
276
277 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
278 dst_reg dst, src_reg src0);
279
280 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
281 dst_reg dst, src_reg src0, src_reg src1);
282
283 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
284 dst_reg dst,
285 src_reg src0, src_reg src1, src_reg src2);
286
287 /**
288 * Emit the correct dot-product instruction for the type of arguments
289 */
290 ir_to_mesa_instruction * emit_dp(ir_instruction *ir,
291 dst_reg dst,
292 src_reg src0,
293 src_reg src1,
294 unsigned elements);
295
296 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
297 dst_reg dst, src_reg src0);
298
299 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
300 dst_reg dst, src_reg src0, src_reg src1);
301
302 bool try_emit_mad(ir_expression *ir,
303 int mul_operand);
304 bool try_emit_mad_for_and_not(ir_expression *ir,
305 int mul_operand);
306
307 void emit_swz(ir_expression *ir);
308
309 void emit_equality_comparison(ir_expression *ir, enum prog_opcode op,
310 dst_reg dst,
311 const src_reg &src0, const src_reg &src1);
312
313 inline void emit_sne(ir_expression *ir, dst_reg dst,
314 const src_reg &src0, const src_reg &src1)
315 {
316 emit_equality_comparison(ir, OPCODE_SLT, dst, src0, src1);
317 }
318
319 inline void emit_seq(ir_expression *ir, dst_reg dst,
320 const src_reg &src0, const src_reg &src1)
321 {
322 emit_equality_comparison(ir, OPCODE_SGE, dst, src0, src1);
323 }
324
325 bool process_move_condition(ir_rvalue *ir);
326
327 void copy_propagate(void);
328
329 void *mem_ctx;
330 };
331
332 } /* anonymous namespace */
333
334 static src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);
335
336 static dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);
337
338 static dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);
339
340 static int
341 swizzle_for_size(int size)
342 {
343 static const int size_swizzles[4] = {
344 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
345 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
346 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
347 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
348 };
349
350 assert((size >= 1) && (size <= 4));
351 return size_swizzles[size - 1];
352 }
353
354 ir_to_mesa_instruction *
355 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
356 dst_reg dst,
357 src_reg src0, src_reg src1, src_reg src2)
358 {
359 ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
360 int num_reladdr = 0;
361
362 /* If we have to do relative addressing, we want to load the ARL
363 * reg directly for one of the regs, and preload the other reladdr
364 * sources into temps.
365 */
366 num_reladdr += dst.reladdr != NULL;
367 num_reladdr += src0.reladdr != NULL;
368 num_reladdr += src1.reladdr != NULL;
369 num_reladdr += src2.reladdr != NULL;
370
371 reladdr_to_temp(ir, &src2, &num_reladdr);
372 reladdr_to_temp(ir, &src1, &num_reladdr);
373 reladdr_to_temp(ir, &src0, &num_reladdr);
374
375 if (dst.reladdr) {
376 emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
377 num_reladdr--;
378 }
379 assert(num_reladdr == 0);
380
381 inst->op = op;
382 inst->dst = dst;
383 inst->src[0] = src0;
384 inst->src[1] = src1;
385 inst->src[2] = src2;
386 inst->ir = ir;
387
388 this->instructions.push_tail(inst);
389
390 return inst;
391 }
392
393
394 ir_to_mesa_instruction *
395 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
396 dst_reg dst, src_reg src0, src_reg src1)
397 {
398 return emit(ir, op, dst, src0, src1, undef_src);
399 }
400
401 ir_to_mesa_instruction *
402 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
403 dst_reg dst, src_reg src0)
404 {
405 assert(dst.writemask != 0);
406 return emit(ir, op, dst, src0, undef_src, undef_src);
407 }
408
409 ir_to_mesa_instruction *
410 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
411 {
412 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
413 }
414
415 ir_to_mesa_instruction *
416 ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
417 dst_reg dst, src_reg src0, src_reg src1,
418 unsigned elements)
419 {
420 static const enum prog_opcode dot_opcodes[] = {
421 OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
422 };
423
424 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
425 }
426
427 /**
428 * Emits Mesa scalar opcodes to produce unique answers across channels.
429 *
430 * Some Mesa opcodes are scalar-only, like ARB_fp/vp. The src X
431 * channel determines the result across all channels. So to do a vec4
432 * of this operation, we want to emit a scalar per source channel used
433 * to produce dest channels.
434 */
435 void
436 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
437 dst_reg dst,
438 src_reg orig_src0, src_reg orig_src1)
439 {
440 int i, j;
441 int done_mask = ~dst.writemask;
442
443 /* Mesa RCP is a scalar operation splatting results to all channels,
444 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
445 * dst channels.
446 */
447 for (i = 0; i < 4; i++) {
448 GLuint this_mask = (1 << i);
449 ir_to_mesa_instruction *inst;
450 src_reg src0 = orig_src0;
451 src_reg src1 = orig_src1;
452
453 if (done_mask & this_mask)
454 continue;
455
456 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
457 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
458 for (j = i + 1; j < 4; j++) {
459 /* If there is another enabled component in the destination that is
460 * derived from the same inputs, generate its value on this pass as
461 * well.
462 */
463 if (!(done_mask & (1 << j)) &&
464 GET_SWZ(src0.swizzle, j) == src0_swiz &&
465 GET_SWZ(src1.swizzle, j) == src1_swiz) {
466 this_mask |= (1 << j);
467 }
468 }
469 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
470 src0_swiz, src0_swiz);
471 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
472 src1_swiz, src1_swiz);
473
474 inst = emit(ir, op, dst, src0, src1);
475 inst->dst.writemask = this_mask;
476 done_mask |= this_mask;
477 }
478 }
479
480 void
481 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
482 dst_reg dst, src_reg src0)
483 {
484 src_reg undef = undef_src;
485
486 undef.swizzle = SWIZZLE_XXXX;
487
488 emit_scalar(ir, op, dst, src0, undef);
489 }
490
491 src_reg
492 ir_to_mesa_visitor::src_reg_for_float(float val)
493 {
494 src_reg src(PROGRAM_CONSTANT, -1, NULL);
495
496 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
497 (const gl_constant_value *)&val, 1, &src.swizzle);
498
499 return src;
500 }
501
502 static int
503 storage_type_size(const struct glsl_type *type, bool bindless)
504 {
505 unsigned int i;
506 int size;
507
508 switch (type->base_type) {
509 case GLSL_TYPE_UINT:
510 case GLSL_TYPE_INT:
511 case GLSL_TYPE_UINT8:
512 case GLSL_TYPE_INT8:
513 case GLSL_TYPE_UINT16:
514 case GLSL_TYPE_INT16:
515 case GLSL_TYPE_FLOAT:
516 case GLSL_TYPE_FLOAT16:
517 case GLSL_TYPE_BOOL:
518 if (type->is_matrix()) {
519 return type->matrix_columns;
520 } else {
521 /* Regardless of size of vector, it gets a vec4. This is bad
522 * packing for things like floats, but otherwise arrays become a
523 * mess. Hopefully a later pass over the code can pack scalars
524 * down if appropriate.
525 */
526 return 1;
527 }
528 break;
529 case GLSL_TYPE_DOUBLE:
530 if (type->is_matrix()) {
531 if (type->vector_elements > 2)
532 return type->matrix_columns * 2;
533 else
534 return type->matrix_columns;
535 } else {
536 if (type->vector_elements > 2)
537 return 2;
538 else
539 return 1;
540 }
541 break;
542 case GLSL_TYPE_UINT64:
543 case GLSL_TYPE_INT64:
544 if (type->vector_elements > 2)
545 return 2;
546 else
547 return 1;
548 case GLSL_TYPE_ARRAY:
549 assert(type->length > 0);
550 return storage_type_size(type->fields.array, bindless) * type->length;
551 case GLSL_TYPE_STRUCT:
552 size = 0;
553 for (i = 0; i < type->length; i++) {
554 size += storage_type_size(type->fields.structure[i].type, bindless);
555 }
556 return size;
557 case GLSL_TYPE_SAMPLER:
558 case GLSL_TYPE_IMAGE:
559 if (!bindless)
560 return 0;
561 /* fall through */
562 case GLSL_TYPE_SUBROUTINE:
563 return 1;
564 case GLSL_TYPE_ATOMIC_UINT:
565 case GLSL_TYPE_VOID:
566 case GLSL_TYPE_ERROR:
567 case GLSL_TYPE_INTERFACE:
568 case GLSL_TYPE_FUNCTION:
569 assert(!"Invalid type in type_size");
570 break;
571 }
572
573 return 0;
574 }
575
576 static int
577 type_size(const struct glsl_type *type)
578 {
579 return storage_type_size(type, false);
580 }
581
582 /**
583 * In the initial pass of codegen, we assign temporary numbers to
584 * intermediate results. (not SSA -- variable assignments will reuse
585 * storage). Actual register allocation for the Mesa VM occurs in a
586 * pass over the Mesa IR later.
587 */
588 src_reg
589 ir_to_mesa_visitor::get_temp(const glsl_type *type)
590 {
591 src_reg src;
592
593 src.file = PROGRAM_TEMPORARY;
594 src.index = next_temp;
595 src.reladdr = NULL;
596 next_temp += type_size(type);
597
598 if (type->is_array() || type->is_struct()) {
599 src.swizzle = SWIZZLE_NOOP;
600 } else {
601 src.swizzle = swizzle_for_size(type->vector_elements);
602 }
603 src.negate = 0;
604
605 return src;
606 }
607
608 variable_storage *
609 ir_to_mesa_visitor::find_variable_storage(const ir_variable *var)
610 {
611 foreach_in_list(variable_storage, entry, &this->variables) {
612 if (entry->var == var)
613 return entry;
614 }
615
616 return NULL;
617 }
618
619 void
620 ir_to_mesa_visitor::visit(ir_variable *ir)
621 {
622 if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
623 unsigned int i;
624 const ir_state_slot *const slots = ir->get_state_slots();
625 assert(slots != NULL);
626
627 /* Check if this statevar's setup in the STATE file exactly
628 * matches how we'll want to reference it as a
629 * struct/array/whatever. If not, then we need to move it into
630 * temporary storage and hope that it'll get copy-propagated
631 * out.
632 */
633 for (i = 0; i < ir->get_num_state_slots(); i++) {
634 if (slots[i].swizzle != SWIZZLE_XYZW) {
635 break;
636 }
637 }
638
639 variable_storage *storage;
640 dst_reg dst;
641 if (i == ir->get_num_state_slots()) {
642 /* We'll set the index later. */
643 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
644 this->variables.push_tail(storage);
645
646 dst = undef_dst;
647 } else {
648 /* The variable_storage constructor allocates slots based on the size
649 * of the type. However, this had better match the number of state
650 * elements that we're going to copy into the new temporary.
651 */
652 assert((int) ir->get_num_state_slots() == type_size(ir->type));
653
654 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
655 this->next_temp);
656 this->variables.push_tail(storage);
657 this->next_temp += type_size(ir->type);
658
659 dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
660 }
661
662
663 for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
664 int index = _mesa_add_state_reference(this->prog->Parameters,
665 slots[i].tokens);
666
667 if (storage->file == PROGRAM_STATE_VAR) {
668 if (storage->index == -1) {
669 storage->index = index;
670 } else {
671 assert(index == storage->index + (int)i);
672 }
673 } else {
674 src_reg src(PROGRAM_STATE_VAR, index, NULL);
675 src.swizzle = slots[i].swizzle;
676 emit(ir, OPCODE_MOV, dst, src);
677 /* even a float takes up a whole vec4 reg in a struct/array. */
678 dst.index++;
679 }
680 }
681
682 if (storage->file == PROGRAM_TEMPORARY &&
683 dst.index != storage->index + (int) ir->get_num_state_slots()) {
684 linker_error(this->shader_program,
685 "failed to load builtin uniform `%s' "
686 "(%d/%d regs loaded)\n",
687 ir->name, dst.index - storage->index,
688 type_size(ir->type));
689 }
690 }
691 }
692
693 void
694 ir_to_mesa_visitor::visit(ir_loop *ir)
695 {
696 emit(NULL, OPCODE_BGNLOOP);
697
698 visit_exec_list(&ir->body_instructions, this);
699
700 emit(NULL, OPCODE_ENDLOOP);
701 }
702
703 void
704 ir_to_mesa_visitor::visit(ir_loop_jump *ir)
705 {
706 switch (ir->mode) {
707 case ir_loop_jump::jump_break:
708 emit(NULL, OPCODE_BRK);
709 break;
710 case ir_loop_jump::jump_continue:
711 emit(NULL, OPCODE_CONT);
712 break;
713 }
714 }
715
716
717 void
718 ir_to_mesa_visitor::visit(ir_function_signature *ir)
719 {
720 assert(0);
721 (void)ir;
722 }
723
724 void
725 ir_to_mesa_visitor::visit(ir_function *ir)
726 {
727 /* Ignore function bodies other than main() -- we shouldn't see calls to
728 * them since they should all be inlined before we get to ir_to_mesa.
729 */
730 if (strcmp(ir->name, "main") == 0) {
731 const ir_function_signature *sig;
732 exec_list empty;
733
734 sig = ir->matching_signature(NULL, &empty, false);
735
736 assert(sig);
737
738 foreach_in_list(ir_instruction, ir, &sig->body) {
739 ir->accept(this);
740 }
741 }
742 }
743
744 bool
745 ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
746 {
747 int nonmul_operand = 1 - mul_operand;
748 src_reg a, b, c;
749
750 ir_expression *expr = ir->operands[mul_operand]->as_expression();
751 if (!expr || expr->operation != ir_binop_mul)
752 return false;
753
754 expr->operands[0]->accept(this);
755 a = this->result;
756 expr->operands[1]->accept(this);
757 b = this->result;
758 ir->operands[nonmul_operand]->accept(this);
759 c = this->result;
760
761 this->result = get_temp(ir->type);
762 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);
763
764 return true;
765 }
766
767 /**
768 * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b))
769 *
770 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
771 * implemented using multiplication, and logical-or is implemented using
772 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
773 * As result, the logical expression (a & !b) can be rewritten as:
774 *
775 * - a * !b
776 * - a * (1 - b)
777 * - (a * 1) - (a * b)
778 * - a + -(a * b)
779 * - a + (a * -b)
780 *
781 * This final expression can be implemented as a single MAD(a, -b, a)
782 * instruction.
783 */
784 bool
785 ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
786 {
787 const int other_operand = 1 - try_operand;
788 src_reg a, b;
789
790 ir_expression *expr = ir->operands[try_operand]->as_expression();
791 if (!expr || expr->operation != ir_unop_logic_not)
792 return false;
793
794 ir->operands[other_operand]->accept(this);
795 a = this->result;
796 expr->operands[0]->accept(this);
797 b = this->result;
798
799 b.negate = ~b.negate;
800
801 this->result = get_temp(ir->type);
802 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a);
803
804 return true;
805 }
806
807 void
808 ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
809 src_reg *reg, int *num_reladdr)
810 {
811 if (!reg->reladdr)
812 return;
813
814 emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);
815
816 if (*num_reladdr != 1) {
817 src_reg temp = get_temp(glsl_type::vec4_type);
818
819 emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
820 *reg = temp;
821 }
822
823 (*num_reladdr)--;
824 }
825
826 void
827 ir_to_mesa_visitor::emit_swz(ir_expression *ir)
828 {
829 /* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
830 * This means that each of the operands is either an immediate value of -1,
831 * 0, or 1, or is a component from one source register (possibly with
832 * negation).
833 */
834 uint8_t components[4] = { 0 };
835 bool negate[4] = { false };
836 ir_variable *var = NULL;
837
838 for (unsigned i = 0; i < ir->type->vector_elements; i++) {
839 ir_rvalue *op = ir->operands[i];
840
841 assert(op->type->is_scalar());
842
843 while (op != NULL) {
844 switch (op->ir_type) {
845 case ir_type_constant: {
846
847 assert(op->type->is_scalar());
848
849 const ir_constant *const c = op->as_constant();
850 if (c->is_one()) {
851 components[i] = SWIZZLE_ONE;
852 } else if (c->is_zero()) {
853 components[i] = SWIZZLE_ZERO;
854 } else if (c->is_negative_one()) {
855 components[i] = SWIZZLE_ONE;
856 negate[i] = true;
857 } else {
858 assert(!"SWZ constant must be 0.0 or 1.0.");
859 }
860
861 op = NULL;
862 break;
863 }
864
865 case ir_type_dereference_variable: {
866 ir_dereference_variable *const deref =
867 (ir_dereference_variable *) op;
868
869 assert((var == NULL) || (deref->var == var));
870 components[i] = SWIZZLE_X;
871 var = deref->var;
872 op = NULL;
873 break;
874 }
875
876 case ir_type_expression: {
877 ir_expression *const expr = (ir_expression *) op;
878
879 assert(expr->operation == ir_unop_neg);
880 negate[i] = true;
881
882 op = expr->operands[0];
883 break;
884 }
885
886 case ir_type_swizzle: {
887 ir_swizzle *const swiz = (ir_swizzle *) op;
888
889 components[i] = swiz->mask.x;
890 op = swiz->val;
891 break;
892 }
893
894 default:
895 assert(!"Should not get here.");
896 return;
897 }
898 }
899 }
900
901 assert(var != NULL);
902
903 ir_dereference_variable *const deref =
904 new(mem_ctx) ir_dereference_variable(var);
905
906 this->result.file = PROGRAM_UNDEFINED;
907 deref->accept(this);
908 if (this->result.file == PROGRAM_UNDEFINED) {
909 printf("Failed to get tree for expression operand:\n");
910 deref->print();
911 printf("\n");
912 exit(1);
913 }
914
915 src_reg src;
916
917 src = this->result;
918 src.swizzle = MAKE_SWIZZLE4(components[0],
919 components[1],
920 components[2],
921 components[3]);
922 src.negate = ((unsigned(negate[0]) << 0)
923 | (unsigned(negate[1]) << 1)
924 | (unsigned(negate[2]) << 2)
925 | (unsigned(negate[3]) << 3));
926
927 /* Storage for our result. Ideally for an assignment we'd be using the
928 * actual storage for the result here, instead.
929 */
930 const src_reg result_src = get_temp(ir->type);
931 dst_reg result_dst = dst_reg(result_src);
932
933 /* Limit writes to the channels that will be used by result_src later.
934 * This does limit this temp's use as a temporary for multi-instruction
935 * sequences.
936 */
937 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
938
939 emit(ir, OPCODE_SWZ, result_dst, src);
940 this->result = result_src;
941 }
942
943 void
944 ir_to_mesa_visitor::emit_equality_comparison(ir_expression *ir,
945 enum prog_opcode op,
946 dst_reg dst,
947 const src_reg &src0,
948 const src_reg &src1)
949 {
950 src_reg difference;
951 src_reg abs_difference = get_temp(glsl_type::vec4_type);
952 const src_reg zero = src_reg_for_float(0.0);
953
954 /* x == y is equivalent to -abs(x-y) >= 0. Since all of the code that
955 * consumes the generated IR is pretty dumb, take special care when one
956 * of the operands is zero.
957 *
958 * Similarly, x != y is equivalent to -abs(x-y) < 0.
959 */
960 if (src0.file == zero.file &&
961 src0.index == zero.index &&
962 src0.swizzle == zero.swizzle) {
963 difference = src1;
964 } else if (src1.file == zero.file &&
965 src1.index == zero.index &&
966 src1.swizzle == zero.swizzle) {
967 difference = src0;
968 } else {
969 difference = get_temp(glsl_type::vec4_type);
970
971 src_reg tmp_src = src0;
972 tmp_src.negate = ~tmp_src.negate;
973
974 emit(ir, OPCODE_ADD, dst_reg(difference), tmp_src, src1);
975 }
976
977 emit(ir, OPCODE_ABS, dst_reg(abs_difference), difference);
978
979 abs_difference.negate = ~abs_difference.negate;
980 emit(ir, op, dst, abs_difference, zero);
981 }
982
983 void
984 ir_to_mesa_visitor::visit(ir_expression *ir)
985 {
986 unsigned int operand;
987 src_reg op[ARRAY_SIZE(ir->operands)];
988 src_reg result_src;
989 dst_reg result_dst;
990
991 /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
992 */
993 if (ir->operation == ir_binop_add) {
994 if (try_emit_mad(ir, 1))
995 return;
996 if (try_emit_mad(ir, 0))
997 return;
998 }
999
1000 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1001 */
1002 if (ir->operation == ir_binop_logic_and) {
1003 if (try_emit_mad_for_and_not(ir, 1))
1004 return;
1005 if (try_emit_mad_for_and_not(ir, 0))
1006 return;
1007 }
1008
1009 if (ir->operation == ir_quadop_vector) {
1010 this->emit_swz(ir);
1011 return;
1012 }
1013
1014 for (operand = 0; operand < ir->num_operands; operand++) {
1015 this->result.file = PROGRAM_UNDEFINED;
1016 ir->operands[operand]->accept(this);
1017 if (this->result.file == PROGRAM_UNDEFINED) {
1018 printf("Failed to get tree for expression operand:\n");
1019 ir->operands[operand]->print();
1020 printf("\n");
1021 exit(1);
1022 }
1023 op[operand] = this->result;
1024
1025 /* Matrix expression operands should have been broken down to vector
1026 * operations already.
1027 */
1028 assert(!ir->operands[operand]->type->is_matrix());
1029 }
1030
1031 int vector_elements = ir->operands[0]->type->vector_elements;
1032 if (ir->operands[1]) {
1033 vector_elements = MAX2(vector_elements,
1034 ir->operands[1]->type->vector_elements);
1035 }
1036
1037 this->result.file = PROGRAM_UNDEFINED;
1038
1039 /* Storage for our result. Ideally for an assignment we'd be using
1040 * the actual storage for the result here, instead.
1041 */
1042 result_src = get_temp(ir->type);
1043 /* convenience for the emit functions below. */
1044 result_dst = dst_reg(result_src);
1045 /* Limit writes to the channels that will be used by result_src later.
1046 * This does limit this temp's use as a temporary for multi-instruction
1047 * sequences.
1048 */
1049 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1050
1051 switch (ir->operation) {
1052 case ir_unop_logic_not:
1053 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
1054 * older GPUs implement SEQ using multiple instructions (i915 uses two
1055 * SGE instructions and a MUL instruction). Since our logic values are
1056 * 0.0 and 1.0, 1-x also implements !x.
1057 */
1058 op[0].negate = ~op[0].negate;
1059 emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0));
1060 break;
1061 case ir_unop_neg:
1062 op[0].negate = ~op[0].negate;
1063 result_src = op[0];
1064 break;
1065 case ir_unop_abs:
1066 emit(ir, OPCODE_ABS, result_dst, op[0]);
1067 break;
1068 case ir_unop_sign:
1069 emit(ir, OPCODE_SSG, result_dst, op[0]);
1070 break;
1071 case ir_unop_rcp:
1072 emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
1073 break;
1074
1075 case ir_unop_exp2:
1076 emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
1077 break;
1078 case ir_unop_exp:
1079 assert(!"not reached: should be handled by exp_to_exp2");
1080 break;
1081 case ir_unop_log:
1082 assert(!"not reached: should be handled by log_to_log2");
1083 break;
1084 case ir_unop_log2:
1085 emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
1086 break;
1087 case ir_unop_sin:
1088 emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
1089 break;
1090 case ir_unop_cos:
1091 emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
1092 break;
1093
1094 case ir_unop_dFdx:
1095 emit(ir, OPCODE_DDX, result_dst, op[0]);
1096 break;
1097 case ir_unop_dFdy:
1098 emit(ir, OPCODE_DDY, result_dst, op[0]);
1099 break;
1100
1101 case ir_unop_saturate: {
1102 ir_to_mesa_instruction *inst = emit(ir, OPCODE_MOV,
1103 result_dst, op[0]);
1104 inst->saturate = true;
1105 break;
1106 }
1107 case ir_unop_noise: {
1108 const enum prog_opcode opcode =
1109 prog_opcode(OPCODE_NOISE1
1110 + (ir->operands[0]->type->vector_elements) - 1);
1111 assert((opcode >= OPCODE_NOISE1) && (opcode <= OPCODE_NOISE4));
1112
1113 emit(ir, opcode, result_dst, op[0]);
1114 break;
1115 }
1116
1117 case ir_binop_add:
1118 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1119 break;
1120 case ir_binop_sub:
1121 emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
1122 break;
1123
1124 case ir_binop_mul:
1125 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1126 break;
1127 case ir_binop_div:
1128 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1129 break;
1130 case ir_binop_mod:
1131 /* Floating point should be lowered by MOD_TO_FLOOR in the compiler. */
1132 assert(ir->type->is_integer_32());
1133 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1134 break;
1135
1136 case ir_binop_less:
1137 emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1138 break;
1139 case ir_binop_gequal:
1140 emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1141 break;
1142 case ir_binop_equal:
1143 emit_seq(ir, result_dst, op[0], op[1]);
1144 break;
1145 case ir_binop_nequal:
1146 emit_sne(ir, result_dst, op[0], op[1]);
1147 break;
1148 case ir_binop_all_equal:
1149 /* "==" operator producing a scalar boolean. */
1150 if (ir->operands[0]->type->is_vector() ||
1151 ir->operands[1]->type->is_vector()) {
1152 src_reg temp = get_temp(glsl_type::vec4_type);
1153 emit_sne(ir, dst_reg(temp), op[0], op[1]);
1154
1155 /* After the dot-product, the value will be an integer on the
1156 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1157 */
1158 emit_dp(ir, result_dst, temp, temp, vector_elements);
1159
1160 /* Negating the result of the dot-product gives values on the range
1161 * [-4, 0]. Zero becomes 1.0, and negative values become zero. This
1162 * achieved using SGE.
1163 */
1164 src_reg sge_src = result_src;
1165 sge_src.negate = ~sge_src.negate;
1166 emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0));
1167 } else {
1168 emit_seq(ir, result_dst, op[0], op[1]);
1169 }
1170 break;
1171 case ir_binop_any_nequal:
1172 /* "!=" operator producing a scalar boolean. */
1173 if (ir->operands[0]->type->is_vector() ||
1174 ir->operands[1]->type->is_vector()) {
1175 src_reg temp = get_temp(glsl_type::vec4_type);
1176 if (ir->operands[0]->type->is_boolean() &&
1177 ir->operands[1]->as_constant() &&
1178 ir->operands[1]->as_constant()->is_zero()) {
1179 temp = op[0];
1180 } else {
1181 emit_sne(ir, dst_reg(temp), op[0], op[1]);
1182 }
1183
1184 /* After the dot-product, the value will be an integer on the
1185 * range [0,4]. Zero stays zero, and positive values become 1.0.
1186 */
1187 ir_to_mesa_instruction *const dp =
1188 emit_dp(ir, result_dst, temp, temp, vector_elements);
1189 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1190 /* The clamping to [0,1] can be done for free in the fragment
1191 * shader with a saturate.
1192 */
1193 dp->saturate = true;
1194 } else {
1195 /* Negating the result of the dot-product gives values on the range
1196 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1197 * achieved using SLT.
1198 */
1199 src_reg slt_src = result_src;
1200 slt_src.negate = ~slt_src.negate;
1201 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1202 }
1203 } else {
1204 emit_sne(ir, result_dst, op[0], op[1]);
1205 }
1206 break;
1207
1208 case ir_binop_logic_xor:
1209 emit_sne(ir, result_dst, op[0], op[1]);
1210 break;
1211
1212 case ir_binop_logic_or: {
1213 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1214 /* After the addition, the value will be an integer on the
1215 * range [0,2]. Zero stays zero, and positive values become 1.0.
1216 */
1217 ir_to_mesa_instruction *add =
1218 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1219 add->saturate = true;
1220 } else {
1221 /* The Boolean arguments are stored as float 0.0 and 1.0. If either
1222 * value is 1.0, the result of the logcal-or should be 1.0. If both
1223 * values are 0.0, the result should be 0.0. This is exactly what
1224 * MAX does.
1225 */
1226 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1227 }
1228 break;
1229 }
1230
1231 case ir_binop_logic_and:
1232 /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1233 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1234 break;
1235
1236 case ir_binop_dot:
1237 assert(ir->operands[0]->type->is_vector());
1238 assert(ir->operands[0]->type == ir->operands[1]->type);
1239 emit_dp(ir, result_dst, op[0], op[1],
1240 ir->operands[0]->type->vector_elements);
1241 break;
1242
1243 case ir_unop_sqrt:
1244 /* sqrt(x) = x * rsq(x). */
1245 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1246 emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
1247 /* For incoming channels <= 0, set the result to 0. */
1248 op[0].negate = ~op[0].negate;
1249 emit(ir, OPCODE_CMP, result_dst,
1250 op[0], result_src, src_reg_for_float(0.0));
1251 break;
1252 case ir_unop_rsq:
1253 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1254 break;
1255 case ir_unop_i2f:
1256 case ir_unop_u2f:
1257 case ir_unop_b2f:
1258 case ir_unop_b2i:
1259 case ir_unop_i2u:
1260 case ir_unop_u2i:
1261 /* Mesa IR lacks types, ints are stored as truncated floats. */
1262 result_src = op[0];
1263 break;
1264 case ir_unop_f2i:
1265 case ir_unop_f2u:
1266 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1267 break;
1268 case ir_unop_f2b:
1269 case ir_unop_i2b:
1270 emit_sne(ir, result_dst, op[0], src_reg_for_float(0.0));
1271 break;
1272 case ir_unop_bitcast_f2i: // Ignore these 4, they can't happen here anyway
1273 case ir_unop_bitcast_f2u:
1274 case ir_unop_bitcast_i2f:
1275 case ir_unop_bitcast_u2f:
1276 break;
1277 case ir_unop_trunc:
1278 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1279 break;
1280 case ir_unop_ceil:
1281 op[0].negate = ~op[0].negate;
1282 emit(ir, OPCODE_FLR, result_dst, op[0]);
1283 result_src.negate = ~result_src.negate;
1284 break;
1285 case ir_unop_floor:
1286 emit(ir, OPCODE_FLR, result_dst, op[0]);
1287 break;
1288 case ir_unop_fract:
1289 emit(ir, OPCODE_FRC, result_dst, op[0]);
1290 break;
1291 case ir_unop_pack_snorm_2x16:
1292 case ir_unop_pack_snorm_4x8:
1293 case ir_unop_pack_unorm_2x16:
1294 case ir_unop_pack_unorm_4x8:
1295 case ir_unop_pack_half_2x16:
1296 case ir_unop_pack_double_2x32:
1297 case ir_unop_unpack_snorm_2x16:
1298 case ir_unop_unpack_snorm_4x8:
1299 case ir_unop_unpack_unorm_2x16:
1300 case ir_unop_unpack_unorm_4x8:
1301 case ir_unop_unpack_half_2x16:
1302 case ir_unop_unpack_double_2x32:
1303 case ir_unop_bitfield_reverse:
1304 case ir_unop_bit_count:
1305 case ir_unop_find_msb:
1306 case ir_unop_find_lsb:
1307 case ir_unop_d2f:
1308 case ir_unop_f2d:
1309 case ir_unop_d2i:
1310 case ir_unop_i2d:
1311 case ir_unop_d2u:
1312 case ir_unop_u2d:
1313 case ir_unop_d2b:
1314 case ir_unop_frexp_sig:
1315 case ir_unop_frexp_exp:
1316 assert(!"not supported");
1317 break;
1318 case ir_binop_min:
1319 emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
1320 break;
1321 case ir_binop_max:
1322 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1323 break;
1324 case ir_binop_pow:
1325 emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
1326 break;
1327
1328 /* GLSL 1.30 integer ops are unsupported in Mesa IR, but since
1329 * hardware backends have no way to avoid Mesa IR generation
1330 * even if they don't use it, we need to emit "something" and
1331 * continue.
1332 */
1333 case ir_binop_lshift:
1334 case ir_binop_rshift:
1335 case ir_binop_bit_and:
1336 case ir_binop_bit_xor:
1337 case ir_binop_bit_or:
1338 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1339 break;
1340
1341 case ir_unop_bit_not:
1342 case ir_unop_round_even:
1343 emit(ir, OPCODE_MOV, result_dst, op[0]);
1344 break;
1345
1346 case ir_binop_ubo_load:
1347 assert(!"not supported");
1348 break;
1349
1350 case ir_triop_lrp:
1351 /* ir_triop_lrp operands are (x, y, a) while
1352 * OPCODE_LRP operands are (a, y, x) to match ARB_fragment_program.
1353 */
1354 emit(ir, OPCODE_LRP, result_dst, op[2], op[1], op[0]);
1355 break;
1356
1357 case ir_triop_csel:
1358 /* We assume that boolean true and false are 1.0 and 0.0. OPCODE_CMP
1359 * selects src1 if src0 is < 0, src2 otherwise.
1360 */
1361 op[0].negate = ~op[0].negate;
1362 emit(ir, OPCODE_CMP, result_dst, op[0], op[1], op[2]);
1363 break;
1364
1365 case ir_binop_vector_extract:
1366 case ir_triop_fma:
1367 case ir_triop_bitfield_extract:
1368 case ir_triop_vector_insert:
1369 case ir_quadop_bitfield_insert:
1370 case ir_binop_ldexp:
1371 case ir_binop_carry:
1372 case ir_binop_borrow:
1373 case ir_binop_imul_high:
1374 case ir_unop_interpolate_at_centroid:
1375 case ir_binop_interpolate_at_offset:
1376 case ir_binop_interpolate_at_sample:
1377 case ir_unop_dFdx_coarse:
1378 case ir_unop_dFdx_fine:
1379 case ir_unop_dFdy_coarse:
1380 case ir_unop_dFdy_fine:
1381 case ir_unop_subroutine_to_int:
1382 case ir_unop_get_buffer_size:
1383 case ir_unop_bitcast_u642d:
1384 case ir_unop_bitcast_i642d:
1385 case ir_unop_bitcast_d2u64:
1386 case ir_unop_bitcast_d2i64:
1387 case ir_unop_i642i:
1388 case ir_unop_u642i:
1389 case ir_unop_i642u:
1390 case ir_unop_u642u:
1391 case ir_unop_i642b:
1392 case ir_unop_i642f:
1393 case ir_unop_u642f:
1394 case ir_unop_i642d:
1395 case ir_unop_u642d:
1396 case ir_unop_i2i64:
1397 case ir_unop_u2i64:
1398 case ir_unop_b2i64:
1399 case ir_unop_f2i64:
1400 case ir_unop_d2i64:
1401 case ir_unop_i2u64:
1402 case ir_unop_u2u64:
1403 case ir_unop_f2u64:
1404 case ir_unop_d2u64:
1405 case ir_unop_u642i64:
1406 case ir_unop_i642u64:
1407 case ir_unop_pack_int_2x32:
1408 case ir_unop_unpack_int_2x32:
1409 case ir_unop_pack_uint_2x32:
1410 case ir_unop_unpack_uint_2x32:
1411 case ir_unop_pack_sampler_2x32:
1412 case ir_unop_unpack_sampler_2x32:
1413 case ir_unop_pack_image_2x32:
1414 case ir_unop_unpack_image_2x32:
1415 case ir_unop_atan:
1416 case ir_binop_atan2:
1417 assert(!"not supported");
1418 break;
1419
1420 case ir_unop_ssbo_unsized_array_length:
1421 case ir_quadop_vector:
1422 /* This operation should have already been handled.
1423 */
1424 assert(!"Should not get here.");
1425 break;
1426 }
1427
1428 this->result = result_src;
1429 }
1430
1431
1432 void
1433 ir_to_mesa_visitor::visit(ir_swizzle *ir)
1434 {
1435 src_reg src;
1436 int i;
1437 int swizzle[4];
1438
1439 /* Note that this is only swizzles in expressions, not those on the left
1440 * hand side of an assignment, which do write masking. See ir_assignment
1441 * for that.
1442 */
1443
1444 ir->val->accept(this);
1445 src = this->result;
1446 assert(src.file != PROGRAM_UNDEFINED);
1447 assert(ir->type->vector_elements > 0);
1448
1449 for (i = 0; i < 4; i++) {
1450 if (i < ir->type->vector_elements) {
1451 switch (i) {
1452 case 0:
1453 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1454 break;
1455 case 1:
1456 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1457 break;
1458 case 2:
1459 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1460 break;
1461 case 3:
1462 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1463 break;
1464 }
1465 } else {
1466 /* If the type is smaller than a vec4, replicate the last
1467 * channel out.
1468 */
1469 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1470 }
1471 }
1472
1473 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1474
1475 this->result = src;
1476 }
1477
1478 void
1479 ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
1480 {
1481 variable_storage *entry = find_variable_storage(ir->var);
1482 ir_variable *var = ir->var;
1483
1484 if (!entry) {
1485 switch (var->data.mode) {
1486 case ir_var_uniform:
1487 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1488 var->data.param_index);
1489 this->variables.push_tail(entry);
1490 break;
1491 case ir_var_shader_in:
1492 /* The linker assigns locations for varyings and attributes,
1493 * including deprecated builtins (like gl_Color),
1494 * user-assigned generic attributes (glBindVertexLocation),
1495 * and user-defined varyings.
1496 */
1497 assert(var->data.location != -1);
1498 entry = new(mem_ctx) variable_storage(var,
1499 PROGRAM_INPUT,
1500 var->data.location);
1501 break;
1502 case ir_var_shader_out:
1503 assert(var->data.location != -1);
1504 entry = new(mem_ctx) variable_storage(var,
1505 PROGRAM_OUTPUT,
1506 var->data.location);
1507 break;
1508 case ir_var_system_value:
1509 entry = new(mem_ctx) variable_storage(var,
1510 PROGRAM_SYSTEM_VALUE,
1511 var->data.location);
1512 break;
1513 case ir_var_auto:
1514 case ir_var_temporary:
1515 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1516 this->next_temp);
1517 this->variables.push_tail(entry);
1518
1519 next_temp += type_size(var->type);
1520 break;
1521 }
1522
1523 if (!entry) {
1524 printf("Failed to make storage for %s\n", var->name);
1525 exit(1);
1526 }
1527 }
1528
1529 this->result = src_reg(entry->file, entry->index, var->type);
1530 }
1531
1532 void
1533 ir_to_mesa_visitor::visit(ir_dereference_array *ir)
1534 {
1535 ir_constant *index;
1536 src_reg src;
1537 int element_size = type_size(ir->type);
1538
1539 index = ir->array_index->constant_expression_value(ralloc_parent(ir));
1540
1541 ir->array->accept(this);
1542 src = this->result;
1543
1544 if (index) {
1545 src.index += index->value.i[0] * element_size;
1546 } else {
1547 /* Variable index array dereference. It eats the "vec4" of the
1548 * base of the array and an index that offsets the Mesa register
1549 * index.
1550 */
1551 ir->array_index->accept(this);
1552
1553 src_reg index_reg;
1554
1555 if (element_size == 1) {
1556 index_reg = this->result;
1557 } else {
1558 index_reg = get_temp(glsl_type::float_type);
1559
1560 emit(ir, OPCODE_MUL, dst_reg(index_reg),
1561 this->result, src_reg_for_float(element_size));
1562 }
1563
1564 /* If there was already a relative address register involved, add the
1565 * new and the old together to get the new offset.
1566 */
1567 if (src.reladdr != NULL) {
1568 src_reg accum_reg = get_temp(glsl_type::float_type);
1569
1570 emit(ir, OPCODE_ADD, dst_reg(accum_reg),
1571 index_reg, *src.reladdr);
1572
1573 index_reg = accum_reg;
1574 }
1575
1576 src.reladdr = ralloc(mem_ctx, src_reg);
1577 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1578 }
1579
1580 /* If the type is smaller than a vec4, replicate the last channel out. */
1581 if (ir->type->is_scalar() || ir->type->is_vector())
1582 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1583 else
1584 src.swizzle = SWIZZLE_NOOP;
1585
1586 this->result = src;
1587 }
1588
1589 void
1590 ir_to_mesa_visitor::visit(ir_dereference_record *ir)
1591 {
1592 unsigned int i;
1593 const glsl_type *struct_type = ir->record->type;
1594 int offset = 0;
1595
1596 ir->record->accept(this);
1597
1598 assert(ir->field_idx >= 0);
1599 for (i = 0; i < struct_type->length; i++) {
1600 if (i == (unsigned) ir->field_idx)
1601 break;
1602 offset += type_size(struct_type->fields.structure[i].type);
1603 }
1604
1605 /* If the type is smaller than a vec4, replicate the last channel out. */
1606 if (ir->type->is_scalar() || ir->type->is_vector())
1607 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1608 else
1609 this->result.swizzle = SWIZZLE_NOOP;
1610
1611 this->result.index += offset;
1612 }
1613
1614 /**
1615 * We want to be careful in assignment setup to hit the actual storage
1616 * instead of potentially using a temporary like we might with the
1617 * ir_dereference handler.
1618 */
1619 static dst_reg
1620 get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
1621 {
1622 /* The LHS must be a dereference. If the LHS is a variable indexed array
1623 * access of a vector, it must be separated into a series conditional moves
1624 * before reaching this point (see ir_vec_index_to_cond_assign).
1625 */
1626 assert(ir->as_dereference());
1627 ir_dereference_array *deref_array = ir->as_dereference_array();
1628 if (deref_array) {
1629 assert(!deref_array->array->type->is_vector());
1630 }
1631
1632 /* Use the rvalue deref handler for the most part. We'll ignore
1633 * swizzles in it and write swizzles using writemask, though.
1634 */
1635 ir->accept(v);
1636 return dst_reg(v->result);
1637 }
1638
1639 /* Calculate the sampler index and also calculate the base uniform location
1640 * for struct members.
1641 */
1642 static void
1643 calc_sampler_offsets(struct gl_shader_program *prog, ir_dereference *deref,
1644 unsigned *offset, unsigned *array_elements,
1645 unsigned *location)
1646 {
1647 if (deref->ir_type == ir_type_dereference_variable)
1648 return;
1649
1650 switch (deref->ir_type) {
1651 case ir_type_dereference_array: {
1652 ir_dereference_array *deref_arr = deref->as_dereference_array();
1653
1654 void *mem_ctx = ralloc_parent(deref_arr);
1655 ir_constant *array_index =
1656 deref_arr->array_index->constant_expression_value(mem_ctx);
1657
1658 if (!array_index) {
1659 /* GLSL 1.10 and 1.20 allowed variable sampler array indices,
1660 * while GLSL 1.30 requires that the array indices be
1661 * constant integer expressions. We don't expect any driver
1662 * to actually work with a really variable array index, so
1663 * all that would work would be an unrolled loop counter that ends
1664 * up being constant above.
1665 */
1666 ralloc_strcat(&prog->data->InfoLog,
1667 "warning: Variable sampler array index unsupported.\n"
1668 "This feature of the language was removed in GLSL 1.20 "
1669 "and is unlikely to be supported for 1.10 in Mesa.\n");
1670 } else {
1671 *offset += array_index->value.u[0] * *array_elements;
1672 }
1673
1674 *array_elements *= deref_arr->array->type->length;
1675
1676 calc_sampler_offsets(prog, deref_arr->array->as_dereference(),
1677 offset, array_elements, location);
1678 break;
1679 }
1680
1681 case ir_type_dereference_record: {
1682 ir_dereference_record *deref_record = deref->as_dereference_record();
1683 unsigned field_index = deref_record->field_idx;
1684 *location +=
1685 deref_record->record->type->struct_location_offset(field_index);
1686 calc_sampler_offsets(prog, deref_record->record->as_dereference(),
1687 offset, array_elements, location);
1688 break;
1689 }
1690
1691 default:
1692 unreachable("Invalid deref type");
1693 break;
1694 }
1695 }
1696
1697 static int
1698 get_sampler_uniform_value(class ir_dereference *sampler,
1699 struct gl_shader_program *shader_program,
1700 const struct gl_program *prog)
1701 {
1702 GLuint shader = _mesa_program_enum_to_shader_stage(prog->Target);
1703 ir_variable *var = sampler->variable_referenced();
1704 unsigned location = var->data.location;
1705 unsigned array_elements = 1;
1706 unsigned offset = 0;
1707
1708 calc_sampler_offsets(shader_program, sampler, &offset, &array_elements,
1709 &location);
1710
1711 assert(shader_program->data->UniformStorage[location].opaque[shader].active);
1712 return shader_program->data->UniformStorage[location].opaque[shader].index +
1713 offset;
1714 }
1715
1716 /**
1717 * Process the condition of a conditional assignment
1718 *
1719 * Examines the condition of a conditional assignment to generate the optimal
1720 * first operand of a \c CMP instruction. If the condition is a relational
1721 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1722 * used as the source for the \c CMP instruction. Otherwise the comparison
1723 * is processed to a boolean result, and the boolean result is used as the
1724 * operand to the CMP instruction.
1725 */
1726 bool
1727 ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
1728 {
1729 ir_rvalue *src_ir = ir;
1730 bool negate = true;
1731 bool switch_order = false;
1732
1733 ir_expression *const expr = ir->as_expression();
1734 if ((expr != NULL) && (expr->num_operands == 2)) {
1735 bool zero_on_left = false;
1736
1737 if (expr->operands[0]->is_zero()) {
1738 src_ir = expr->operands[1];
1739 zero_on_left = true;
1740 } else if (expr->operands[1]->is_zero()) {
1741 src_ir = expr->operands[0];
1742 zero_on_left = false;
1743 }
1744
1745 /* a is - 0 + - 0 +
1746 * (a < 0) T F F ( a < 0) T F F
1747 * (0 < a) F F T (-a < 0) F F T
1748 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
1749 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
1750 *
1751 * Note that exchanging the order of 0 and 'a' in the comparison simply
1752 * means that the value of 'a' should be negated.
1753 */
1754 if (src_ir != ir) {
1755 switch (expr->operation) {
1756 case ir_binop_less:
1757 switch_order = false;
1758 negate = zero_on_left;
1759 break;
1760
1761 case ir_binop_gequal:
1762 switch_order = true;
1763 negate = zero_on_left;
1764 break;
1765
1766 default:
1767 /* This isn't the right kind of comparison afterall, so make sure
1768 * the whole condition is visited.
1769 */
1770 src_ir = ir;
1771 break;
1772 }
1773 }
1774 }
1775
1776 src_ir->accept(this);
1777
1778 /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1779 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
1780 * choose which value OPCODE_CMP produces without an extra instruction
1781 * computing the condition.
1782 */
1783 if (negate)
1784 this->result.negate = ~this->result.negate;
1785
1786 return switch_order;
1787 }
1788
1789 void
1790 ir_to_mesa_visitor::visit(ir_assignment *ir)
1791 {
1792 dst_reg l;
1793 src_reg r;
1794 int i;
1795
1796 ir->rhs->accept(this);
1797 r = this->result;
1798
1799 l = get_assignment_lhs(ir->lhs, this);
1800
1801 /* FINISHME: This should really set to the correct maximal writemask for each
1802 * FINISHME: component written (in the loops below). This case can only
1803 * FINISHME: occur for matrices, arrays, and structures.
1804 */
1805 if (ir->write_mask == 0) {
1806 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1807 l.writemask = WRITEMASK_XYZW;
1808 } else if (ir->lhs->type->is_scalar()) {
1809 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1810 * FINISHME: W component of fragment shader output zero, work correctly.
1811 */
1812 l.writemask = WRITEMASK_XYZW;
1813 } else {
1814 int swizzles[4];
1815 int first_enabled_chan = 0;
1816 int rhs_chan = 0;
1817
1818 assert(ir->lhs->type->is_vector());
1819 l.writemask = ir->write_mask;
1820
1821 for (int i = 0; i < 4; i++) {
1822 if (l.writemask & (1 << i)) {
1823 first_enabled_chan = GET_SWZ(r.swizzle, i);
1824 break;
1825 }
1826 }
1827
1828 /* Swizzle a small RHS vector into the channels being written.
1829 *
1830 * glsl ir treats write_mask as dictating how many channels are
1831 * present on the RHS while Mesa IR treats write_mask as just
1832 * showing which channels of the vec4 RHS get written.
1833 */
1834 for (int i = 0; i < 4; i++) {
1835 if (l.writemask & (1 << i))
1836 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1837 else
1838 swizzles[i] = first_enabled_chan;
1839 }
1840 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1841 swizzles[2], swizzles[3]);
1842 }
1843
1844 assert(l.file != PROGRAM_UNDEFINED);
1845 assert(r.file != PROGRAM_UNDEFINED);
1846
1847 if (ir->condition) {
1848 const bool switch_order = this->process_move_condition(ir->condition);
1849 src_reg condition = this->result;
1850
1851 for (i = 0; i < type_size(ir->lhs->type); i++) {
1852 if (switch_order) {
1853 emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
1854 } else {
1855 emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
1856 }
1857
1858 l.index++;
1859 r.index++;
1860 }
1861 } else {
1862 for (i = 0; i < type_size(ir->lhs->type); i++) {
1863 emit(ir, OPCODE_MOV, l, r);
1864 l.index++;
1865 r.index++;
1866 }
1867 }
1868 }
1869
1870
1871 void
1872 ir_to_mesa_visitor::visit(ir_constant *ir)
1873 {
1874 src_reg src;
1875 GLfloat stack_vals[4] = { 0 };
1876 GLfloat *values = stack_vals;
1877 unsigned int i;
1878
1879 /* Unfortunately, 4 floats is all we can get into
1880 * _mesa_add_unnamed_constant. So, make a temp to store an
1881 * aggregate constant and move each constant value into it. If we
1882 * get lucky, copy propagation will eliminate the extra moves.
1883 */
1884
1885 if (ir->type->is_struct()) {
1886 src_reg temp_base = get_temp(ir->type);
1887 dst_reg temp = dst_reg(temp_base);
1888
1889 for (i = 0; i < ir->type->length; i++) {
1890 ir_constant *const field_value = ir->get_record_field(i);
1891 int size = type_size(field_value->type);
1892
1893 assert(size > 0);
1894
1895 field_value->accept(this);
1896 src = this->result;
1897
1898 for (unsigned j = 0; j < (unsigned int)size; j++) {
1899 emit(ir, OPCODE_MOV, temp, src);
1900
1901 src.index++;
1902 temp.index++;
1903 }
1904 }
1905 this->result = temp_base;
1906 return;
1907 }
1908
1909 if (ir->type->is_array()) {
1910 src_reg temp_base = get_temp(ir->type);
1911 dst_reg temp = dst_reg(temp_base);
1912 int size = type_size(ir->type->fields.array);
1913
1914 assert(size > 0);
1915
1916 for (i = 0; i < ir->type->length; i++) {
1917 ir->const_elements[i]->accept(this);
1918 src = this->result;
1919 for (int j = 0; j < size; j++) {
1920 emit(ir, OPCODE_MOV, temp, src);
1921
1922 src.index++;
1923 temp.index++;
1924 }
1925 }
1926 this->result = temp_base;
1927 return;
1928 }
1929
1930 if (ir->type->is_matrix()) {
1931 src_reg mat = get_temp(ir->type);
1932 dst_reg mat_column = dst_reg(mat);
1933
1934 for (i = 0; i < ir->type->matrix_columns; i++) {
1935 assert(ir->type->is_float());
1936 values = &ir->value.f[i * ir->type->vector_elements];
1937
1938 src = src_reg(PROGRAM_CONSTANT, -1, NULL);
1939 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1940 (gl_constant_value *) values,
1941 ir->type->vector_elements,
1942 &src.swizzle);
1943 emit(ir, OPCODE_MOV, mat_column, src);
1944
1945 mat_column.index++;
1946 }
1947
1948 this->result = mat;
1949 return;
1950 }
1951
1952 src.file = PROGRAM_CONSTANT;
1953 switch (ir->type->base_type) {
1954 case GLSL_TYPE_FLOAT:
1955 values = &ir->value.f[0];
1956 break;
1957 case GLSL_TYPE_UINT:
1958 for (i = 0; i < ir->type->vector_elements; i++) {
1959 values[i] = ir->value.u[i];
1960 }
1961 break;
1962 case GLSL_TYPE_INT:
1963 for (i = 0; i < ir->type->vector_elements; i++) {
1964 values[i] = ir->value.i[i];
1965 }
1966 break;
1967 case GLSL_TYPE_BOOL:
1968 for (i = 0; i < ir->type->vector_elements; i++) {
1969 values[i] = ir->value.b[i];
1970 }
1971 break;
1972 default:
1973 assert(!"Non-float/uint/int/bool constant");
1974 }
1975
1976 this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
1977 this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1978 (gl_constant_value *) values,
1979 ir->type->vector_elements,
1980 &this->result.swizzle);
1981 }
1982
1983 void
1984 ir_to_mesa_visitor::visit(ir_call *)
1985 {
1986 assert(!"ir_to_mesa: All function calls should have been inlined by now.");
1987 }
1988
1989 void
1990 ir_to_mesa_visitor::visit(ir_texture *ir)
1991 {
1992 src_reg result_src, coord, lod_info, projector, dx, dy;
1993 dst_reg result_dst, coord_dst;
1994 ir_to_mesa_instruction *inst = NULL;
1995 prog_opcode opcode = OPCODE_NOP;
1996
1997 if (ir->op == ir_txs)
1998 this->result = src_reg_for_float(0.0);
1999 else
2000 ir->coordinate->accept(this);
2001
2002 /* Put our coords in a temp. We'll need to modify them for shadow,
2003 * projection, or LOD, so the only case we'd use it as-is is if
2004 * we're doing plain old texturing. Mesa IR optimization should
2005 * handle cleaning up our mess in that case.
2006 */
2007 coord = get_temp(glsl_type::vec4_type);
2008 coord_dst = dst_reg(coord);
2009 emit(ir, OPCODE_MOV, coord_dst, this->result);
2010
2011 if (ir->projector) {
2012 ir->projector->accept(this);
2013 projector = this->result;
2014 }
2015
2016 /* Storage for our result. Ideally for an assignment we'd be using
2017 * the actual storage for the result here, instead.
2018 */
2019 result_src = get_temp(glsl_type::vec4_type);
2020 result_dst = dst_reg(result_src);
2021
2022 switch (ir->op) {
2023 case ir_tex:
2024 case ir_txs:
2025 opcode = OPCODE_TEX;
2026 break;
2027 case ir_txb:
2028 opcode = OPCODE_TXB;
2029 ir->lod_info.bias->accept(this);
2030 lod_info = this->result;
2031 break;
2032 case ir_txf:
2033 /* Pretend to be TXL so the sampler, coordinate, lod are available */
2034 case ir_txl:
2035 opcode = OPCODE_TXL;
2036 ir->lod_info.lod->accept(this);
2037 lod_info = this->result;
2038 break;
2039 case ir_txd:
2040 opcode = OPCODE_TXD;
2041 ir->lod_info.grad.dPdx->accept(this);
2042 dx = this->result;
2043 ir->lod_info.grad.dPdy->accept(this);
2044 dy = this->result;
2045 break;
2046 case ir_txf_ms:
2047 assert(!"Unexpected ir_txf_ms opcode");
2048 break;
2049 case ir_lod:
2050 assert(!"Unexpected ir_lod opcode");
2051 break;
2052 case ir_tg4:
2053 assert(!"Unexpected ir_tg4 opcode");
2054 break;
2055 case ir_query_levels:
2056 assert(!"Unexpected ir_query_levels opcode");
2057 break;
2058 case ir_samples_identical:
2059 unreachable("Unexpected ir_samples_identical opcode");
2060 case ir_texture_samples:
2061 unreachable("Unexpected ir_texture_samples opcode");
2062 }
2063
2064 const glsl_type *sampler_type = ir->sampler->type;
2065
2066 if (ir->projector) {
2067 if (opcode == OPCODE_TEX) {
2068 /* Slot the projector in as the last component of the coord. */
2069 coord_dst.writemask = WRITEMASK_W;
2070 emit(ir, OPCODE_MOV, coord_dst, projector);
2071 coord_dst.writemask = WRITEMASK_XYZW;
2072 opcode = OPCODE_TXP;
2073 } else {
2074 src_reg coord_w = coord;
2075 coord_w.swizzle = SWIZZLE_WWWW;
2076
2077 /* For the other TEX opcodes there's no projective version
2078 * since the last slot is taken up by lod info. Do the
2079 * projective divide now.
2080 */
2081 coord_dst.writemask = WRITEMASK_W;
2082 emit(ir, OPCODE_RCP, coord_dst, projector);
2083
2084 /* In the case where we have to project the coordinates "by hand,"
2085 * the shadow comparator value must also be projected.
2086 */
2087 src_reg tmp_src = coord;
2088 if (ir->shadow_comparator) {
2089 /* Slot the shadow value in as the second to last component of the
2090 * coord.
2091 */
2092 ir->shadow_comparator->accept(this);
2093
2094 tmp_src = get_temp(glsl_type::vec4_type);
2095 dst_reg tmp_dst = dst_reg(tmp_src);
2096
2097 /* Projective division not allowed for array samplers. */
2098 assert(!sampler_type->sampler_array);
2099
2100 tmp_dst.writemask = WRITEMASK_Z;
2101 emit(ir, OPCODE_MOV, tmp_dst, this->result);
2102
2103 tmp_dst.writemask = WRITEMASK_XY;
2104 emit(ir, OPCODE_MOV, tmp_dst, coord);
2105 }
2106
2107 coord_dst.writemask = WRITEMASK_XYZ;
2108 emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);
2109
2110 coord_dst.writemask = WRITEMASK_XYZW;
2111 coord.swizzle = SWIZZLE_XYZW;
2112 }
2113 }
2114
2115 /* If projection is done and the opcode is not OPCODE_TXP, then the shadow
2116 * comparator was put in the correct place (and projected) by the code,
2117 * above, that handles by-hand projection.
2118 */
2119 if (ir->shadow_comparator && (!ir->projector || opcode == OPCODE_TXP)) {
2120 /* Slot the shadow value in as the second to last component of the
2121 * coord.
2122 */
2123 ir->shadow_comparator->accept(this);
2124
2125 /* XXX This will need to be updated for cubemap array samplers. */
2126 if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2127 sampler_type->sampler_array) {
2128 coord_dst.writemask = WRITEMASK_W;
2129 } else {
2130 coord_dst.writemask = WRITEMASK_Z;
2131 }
2132
2133 emit(ir, OPCODE_MOV, coord_dst, this->result);
2134 coord_dst.writemask = WRITEMASK_XYZW;
2135 }
2136
2137 if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
2138 /* Mesa IR stores lod or lod bias in the last channel of the coords. */
2139 coord_dst.writemask = WRITEMASK_W;
2140 emit(ir, OPCODE_MOV, coord_dst, lod_info);
2141 coord_dst.writemask = WRITEMASK_XYZW;
2142 }
2143
2144 if (opcode == OPCODE_TXD)
2145 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2146 else
2147 inst = emit(ir, opcode, result_dst, coord);
2148
2149 if (ir->shadow_comparator)
2150 inst->tex_shadow = GL_TRUE;
2151
2152 inst->sampler = get_sampler_uniform_value(ir->sampler, shader_program,
2153 prog);
2154
2155 switch (sampler_type->sampler_dimensionality) {
2156 case GLSL_SAMPLER_DIM_1D:
2157 inst->tex_target = (sampler_type->sampler_array)
2158 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2159 break;
2160 case GLSL_SAMPLER_DIM_2D:
2161 inst->tex_target = (sampler_type->sampler_array)
2162 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2163 break;
2164 case GLSL_SAMPLER_DIM_3D:
2165 inst->tex_target = TEXTURE_3D_INDEX;
2166 break;
2167 case GLSL_SAMPLER_DIM_CUBE:
2168 inst->tex_target = TEXTURE_CUBE_INDEX;
2169 break;
2170 case GLSL_SAMPLER_DIM_RECT:
2171 inst->tex_target = TEXTURE_RECT_INDEX;
2172 break;
2173 case GLSL_SAMPLER_DIM_BUF:
2174 assert(!"FINISHME: Implement ARB_texture_buffer_object");
2175 break;
2176 case GLSL_SAMPLER_DIM_EXTERNAL:
2177 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2178 break;
2179 default:
2180 assert(!"Should not get here.");
2181 }
2182
2183 this->result = result_src;
2184 }
2185
2186 void
2187 ir_to_mesa_visitor::visit(ir_return *ir)
2188 {
2189 /* Non-void functions should have been inlined. We may still emit RETs
2190 * from main() unless the EmitNoMainReturn option is set.
2191 */
2192 assert(!ir->get_value());
2193 emit(ir, OPCODE_RET);
2194 }
2195
2196 void
2197 ir_to_mesa_visitor::visit(ir_discard *ir)
2198 {
2199 if (!ir->condition)
2200 ir->condition = new(mem_ctx) ir_constant(true);
2201
2202 ir->condition->accept(this);
2203 this->result.negate = ~this->result.negate;
2204 emit(ir, OPCODE_KIL, undef_dst, this->result);
2205 }
2206
2207 void
2208 ir_to_mesa_visitor::visit(ir_demote *ir)
2209 {
2210 assert(!"demote statement unsupported");
2211 }
2212
2213 void
2214 ir_to_mesa_visitor::visit(ir_if *ir)
2215 {
2216 ir_to_mesa_instruction *if_inst;
2217
2218 ir->condition->accept(this);
2219 assert(this->result.file != PROGRAM_UNDEFINED);
2220
2221 if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);
2222
2223 this->instructions.push_tail(if_inst);
2224
2225 visit_exec_list(&ir->then_instructions, this);
2226
2227 if (!ir->else_instructions.is_empty()) {
2228 emit(ir->condition, OPCODE_ELSE);
2229 visit_exec_list(&ir->else_instructions, this);
2230 }
2231
2232 emit(ir->condition, OPCODE_ENDIF);
2233 }
2234
2235 void
2236 ir_to_mesa_visitor::visit(ir_emit_vertex *)
2237 {
2238 assert(!"Geometry shaders not supported.");
2239 }
2240
2241 void
2242 ir_to_mesa_visitor::visit(ir_end_primitive *)
2243 {
2244 assert(!"Geometry shaders not supported.");
2245 }
2246
2247 void
2248 ir_to_mesa_visitor::visit(ir_barrier *)
2249 {
2250 unreachable("GLSL barrier() not supported.");
2251 }
2252
2253 ir_to_mesa_visitor::ir_to_mesa_visitor()
2254 {
2255 result.file = PROGRAM_UNDEFINED;
2256 next_temp = 1;
2257 next_signature_id = 1;
2258 current_function = NULL;
2259 mem_ctx = ralloc_context(NULL);
2260 }
2261
2262 ir_to_mesa_visitor::~ir_to_mesa_visitor()
2263 {
2264 ralloc_free(mem_ctx);
2265 }
2266
2267 static struct prog_src_register
2268 mesa_src_reg_from_ir_src_reg(src_reg reg)
2269 {
2270 struct prog_src_register mesa_reg;
2271
2272 mesa_reg.File = reg.file;
2273 assert(reg.index < (1 << INST_INDEX_BITS));
2274 mesa_reg.Index = reg.index;
2275 mesa_reg.Swizzle = reg.swizzle;
2276 mesa_reg.RelAddr = reg.reladdr != NULL;
2277 mesa_reg.Negate = reg.negate;
2278
2279 return mesa_reg;
2280 }
2281
2282 static void
2283 set_branchtargets(ir_to_mesa_visitor *v,
2284 struct prog_instruction *mesa_instructions,
2285 int num_instructions)
2286 {
2287 int if_count = 0, loop_count = 0;
2288 int *if_stack, *loop_stack;
2289 int if_stack_pos = 0, loop_stack_pos = 0;
2290 int i, j;
2291
2292 for (i = 0; i < num_instructions; i++) {
2293 switch (mesa_instructions[i].Opcode) {
2294 case OPCODE_IF:
2295 if_count++;
2296 break;
2297 case OPCODE_BGNLOOP:
2298 loop_count++;
2299 break;
2300 case OPCODE_BRK:
2301 case OPCODE_CONT:
2302 mesa_instructions[i].BranchTarget = -1;
2303 break;
2304 default:
2305 break;
2306 }
2307 }
2308
2309 if_stack = rzalloc_array(v->mem_ctx, int, if_count);
2310 loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);
2311
2312 for (i = 0; i < num_instructions; i++) {
2313 switch (mesa_instructions[i].Opcode) {
2314 case OPCODE_IF:
2315 if_stack[if_stack_pos] = i;
2316 if_stack_pos++;
2317 break;
2318 case OPCODE_ELSE:
2319 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2320 if_stack[if_stack_pos - 1] = i;
2321 break;
2322 case OPCODE_ENDIF:
2323 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2324 if_stack_pos--;
2325 break;
2326 case OPCODE_BGNLOOP:
2327 loop_stack[loop_stack_pos] = i;
2328 loop_stack_pos++;
2329 break;
2330 case OPCODE_ENDLOOP:
2331 loop_stack_pos--;
2332 /* Rewrite any breaks/conts at this nesting level (haven't
2333 * already had a BranchTarget assigned) to point to the end
2334 * of the loop.
2335 */
2336 for (j = loop_stack[loop_stack_pos]; j < i; j++) {
2337 if (mesa_instructions[j].Opcode == OPCODE_BRK ||
2338 mesa_instructions[j].Opcode == OPCODE_CONT) {
2339 if (mesa_instructions[j].BranchTarget == -1) {
2340 mesa_instructions[j].BranchTarget = i;
2341 }
2342 }
2343 }
2344 /* The loop ends point at each other. */
2345 mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
2346 mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
2347 break;
2348 case OPCODE_CAL:
2349 foreach_in_list(function_entry, entry, &v->function_signatures) {
2350 if (entry->sig_id == mesa_instructions[i].BranchTarget) {
2351 mesa_instructions[i].BranchTarget = entry->inst;
2352 break;
2353 }
2354 }
2355 break;
2356 default:
2357 break;
2358 }
2359 }
2360 }
2361
2362 static void
2363 print_program(struct prog_instruction *mesa_instructions,
2364 ir_instruction **mesa_instruction_annotation,
2365 int num_instructions)
2366 {
2367 ir_instruction *last_ir = NULL;
2368 int i;
2369 int indent = 0;
2370
2371 for (i = 0; i < num_instructions; i++) {
2372 struct prog_instruction *mesa_inst = mesa_instructions + i;
2373 ir_instruction *ir = mesa_instruction_annotation[i];
2374
2375 fprintf(stdout, "%3d: ", i);
2376
2377 if (last_ir != ir && ir) {
2378 int j;
2379
2380 for (j = 0; j < indent; j++) {
2381 fprintf(stdout, " ");
2382 }
2383 ir->print();
2384 printf("\n");
2385 last_ir = ir;
2386
2387 fprintf(stdout, " "); /* line number spacing. */
2388 }
2389
2390 indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
2391 PROG_PRINT_DEBUG, NULL);
2392 }
2393 }
2394
2395 namespace {
2396
2397 class add_uniform_to_shader : public program_resource_visitor {
2398 public:
2399 add_uniform_to_shader(struct gl_context *ctx,
2400 struct gl_shader_program *shader_program,
2401 struct gl_program_parameter_list *params)
2402 : ctx(ctx), shader_program(shader_program), params(params), idx(-1)
2403 {
2404 /* empty */
2405 }
2406
2407 void process(ir_variable *var)
2408 {
2409 this->idx = -1;
2410 this->var = var;
2411 this->program_resource_visitor::process(var,
2412 ctx->Const.UseSTD430AsDefaultPacking);
2413 var->data.param_index = this->idx;
2414 }
2415
2416 private:
2417 virtual void visit_field(const glsl_type *type, const char *name,
2418 bool row_major, const glsl_type *record_type,
2419 const enum glsl_interface_packing packing,
2420 bool last_field);
2421
2422 struct gl_context *ctx;
2423 struct gl_shader_program *shader_program;
2424 struct gl_program_parameter_list *params;
2425 int idx;
2426 ir_variable *var;
2427 };
2428
2429 } /* anonymous namespace */
2430
2431 void
2432 add_uniform_to_shader::visit_field(const glsl_type *type, const char *name,
2433 bool /* row_major */,
2434 const glsl_type * /* record_type */,
2435 const enum glsl_interface_packing,
2436 bool /* last_field */)
2437 {
2438 /* opaque types don't use storage in the param list unless they are
2439 * bindless samplers or images.
2440 */
2441 if (type->contains_opaque() && !var->data.bindless)
2442 return;
2443
2444 /* Add the uniform to the param list */
2445 assert(_mesa_lookup_parameter_index(params, name) < 0);
2446 int index = _mesa_lookup_parameter_index(params, name);
2447
2448 unsigned num_params = type->arrays_of_arrays_size();
2449 num_params = MAX2(num_params, 1);
2450 num_params *= type->without_array()->matrix_columns;
2451
2452 bool is_dual_slot = type->without_array()->is_dual_slot();
2453 if (is_dual_slot)
2454 num_params *= 2;
2455
2456 _mesa_reserve_parameter_storage(params, num_params);
2457 index = params->NumParameters;
2458
2459 if (ctx->Const.PackedDriverUniformStorage) {
2460 for (unsigned i = 0; i < num_params; i++) {
2461 unsigned dmul = type->without_array()->is_64bit() ? 2 : 1;
2462 unsigned comps = type->without_array()->vector_elements * dmul;
2463 if (is_dual_slot) {
2464 if (i & 0x1)
2465 comps -= 4;
2466 else
2467 comps = 4;
2468 }
2469
2470 _mesa_add_parameter(params, PROGRAM_UNIFORM, name, comps,
2471 type->gl_type, NULL, NULL, false);
2472 }
2473 } else {
2474 for (unsigned i = 0; i < num_params; i++) {
2475 _mesa_add_parameter(params, PROGRAM_UNIFORM, name, 4,
2476 type->gl_type, NULL, NULL, true);
2477 }
2478 }
2479
2480 /* The first part of the uniform that's processed determines the base
2481 * location of the whole uniform (for structures).
2482 */
2483 if (this->idx < 0)
2484 this->idx = index;
2485
2486 /* Each Parameter will hold the index to the backing uniform storage.
2487 * This avoids relying on names to match parameters and uniform
2488 * storages later when associating uniform storage.
2489 */
2490 unsigned location;
2491 const bool found =
2492 shader_program->UniformHash->get(location, params->Parameters[index].Name);
2493 assert(found);
2494
2495 for (unsigned i = 0; i < num_params; i++) {
2496 struct gl_program_parameter *param = &params->Parameters[index + i];
2497 param->UniformStorageIndex = location;
2498 param->MainUniformStorageIndex = params->Parameters[this->idx].UniformStorageIndex;
2499 }
2500 }
2501
2502 /**
2503 * Generate the program parameters list for the user uniforms in a shader
2504 *
2505 * \param shader_program Linked shader program. This is only used to
2506 * emit possible link errors to the info log.
2507 * \param sh Shader whose uniforms are to be processed.
2508 * \param params Parameter list to be filled in.
2509 */
2510 void
2511 _mesa_generate_parameters_list_for_uniforms(struct gl_context *ctx,
2512 struct gl_shader_program
2513 *shader_program,
2514 struct gl_linked_shader *sh,
2515 struct gl_program_parameter_list
2516 *params)
2517 {
2518 add_uniform_to_shader add(ctx, shader_program, params);
2519
2520 foreach_in_list(ir_instruction, node, sh->ir) {
2521 ir_variable *var = node->as_variable();
2522
2523 if ((var == NULL) || (var->data.mode != ir_var_uniform)
2524 || var->is_in_buffer_block() || (strncmp(var->name, "gl_", 3) == 0))
2525 continue;
2526
2527 add.process(var);
2528 }
2529 }
2530
2531 void
2532 _mesa_associate_uniform_storage(struct gl_context *ctx,
2533 struct gl_shader_program *shader_program,
2534 struct gl_program *prog)
2535 {
2536 struct gl_program_parameter_list *params = prog->Parameters;
2537 gl_shader_stage shader_type = prog->info.stage;
2538
2539 /* After adding each uniform to the parameter list, connect the storage for
2540 * the parameter with the tracking structure used by the API for the
2541 * uniform.
2542 */
2543 unsigned last_location = unsigned(~0);
2544 for (unsigned i = 0; i < params->NumParameters; i++) {
2545 if (params->Parameters[i].Type != PROGRAM_UNIFORM)
2546 continue;
2547
2548 unsigned location = params->Parameters[i].UniformStorageIndex;
2549
2550 struct gl_uniform_storage *storage =
2551 &shader_program->data->UniformStorage[location];
2552
2553 /* Do not associate any uniform storage to built-in uniforms */
2554 if (storage->builtin)
2555 continue;
2556
2557 if (location != last_location) {
2558 enum gl_uniform_driver_format format = uniform_native;
2559 unsigned columns = 0;
2560
2561 int dmul;
2562 if (ctx->Const.PackedDriverUniformStorage && !prog->is_arb_asm) {
2563 dmul = storage->type->vector_elements * sizeof(float);
2564 } else {
2565 dmul = 4 * sizeof(float);
2566 }
2567
2568 switch (storage->type->base_type) {
2569 case GLSL_TYPE_UINT64:
2570 if (storage->type->vector_elements > 2)
2571 dmul *= 2;
2572 /* fallthrough */
2573 case GLSL_TYPE_UINT:
2574 case GLSL_TYPE_UINT16:
2575 case GLSL_TYPE_UINT8:
2576 assert(ctx->Const.NativeIntegers);
2577 format = uniform_native;
2578 columns = 1;
2579 break;
2580 case GLSL_TYPE_INT64:
2581 if (storage->type->vector_elements > 2)
2582 dmul *= 2;
2583 /* fallthrough */
2584 case GLSL_TYPE_INT:
2585 case GLSL_TYPE_INT16:
2586 case GLSL_TYPE_INT8:
2587 format =
2588 (ctx->Const.NativeIntegers) ? uniform_native : uniform_int_float;
2589 columns = 1;
2590 break;
2591 case GLSL_TYPE_DOUBLE:
2592 if (storage->type->vector_elements > 2)
2593 dmul *= 2;
2594 /* fallthrough */
2595 case GLSL_TYPE_FLOAT:
2596 case GLSL_TYPE_FLOAT16:
2597 format = uniform_native;
2598 columns = storage->type->matrix_columns;
2599 break;
2600 case GLSL_TYPE_BOOL:
2601 format = uniform_native;
2602 columns = 1;
2603 break;
2604 case GLSL_TYPE_SAMPLER:
2605 case GLSL_TYPE_IMAGE:
2606 case GLSL_TYPE_SUBROUTINE:
2607 format = uniform_native;
2608 columns = 1;
2609 break;
2610 case GLSL_TYPE_ATOMIC_UINT:
2611 case GLSL_TYPE_ARRAY:
2612 case GLSL_TYPE_VOID:
2613 case GLSL_TYPE_STRUCT:
2614 case GLSL_TYPE_ERROR:
2615 case GLSL_TYPE_INTERFACE:
2616 case GLSL_TYPE_FUNCTION:
2617 assert(!"Should not get here.");
2618 break;
2619 }
2620
2621 unsigned pvo = params->ParameterValueOffset[i];
2622 _mesa_uniform_attach_driver_storage(storage, dmul * columns, dmul,
2623 format,
2624 &params->ParameterValues[pvo]);
2625
2626 /* When a bindless sampler/image is bound to a texture/image unit, we
2627 * have to overwrite the constant value by the resident handle
2628 * directly in the constant buffer before the next draw. One solution
2629 * is to keep track a pointer to the base of the data.
2630 */
2631 if (storage->is_bindless && (prog->sh.NumBindlessSamplers ||
2632 prog->sh.NumBindlessImages)) {
2633 unsigned array_elements = MAX2(1, storage->array_elements);
2634
2635 for (unsigned j = 0; j < array_elements; ++j) {
2636 unsigned unit = storage->opaque[shader_type].index + j;
2637
2638 if (storage->type->without_array()->is_sampler()) {
2639 assert(unit >= 0 && unit < prog->sh.NumBindlessSamplers);
2640 prog->sh.BindlessSamplers[unit].data =
2641 &params->ParameterValues[pvo] + 4 * j;
2642 } else if (storage->type->without_array()->is_image()) {
2643 assert(unit >= 0 && unit < prog->sh.NumBindlessImages);
2644 prog->sh.BindlessImages[unit].data =
2645 &params->ParameterValues[pvo] + 4 * j;
2646 }
2647 }
2648 }
2649
2650 /* After attaching the driver's storage to the uniform, propagate any
2651 * data from the linker's backing store. This will cause values from
2652 * initializers in the source code to be copied over.
2653 */
2654 unsigned array_elements = MAX2(1, storage->array_elements);
2655 if (ctx->Const.PackedDriverUniformStorage && !prog->is_arb_asm &&
2656 (storage->is_bindless || !storage->type->contains_opaque())) {
2657 const int dmul = storage->type->is_64bit() ? 2 : 1;
2658 const unsigned components =
2659 storage->type->vector_elements *
2660 storage->type->matrix_columns;
2661
2662 for (unsigned s = 0; s < storage->num_driver_storage; s++) {
2663 gl_constant_value *uni_storage = (gl_constant_value *)
2664 storage->driver_storage[s].data;
2665 memcpy(uni_storage, storage->storage,
2666 sizeof(storage->storage[0]) * components *
2667 array_elements * dmul);
2668 }
2669 } else {
2670 _mesa_propagate_uniforms_to_driver_storage(storage, 0,
2671 array_elements);
2672 }
2673
2674 last_location = location;
2675 }
2676 }
2677 }
2678
2679 /*
2680 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
2681 * channels for copy propagation and updates following instructions to
2682 * use the original versions.
2683 *
2684 * The ir_to_mesa_visitor lazily produces code assuming that this pass
2685 * will occur. As an example, a TXP production before this pass:
2686 *
2687 * 0: MOV TEMP[1], INPUT[4].xyyy;
2688 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2689 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
2690 *
2691 * and after:
2692 *
2693 * 0: MOV TEMP[1], INPUT[4].xyyy;
2694 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2695 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
2696 *
2697 * which allows for dead code elimination on TEMP[1]'s writes.
2698 */
2699 void
2700 ir_to_mesa_visitor::copy_propagate(void)
2701 {
2702 ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
2703 ir_to_mesa_instruction *,
2704 this->next_temp * 4);
2705 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
2706 int level = 0;
2707
2708 foreach_in_list(ir_to_mesa_instruction, inst, &this->instructions) {
2709 assert(inst->dst.file != PROGRAM_TEMPORARY
2710 || inst->dst.index < this->next_temp);
2711
2712 /* First, do any copy propagation possible into the src regs. */
2713 for (int r = 0; r < 3; r++) {
2714 ir_to_mesa_instruction *first = NULL;
2715 bool good = true;
2716 int acp_base = inst->src[r].index * 4;
2717
2718 if (inst->src[r].file != PROGRAM_TEMPORARY ||
2719 inst->src[r].reladdr)
2720 continue;
2721
2722 /* See if we can find entries in the ACP consisting of MOVs
2723 * from the same src register for all the swizzled channels
2724 * of this src register reference.
2725 */
2726 for (int i = 0; i < 4; i++) {
2727 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2728 ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];
2729
2730 if (!copy_chan) {
2731 good = false;
2732 break;
2733 }
2734
2735 assert(acp_level[acp_base + src_chan] <= level);
2736
2737 if (!first) {
2738 first = copy_chan;
2739 } else {
2740 if (first->src[0].file != copy_chan->src[0].file ||
2741 first->src[0].index != copy_chan->src[0].index) {
2742 good = false;
2743 break;
2744 }
2745 }
2746 }
2747
2748 if (good) {
2749 /* We've now validated that we can copy-propagate to
2750 * replace this src register reference. Do it.
2751 */
2752 inst->src[r].file = first->src[0].file;
2753 inst->src[r].index = first->src[0].index;
2754
2755 int swizzle = 0;
2756 for (int i = 0; i < 4; i++) {
2757 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2758 ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
2759 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
2760 (3 * i));
2761 }
2762 inst->src[r].swizzle = swizzle;
2763 }
2764 }
2765
2766 switch (inst->op) {
2767 case OPCODE_BGNLOOP:
2768 case OPCODE_ENDLOOP:
2769 /* End of a basic block, clear the ACP entirely. */
2770 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2771 break;
2772
2773 case OPCODE_IF:
2774 ++level;
2775 break;
2776
2777 case OPCODE_ENDIF:
2778 case OPCODE_ELSE:
2779 /* Clear all channels written inside the block from the ACP, but
2780 * leaving those that were not touched.
2781 */
2782 for (int r = 0; r < this->next_temp; r++) {
2783 for (int c = 0; c < 4; c++) {
2784 if (!acp[4 * r + c])
2785 continue;
2786
2787 if (acp_level[4 * r + c] >= level)
2788 acp[4 * r + c] = NULL;
2789 }
2790 }
2791 if (inst->op == OPCODE_ENDIF)
2792 --level;
2793 break;
2794
2795 default:
2796 /* Continuing the block, clear any written channels from
2797 * the ACP.
2798 */
2799 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
2800 /* Any temporary might be written, so no copy propagation
2801 * across this instruction.
2802 */
2803 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2804 } else if (inst->dst.file == PROGRAM_OUTPUT &&
2805 inst->dst.reladdr) {
2806 /* Any output might be written, so no copy propagation
2807 * from outputs across this instruction.
2808 */
2809 for (int r = 0; r < this->next_temp; r++) {
2810 for (int c = 0; c < 4; c++) {
2811 if (!acp[4 * r + c])
2812 continue;
2813
2814 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
2815 acp[4 * r + c] = NULL;
2816 }
2817 }
2818 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
2819 inst->dst.file == PROGRAM_OUTPUT) {
2820 /* Clear where it's used as dst. */
2821 if (inst->dst.file == PROGRAM_TEMPORARY) {
2822 for (int c = 0; c < 4; c++) {
2823 if (inst->dst.writemask & (1 << c)) {
2824 acp[4 * inst->dst.index + c] = NULL;
2825 }
2826 }
2827 }
2828
2829 /* Clear where it's used as src. */
2830 for (int r = 0; r < this->next_temp; r++) {
2831 for (int c = 0; c < 4; c++) {
2832 if (!acp[4 * r + c])
2833 continue;
2834
2835 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
2836
2837 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
2838 acp[4 * r + c]->src[0].index == inst->dst.index &&
2839 inst->dst.writemask & (1 << src_chan))
2840 {
2841 acp[4 * r + c] = NULL;
2842 }
2843 }
2844 }
2845 }
2846 break;
2847 }
2848
2849 /* If this is a copy, add it to the ACP. */
2850 if (inst->op == OPCODE_MOV &&
2851 inst->dst.file == PROGRAM_TEMPORARY &&
2852 !(inst->dst.file == inst->src[0].file &&
2853 inst->dst.index == inst->src[0].index) &&
2854 !inst->dst.reladdr &&
2855 !inst->saturate &&
2856 !inst->src[0].reladdr &&
2857 !inst->src[0].negate) {
2858 for (int i = 0; i < 4; i++) {
2859 if (inst->dst.writemask & (1 << i)) {
2860 acp[4 * inst->dst.index + i] = inst;
2861 acp_level[4 * inst->dst.index + i] = level;
2862 }
2863 }
2864 }
2865 }
2866
2867 ralloc_free(acp_level);
2868 ralloc_free(acp);
2869 }
2870
2871
2872 /**
2873 * Convert a shader's GLSL IR into a Mesa gl_program.
2874 */
2875 static struct gl_program *
2876 get_mesa_program(struct gl_context *ctx,
2877 struct gl_shader_program *shader_program,
2878 struct gl_linked_shader *shader)
2879 {
2880 ir_to_mesa_visitor v;
2881 struct prog_instruction *mesa_instructions, *mesa_inst;
2882 ir_instruction **mesa_instruction_annotation;
2883 int i;
2884 struct gl_program *prog;
2885 GLenum target = _mesa_shader_stage_to_program(shader->Stage);
2886 const char *target_string = _mesa_shader_stage_to_string(shader->Stage);
2887 struct gl_shader_compiler_options *options =
2888 &ctx->Const.ShaderCompilerOptions[shader->Stage];
2889
2890 validate_ir_tree(shader->ir);
2891
2892 prog = shader->Program;
2893 prog->Parameters = _mesa_new_parameter_list();
2894 v.ctx = ctx;
2895 v.prog = prog;
2896 v.shader_program = shader_program;
2897 v.options = options;
2898
2899 _mesa_generate_parameters_list_for_uniforms(ctx, shader_program, shader,
2900 prog->Parameters);
2901
2902 /* Emit Mesa IR for main(). */
2903 visit_exec_list(shader->ir, &v);
2904 v.emit(NULL, OPCODE_END);
2905
2906 prog->arb.NumTemporaries = v.next_temp;
2907
2908 unsigned num_instructions = v.instructions.length();
2909
2910 mesa_instructions = rzalloc_array(prog, struct prog_instruction,
2911 num_instructions);
2912 mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
2913 num_instructions);
2914
2915 v.copy_propagate();
2916
2917 /* Convert ir_mesa_instructions into prog_instructions.
2918 */
2919 mesa_inst = mesa_instructions;
2920 i = 0;
2921 foreach_in_list(const ir_to_mesa_instruction, inst, &v.instructions) {
2922 mesa_inst->Opcode = inst->op;
2923 if (inst->saturate)
2924 mesa_inst->Saturate = GL_TRUE;
2925 mesa_inst->DstReg.File = inst->dst.file;
2926 mesa_inst->DstReg.Index = inst->dst.index;
2927 mesa_inst->DstReg.WriteMask = inst->dst.writemask;
2928 mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
2929 mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
2930 mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
2931 mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
2932 mesa_inst->TexSrcUnit = inst->sampler;
2933 mesa_inst->TexSrcTarget = inst->tex_target;
2934 mesa_inst->TexShadow = inst->tex_shadow;
2935 mesa_instruction_annotation[i] = inst->ir;
2936
2937 /* Set IndirectRegisterFiles. */
2938 if (mesa_inst->DstReg.RelAddr)
2939 prog->arb.IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;
2940
2941 /* Update program's bitmask of indirectly accessed register files */
2942 for (unsigned src = 0; src < 3; src++)
2943 if (mesa_inst->SrcReg[src].RelAddr)
2944 prog->arb.IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;
2945
2946 switch (mesa_inst->Opcode) {
2947 case OPCODE_IF:
2948 if (options->MaxIfDepth == 0) {
2949 linker_warning(shader_program,
2950 "Couldn't flatten if-statement. "
2951 "This will likely result in software "
2952 "rasterization.\n");
2953 }
2954 break;
2955 case OPCODE_BGNLOOP:
2956 if (options->EmitNoLoops) {
2957 linker_warning(shader_program,
2958 "Couldn't unroll loop. "
2959 "This will likely result in software "
2960 "rasterization.\n");
2961 }
2962 break;
2963 case OPCODE_CONT:
2964 if (options->EmitNoCont) {
2965 linker_warning(shader_program,
2966 "Couldn't lower continue-statement. "
2967 "This will likely result in software "
2968 "rasterization.\n");
2969 }
2970 break;
2971 case OPCODE_ARL:
2972 prog->arb.NumAddressRegs = 1;
2973 break;
2974 default:
2975 break;
2976 }
2977
2978 mesa_inst++;
2979 i++;
2980
2981 if (!shader_program->data->LinkStatus)
2982 break;
2983 }
2984
2985 if (!shader_program->data->LinkStatus) {
2986 goto fail_exit;
2987 }
2988
2989 set_branchtargets(&v, mesa_instructions, num_instructions);
2990
2991 if (ctx->_Shader->Flags & GLSL_DUMP) {
2992 fprintf(stderr, "\n");
2993 fprintf(stderr, "GLSL IR for linked %s program %d:\n", target_string,
2994 shader_program->Name);
2995 _mesa_print_ir(stderr, shader->ir, NULL);
2996 fprintf(stderr, "\n");
2997 fprintf(stderr, "\n");
2998 fprintf(stderr, "Mesa IR for linked %s program %d:\n", target_string,
2999 shader_program->Name);
3000 print_program(mesa_instructions, mesa_instruction_annotation,
3001 num_instructions);
3002 fflush(stderr);
3003 }
3004
3005 prog->arb.Instructions = mesa_instructions;
3006 prog->arb.NumInstructions = num_instructions;
3007
3008 /* Setting this to NULL prevents a possible double free in the fail_exit
3009 * path (far below).
3010 */
3011 mesa_instructions = NULL;
3012
3013 do_set_program_inouts(shader->ir, prog, shader->Stage);
3014
3015 prog->ShadowSamplers = shader->shadow_samplers;
3016 prog->ExternalSamplersUsed = gl_external_samplers(prog);
3017 _mesa_update_shader_textures_used(shader_program, prog);
3018
3019 /* Set the gl_FragDepth layout. */
3020 if (target == GL_FRAGMENT_PROGRAM_ARB) {
3021 prog->info.fs.depth_layout = shader_program->FragDepthLayout;
3022 }
3023
3024 _mesa_optimize_program(prog, prog);
3025
3026 /* This has to be done last. Any operation that can cause
3027 * prog->ParameterValues to get reallocated (e.g., anything that adds a
3028 * program constant) has to happen before creating this linkage.
3029 */
3030 _mesa_associate_uniform_storage(ctx, shader_program, prog);
3031 if (!shader_program->data->LinkStatus) {
3032 goto fail_exit;
3033 }
3034
3035 return prog;
3036
3037 fail_exit:
3038 ralloc_free(mesa_instructions);
3039 _mesa_reference_program(ctx, &shader->Program, NULL);
3040 return NULL;
3041 }
3042
3043 extern "C" {
3044
3045 /**
3046 * Link a shader.
3047 * Called via ctx->Driver.LinkShader()
3048 * This actually involves converting GLSL IR into Mesa gl_programs with
3049 * code lowering and other optimizations.
3050 */
3051 GLboolean
3052 _mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3053 {
3054 assert(prog->data->LinkStatus);
3055
3056 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3057 if (prog->_LinkedShaders[i] == NULL)
3058 continue;
3059
3060 bool progress;
3061 exec_list *ir = prog->_LinkedShaders[i]->ir;
3062 const struct gl_shader_compiler_options *options =
3063 &ctx->Const.ShaderCompilerOptions[prog->_LinkedShaders[i]->Stage];
3064
3065 do {
3066 progress = false;
3067
3068 /* Lowering */
3069 do_mat_op_to_vec(ir);
3070 lower_instructions(ir, (MOD_TO_FLOOR | DIV_TO_MUL_RCP | EXP_TO_EXP2
3071 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
3072 | MUL64_TO_MUL_AND_MUL_HIGH
3073 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
3074
3075 progress = do_common_optimization(ir, true, true,
3076 options, ctx->Const.NativeIntegers)
3077 || progress;
3078
3079 progress = lower_quadop_vector(ir, true) || progress;
3080
3081 if (options->MaxIfDepth == 0)
3082 progress = lower_discard(ir) || progress;
3083
3084 progress = lower_if_to_cond_assign((gl_shader_stage)i, ir,
3085 options->MaxIfDepth) || progress;
3086
3087 progress = lower_noise(ir) || progress;
3088
3089 /* If there are forms of indirect addressing that the driver
3090 * cannot handle, perform the lowering pass.
3091 */
3092 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
3093 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
3094 progress =
3095 lower_variable_index_to_cond_assign(prog->_LinkedShaders[i]->Stage, ir,
3096 options->EmitNoIndirectInput,
3097 options->EmitNoIndirectOutput,
3098 options->EmitNoIndirectTemp,
3099 options->EmitNoIndirectUniform)
3100 || progress;
3101
3102 progress = do_vec_index_to_cond_assign(ir) || progress;
3103 progress = lower_vector_insert(ir, true) || progress;
3104 } while (progress);
3105
3106 validate_ir_tree(ir);
3107 }
3108
3109 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3110 struct gl_program *linked_prog;
3111
3112 if (prog->_LinkedShaders[i] == NULL)
3113 continue;
3114
3115 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
3116
3117 if (linked_prog) {
3118 _mesa_copy_linked_program_data(prog, prog->_LinkedShaders[i]);
3119
3120 if (!ctx->Driver.ProgramStringNotify(ctx,
3121 _mesa_shader_stage_to_program(i),
3122 linked_prog)) {
3123 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
3124 NULL);
3125 return GL_FALSE;
3126 }
3127 }
3128 }
3129
3130 build_program_resource_list(ctx, prog, false);
3131 return prog->data->LinkStatus;
3132 }
3133
3134 /**
3135 * Link a GLSL shader program. Called via glLinkProgram().
3136 */
3137 void
3138 _mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3139 {
3140 unsigned int i;
3141 bool spirv = false;
3142
3143 _mesa_clear_shader_program_data(ctx, prog);
3144
3145 prog->data = _mesa_create_shader_program_data();
3146
3147 prog->data->LinkStatus = LINKING_SUCCESS;
3148
3149 for (i = 0; i < prog->NumShaders; i++) {
3150 if (!prog->Shaders[i]->CompileStatus) {
3151 linker_error(prog, "linking with uncompiled/unspecialized shader");
3152 }
3153
3154 if (!i) {
3155 spirv = (prog->Shaders[i]->spirv_data != NULL);
3156 } else if (spirv && !prog->Shaders[i]->spirv_data) {
3157 /* The GL_ARB_gl_spirv spec adds a new bullet point to the list of
3158 * reasons LinkProgram can fail:
3159 *
3160 * "All the shader objects attached to <program> do not have the
3161 * same value for the SPIR_V_BINARY_ARB state."
3162 */
3163 linker_error(prog,
3164 "not all attached shaders have the same "
3165 "SPIR_V_BINARY_ARB state");
3166 }
3167 }
3168 prog->data->spirv = spirv;
3169
3170 if (prog->data->LinkStatus) {
3171 if (!spirv)
3172 link_shaders(ctx, prog);
3173 else
3174 _mesa_spirv_link_shaders(ctx, prog);
3175 }
3176
3177 /* If LinkStatus is LINKING_SUCCESS, then reset sampler validated to true.
3178 * Validation happens via the LinkShader call below. If LinkStatus is
3179 * LINKING_SKIPPED, then SamplersValidated will have been restored from the
3180 * shader cache.
3181 */
3182 if (prog->data->LinkStatus == LINKING_SUCCESS) {
3183 prog->SamplersValidated = GL_TRUE;
3184 }
3185
3186 if (prog->data->LinkStatus && !ctx->Driver.LinkShader(ctx, prog)) {
3187 prog->data->LinkStatus = LINKING_FAILURE;
3188 }
3189
3190 /* Return early if we are loading the shader from on-disk cache */
3191 if (prog->data->LinkStatus == LINKING_SKIPPED)
3192 return;
3193
3194 if (ctx->_Shader->Flags & GLSL_DUMP) {
3195 if (!prog->data->LinkStatus) {
3196 fprintf(stderr, "GLSL shader program %d failed to link\n", prog->Name);
3197 }
3198
3199 if (prog->data->InfoLog && prog->data->InfoLog[0] != 0) {
3200 fprintf(stderr, "GLSL shader program %d info log:\n", prog->Name);
3201 fprintf(stderr, "%s\n", prog->data->InfoLog);
3202 }
3203 }
3204
3205 #ifdef ENABLE_SHADER_CACHE
3206 if (prog->data->LinkStatus)
3207 shader_cache_write_program_metadata(ctx, prog);
3208 #endif
3209 }
3210
3211 } /* extern "C" */