glsl: Add IR conversion ops for 16-bit float types
[mesa.git] / src / mesa / program / ir_to_mesa.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
24 */
25
26 /**
27 * \file ir_to_mesa.cpp
28 *
29 * Translate GLSL IR to Mesa's gl_program representation.
30 */
31
32 #include <stdio.h>
33 #include "main/macros.h"
34 #include "main/mtypes.h"
35 #include "main/shaderapi.h"
36 #include "main/shaderobj.h"
37 #include "main/uniforms.h"
38 #include "main/glspirv.h"
39 #include "compiler/glsl/ast.h"
40 #include "compiler/glsl/ir.h"
41 #include "compiler/glsl/ir_expression_flattening.h"
42 #include "compiler/glsl/ir_visitor.h"
43 #include "compiler/glsl/ir_optimization.h"
44 #include "compiler/glsl/ir_uniform.h"
45 #include "compiler/glsl/glsl_parser_extras.h"
46 #include "compiler/glsl_types.h"
47 #include "compiler/glsl/linker.h"
48 #include "compiler/glsl/program.h"
49 #include "compiler/glsl/shader_cache.h"
50 #include "compiler/glsl/string_to_uint_map.h"
51 #include "program/prog_instruction.h"
52 #include "program/prog_optimize.h"
53 #include "program/prog_print.h"
54 #include "program/program.h"
55 #include "program/prog_parameter.h"
56
57
58 static int swizzle_for_size(int size);
59
60 namespace {
61
62 class src_reg;
63 class dst_reg;
64
65 /**
66 * This struct is a corresponding struct to Mesa prog_src_register, with
67 * wider fields.
68 */
69 class src_reg {
70 public:
71 src_reg(gl_register_file file, int index, const glsl_type *type)
72 {
73 this->file = file;
74 this->index = index;
75 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
76 this->swizzle = swizzle_for_size(type->vector_elements);
77 else
78 this->swizzle = SWIZZLE_XYZW;
79 this->negate = 0;
80 this->reladdr = NULL;
81 }
82
83 src_reg()
84 {
85 this->file = PROGRAM_UNDEFINED;
86 this->index = 0;
87 this->swizzle = 0;
88 this->negate = 0;
89 this->reladdr = NULL;
90 }
91
92 explicit src_reg(dst_reg reg);
93
94 gl_register_file file; /**< PROGRAM_* from Mesa */
95 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
96 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
97 int negate; /**< NEGATE_XYZW mask from mesa */
98 /** Register index should be offset by the integer in this reg. */
99 src_reg *reladdr;
100 };
101
102 class dst_reg {
103 public:
104 dst_reg(gl_register_file file, int writemask)
105 {
106 this->file = file;
107 this->index = 0;
108 this->writemask = writemask;
109 this->reladdr = NULL;
110 }
111
112 dst_reg()
113 {
114 this->file = PROGRAM_UNDEFINED;
115 this->index = 0;
116 this->writemask = 0;
117 this->reladdr = NULL;
118 }
119
120 explicit dst_reg(src_reg reg);
121
122 gl_register_file file; /**< PROGRAM_* from Mesa */
123 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
124 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
125 /** Register index should be offset by the integer in this reg. */
126 src_reg *reladdr;
127 };
128
129 } /* anonymous namespace */
130
131 src_reg::src_reg(dst_reg reg)
132 {
133 this->file = reg.file;
134 this->index = reg.index;
135 this->swizzle = SWIZZLE_XYZW;
136 this->negate = 0;
137 this->reladdr = reg.reladdr;
138 }
139
140 dst_reg::dst_reg(src_reg reg)
141 {
142 this->file = reg.file;
143 this->index = reg.index;
144 this->writemask = WRITEMASK_XYZW;
145 this->reladdr = reg.reladdr;
146 }
147
148 namespace {
149
150 class ir_to_mesa_instruction : public exec_node {
151 public:
152 DECLARE_RALLOC_CXX_OPERATORS(ir_to_mesa_instruction)
153
154 enum prog_opcode op;
155 dst_reg dst;
156 src_reg src[3];
157 /** Pointer to the ir source this tree came from for debugging */
158 ir_instruction *ir;
159 bool saturate;
160 int sampler; /**< sampler index */
161 int tex_target; /**< One of TEXTURE_*_INDEX */
162 GLboolean tex_shadow;
163 };
164
165 class variable_storage : public exec_node {
166 public:
167 variable_storage(ir_variable *var, gl_register_file file, int index)
168 : file(file), index(index), var(var)
169 {
170 /* empty */
171 }
172
173 gl_register_file file;
174 int index;
175 ir_variable *var; /* variable that maps to this, if any */
176 };
177
178 class function_entry : public exec_node {
179 public:
180 ir_function_signature *sig;
181
182 /**
183 * identifier of this function signature used by the program.
184 *
185 * At the point that Mesa instructions for function calls are
186 * generated, we don't know the address of the first instruction of
187 * the function body. So we make the BranchTarget that is called a
188 * small integer and rewrite them during set_branchtargets().
189 */
190 int sig_id;
191
192 /**
193 * Pointer to first instruction of the function body.
194 *
195 * Set during function body emits after main() is processed.
196 */
197 ir_to_mesa_instruction *bgn_inst;
198
199 /**
200 * Index of the first instruction of the function body in actual
201 * Mesa IR.
202 *
203 * Set after convertion from ir_to_mesa_instruction to prog_instruction.
204 */
205 int inst;
206
207 /** Storage for the return value. */
208 src_reg return_reg;
209 };
210
211 class ir_to_mesa_visitor : public ir_visitor {
212 public:
213 ir_to_mesa_visitor();
214 ~ir_to_mesa_visitor();
215
216 function_entry *current_function;
217
218 struct gl_context *ctx;
219 struct gl_program *prog;
220 struct gl_shader_program *shader_program;
221 struct gl_shader_compiler_options *options;
222
223 int next_temp;
224
225 variable_storage *find_variable_storage(const ir_variable *var);
226
227 src_reg get_temp(const glsl_type *type);
228 void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);
229
230 src_reg src_reg_for_float(float val);
231
232 /**
233 * \name Visit methods
234 *
235 * As typical for the visitor pattern, there must be one \c visit method for
236 * each concrete subclass of \c ir_instruction. Virtual base classes within
237 * the hierarchy should not have \c visit methods.
238 */
239 /*@{*/
240 virtual void visit(ir_variable *);
241 virtual void visit(ir_loop *);
242 virtual void visit(ir_loop_jump *);
243 virtual void visit(ir_function_signature *);
244 virtual void visit(ir_function *);
245 virtual void visit(ir_expression *);
246 virtual void visit(ir_swizzle *);
247 virtual void visit(ir_dereference_variable *);
248 virtual void visit(ir_dereference_array *);
249 virtual void visit(ir_dereference_record *);
250 virtual void visit(ir_assignment *);
251 virtual void visit(ir_constant *);
252 virtual void visit(ir_call *);
253 virtual void visit(ir_return *);
254 virtual void visit(ir_discard *);
255 virtual void visit(ir_demote *);
256 virtual void visit(ir_texture *);
257 virtual void visit(ir_if *);
258 virtual void visit(ir_emit_vertex *);
259 virtual void visit(ir_end_primitive *);
260 virtual void visit(ir_barrier *);
261 /*@}*/
262
263 src_reg result;
264
265 /** List of variable_storage */
266 exec_list variables;
267
268 /** List of function_entry */
269 exec_list function_signatures;
270 int next_signature_id;
271
272 /** List of ir_to_mesa_instruction */
273 exec_list instructions;
274
275 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);
276
277 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
278 dst_reg dst, src_reg src0);
279
280 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
281 dst_reg dst, src_reg src0, src_reg src1);
282
283 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
284 dst_reg dst,
285 src_reg src0, src_reg src1, src_reg src2);
286
287 /**
288 * Emit the correct dot-product instruction for the type of arguments
289 */
290 ir_to_mesa_instruction * emit_dp(ir_instruction *ir,
291 dst_reg dst,
292 src_reg src0,
293 src_reg src1,
294 unsigned elements);
295
296 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
297 dst_reg dst, src_reg src0);
298
299 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
300 dst_reg dst, src_reg src0, src_reg src1);
301
302 bool try_emit_mad(ir_expression *ir,
303 int mul_operand);
304 bool try_emit_mad_for_and_not(ir_expression *ir,
305 int mul_operand);
306
307 void emit_swz(ir_expression *ir);
308
309 void emit_equality_comparison(ir_expression *ir, enum prog_opcode op,
310 dst_reg dst,
311 const src_reg &src0, const src_reg &src1);
312
313 inline void emit_sne(ir_expression *ir, dst_reg dst,
314 const src_reg &src0, const src_reg &src1)
315 {
316 emit_equality_comparison(ir, OPCODE_SLT, dst, src0, src1);
317 }
318
319 inline void emit_seq(ir_expression *ir, dst_reg dst,
320 const src_reg &src0, const src_reg &src1)
321 {
322 emit_equality_comparison(ir, OPCODE_SGE, dst, src0, src1);
323 }
324
325 bool process_move_condition(ir_rvalue *ir);
326
327 void copy_propagate(void);
328
329 void *mem_ctx;
330 };
331
332 } /* anonymous namespace */
333
334 static src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);
335
336 static dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);
337
338 static dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);
339
340 static int
341 swizzle_for_size(int size)
342 {
343 static const int size_swizzles[4] = {
344 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
345 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
346 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
347 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
348 };
349
350 assert((size >= 1) && (size <= 4));
351 return size_swizzles[size - 1];
352 }
353
354 ir_to_mesa_instruction *
355 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
356 dst_reg dst,
357 src_reg src0, src_reg src1, src_reg src2)
358 {
359 ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
360 int num_reladdr = 0;
361
362 /* If we have to do relative addressing, we want to load the ARL
363 * reg directly for one of the regs, and preload the other reladdr
364 * sources into temps.
365 */
366 num_reladdr += dst.reladdr != NULL;
367 num_reladdr += src0.reladdr != NULL;
368 num_reladdr += src1.reladdr != NULL;
369 num_reladdr += src2.reladdr != NULL;
370
371 reladdr_to_temp(ir, &src2, &num_reladdr);
372 reladdr_to_temp(ir, &src1, &num_reladdr);
373 reladdr_to_temp(ir, &src0, &num_reladdr);
374
375 if (dst.reladdr) {
376 emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
377 num_reladdr--;
378 }
379 assert(num_reladdr == 0);
380
381 inst->op = op;
382 inst->dst = dst;
383 inst->src[0] = src0;
384 inst->src[1] = src1;
385 inst->src[2] = src2;
386 inst->ir = ir;
387
388 this->instructions.push_tail(inst);
389
390 return inst;
391 }
392
393
394 ir_to_mesa_instruction *
395 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
396 dst_reg dst, src_reg src0, src_reg src1)
397 {
398 return emit(ir, op, dst, src0, src1, undef_src);
399 }
400
401 ir_to_mesa_instruction *
402 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
403 dst_reg dst, src_reg src0)
404 {
405 assert(dst.writemask != 0);
406 return emit(ir, op, dst, src0, undef_src, undef_src);
407 }
408
409 ir_to_mesa_instruction *
410 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
411 {
412 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
413 }
414
415 ir_to_mesa_instruction *
416 ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
417 dst_reg dst, src_reg src0, src_reg src1,
418 unsigned elements)
419 {
420 static const enum prog_opcode dot_opcodes[] = {
421 OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
422 };
423
424 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
425 }
426
427 /**
428 * Emits Mesa scalar opcodes to produce unique answers across channels.
429 *
430 * Some Mesa opcodes are scalar-only, like ARB_fp/vp. The src X
431 * channel determines the result across all channels. So to do a vec4
432 * of this operation, we want to emit a scalar per source channel used
433 * to produce dest channels.
434 */
435 void
436 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
437 dst_reg dst,
438 src_reg orig_src0, src_reg orig_src1)
439 {
440 int i, j;
441 int done_mask = ~dst.writemask;
442
443 /* Mesa RCP is a scalar operation splatting results to all channels,
444 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
445 * dst channels.
446 */
447 for (i = 0; i < 4; i++) {
448 GLuint this_mask = (1 << i);
449 ir_to_mesa_instruction *inst;
450 src_reg src0 = orig_src0;
451 src_reg src1 = orig_src1;
452
453 if (done_mask & this_mask)
454 continue;
455
456 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
457 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
458 for (j = i + 1; j < 4; j++) {
459 /* If there is another enabled component in the destination that is
460 * derived from the same inputs, generate its value on this pass as
461 * well.
462 */
463 if (!(done_mask & (1 << j)) &&
464 GET_SWZ(src0.swizzle, j) == src0_swiz &&
465 GET_SWZ(src1.swizzle, j) == src1_swiz) {
466 this_mask |= (1 << j);
467 }
468 }
469 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
470 src0_swiz, src0_swiz);
471 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
472 src1_swiz, src1_swiz);
473
474 inst = emit(ir, op, dst, src0, src1);
475 inst->dst.writemask = this_mask;
476 done_mask |= this_mask;
477 }
478 }
479
480 void
481 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
482 dst_reg dst, src_reg src0)
483 {
484 src_reg undef = undef_src;
485
486 undef.swizzle = SWIZZLE_XXXX;
487
488 emit_scalar(ir, op, dst, src0, undef);
489 }
490
491 src_reg
492 ir_to_mesa_visitor::src_reg_for_float(float val)
493 {
494 src_reg src(PROGRAM_CONSTANT, -1, NULL);
495
496 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
497 (const gl_constant_value *)&val, 1, &src.swizzle);
498
499 return src;
500 }
501
502 static int
503 type_size(const struct glsl_type *type)
504 {
505 return type->count_vec4_slots(false, false);
506 }
507
508 /**
509 * In the initial pass of codegen, we assign temporary numbers to
510 * intermediate results. (not SSA -- variable assignments will reuse
511 * storage). Actual register allocation for the Mesa VM occurs in a
512 * pass over the Mesa IR later.
513 */
514 src_reg
515 ir_to_mesa_visitor::get_temp(const glsl_type *type)
516 {
517 src_reg src;
518
519 src.file = PROGRAM_TEMPORARY;
520 src.index = next_temp;
521 src.reladdr = NULL;
522 next_temp += type_size(type);
523
524 if (type->is_array() || type->is_struct()) {
525 src.swizzle = SWIZZLE_NOOP;
526 } else {
527 src.swizzle = swizzle_for_size(type->vector_elements);
528 }
529 src.negate = 0;
530
531 return src;
532 }
533
534 variable_storage *
535 ir_to_mesa_visitor::find_variable_storage(const ir_variable *var)
536 {
537 foreach_in_list(variable_storage, entry, &this->variables) {
538 if (entry->var == var)
539 return entry;
540 }
541
542 return NULL;
543 }
544
545 void
546 ir_to_mesa_visitor::visit(ir_variable *ir)
547 {
548 if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
549 unsigned int i;
550 const ir_state_slot *const slots = ir->get_state_slots();
551 assert(slots != NULL);
552
553 /* Check if this statevar's setup in the STATE file exactly
554 * matches how we'll want to reference it as a
555 * struct/array/whatever. If not, then we need to move it into
556 * temporary storage and hope that it'll get copy-propagated
557 * out.
558 */
559 for (i = 0; i < ir->get_num_state_slots(); i++) {
560 if (slots[i].swizzle != SWIZZLE_XYZW) {
561 break;
562 }
563 }
564
565 variable_storage *storage;
566 dst_reg dst;
567 if (i == ir->get_num_state_slots()) {
568 /* We'll set the index later. */
569 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
570 this->variables.push_tail(storage);
571
572 dst = undef_dst;
573 } else {
574 /* The variable_storage constructor allocates slots based on the size
575 * of the type. However, this had better match the number of state
576 * elements that we're going to copy into the new temporary.
577 */
578 assert((int) ir->get_num_state_slots() == type_size(ir->type));
579
580 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
581 this->next_temp);
582 this->variables.push_tail(storage);
583 this->next_temp += type_size(ir->type);
584
585 dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
586 }
587
588
589 for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
590 int index = _mesa_add_state_reference(this->prog->Parameters,
591 slots[i].tokens);
592
593 if (storage->file == PROGRAM_STATE_VAR) {
594 if (storage->index == -1) {
595 storage->index = index;
596 } else {
597 assert(index == storage->index + (int)i);
598 }
599 } else {
600 src_reg src(PROGRAM_STATE_VAR, index, NULL);
601 src.swizzle = slots[i].swizzle;
602 emit(ir, OPCODE_MOV, dst, src);
603 /* even a float takes up a whole vec4 reg in a struct/array. */
604 dst.index++;
605 }
606 }
607
608 if (storage->file == PROGRAM_TEMPORARY &&
609 dst.index != storage->index + (int) ir->get_num_state_slots()) {
610 linker_error(this->shader_program,
611 "failed to load builtin uniform `%s' "
612 "(%d/%d regs loaded)\n",
613 ir->name, dst.index - storage->index,
614 type_size(ir->type));
615 }
616 }
617 }
618
619 void
620 ir_to_mesa_visitor::visit(ir_loop *ir)
621 {
622 emit(NULL, OPCODE_BGNLOOP);
623
624 visit_exec_list(&ir->body_instructions, this);
625
626 emit(NULL, OPCODE_ENDLOOP);
627 }
628
629 void
630 ir_to_mesa_visitor::visit(ir_loop_jump *ir)
631 {
632 switch (ir->mode) {
633 case ir_loop_jump::jump_break:
634 emit(NULL, OPCODE_BRK);
635 break;
636 case ir_loop_jump::jump_continue:
637 emit(NULL, OPCODE_CONT);
638 break;
639 }
640 }
641
642
643 void
644 ir_to_mesa_visitor::visit(ir_function_signature *ir)
645 {
646 assert(0);
647 (void)ir;
648 }
649
650 void
651 ir_to_mesa_visitor::visit(ir_function *ir)
652 {
653 /* Ignore function bodies other than main() -- we shouldn't see calls to
654 * them since they should all be inlined before we get to ir_to_mesa.
655 */
656 if (strcmp(ir->name, "main") == 0) {
657 const ir_function_signature *sig;
658 exec_list empty;
659
660 sig = ir->matching_signature(NULL, &empty, false);
661
662 assert(sig);
663
664 foreach_in_list(ir_instruction, ir, &sig->body) {
665 ir->accept(this);
666 }
667 }
668 }
669
670 bool
671 ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
672 {
673 int nonmul_operand = 1 - mul_operand;
674 src_reg a, b, c;
675
676 ir_expression *expr = ir->operands[mul_operand]->as_expression();
677 if (!expr || expr->operation != ir_binop_mul)
678 return false;
679
680 expr->operands[0]->accept(this);
681 a = this->result;
682 expr->operands[1]->accept(this);
683 b = this->result;
684 ir->operands[nonmul_operand]->accept(this);
685 c = this->result;
686
687 this->result = get_temp(ir->type);
688 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);
689
690 return true;
691 }
692
693 /**
694 * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b))
695 *
696 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
697 * implemented using multiplication, and logical-or is implemented using
698 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
699 * As result, the logical expression (a & !b) can be rewritten as:
700 *
701 * - a * !b
702 * - a * (1 - b)
703 * - (a * 1) - (a * b)
704 * - a + -(a * b)
705 * - a + (a * -b)
706 *
707 * This final expression can be implemented as a single MAD(a, -b, a)
708 * instruction.
709 */
710 bool
711 ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
712 {
713 const int other_operand = 1 - try_operand;
714 src_reg a, b;
715
716 ir_expression *expr = ir->operands[try_operand]->as_expression();
717 if (!expr || expr->operation != ir_unop_logic_not)
718 return false;
719
720 ir->operands[other_operand]->accept(this);
721 a = this->result;
722 expr->operands[0]->accept(this);
723 b = this->result;
724
725 b.negate = ~b.negate;
726
727 this->result = get_temp(ir->type);
728 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a);
729
730 return true;
731 }
732
733 void
734 ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
735 src_reg *reg, int *num_reladdr)
736 {
737 if (!reg->reladdr)
738 return;
739
740 emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);
741
742 if (*num_reladdr != 1) {
743 src_reg temp = get_temp(glsl_type::vec4_type);
744
745 emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
746 *reg = temp;
747 }
748
749 (*num_reladdr)--;
750 }
751
752 void
753 ir_to_mesa_visitor::emit_swz(ir_expression *ir)
754 {
755 /* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
756 * This means that each of the operands is either an immediate value of -1,
757 * 0, or 1, or is a component from one source register (possibly with
758 * negation).
759 */
760 uint8_t components[4] = { 0 };
761 bool negate[4] = { false };
762 ir_variable *var = NULL;
763
764 for (unsigned i = 0; i < ir->type->vector_elements; i++) {
765 ir_rvalue *op = ir->operands[i];
766
767 assert(op->type->is_scalar());
768
769 while (op != NULL) {
770 switch (op->ir_type) {
771 case ir_type_constant: {
772
773 assert(op->type->is_scalar());
774
775 const ir_constant *const c = op->as_constant();
776 if (c->is_one()) {
777 components[i] = SWIZZLE_ONE;
778 } else if (c->is_zero()) {
779 components[i] = SWIZZLE_ZERO;
780 } else if (c->is_negative_one()) {
781 components[i] = SWIZZLE_ONE;
782 negate[i] = true;
783 } else {
784 assert(!"SWZ constant must be 0.0 or 1.0.");
785 }
786
787 op = NULL;
788 break;
789 }
790
791 case ir_type_dereference_variable: {
792 ir_dereference_variable *const deref =
793 (ir_dereference_variable *) op;
794
795 assert((var == NULL) || (deref->var == var));
796 components[i] = SWIZZLE_X;
797 var = deref->var;
798 op = NULL;
799 break;
800 }
801
802 case ir_type_expression: {
803 ir_expression *const expr = (ir_expression *) op;
804
805 assert(expr->operation == ir_unop_neg);
806 negate[i] = true;
807
808 op = expr->operands[0];
809 break;
810 }
811
812 case ir_type_swizzle: {
813 ir_swizzle *const swiz = (ir_swizzle *) op;
814
815 components[i] = swiz->mask.x;
816 op = swiz->val;
817 break;
818 }
819
820 default:
821 assert(!"Should not get here.");
822 return;
823 }
824 }
825 }
826
827 assert(var != NULL);
828
829 ir_dereference_variable *const deref =
830 new(mem_ctx) ir_dereference_variable(var);
831
832 this->result.file = PROGRAM_UNDEFINED;
833 deref->accept(this);
834 if (this->result.file == PROGRAM_UNDEFINED) {
835 printf("Failed to get tree for expression operand:\n");
836 deref->print();
837 printf("\n");
838 exit(1);
839 }
840
841 src_reg src;
842
843 src = this->result;
844 src.swizzle = MAKE_SWIZZLE4(components[0],
845 components[1],
846 components[2],
847 components[3]);
848 src.negate = ((unsigned(negate[0]) << 0)
849 | (unsigned(negate[1]) << 1)
850 | (unsigned(negate[2]) << 2)
851 | (unsigned(negate[3]) << 3));
852
853 /* Storage for our result. Ideally for an assignment we'd be using the
854 * actual storage for the result here, instead.
855 */
856 const src_reg result_src = get_temp(ir->type);
857 dst_reg result_dst = dst_reg(result_src);
858
859 /* Limit writes to the channels that will be used by result_src later.
860 * This does limit this temp's use as a temporary for multi-instruction
861 * sequences.
862 */
863 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
864
865 emit(ir, OPCODE_SWZ, result_dst, src);
866 this->result = result_src;
867 }
868
869 void
870 ir_to_mesa_visitor::emit_equality_comparison(ir_expression *ir,
871 enum prog_opcode op,
872 dst_reg dst,
873 const src_reg &src0,
874 const src_reg &src1)
875 {
876 src_reg difference;
877 src_reg abs_difference = get_temp(glsl_type::vec4_type);
878 const src_reg zero = src_reg_for_float(0.0);
879
880 /* x == y is equivalent to -abs(x-y) >= 0. Since all of the code that
881 * consumes the generated IR is pretty dumb, take special care when one
882 * of the operands is zero.
883 *
884 * Similarly, x != y is equivalent to -abs(x-y) < 0.
885 */
886 if (src0.file == zero.file &&
887 src0.index == zero.index &&
888 src0.swizzle == zero.swizzle) {
889 difference = src1;
890 } else if (src1.file == zero.file &&
891 src1.index == zero.index &&
892 src1.swizzle == zero.swizzle) {
893 difference = src0;
894 } else {
895 difference = get_temp(glsl_type::vec4_type);
896
897 src_reg tmp_src = src0;
898 tmp_src.negate = ~tmp_src.negate;
899
900 emit(ir, OPCODE_ADD, dst_reg(difference), tmp_src, src1);
901 }
902
903 emit(ir, OPCODE_ABS, dst_reg(abs_difference), difference);
904
905 abs_difference.negate = ~abs_difference.negate;
906 emit(ir, op, dst, abs_difference, zero);
907 }
908
909 void
910 ir_to_mesa_visitor::visit(ir_expression *ir)
911 {
912 unsigned int operand;
913 src_reg op[ARRAY_SIZE(ir->operands)];
914 src_reg result_src;
915 dst_reg result_dst;
916
917 /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
918 */
919 if (ir->operation == ir_binop_add) {
920 if (try_emit_mad(ir, 1))
921 return;
922 if (try_emit_mad(ir, 0))
923 return;
924 }
925
926 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
927 */
928 if (ir->operation == ir_binop_logic_and) {
929 if (try_emit_mad_for_and_not(ir, 1))
930 return;
931 if (try_emit_mad_for_and_not(ir, 0))
932 return;
933 }
934
935 if (ir->operation == ir_quadop_vector) {
936 this->emit_swz(ir);
937 return;
938 }
939
940 for (operand = 0; operand < ir->num_operands; operand++) {
941 this->result.file = PROGRAM_UNDEFINED;
942 ir->operands[operand]->accept(this);
943 if (this->result.file == PROGRAM_UNDEFINED) {
944 printf("Failed to get tree for expression operand:\n");
945 ir->operands[operand]->print();
946 printf("\n");
947 exit(1);
948 }
949 op[operand] = this->result;
950
951 /* Matrix expression operands should have been broken down to vector
952 * operations already.
953 */
954 assert(!ir->operands[operand]->type->is_matrix());
955 }
956
957 int vector_elements = ir->operands[0]->type->vector_elements;
958 if (ir->operands[1]) {
959 vector_elements = MAX2(vector_elements,
960 ir->operands[1]->type->vector_elements);
961 }
962
963 this->result.file = PROGRAM_UNDEFINED;
964
965 /* Storage for our result. Ideally for an assignment we'd be using
966 * the actual storage for the result here, instead.
967 */
968 result_src = get_temp(ir->type);
969 /* convenience for the emit functions below. */
970 result_dst = dst_reg(result_src);
971 /* Limit writes to the channels that will be used by result_src later.
972 * This does limit this temp's use as a temporary for multi-instruction
973 * sequences.
974 */
975 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
976
977 switch (ir->operation) {
978 case ir_unop_logic_not:
979 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
980 * older GPUs implement SEQ using multiple instructions (i915 uses two
981 * SGE instructions and a MUL instruction). Since our logic values are
982 * 0.0 and 1.0, 1-x also implements !x.
983 */
984 op[0].negate = ~op[0].negate;
985 emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0));
986 break;
987 case ir_unop_neg:
988 op[0].negate = ~op[0].negate;
989 result_src = op[0];
990 break;
991 case ir_unop_abs:
992 emit(ir, OPCODE_ABS, result_dst, op[0]);
993 break;
994 case ir_unop_sign:
995 emit(ir, OPCODE_SSG, result_dst, op[0]);
996 break;
997 case ir_unop_rcp:
998 emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
999 break;
1000
1001 case ir_unop_exp2:
1002 emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
1003 break;
1004 case ir_unop_exp:
1005 assert(!"not reached: should be handled by exp_to_exp2");
1006 break;
1007 case ir_unop_log:
1008 assert(!"not reached: should be handled by log_to_log2");
1009 break;
1010 case ir_unop_log2:
1011 emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
1012 break;
1013 case ir_unop_sin:
1014 emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
1015 break;
1016 case ir_unop_cos:
1017 emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
1018 break;
1019
1020 case ir_unop_dFdx:
1021 emit(ir, OPCODE_DDX, result_dst, op[0]);
1022 break;
1023 case ir_unop_dFdy:
1024 emit(ir, OPCODE_DDY, result_dst, op[0]);
1025 break;
1026
1027 case ir_unop_saturate: {
1028 ir_to_mesa_instruction *inst = emit(ir, OPCODE_MOV,
1029 result_dst, op[0]);
1030 inst->saturate = true;
1031 break;
1032 }
1033 case ir_unop_noise: {
1034 const enum prog_opcode opcode =
1035 prog_opcode(OPCODE_NOISE1
1036 + (ir->operands[0]->type->vector_elements) - 1);
1037 assert((opcode >= OPCODE_NOISE1) && (opcode <= OPCODE_NOISE4));
1038
1039 emit(ir, opcode, result_dst, op[0]);
1040 break;
1041 }
1042
1043 case ir_binop_add:
1044 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1045 break;
1046 case ir_binop_sub:
1047 emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
1048 break;
1049
1050 case ir_binop_mul:
1051 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1052 break;
1053 case ir_binop_div:
1054 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1055 break;
1056 case ir_binop_mod:
1057 /* Floating point should be lowered by MOD_TO_FLOOR in the compiler. */
1058 assert(ir->type->is_integer_32());
1059 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1060 break;
1061
1062 case ir_binop_less:
1063 emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1064 break;
1065 case ir_binop_gequal:
1066 emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1067 break;
1068 case ir_binop_equal:
1069 emit_seq(ir, result_dst, op[0], op[1]);
1070 break;
1071 case ir_binop_nequal:
1072 emit_sne(ir, result_dst, op[0], op[1]);
1073 break;
1074 case ir_binop_all_equal:
1075 /* "==" operator producing a scalar boolean. */
1076 if (ir->operands[0]->type->is_vector() ||
1077 ir->operands[1]->type->is_vector()) {
1078 src_reg temp = get_temp(glsl_type::vec4_type);
1079 emit_sne(ir, dst_reg(temp), op[0], op[1]);
1080
1081 /* After the dot-product, the value will be an integer on the
1082 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1083 */
1084 emit_dp(ir, result_dst, temp, temp, vector_elements);
1085
1086 /* Negating the result of the dot-product gives values on the range
1087 * [-4, 0]. Zero becomes 1.0, and negative values become zero. This
1088 * achieved using SGE.
1089 */
1090 src_reg sge_src = result_src;
1091 sge_src.negate = ~sge_src.negate;
1092 emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0));
1093 } else {
1094 emit_seq(ir, result_dst, op[0], op[1]);
1095 }
1096 break;
1097 case ir_binop_any_nequal:
1098 /* "!=" operator producing a scalar boolean. */
1099 if (ir->operands[0]->type->is_vector() ||
1100 ir->operands[1]->type->is_vector()) {
1101 src_reg temp = get_temp(glsl_type::vec4_type);
1102 if (ir->operands[0]->type->is_boolean() &&
1103 ir->operands[1]->as_constant() &&
1104 ir->operands[1]->as_constant()->is_zero()) {
1105 temp = op[0];
1106 } else {
1107 emit_sne(ir, dst_reg(temp), op[0], op[1]);
1108 }
1109
1110 /* After the dot-product, the value will be an integer on the
1111 * range [0,4]. Zero stays zero, and positive values become 1.0.
1112 */
1113 ir_to_mesa_instruction *const dp =
1114 emit_dp(ir, result_dst, temp, temp, vector_elements);
1115 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1116 /* The clamping to [0,1] can be done for free in the fragment
1117 * shader with a saturate.
1118 */
1119 dp->saturate = true;
1120 } else {
1121 /* Negating the result of the dot-product gives values on the range
1122 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1123 * achieved using SLT.
1124 */
1125 src_reg slt_src = result_src;
1126 slt_src.negate = ~slt_src.negate;
1127 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1128 }
1129 } else {
1130 emit_sne(ir, result_dst, op[0], op[1]);
1131 }
1132 break;
1133
1134 case ir_binop_logic_xor:
1135 emit_sne(ir, result_dst, op[0], op[1]);
1136 break;
1137
1138 case ir_binop_logic_or: {
1139 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1140 /* After the addition, the value will be an integer on the
1141 * range [0,2]. Zero stays zero, and positive values become 1.0.
1142 */
1143 ir_to_mesa_instruction *add =
1144 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1145 add->saturate = true;
1146 } else {
1147 /* The Boolean arguments are stored as float 0.0 and 1.0. If either
1148 * value is 1.0, the result of the logcal-or should be 1.0. If both
1149 * values are 0.0, the result should be 0.0. This is exactly what
1150 * MAX does.
1151 */
1152 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1153 }
1154 break;
1155 }
1156
1157 case ir_binop_logic_and:
1158 /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1159 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1160 break;
1161
1162 case ir_binop_dot:
1163 assert(ir->operands[0]->type->is_vector());
1164 assert(ir->operands[0]->type == ir->operands[1]->type);
1165 emit_dp(ir, result_dst, op[0], op[1],
1166 ir->operands[0]->type->vector_elements);
1167 break;
1168
1169 case ir_unop_sqrt:
1170 /* sqrt(x) = x * rsq(x). */
1171 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1172 emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
1173 /* For incoming channels <= 0, set the result to 0. */
1174 op[0].negate = ~op[0].negate;
1175 emit(ir, OPCODE_CMP, result_dst,
1176 op[0], result_src, src_reg_for_float(0.0));
1177 break;
1178 case ir_unop_rsq:
1179 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1180 break;
1181 case ir_unop_i2f:
1182 case ir_unop_u2f:
1183 case ir_unop_b2f:
1184 case ir_unop_b2i:
1185 case ir_unop_i2u:
1186 case ir_unop_u2i:
1187 /* Mesa IR lacks types, ints are stored as truncated floats. */
1188 result_src = op[0];
1189 break;
1190 case ir_unop_f2i:
1191 case ir_unop_f2u:
1192 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1193 break;
1194 case ir_unop_f2b:
1195 case ir_unop_i2b:
1196 emit_sne(ir, result_dst, op[0], src_reg_for_float(0.0));
1197 break;
1198 case ir_unop_bitcast_f2i: // Ignore these 4, they can't happen here anyway
1199 case ir_unop_bitcast_f2u:
1200 case ir_unop_bitcast_i2f:
1201 case ir_unop_bitcast_u2f:
1202 break;
1203 case ir_unop_trunc:
1204 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1205 break;
1206 case ir_unop_ceil:
1207 op[0].negate = ~op[0].negate;
1208 emit(ir, OPCODE_FLR, result_dst, op[0]);
1209 result_src.negate = ~result_src.negate;
1210 break;
1211 case ir_unop_floor:
1212 emit(ir, OPCODE_FLR, result_dst, op[0]);
1213 break;
1214 case ir_unop_fract:
1215 emit(ir, OPCODE_FRC, result_dst, op[0]);
1216 break;
1217 case ir_unop_pack_snorm_2x16:
1218 case ir_unop_pack_snorm_4x8:
1219 case ir_unop_pack_unorm_2x16:
1220 case ir_unop_pack_unorm_4x8:
1221 case ir_unop_pack_half_2x16:
1222 case ir_unop_pack_double_2x32:
1223 case ir_unop_unpack_snorm_2x16:
1224 case ir_unop_unpack_snorm_4x8:
1225 case ir_unop_unpack_unorm_2x16:
1226 case ir_unop_unpack_unorm_4x8:
1227 case ir_unop_unpack_half_2x16:
1228 case ir_unop_unpack_double_2x32:
1229 case ir_unop_bitfield_reverse:
1230 case ir_unop_bit_count:
1231 case ir_unop_find_msb:
1232 case ir_unop_find_lsb:
1233 case ir_unop_d2f:
1234 case ir_unop_f2d:
1235 case ir_unop_d2i:
1236 case ir_unop_i2d:
1237 case ir_unop_d2u:
1238 case ir_unop_u2d:
1239 case ir_unop_d2b:
1240 case ir_unop_frexp_sig:
1241 case ir_unop_frexp_exp:
1242 assert(!"not supported");
1243 break;
1244 case ir_binop_min:
1245 emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
1246 break;
1247 case ir_binop_max:
1248 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1249 break;
1250 case ir_binop_pow:
1251 emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
1252 break;
1253
1254 /* GLSL 1.30 integer ops are unsupported in Mesa IR, but since
1255 * hardware backends have no way to avoid Mesa IR generation
1256 * even if they don't use it, we need to emit "something" and
1257 * continue.
1258 */
1259 case ir_binop_lshift:
1260 case ir_binop_rshift:
1261 case ir_binop_bit_and:
1262 case ir_binop_bit_xor:
1263 case ir_binop_bit_or:
1264 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1265 break;
1266
1267 case ir_unop_bit_not:
1268 case ir_unop_round_even:
1269 emit(ir, OPCODE_MOV, result_dst, op[0]);
1270 break;
1271
1272 case ir_binop_ubo_load:
1273 assert(!"not supported");
1274 break;
1275
1276 case ir_triop_lrp:
1277 /* ir_triop_lrp operands are (x, y, a) while
1278 * OPCODE_LRP operands are (a, y, x) to match ARB_fragment_program.
1279 */
1280 emit(ir, OPCODE_LRP, result_dst, op[2], op[1], op[0]);
1281 break;
1282
1283 case ir_triop_csel:
1284 /* We assume that boolean true and false are 1.0 and 0.0. OPCODE_CMP
1285 * selects src1 if src0 is < 0, src2 otherwise.
1286 */
1287 op[0].negate = ~op[0].negate;
1288 emit(ir, OPCODE_CMP, result_dst, op[0], op[1], op[2]);
1289 break;
1290
1291 case ir_binop_vector_extract:
1292 case ir_triop_fma:
1293 case ir_triop_bitfield_extract:
1294 case ir_triop_vector_insert:
1295 case ir_quadop_bitfield_insert:
1296 case ir_binop_ldexp:
1297 case ir_binop_carry:
1298 case ir_binop_borrow:
1299 case ir_binop_abs_sub:
1300 case ir_binop_add_sat:
1301 case ir_binop_sub_sat:
1302 case ir_binop_avg:
1303 case ir_binop_avg_round:
1304 case ir_binop_mul_32x16:
1305 case ir_binop_imul_high:
1306 case ir_unop_interpolate_at_centroid:
1307 case ir_binop_interpolate_at_offset:
1308 case ir_binop_interpolate_at_sample:
1309 case ir_unop_dFdx_coarse:
1310 case ir_unop_dFdx_fine:
1311 case ir_unop_dFdy_coarse:
1312 case ir_unop_dFdy_fine:
1313 case ir_unop_subroutine_to_int:
1314 case ir_unop_get_buffer_size:
1315 case ir_unop_bitcast_u642d:
1316 case ir_unop_bitcast_i642d:
1317 case ir_unop_bitcast_d2u64:
1318 case ir_unop_bitcast_d2i64:
1319 case ir_unop_i642i:
1320 case ir_unop_u642i:
1321 case ir_unop_i642u:
1322 case ir_unop_u642u:
1323 case ir_unop_i642b:
1324 case ir_unop_i642f:
1325 case ir_unop_u642f:
1326 case ir_unop_i642d:
1327 case ir_unop_u642d:
1328 case ir_unop_i2i64:
1329 case ir_unop_u2i64:
1330 case ir_unop_b2i64:
1331 case ir_unop_f2i64:
1332 case ir_unop_d2i64:
1333 case ir_unop_i2u64:
1334 case ir_unop_u2u64:
1335 case ir_unop_f2u64:
1336 case ir_unop_d2u64:
1337 case ir_unop_u642i64:
1338 case ir_unop_i642u64:
1339 case ir_unop_pack_int_2x32:
1340 case ir_unop_unpack_int_2x32:
1341 case ir_unop_pack_uint_2x32:
1342 case ir_unop_unpack_uint_2x32:
1343 case ir_unop_pack_sampler_2x32:
1344 case ir_unop_unpack_sampler_2x32:
1345 case ir_unop_pack_image_2x32:
1346 case ir_unop_unpack_image_2x32:
1347 case ir_unop_atan:
1348 case ir_binop_atan2:
1349 case ir_unop_clz:
1350 case ir_unop_f162f:
1351 case ir_unop_f2f16:
1352 assert(!"not supported");
1353 break;
1354
1355 case ir_unop_ssbo_unsized_array_length:
1356 case ir_quadop_vector:
1357 /* This operation should have already been handled.
1358 */
1359 assert(!"Should not get here.");
1360 break;
1361 }
1362
1363 this->result = result_src;
1364 }
1365
1366
1367 void
1368 ir_to_mesa_visitor::visit(ir_swizzle *ir)
1369 {
1370 src_reg src;
1371 int i;
1372 int swizzle[4] = {0};
1373
1374 /* Note that this is only swizzles in expressions, not those on the left
1375 * hand side of an assignment, which do write masking. See ir_assignment
1376 * for that.
1377 */
1378
1379 ir->val->accept(this);
1380 src = this->result;
1381 assert(src.file != PROGRAM_UNDEFINED);
1382 assert(ir->type->vector_elements > 0);
1383
1384 for (i = 0; i < 4; i++) {
1385 if (i < ir->type->vector_elements) {
1386 switch (i) {
1387 case 0:
1388 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1389 break;
1390 case 1:
1391 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1392 break;
1393 case 2:
1394 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1395 break;
1396 case 3:
1397 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1398 break;
1399 }
1400 } else {
1401 /* If the type is smaller than a vec4, replicate the last
1402 * channel out.
1403 */
1404 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1405 }
1406 }
1407
1408 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1409
1410 this->result = src;
1411 }
1412
1413 void
1414 ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
1415 {
1416 variable_storage *entry = find_variable_storage(ir->var);
1417 ir_variable *var = ir->var;
1418
1419 if (!entry) {
1420 switch (var->data.mode) {
1421 case ir_var_uniform:
1422 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1423 var->data.param_index);
1424 this->variables.push_tail(entry);
1425 break;
1426 case ir_var_shader_in:
1427 /* The linker assigns locations for varyings and attributes,
1428 * including deprecated builtins (like gl_Color),
1429 * user-assigned generic attributes (glBindVertexLocation),
1430 * and user-defined varyings.
1431 */
1432 assert(var->data.location != -1);
1433 entry = new(mem_ctx) variable_storage(var,
1434 PROGRAM_INPUT,
1435 var->data.location);
1436 break;
1437 case ir_var_shader_out:
1438 assert(var->data.location != -1);
1439 entry = new(mem_ctx) variable_storage(var,
1440 PROGRAM_OUTPUT,
1441 var->data.location);
1442 break;
1443 case ir_var_system_value:
1444 entry = new(mem_ctx) variable_storage(var,
1445 PROGRAM_SYSTEM_VALUE,
1446 var->data.location);
1447 break;
1448 case ir_var_auto:
1449 case ir_var_temporary:
1450 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1451 this->next_temp);
1452 this->variables.push_tail(entry);
1453
1454 next_temp += type_size(var->type);
1455 break;
1456 }
1457
1458 if (!entry) {
1459 printf("Failed to make storage for %s\n", var->name);
1460 exit(1);
1461 }
1462 }
1463
1464 this->result = src_reg(entry->file, entry->index, var->type);
1465 }
1466
1467 void
1468 ir_to_mesa_visitor::visit(ir_dereference_array *ir)
1469 {
1470 ir_constant *index;
1471 src_reg src;
1472 int element_size = type_size(ir->type);
1473
1474 index = ir->array_index->constant_expression_value(ralloc_parent(ir));
1475
1476 ir->array->accept(this);
1477 src = this->result;
1478
1479 if (index) {
1480 src.index += index->value.i[0] * element_size;
1481 } else {
1482 /* Variable index array dereference. It eats the "vec4" of the
1483 * base of the array and an index that offsets the Mesa register
1484 * index.
1485 */
1486 ir->array_index->accept(this);
1487
1488 src_reg index_reg;
1489
1490 if (element_size == 1) {
1491 index_reg = this->result;
1492 } else {
1493 index_reg = get_temp(glsl_type::float_type);
1494
1495 emit(ir, OPCODE_MUL, dst_reg(index_reg),
1496 this->result, src_reg_for_float(element_size));
1497 }
1498
1499 /* If there was already a relative address register involved, add the
1500 * new and the old together to get the new offset.
1501 */
1502 if (src.reladdr != NULL) {
1503 src_reg accum_reg = get_temp(glsl_type::float_type);
1504
1505 emit(ir, OPCODE_ADD, dst_reg(accum_reg),
1506 index_reg, *src.reladdr);
1507
1508 index_reg = accum_reg;
1509 }
1510
1511 src.reladdr = ralloc(mem_ctx, src_reg);
1512 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1513 }
1514
1515 /* If the type is smaller than a vec4, replicate the last channel out. */
1516 if (ir->type->is_scalar() || ir->type->is_vector())
1517 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1518 else
1519 src.swizzle = SWIZZLE_NOOP;
1520
1521 this->result = src;
1522 }
1523
1524 void
1525 ir_to_mesa_visitor::visit(ir_dereference_record *ir)
1526 {
1527 unsigned int i;
1528 const glsl_type *struct_type = ir->record->type;
1529 int offset = 0;
1530
1531 ir->record->accept(this);
1532
1533 assert(ir->field_idx >= 0);
1534 for (i = 0; i < struct_type->length; i++) {
1535 if (i == (unsigned) ir->field_idx)
1536 break;
1537 offset += type_size(struct_type->fields.structure[i].type);
1538 }
1539
1540 /* If the type is smaller than a vec4, replicate the last channel out. */
1541 if (ir->type->is_scalar() || ir->type->is_vector())
1542 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1543 else
1544 this->result.swizzle = SWIZZLE_NOOP;
1545
1546 this->result.index += offset;
1547 }
1548
1549 /**
1550 * We want to be careful in assignment setup to hit the actual storage
1551 * instead of potentially using a temporary like we might with the
1552 * ir_dereference handler.
1553 */
1554 static dst_reg
1555 get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
1556 {
1557 /* The LHS must be a dereference. If the LHS is a variable indexed array
1558 * access of a vector, it must be separated into a series conditional moves
1559 * before reaching this point (see ir_vec_index_to_cond_assign).
1560 */
1561 assert(ir->as_dereference());
1562 ir_dereference_array *deref_array = ir->as_dereference_array();
1563 if (deref_array) {
1564 assert(!deref_array->array->type->is_vector());
1565 }
1566
1567 /* Use the rvalue deref handler for the most part. We'll ignore
1568 * swizzles in it and write swizzles using writemask, though.
1569 */
1570 ir->accept(v);
1571 return dst_reg(v->result);
1572 }
1573
1574 /* Calculate the sampler index and also calculate the base uniform location
1575 * for struct members.
1576 */
1577 static void
1578 calc_sampler_offsets(struct gl_shader_program *prog, ir_dereference *deref,
1579 unsigned *offset, unsigned *array_elements,
1580 unsigned *location)
1581 {
1582 if (deref->ir_type == ir_type_dereference_variable)
1583 return;
1584
1585 switch (deref->ir_type) {
1586 case ir_type_dereference_array: {
1587 ir_dereference_array *deref_arr = deref->as_dereference_array();
1588
1589 void *mem_ctx = ralloc_parent(deref_arr);
1590 ir_constant *array_index =
1591 deref_arr->array_index->constant_expression_value(mem_ctx);
1592
1593 if (!array_index) {
1594 /* GLSL 1.10 and 1.20 allowed variable sampler array indices,
1595 * while GLSL 1.30 requires that the array indices be
1596 * constant integer expressions. We don't expect any driver
1597 * to actually work with a really variable array index, so
1598 * all that would work would be an unrolled loop counter that ends
1599 * up being constant above.
1600 */
1601 ralloc_strcat(&prog->data->InfoLog,
1602 "warning: Variable sampler array index unsupported.\n"
1603 "This feature of the language was removed in GLSL 1.20 "
1604 "and is unlikely to be supported for 1.10 in Mesa.\n");
1605 } else {
1606 *offset += array_index->value.u[0] * *array_elements;
1607 }
1608
1609 *array_elements *= deref_arr->array->type->length;
1610
1611 calc_sampler_offsets(prog, deref_arr->array->as_dereference(),
1612 offset, array_elements, location);
1613 break;
1614 }
1615
1616 case ir_type_dereference_record: {
1617 ir_dereference_record *deref_record = deref->as_dereference_record();
1618 unsigned field_index = deref_record->field_idx;
1619 *location +=
1620 deref_record->record->type->struct_location_offset(field_index);
1621 calc_sampler_offsets(prog, deref_record->record->as_dereference(),
1622 offset, array_elements, location);
1623 break;
1624 }
1625
1626 default:
1627 unreachable("Invalid deref type");
1628 break;
1629 }
1630 }
1631
1632 static int
1633 get_sampler_uniform_value(class ir_dereference *sampler,
1634 struct gl_shader_program *shader_program,
1635 const struct gl_program *prog)
1636 {
1637 GLuint shader = _mesa_program_enum_to_shader_stage(prog->Target);
1638 ir_variable *var = sampler->variable_referenced();
1639 unsigned location = var->data.location;
1640 unsigned array_elements = 1;
1641 unsigned offset = 0;
1642
1643 calc_sampler_offsets(shader_program, sampler, &offset, &array_elements,
1644 &location);
1645
1646 assert(shader_program->data->UniformStorage[location].opaque[shader].active);
1647 return shader_program->data->UniformStorage[location].opaque[shader].index +
1648 offset;
1649 }
1650
1651 /**
1652 * Process the condition of a conditional assignment
1653 *
1654 * Examines the condition of a conditional assignment to generate the optimal
1655 * first operand of a \c CMP instruction. If the condition is a relational
1656 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1657 * used as the source for the \c CMP instruction. Otherwise the comparison
1658 * is processed to a boolean result, and the boolean result is used as the
1659 * operand to the CMP instruction.
1660 */
1661 bool
1662 ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
1663 {
1664 ir_rvalue *src_ir = ir;
1665 bool negate = true;
1666 bool switch_order = false;
1667
1668 ir_expression *const expr = ir->as_expression();
1669 if ((expr != NULL) && (expr->num_operands == 2)) {
1670 bool zero_on_left = false;
1671
1672 if (expr->operands[0]->is_zero()) {
1673 src_ir = expr->operands[1];
1674 zero_on_left = true;
1675 } else if (expr->operands[1]->is_zero()) {
1676 src_ir = expr->operands[0];
1677 zero_on_left = false;
1678 }
1679
1680 /* a is - 0 + - 0 +
1681 * (a < 0) T F F ( a < 0) T F F
1682 * (0 < a) F F T (-a < 0) F F T
1683 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
1684 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
1685 *
1686 * Note that exchanging the order of 0 and 'a' in the comparison simply
1687 * means that the value of 'a' should be negated.
1688 */
1689 if (src_ir != ir) {
1690 switch (expr->operation) {
1691 case ir_binop_less:
1692 switch_order = false;
1693 negate = zero_on_left;
1694 break;
1695
1696 case ir_binop_gequal:
1697 switch_order = true;
1698 negate = zero_on_left;
1699 break;
1700
1701 default:
1702 /* This isn't the right kind of comparison afterall, so make sure
1703 * the whole condition is visited.
1704 */
1705 src_ir = ir;
1706 break;
1707 }
1708 }
1709 }
1710
1711 src_ir->accept(this);
1712
1713 /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1714 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
1715 * choose which value OPCODE_CMP produces without an extra instruction
1716 * computing the condition.
1717 */
1718 if (negate)
1719 this->result.negate = ~this->result.negate;
1720
1721 return switch_order;
1722 }
1723
1724 void
1725 ir_to_mesa_visitor::visit(ir_assignment *ir)
1726 {
1727 dst_reg l;
1728 src_reg r;
1729 int i;
1730
1731 ir->rhs->accept(this);
1732 r = this->result;
1733
1734 l = get_assignment_lhs(ir->lhs, this);
1735
1736 /* FINISHME: This should really set to the correct maximal writemask for each
1737 * FINISHME: component written (in the loops below). This case can only
1738 * FINISHME: occur for matrices, arrays, and structures.
1739 */
1740 if (ir->write_mask == 0) {
1741 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1742 l.writemask = WRITEMASK_XYZW;
1743 } else if (ir->lhs->type->is_scalar()) {
1744 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1745 * FINISHME: W component of fragment shader output zero, work correctly.
1746 */
1747 l.writemask = WRITEMASK_XYZW;
1748 } else {
1749 int swizzles[4];
1750 int first_enabled_chan = 0;
1751 int rhs_chan = 0;
1752
1753 assert(ir->lhs->type->is_vector());
1754 l.writemask = ir->write_mask;
1755
1756 for (int i = 0; i < 4; i++) {
1757 if (l.writemask & (1 << i)) {
1758 first_enabled_chan = GET_SWZ(r.swizzle, i);
1759 break;
1760 }
1761 }
1762
1763 /* Swizzle a small RHS vector into the channels being written.
1764 *
1765 * glsl ir treats write_mask as dictating how many channels are
1766 * present on the RHS while Mesa IR treats write_mask as just
1767 * showing which channels of the vec4 RHS get written.
1768 */
1769 for (int i = 0; i < 4; i++) {
1770 if (l.writemask & (1 << i))
1771 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1772 else
1773 swizzles[i] = first_enabled_chan;
1774 }
1775 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1776 swizzles[2], swizzles[3]);
1777 }
1778
1779 assert(l.file != PROGRAM_UNDEFINED);
1780 assert(r.file != PROGRAM_UNDEFINED);
1781
1782 if (ir->condition) {
1783 const bool switch_order = this->process_move_condition(ir->condition);
1784 src_reg condition = this->result;
1785
1786 for (i = 0; i < type_size(ir->lhs->type); i++) {
1787 if (switch_order) {
1788 emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
1789 } else {
1790 emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
1791 }
1792
1793 l.index++;
1794 r.index++;
1795 }
1796 } else {
1797 for (i = 0; i < type_size(ir->lhs->type); i++) {
1798 emit(ir, OPCODE_MOV, l, r);
1799 l.index++;
1800 r.index++;
1801 }
1802 }
1803 }
1804
1805
1806 void
1807 ir_to_mesa_visitor::visit(ir_constant *ir)
1808 {
1809 src_reg src;
1810 GLfloat stack_vals[4] = { 0 };
1811 GLfloat *values = stack_vals;
1812 unsigned int i;
1813
1814 /* Unfortunately, 4 floats is all we can get into
1815 * _mesa_add_unnamed_constant. So, make a temp to store an
1816 * aggregate constant and move each constant value into it. If we
1817 * get lucky, copy propagation will eliminate the extra moves.
1818 */
1819
1820 if (ir->type->is_struct()) {
1821 src_reg temp_base = get_temp(ir->type);
1822 dst_reg temp = dst_reg(temp_base);
1823
1824 for (i = 0; i < ir->type->length; i++) {
1825 ir_constant *const field_value = ir->get_record_field(i);
1826 int size = type_size(field_value->type);
1827
1828 assert(size > 0);
1829
1830 field_value->accept(this);
1831 src = this->result;
1832
1833 for (unsigned j = 0; j < (unsigned int)size; j++) {
1834 emit(ir, OPCODE_MOV, temp, src);
1835
1836 src.index++;
1837 temp.index++;
1838 }
1839 }
1840 this->result = temp_base;
1841 return;
1842 }
1843
1844 if (ir->type->is_array()) {
1845 src_reg temp_base = get_temp(ir->type);
1846 dst_reg temp = dst_reg(temp_base);
1847 int size = type_size(ir->type->fields.array);
1848
1849 assert(size > 0);
1850
1851 for (i = 0; i < ir->type->length; i++) {
1852 ir->const_elements[i]->accept(this);
1853 src = this->result;
1854 for (int j = 0; j < size; j++) {
1855 emit(ir, OPCODE_MOV, temp, src);
1856
1857 src.index++;
1858 temp.index++;
1859 }
1860 }
1861 this->result = temp_base;
1862 return;
1863 }
1864
1865 if (ir->type->is_matrix()) {
1866 src_reg mat = get_temp(ir->type);
1867 dst_reg mat_column = dst_reg(mat);
1868
1869 for (i = 0; i < ir->type->matrix_columns; i++) {
1870 assert(ir->type->is_float());
1871 values = &ir->value.f[i * ir->type->vector_elements];
1872
1873 src = src_reg(PROGRAM_CONSTANT, -1, NULL);
1874 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1875 (gl_constant_value *) values,
1876 ir->type->vector_elements,
1877 &src.swizzle);
1878 emit(ir, OPCODE_MOV, mat_column, src);
1879
1880 mat_column.index++;
1881 }
1882
1883 this->result = mat;
1884 return;
1885 }
1886
1887 src.file = PROGRAM_CONSTANT;
1888 switch (ir->type->base_type) {
1889 case GLSL_TYPE_FLOAT:
1890 values = &ir->value.f[0];
1891 break;
1892 case GLSL_TYPE_UINT:
1893 for (i = 0; i < ir->type->vector_elements; i++) {
1894 values[i] = ir->value.u[i];
1895 }
1896 break;
1897 case GLSL_TYPE_INT:
1898 for (i = 0; i < ir->type->vector_elements; i++) {
1899 values[i] = ir->value.i[i];
1900 }
1901 break;
1902 case GLSL_TYPE_BOOL:
1903 for (i = 0; i < ir->type->vector_elements; i++) {
1904 values[i] = ir->value.b[i];
1905 }
1906 break;
1907 default:
1908 assert(!"Non-float/uint/int/bool constant");
1909 }
1910
1911 this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
1912 this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1913 (gl_constant_value *) values,
1914 ir->type->vector_elements,
1915 &this->result.swizzle);
1916 }
1917
1918 void
1919 ir_to_mesa_visitor::visit(ir_call *)
1920 {
1921 assert(!"ir_to_mesa: All function calls should have been inlined by now.");
1922 }
1923
1924 void
1925 ir_to_mesa_visitor::visit(ir_texture *ir)
1926 {
1927 src_reg result_src, coord, lod_info, projector, dx, dy;
1928 dst_reg result_dst, coord_dst;
1929 ir_to_mesa_instruction *inst = NULL;
1930 prog_opcode opcode = OPCODE_NOP;
1931
1932 if (ir->op == ir_txs)
1933 this->result = src_reg_for_float(0.0);
1934 else
1935 ir->coordinate->accept(this);
1936
1937 /* Put our coords in a temp. We'll need to modify them for shadow,
1938 * projection, or LOD, so the only case we'd use it as-is is if
1939 * we're doing plain old texturing. Mesa IR optimization should
1940 * handle cleaning up our mess in that case.
1941 */
1942 coord = get_temp(glsl_type::vec4_type);
1943 coord_dst = dst_reg(coord);
1944 emit(ir, OPCODE_MOV, coord_dst, this->result);
1945
1946 if (ir->projector) {
1947 ir->projector->accept(this);
1948 projector = this->result;
1949 }
1950
1951 /* Storage for our result. Ideally for an assignment we'd be using
1952 * the actual storage for the result here, instead.
1953 */
1954 result_src = get_temp(glsl_type::vec4_type);
1955 result_dst = dst_reg(result_src);
1956
1957 switch (ir->op) {
1958 case ir_tex:
1959 case ir_txs:
1960 opcode = OPCODE_TEX;
1961 break;
1962 case ir_txb:
1963 opcode = OPCODE_TXB;
1964 ir->lod_info.bias->accept(this);
1965 lod_info = this->result;
1966 break;
1967 case ir_txf:
1968 /* Pretend to be TXL so the sampler, coordinate, lod are available */
1969 case ir_txl:
1970 opcode = OPCODE_TXL;
1971 ir->lod_info.lod->accept(this);
1972 lod_info = this->result;
1973 break;
1974 case ir_txd:
1975 opcode = OPCODE_TXD;
1976 ir->lod_info.grad.dPdx->accept(this);
1977 dx = this->result;
1978 ir->lod_info.grad.dPdy->accept(this);
1979 dy = this->result;
1980 break;
1981 case ir_txf_ms:
1982 assert(!"Unexpected ir_txf_ms opcode");
1983 break;
1984 case ir_lod:
1985 assert(!"Unexpected ir_lod opcode");
1986 break;
1987 case ir_tg4:
1988 assert(!"Unexpected ir_tg4 opcode");
1989 break;
1990 case ir_query_levels:
1991 assert(!"Unexpected ir_query_levels opcode");
1992 break;
1993 case ir_samples_identical:
1994 unreachable("Unexpected ir_samples_identical opcode");
1995 case ir_texture_samples:
1996 unreachable("Unexpected ir_texture_samples opcode");
1997 }
1998
1999 const glsl_type *sampler_type = ir->sampler->type;
2000
2001 if (ir->projector) {
2002 if (opcode == OPCODE_TEX) {
2003 /* Slot the projector in as the last component of the coord. */
2004 coord_dst.writemask = WRITEMASK_W;
2005 emit(ir, OPCODE_MOV, coord_dst, projector);
2006 coord_dst.writemask = WRITEMASK_XYZW;
2007 opcode = OPCODE_TXP;
2008 } else {
2009 src_reg coord_w = coord;
2010 coord_w.swizzle = SWIZZLE_WWWW;
2011
2012 /* For the other TEX opcodes there's no projective version
2013 * since the last slot is taken up by lod info. Do the
2014 * projective divide now.
2015 */
2016 coord_dst.writemask = WRITEMASK_W;
2017 emit(ir, OPCODE_RCP, coord_dst, projector);
2018
2019 /* In the case where we have to project the coordinates "by hand,"
2020 * the shadow comparator value must also be projected.
2021 */
2022 src_reg tmp_src = coord;
2023 if (ir->shadow_comparator) {
2024 /* Slot the shadow value in as the second to last component of the
2025 * coord.
2026 */
2027 ir->shadow_comparator->accept(this);
2028
2029 tmp_src = get_temp(glsl_type::vec4_type);
2030 dst_reg tmp_dst = dst_reg(tmp_src);
2031
2032 /* Projective division not allowed for array samplers. */
2033 assert(!sampler_type->sampler_array);
2034
2035 tmp_dst.writemask = WRITEMASK_Z;
2036 emit(ir, OPCODE_MOV, tmp_dst, this->result);
2037
2038 tmp_dst.writemask = WRITEMASK_XY;
2039 emit(ir, OPCODE_MOV, tmp_dst, coord);
2040 }
2041
2042 coord_dst.writemask = WRITEMASK_XYZ;
2043 emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);
2044
2045 coord_dst.writemask = WRITEMASK_XYZW;
2046 coord.swizzle = SWIZZLE_XYZW;
2047 }
2048 }
2049
2050 /* If projection is done and the opcode is not OPCODE_TXP, then the shadow
2051 * comparator was put in the correct place (and projected) by the code,
2052 * above, that handles by-hand projection.
2053 */
2054 if (ir->shadow_comparator && (!ir->projector || opcode == OPCODE_TXP)) {
2055 /* Slot the shadow value in as the second to last component of the
2056 * coord.
2057 */
2058 ir->shadow_comparator->accept(this);
2059
2060 /* XXX This will need to be updated for cubemap array samplers. */
2061 if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2062 sampler_type->sampler_array) {
2063 coord_dst.writemask = WRITEMASK_W;
2064 } else {
2065 coord_dst.writemask = WRITEMASK_Z;
2066 }
2067
2068 emit(ir, OPCODE_MOV, coord_dst, this->result);
2069 coord_dst.writemask = WRITEMASK_XYZW;
2070 }
2071
2072 if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
2073 /* Mesa IR stores lod or lod bias in the last channel of the coords. */
2074 coord_dst.writemask = WRITEMASK_W;
2075 emit(ir, OPCODE_MOV, coord_dst, lod_info);
2076 coord_dst.writemask = WRITEMASK_XYZW;
2077 }
2078
2079 if (opcode == OPCODE_TXD)
2080 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2081 else
2082 inst = emit(ir, opcode, result_dst, coord);
2083
2084 if (ir->shadow_comparator)
2085 inst->tex_shadow = GL_TRUE;
2086
2087 inst->sampler = get_sampler_uniform_value(ir->sampler, shader_program,
2088 prog);
2089
2090 switch (sampler_type->sampler_dimensionality) {
2091 case GLSL_SAMPLER_DIM_1D:
2092 inst->tex_target = (sampler_type->sampler_array)
2093 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2094 break;
2095 case GLSL_SAMPLER_DIM_2D:
2096 inst->tex_target = (sampler_type->sampler_array)
2097 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2098 break;
2099 case GLSL_SAMPLER_DIM_3D:
2100 inst->tex_target = TEXTURE_3D_INDEX;
2101 break;
2102 case GLSL_SAMPLER_DIM_CUBE:
2103 inst->tex_target = TEXTURE_CUBE_INDEX;
2104 break;
2105 case GLSL_SAMPLER_DIM_RECT:
2106 inst->tex_target = TEXTURE_RECT_INDEX;
2107 break;
2108 case GLSL_SAMPLER_DIM_BUF:
2109 assert(!"FINISHME: Implement ARB_texture_buffer_object");
2110 break;
2111 case GLSL_SAMPLER_DIM_EXTERNAL:
2112 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2113 break;
2114 default:
2115 assert(!"Should not get here.");
2116 }
2117
2118 this->result = result_src;
2119 }
2120
2121 void
2122 ir_to_mesa_visitor::visit(ir_return *ir)
2123 {
2124 /* Non-void functions should have been inlined. We may still emit RETs
2125 * from main() unless the EmitNoMainReturn option is set.
2126 */
2127 assert(!ir->get_value());
2128 emit(ir, OPCODE_RET);
2129 }
2130
2131 void
2132 ir_to_mesa_visitor::visit(ir_discard *ir)
2133 {
2134 if (!ir->condition)
2135 ir->condition = new(mem_ctx) ir_constant(true);
2136
2137 ir->condition->accept(this);
2138 this->result.negate = ~this->result.negate;
2139 emit(ir, OPCODE_KIL, undef_dst, this->result);
2140 }
2141
2142 void
2143 ir_to_mesa_visitor::visit(ir_demote *ir)
2144 {
2145 assert(!"demote statement unsupported");
2146 }
2147
2148 void
2149 ir_to_mesa_visitor::visit(ir_if *ir)
2150 {
2151 ir_to_mesa_instruction *if_inst;
2152
2153 ir->condition->accept(this);
2154 assert(this->result.file != PROGRAM_UNDEFINED);
2155
2156 if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);
2157
2158 this->instructions.push_tail(if_inst);
2159
2160 visit_exec_list(&ir->then_instructions, this);
2161
2162 if (!ir->else_instructions.is_empty()) {
2163 emit(ir->condition, OPCODE_ELSE);
2164 visit_exec_list(&ir->else_instructions, this);
2165 }
2166
2167 emit(ir->condition, OPCODE_ENDIF);
2168 }
2169
2170 void
2171 ir_to_mesa_visitor::visit(ir_emit_vertex *)
2172 {
2173 assert(!"Geometry shaders not supported.");
2174 }
2175
2176 void
2177 ir_to_mesa_visitor::visit(ir_end_primitive *)
2178 {
2179 assert(!"Geometry shaders not supported.");
2180 }
2181
2182 void
2183 ir_to_mesa_visitor::visit(ir_barrier *)
2184 {
2185 unreachable("GLSL barrier() not supported.");
2186 }
2187
2188 ir_to_mesa_visitor::ir_to_mesa_visitor()
2189 {
2190 result.file = PROGRAM_UNDEFINED;
2191 next_temp = 1;
2192 next_signature_id = 1;
2193 current_function = NULL;
2194 mem_ctx = ralloc_context(NULL);
2195 }
2196
2197 ir_to_mesa_visitor::~ir_to_mesa_visitor()
2198 {
2199 ralloc_free(mem_ctx);
2200 }
2201
2202 static struct prog_src_register
2203 mesa_src_reg_from_ir_src_reg(src_reg reg)
2204 {
2205 struct prog_src_register mesa_reg;
2206
2207 mesa_reg.File = reg.file;
2208 assert(reg.index < (1 << INST_INDEX_BITS));
2209 mesa_reg.Index = reg.index;
2210 mesa_reg.Swizzle = reg.swizzle;
2211 mesa_reg.RelAddr = reg.reladdr != NULL;
2212 mesa_reg.Negate = reg.negate;
2213
2214 return mesa_reg;
2215 }
2216
2217 static void
2218 set_branchtargets(ir_to_mesa_visitor *v,
2219 struct prog_instruction *mesa_instructions,
2220 int num_instructions)
2221 {
2222 int if_count = 0, loop_count = 0;
2223 int *if_stack, *loop_stack;
2224 int if_stack_pos = 0, loop_stack_pos = 0;
2225 int i, j;
2226
2227 for (i = 0; i < num_instructions; i++) {
2228 switch (mesa_instructions[i].Opcode) {
2229 case OPCODE_IF:
2230 if_count++;
2231 break;
2232 case OPCODE_BGNLOOP:
2233 loop_count++;
2234 break;
2235 case OPCODE_BRK:
2236 case OPCODE_CONT:
2237 mesa_instructions[i].BranchTarget = -1;
2238 break;
2239 default:
2240 break;
2241 }
2242 }
2243
2244 if_stack = rzalloc_array(v->mem_ctx, int, if_count);
2245 loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);
2246
2247 for (i = 0; i < num_instructions; i++) {
2248 switch (mesa_instructions[i].Opcode) {
2249 case OPCODE_IF:
2250 if_stack[if_stack_pos] = i;
2251 if_stack_pos++;
2252 break;
2253 case OPCODE_ELSE:
2254 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2255 if_stack[if_stack_pos - 1] = i;
2256 break;
2257 case OPCODE_ENDIF:
2258 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2259 if_stack_pos--;
2260 break;
2261 case OPCODE_BGNLOOP:
2262 loop_stack[loop_stack_pos] = i;
2263 loop_stack_pos++;
2264 break;
2265 case OPCODE_ENDLOOP:
2266 loop_stack_pos--;
2267 /* Rewrite any breaks/conts at this nesting level (haven't
2268 * already had a BranchTarget assigned) to point to the end
2269 * of the loop.
2270 */
2271 for (j = loop_stack[loop_stack_pos]; j < i; j++) {
2272 if (mesa_instructions[j].Opcode == OPCODE_BRK ||
2273 mesa_instructions[j].Opcode == OPCODE_CONT) {
2274 if (mesa_instructions[j].BranchTarget == -1) {
2275 mesa_instructions[j].BranchTarget = i;
2276 }
2277 }
2278 }
2279 /* The loop ends point at each other. */
2280 mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
2281 mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
2282 break;
2283 case OPCODE_CAL:
2284 foreach_in_list(function_entry, entry, &v->function_signatures) {
2285 if (entry->sig_id == mesa_instructions[i].BranchTarget) {
2286 mesa_instructions[i].BranchTarget = entry->inst;
2287 break;
2288 }
2289 }
2290 break;
2291 default:
2292 break;
2293 }
2294 }
2295 }
2296
2297 static void
2298 print_program(struct prog_instruction *mesa_instructions,
2299 ir_instruction **mesa_instruction_annotation,
2300 int num_instructions)
2301 {
2302 ir_instruction *last_ir = NULL;
2303 int i;
2304 int indent = 0;
2305
2306 for (i = 0; i < num_instructions; i++) {
2307 struct prog_instruction *mesa_inst = mesa_instructions + i;
2308 ir_instruction *ir = mesa_instruction_annotation[i];
2309
2310 fprintf(stdout, "%3d: ", i);
2311
2312 if (last_ir != ir && ir) {
2313 int j;
2314
2315 for (j = 0; j < indent; j++) {
2316 fprintf(stdout, " ");
2317 }
2318 ir->print();
2319 printf("\n");
2320 last_ir = ir;
2321
2322 fprintf(stdout, " "); /* line number spacing. */
2323 }
2324
2325 indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
2326 PROG_PRINT_DEBUG, NULL);
2327 }
2328 }
2329
2330 namespace {
2331
2332 class add_uniform_to_shader : public program_resource_visitor {
2333 public:
2334 add_uniform_to_shader(struct gl_context *ctx,
2335 struct gl_shader_program *shader_program,
2336 struct gl_program_parameter_list *params)
2337 : ctx(ctx), shader_program(shader_program), params(params), idx(-1)
2338 {
2339 /* empty */
2340 }
2341
2342 void process(ir_variable *var)
2343 {
2344 this->idx = -1;
2345 this->var = var;
2346 this->program_resource_visitor::process(var,
2347 ctx->Const.UseSTD430AsDefaultPacking);
2348 var->data.param_index = this->idx;
2349 }
2350
2351 private:
2352 virtual void visit_field(const glsl_type *type, const char *name,
2353 bool row_major, const glsl_type *record_type,
2354 const enum glsl_interface_packing packing,
2355 bool last_field);
2356
2357 struct gl_context *ctx;
2358 struct gl_shader_program *shader_program;
2359 struct gl_program_parameter_list *params;
2360 int idx;
2361 ir_variable *var;
2362 };
2363
2364 } /* anonymous namespace */
2365
2366 void
2367 add_uniform_to_shader::visit_field(const glsl_type *type, const char *name,
2368 bool /* row_major */,
2369 const glsl_type * /* record_type */,
2370 const enum glsl_interface_packing,
2371 bool /* last_field */)
2372 {
2373 /* opaque types don't use storage in the param list unless they are
2374 * bindless samplers or images.
2375 */
2376 if (type->contains_opaque() && !var->data.bindless)
2377 return;
2378
2379 /* Add the uniform to the param list */
2380 assert(_mesa_lookup_parameter_index(params, name) < 0);
2381 int index = _mesa_lookup_parameter_index(params, name);
2382
2383 unsigned num_params = type->arrays_of_arrays_size();
2384 num_params = MAX2(num_params, 1);
2385 num_params *= type->without_array()->matrix_columns;
2386
2387 bool is_dual_slot = type->without_array()->is_dual_slot();
2388 if (is_dual_slot)
2389 num_params *= 2;
2390
2391 _mesa_reserve_parameter_storage(params, num_params);
2392 index = params->NumParameters;
2393
2394 if (ctx->Const.PackedDriverUniformStorage) {
2395 for (unsigned i = 0; i < num_params; i++) {
2396 unsigned dmul = type->without_array()->is_64bit() ? 2 : 1;
2397 unsigned comps = type->without_array()->vector_elements * dmul;
2398 if (is_dual_slot) {
2399 if (i & 0x1)
2400 comps -= 4;
2401 else
2402 comps = 4;
2403 }
2404
2405 _mesa_add_parameter(params, PROGRAM_UNIFORM, name, comps,
2406 type->gl_type, NULL, NULL, false);
2407 }
2408 } else {
2409 for (unsigned i = 0; i < num_params; i++) {
2410 _mesa_add_parameter(params, PROGRAM_UNIFORM, name, 4,
2411 type->gl_type, NULL, NULL, true);
2412 }
2413 }
2414
2415 /* The first part of the uniform that's processed determines the base
2416 * location of the whole uniform (for structures).
2417 */
2418 if (this->idx < 0)
2419 this->idx = index;
2420
2421 /* Each Parameter will hold the index to the backing uniform storage.
2422 * This avoids relying on names to match parameters and uniform
2423 * storages later when associating uniform storage.
2424 */
2425 unsigned location = -1;
2426 ASSERTED const bool found =
2427 shader_program->UniformHash->get(location, params->Parameters[index].Name);
2428 assert(found);
2429
2430 for (unsigned i = 0; i < num_params; i++) {
2431 struct gl_program_parameter *param = &params->Parameters[index + i];
2432 param->UniformStorageIndex = location;
2433 param->MainUniformStorageIndex = params->Parameters[this->idx].UniformStorageIndex;
2434 }
2435 }
2436
2437 /**
2438 * Generate the program parameters list for the user uniforms in a shader
2439 *
2440 * \param shader_program Linked shader program. This is only used to
2441 * emit possible link errors to the info log.
2442 * \param sh Shader whose uniforms are to be processed.
2443 * \param params Parameter list to be filled in.
2444 */
2445 void
2446 _mesa_generate_parameters_list_for_uniforms(struct gl_context *ctx,
2447 struct gl_shader_program
2448 *shader_program,
2449 struct gl_linked_shader *sh,
2450 struct gl_program_parameter_list
2451 *params)
2452 {
2453 add_uniform_to_shader add(ctx, shader_program, params);
2454
2455 foreach_in_list(ir_instruction, node, sh->ir) {
2456 ir_variable *var = node->as_variable();
2457
2458 if ((var == NULL) || (var->data.mode != ir_var_uniform)
2459 || var->is_in_buffer_block() || (strncmp(var->name, "gl_", 3) == 0))
2460 continue;
2461
2462 add.process(var);
2463 }
2464 }
2465
2466 void
2467 _mesa_associate_uniform_storage(struct gl_context *ctx,
2468 struct gl_shader_program *shader_program,
2469 struct gl_program *prog)
2470 {
2471 struct gl_program_parameter_list *params = prog->Parameters;
2472 gl_shader_stage shader_type = prog->info.stage;
2473
2474 /* After adding each uniform to the parameter list, connect the storage for
2475 * the parameter with the tracking structure used by the API for the
2476 * uniform.
2477 */
2478 unsigned last_location = unsigned(~0);
2479 for (unsigned i = 0; i < params->NumParameters; i++) {
2480 if (params->Parameters[i].Type != PROGRAM_UNIFORM)
2481 continue;
2482
2483 unsigned location = params->Parameters[i].UniformStorageIndex;
2484
2485 struct gl_uniform_storage *storage =
2486 &shader_program->data->UniformStorage[location];
2487
2488 /* Do not associate any uniform storage to built-in uniforms */
2489 if (storage->builtin)
2490 continue;
2491
2492 if (location != last_location) {
2493 enum gl_uniform_driver_format format = uniform_native;
2494 unsigned columns = 0;
2495
2496 int dmul;
2497 if (ctx->Const.PackedDriverUniformStorage && !prog->is_arb_asm) {
2498 dmul = storage->type->vector_elements * sizeof(float);
2499 } else {
2500 dmul = 4 * sizeof(float);
2501 }
2502
2503 switch (storage->type->base_type) {
2504 case GLSL_TYPE_UINT64:
2505 if (storage->type->vector_elements > 2)
2506 dmul *= 2;
2507 /* fallthrough */
2508 case GLSL_TYPE_UINT:
2509 case GLSL_TYPE_UINT16:
2510 case GLSL_TYPE_UINT8:
2511 assert(ctx->Const.NativeIntegers);
2512 format = uniform_native;
2513 columns = 1;
2514 break;
2515 case GLSL_TYPE_INT64:
2516 if (storage->type->vector_elements > 2)
2517 dmul *= 2;
2518 /* fallthrough */
2519 case GLSL_TYPE_INT:
2520 case GLSL_TYPE_INT16:
2521 case GLSL_TYPE_INT8:
2522 format =
2523 (ctx->Const.NativeIntegers) ? uniform_native : uniform_int_float;
2524 columns = 1;
2525 break;
2526 case GLSL_TYPE_DOUBLE:
2527 if (storage->type->vector_elements > 2)
2528 dmul *= 2;
2529 /* fallthrough */
2530 case GLSL_TYPE_FLOAT:
2531 case GLSL_TYPE_FLOAT16:
2532 format = uniform_native;
2533 columns = storage->type->matrix_columns;
2534 break;
2535 case GLSL_TYPE_BOOL:
2536 format = uniform_native;
2537 columns = 1;
2538 break;
2539 case GLSL_TYPE_SAMPLER:
2540 case GLSL_TYPE_IMAGE:
2541 case GLSL_TYPE_SUBROUTINE:
2542 format = uniform_native;
2543 columns = 1;
2544 break;
2545 case GLSL_TYPE_ATOMIC_UINT:
2546 case GLSL_TYPE_ARRAY:
2547 case GLSL_TYPE_VOID:
2548 case GLSL_TYPE_STRUCT:
2549 case GLSL_TYPE_ERROR:
2550 case GLSL_TYPE_INTERFACE:
2551 case GLSL_TYPE_FUNCTION:
2552 assert(!"Should not get here.");
2553 break;
2554 }
2555
2556 unsigned pvo = params->ParameterValueOffset[i];
2557 _mesa_uniform_attach_driver_storage(storage, dmul * columns, dmul,
2558 format,
2559 &params->ParameterValues[pvo]);
2560
2561 /* When a bindless sampler/image is bound to a texture/image unit, we
2562 * have to overwrite the constant value by the resident handle
2563 * directly in the constant buffer before the next draw. One solution
2564 * is to keep track a pointer to the base of the data.
2565 */
2566 if (storage->is_bindless && (prog->sh.NumBindlessSamplers ||
2567 prog->sh.NumBindlessImages)) {
2568 unsigned array_elements = MAX2(1, storage->array_elements);
2569
2570 for (unsigned j = 0; j < array_elements; ++j) {
2571 unsigned unit = storage->opaque[shader_type].index + j;
2572
2573 if (storage->type->without_array()->is_sampler()) {
2574 assert(unit >= 0 && unit < prog->sh.NumBindlessSamplers);
2575 prog->sh.BindlessSamplers[unit].data =
2576 &params->ParameterValues[pvo] + 4 * j;
2577 } else if (storage->type->without_array()->is_image()) {
2578 assert(unit >= 0 && unit < prog->sh.NumBindlessImages);
2579 prog->sh.BindlessImages[unit].data =
2580 &params->ParameterValues[pvo] + 4 * j;
2581 }
2582 }
2583 }
2584
2585 /* After attaching the driver's storage to the uniform, propagate any
2586 * data from the linker's backing store. This will cause values from
2587 * initializers in the source code to be copied over.
2588 */
2589 unsigned array_elements = MAX2(1, storage->array_elements);
2590 if (ctx->Const.PackedDriverUniformStorage && !prog->is_arb_asm &&
2591 (storage->is_bindless || !storage->type->contains_opaque())) {
2592 const int dmul = storage->type->is_64bit() ? 2 : 1;
2593 const unsigned components =
2594 storage->type->vector_elements *
2595 storage->type->matrix_columns;
2596
2597 for (unsigned s = 0; s < storage->num_driver_storage; s++) {
2598 gl_constant_value *uni_storage = (gl_constant_value *)
2599 storage->driver_storage[s].data;
2600 memcpy(uni_storage, storage->storage,
2601 sizeof(storage->storage[0]) * components *
2602 array_elements * dmul);
2603 }
2604 } else {
2605 _mesa_propagate_uniforms_to_driver_storage(storage, 0,
2606 array_elements);
2607 }
2608
2609 last_location = location;
2610 }
2611 }
2612 }
2613
2614 /*
2615 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
2616 * channels for copy propagation and updates following instructions to
2617 * use the original versions.
2618 *
2619 * The ir_to_mesa_visitor lazily produces code assuming that this pass
2620 * will occur. As an example, a TXP production before this pass:
2621 *
2622 * 0: MOV TEMP[1], INPUT[4].xyyy;
2623 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2624 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
2625 *
2626 * and after:
2627 *
2628 * 0: MOV TEMP[1], INPUT[4].xyyy;
2629 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2630 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
2631 *
2632 * which allows for dead code elimination on TEMP[1]'s writes.
2633 */
2634 void
2635 ir_to_mesa_visitor::copy_propagate(void)
2636 {
2637 ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
2638 ir_to_mesa_instruction *,
2639 this->next_temp * 4);
2640 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
2641 int level = 0;
2642
2643 foreach_in_list(ir_to_mesa_instruction, inst, &this->instructions) {
2644 assert(inst->dst.file != PROGRAM_TEMPORARY
2645 || inst->dst.index < this->next_temp);
2646
2647 /* First, do any copy propagation possible into the src regs. */
2648 for (int r = 0; r < 3; r++) {
2649 ir_to_mesa_instruction *first = NULL;
2650 bool good = true;
2651 int acp_base = inst->src[r].index * 4;
2652
2653 if (inst->src[r].file != PROGRAM_TEMPORARY ||
2654 inst->src[r].reladdr)
2655 continue;
2656
2657 /* See if we can find entries in the ACP consisting of MOVs
2658 * from the same src register for all the swizzled channels
2659 * of this src register reference.
2660 */
2661 for (int i = 0; i < 4; i++) {
2662 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2663 ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];
2664
2665 if (!copy_chan) {
2666 good = false;
2667 break;
2668 }
2669
2670 assert(acp_level[acp_base + src_chan] <= level);
2671
2672 if (!first) {
2673 first = copy_chan;
2674 } else {
2675 if (first->src[0].file != copy_chan->src[0].file ||
2676 first->src[0].index != copy_chan->src[0].index) {
2677 good = false;
2678 break;
2679 }
2680 }
2681 }
2682
2683 if (good) {
2684 /* We've now validated that we can copy-propagate to
2685 * replace this src register reference. Do it.
2686 */
2687 inst->src[r].file = first->src[0].file;
2688 inst->src[r].index = first->src[0].index;
2689
2690 int swizzle = 0;
2691 for (int i = 0; i < 4; i++) {
2692 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2693 ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
2694 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
2695 (3 * i));
2696 }
2697 inst->src[r].swizzle = swizzle;
2698 }
2699 }
2700
2701 switch (inst->op) {
2702 case OPCODE_BGNLOOP:
2703 case OPCODE_ENDLOOP:
2704 /* End of a basic block, clear the ACP entirely. */
2705 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2706 break;
2707
2708 case OPCODE_IF:
2709 ++level;
2710 break;
2711
2712 case OPCODE_ENDIF:
2713 case OPCODE_ELSE:
2714 /* Clear all channels written inside the block from the ACP, but
2715 * leaving those that were not touched.
2716 */
2717 for (int r = 0; r < this->next_temp; r++) {
2718 for (int c = 0; c < 4; c++) {
2719 if (!acp[4 * r + c])
2720 continue;
2721
2722 if (acp_level[4 * r + c] >= level)
2723 acp[4 * r + c] = NULL;
2724 }
2725 }
2726 if (inst->op == OPCODE_ENDIF)
2727 --level;
2728 break;
2729
2730 default:
2731 /* Continuing the block, clear any written channels from
2732 * the ACP.
2733 */
2734 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
2735 /* Any temporary might be written, so no copy propagation
2736 * across this instruction.
2737 */
2738 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2739 } else if (inst->dst.file == PROGRAM_OUTPUT &&
2740 inst->dst.reladdr) {
2741 /* Any output might be written, so no copy propagation
2742 * from outputs across this instruction.
2743 */
2744 for (int r = 0; r < this->next_temp; r++) {
2745 for (int c = 0; c < 4; c++) {
2746 if (!acp[4 * r + c])
2747 continue;
2748
2749 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
2750 acp[4 * r + c] = NULL;
2751 }
2752 }
2753 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
2754 inst->dst.file == PROGRAM_OUTPUT) {
2755 /* Clear where it's used as dst. */
2756 if (inst->dst.file == PROGRAM_TEMPORARY) {
2757 for (int c = 0; c < 4; c++) {
2758 if (inst->dst.writemask & (1 << c)) {
2759 acp[4 * inst->dst.index + c] = NULL;
2760 }
2761 }
2762 }
2763
2764 /* Clear where it's used as src. */
2765 for (int r = 0; r < this->next_temp; r++) {
2766 for (int c = 0; c < 4; c++) {
2767 if (!acp[4 * r + c])
2768 continue;
2769
2770 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
2771
2772 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
2773 acp[4 * r + c]->src[0].index == inst->dst.index &&
2774 inst->dst.writemask & (1 << src_chan))
2775 {
2776 acp[4 * r + c] = NULL;
2777 }
2778 }
2779 }
2780 }
2781 break;
2782 }
2783
2784 /* If this is a copy, add it to the ACP. */
2785 if (inst->op == OPCODE_MOV &&
2786 inst->dst.file == PROGRAM_TEMPORARY &&
2787 !(inst->dst.file == inst->src[0].file &&
2788 inst->dst.index == inst->src[0].index) &&
2789 !inst->dst.reladdr &&
2790 !inst->saturate &&
2791 !inst->src[0].reladdr &&
2792 !inst->src[0].negate) {
2793 for (int i = 0; i < 4; i++) {
2794 if (inst->dst.writemask & (1 << i)) {
2795 acp[4 * inst->dst.index + i] = inst;
2796 acp_level[4 * inst->dst.index + i] = level;
2797 }
2798 }
2799 }
2800 }
2801
2802 ralloc_free(acp_level);
2803 ralloc_free(acp);
2804 }
2805
2806
2807 /**
2808 * Convert a shader's GLSL IR into a Mesa gl_program.
2809 */
2810 static struct gl_program *
2811 get_mesa_program(struct gl_context *ctx,
2812 struct gl_shader_program *shader_program,
2813 struct gl_linked_shader *shader)
2814 {
2815 ir_to_mesa_visitor v;
2816 struct prog_instruction *mesa_instructions, *mesa_inst;
2817 ir_instruction **mesa_instruction_annotation;
2818 int i;
2819 struct gl_program *prog;
2820 GLenum target = _mesa_shader_stage_to_program(shader->Stage);
2821 const char *target_string = _mesa_shader_stage_to_string(shader->Stage);
2822 struct gl_shader_compiler_options *options =
2823 &ctx->Const.ShaderCompilerOptions[shader->Stage];
2824
2825 validate_ir_tree(shader->ir);
2826
2827 prog = shader->Program;
2828 prog->Parameters = _mesa_new_parameter_list();
2829 v.ctx = ctx;
2830 v.prog = prog;
2831 v.shader_program = shader_program;
2832 v.options = options;
2833
2834 _mesa_generate_parameters_list_for_uniforms(ctx, shader_program, shader,
2835 prog->Parameters);
2836
2837 /* Emit Mesa IR for main(). */
2838 visit_exec_list(shader->ir, &v);
2839 v.emit(NULL, OPCODE_END);
2840
2841 prog->arb.NumTemporaries = v.next_temp;
2842
2843 unsigned num_instructions = v.instructions.length();
2844
2845 mesa_instructions = rzalloc_array(prog, struct prog_instruction,
2846 num_instructions);
2847 mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
2848 num_instructions);
2849
2850 v.copy_propagate();
2851
2852 /* Convert ir_mesa_instructions into prog_instructions.
2853 */
2854 mesa_inst = mesa_instructions;
2855 i = 0;
2856 foreach_in_list(const ir_to_mesa_instruction, inst, &v.instructions) {
2857 mesa_inst->Opcode = inst->op;
2858 if (inst->saturate)
2859 mesa_inst->Saturate = GL_TRUE;
2860 mesa_inst->DstReg.File = inst->dst.file;
2861 mesa_inst->DstReg.Index = inst->dst.index;
2862 mesa_inst->DstReg.WriteMask = inst->dst.writemask;
2863 mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
2864 mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
2865 mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
2866 mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
2867 mesa_inst->TexSrcUnit = inst->sampler;
2868 mesa_inst->TexSrcTarget = inst->tex_target;
2869 mesa_inst->TexShadow = inst->tex_shadow;
2870 mesa_instruction_annotation[i] = inst->ir;
2871
2872 /* Set IndirectRegisterFiles. */
2873 if (mesa_inst->DstReg.RelAddr)
2874 prog->arb.IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;
2875
2876 /* Update program's bitmask of indirectly accessed register files */
2877 for (unsigned src = 0; src < 3; src++)
2878 if (mesa_inst->SrcReg[src].RelAddr)
2879 prog->arb.IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;
2880
2881 switch (mesa_inst->Opcode) {
2882 case OPCODE_IF:
2883 if (options->MaxIfDepth == 0) {
2884 linker_warning(shader_program,
2885 "Couldn't flatten if-statement. "
2886 "This will likely result in software "
2887 "rasterization.\n");
2888 }
2889 break;
2890 case OPCODE_BGNLOOP:
2891 if (options->EmitNoLoops) {
2892 linker_warning(shader_program,
2893 "Couldn't unroll loop. "
2894 "This will likely result in software "
2895 "rasterization.\n");
2896 }
2897 break;
2898 case OPCODE_CONT:
2899 if (options->EmitNoCont) {
2900 linker_warning(shader_program,
2901 "Couldn't lower continue-statement. "
2902 "This will likely result in software "
2903 "rasterization.\n");
2904 }
2905 break;
2906 case OPCODE_ARL:
2907 prog->arb.NumAddressRegs = 1;
2908 break;
2909 default:
2910 break;
2911 }
2912
2913 mesa_inst++;
2914 i++;
2915
2916 if (!shader_program->data->LinkStatus)
2917 break;
2918 }
2919
2920 if (!shader_program->data->LinkStatus) {
2921 goto fail_exit;
2922 }
2923
2924 set_branchtargets(&v, mesa_instructions, num_instructions);
2925
2926 if (ctx->_Shader->Flags & GLSL_DUMP) {
2927 fprintf(stderr, "\n");
2928 fprintf(stderr, "GLSL IR for linked %s program %d:\n", target_string,
2929 shader_program->Name);
2930 _mesa_print_ir(stderr, shader->ir, NULL);
2931 fprintf(stderr, "\n");
2932 fprintf(stderr, "\n");
2933 fprintf(stderr, "Mesa IR for linked %s program %d:\n", target_string,
2934 shader_program->Name);
2935 print_program(mesa_instructions, mesa_instruction_annotation,
2936 num_instructions);
2937 fflush(stderr);
2938 }
2939
2940 prog->arb.Instructions = mesa_instructions;
2941 prog->arb.NumInstructions = num_instructions;
2942
2943 /* Setting this to NULL prevents a possible double free in the fail_exit
2944 * path (far below).
2945 */
2946 mesa_instructions = NULL;
2947
2948 do_set_program_inouts(shader->ir, prog, shader->Stage);
2949
2950 prog->ShadowSamplers = shader->shadow_samplers;
2951 prog->ExternalSamplersUsed = gl_external_samplers(prog);
2952 _mesa_update_shader_textures_used(shader_program, prog);
2953
2954 /* Set the gl_FragDepth layout. */
2955 if (target == GL_FRAGMENT_PROGRAM_ARB) {
2956 prog->info.fs.depth_layout = shader_program->FragDepthLayout;
2957 }
2958
2959 _mesa_optimize_program(prog, prog);
2960
2961 /* This has to be done last. Any operation that can cause
2962 * prog->ParameterValues to get reallocated (e.g., anything that adds a
2963 * program constant) has to happen before creating this linkage.
2964 */
2965 _mesa_associate_uniform_storage(ctx, shader_program, prog);
2966 if (!shader_program->data->LinkStatus) {
2967 goto fail_exit;
2968 }
2969
2970 return prog;
2971
2972 fail_exit:
2973 ralloc_free(mesa_instructions);
2974 _mesa_reference_program(ctx, &shader->Program, NULL);
2975 return NULL;
2976 }
2977
2978 extern "C" {
2979
2980 /**
2981 * Link a shader.
2982 * Called via ctx->Driver.LinkShader()
2983 * This actually involves converting GLSL IR into Mesa gl_programs with
2984 * code lowering and other optimizations.
2985 */
2986 GLboolean
2987 _mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
2988 {
2989 assert(prog->data->LinkStatus);
2990
2991 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2992 if (prog->_LinkedShaders[i] == NULL)
2993 continue;
2994
2995 bool progress;
2996 exec_list *ir = prog->_LinkedShaders[i]->ir;
2997 const struct gl_shader_compiler_options *options =
2998 &ctx->Const.ShaderCompilerOptions[prog->_LinkedShaders[i]->Stage];
2999
3000 do {
3001 progress = false;
3002
3003 /* Lowering */
3004 do_mat_op_to_vec(ir);
3005 lower_instructions(ir, (MOD_TO_FLOOR | DIV_TO_MUL_RCP | EXP_TO_EXP2
3006 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
3007 | MUL64_TO_MUL_AND_MUL_HIGH
3008 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
3009
3010 progress = do_common_optimization(ir, true, true,
3011 options, ctx->Const.NativeIntegers)
3012 || progress;
3013
3014 progress = lower_quadop_vector(ir, true) || progress;
3015
3016 if (options->MaxIfDepth == 0)
3017 progress = lower_discard(ir) || progress;
3018
3019 progress = lower_if_to_cond_assign((gl_shader_stage)i, ir,
3020 options->MaxIfDepth) || progress;
3021
3022 progress = lower_noise(ir) || progress;
3023
3024 /* If there are forms of indirect addressing that the driver
3025 * cannot handle, perform the lowering pass.
3026 */
3027 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
3028 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
3029 progress =
3030 lower_variable_index_to_cond_assign(prog->_LinkedShaders[i]->Stage, ir,
3031 options->EmitNoIndirectInput,
3032 options->EmitNoIndirectOutput,
3033 options->EmitNoIndirectTemp,
3034 options->EmitNoIndirectUniform)
3035 || progress;
3036
3037 progress = do_vec_index_to_cond_assign(ir) || progress;
3038 progress = lower_vector_insert(ir, true) || progress;
3039 } while (progress);
3040
3041 validate_ir_tree(ir);
3042 }
3043
3044 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3045 struct gl_program *linked_prog;
3046
3047 if (prog->_LinkedShaders[i] == NULL)
3048 continue;
3049
3050 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
3051
3052 if (linked_prog) {
3053 _mesa_copy_linked_program_data(prog, prog->_LinkedShaders[i]);
3054
3055 if (!ctx->Driver.ProgramStringNotify(ctx,
3056 _mesa_shader_stage_to_program(i),
3057 linked_prog)) {
3058 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
3059 NULL);
3060 return GL_FALSE;
3061 }
3062 }
3063 }
3064
3065 build_program_resource_list(ctx, prog, false);
3066 return prog->data->LinkStatus;
3067 }
3068
3069 /**
3070 * Link a GLSL shader program. Called via glLinkProgram().
3071 */
3072 void
3073 _mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3074 {
3075 unsigned int i;
3076 bool spirv = false;
3077
3078 _mesa_clear_shader_program_data(ctx, prog);
3079
3080 prog->data = _mesa_create_shader_program_data();
3081
3082 prog->data->LinkStatus = LINKING_SUCCESS;
3083
3084 for (i = 0; i < prog->NumShaders; i++) {
3085 if (!prog->Shaders[i]->CompileStatus) {
3086 linker_error(prog, "linking with uncompiled/unspecialized shader");
3087 }
3088
3089 if (!i) {
3090 spirv = (prog->Shaders[i]->spirv_data != NULL);
3091 } else if (spirv && !prog->Shaders[i]->spirv_data) {
3092 /* The GL_ARB_gl_spirv spec adds a new bullet point to the list of
3093 * reasons LinkProgram can fail:
3094 *
3095 * "All the shader objects attached to <program> do not have the
3096 * same value for the SPIR_V_BINARY_ARB state."
3097 */
3098 linker_error(prog,
3099 "not all attached shaders have the same "
3100 "SPIR_V_BINARY_ARB state");
3101 }
3102 }
3103 prog->data->spirv = spirv;
3104
3105 if (prog->data->LinkStatus) {
3106 if (!spirv)
3107 link_shaders(ctx, prog);
3108 else
3109 _mesa_spirv_link_shaders(ctx, prog);
3110 }
3111
3112 /* If LinkStatus is LINKING_SUCCESS, then reset sampler validated to true.
3113 * Validation happens via the LinkShader call below. If LinkStatus is
3114 * LINKING_SKIPPED, then SamplersValidated will have been restored from the
3115 * shader cache.
3116 */
3117 if (prog->data->LinkStatus == LINKING_SUCCESS) {
3118 prog->SamplersValidated = GL_TRUE;
3119 }
3120
3121 if (prog->data->LinkStatus && !ctx->Driver.LinkShader(ctx, prog)) {
3122 prog->data->LinkStatus = LINKING_FAILURE;
3123 }
3124
3125 if (prog->data->LinkStatus != LINKING_FAILURE)
3126 _mesa_create_program_resource_hash(prog);
3127
3128 /* Return early if we are loading the shader from on-disk cache */
3129 if (prog->data->LinkStatus == LINKING_SKIPPED)
3130 return;
3131
3132 if (ctx->_Shader->Flags & GLSL_DUMP) {
3133 if (!prog->data->LinkStatus) {
3134 fprintf(stderr, "GLSL shader program %d failed to link\n", prog->Name);
3135 }
3136
3137 if (prog->data->InfoLog && prog->data->InfoLog[0] != 0) {
3138 fprintf(stderr, "GLSL shader program %d info log:\n", prog->Name);
3139 fprintf(stderr, "%s\n", prog->data->InfoLog);
3140 }
3141 }
3142
3143 #ifdef ENABLE_SHADER_CACHE
3144 if (prog->data->LinkStatus)
3145 shader_cache_write_program_metadata(ctx, prog);
3146 #endif
3147 }
3148
3149 } /* extern "C" */