2f87cfd65c441776277e211a404b02792c003c8d
[mesa.git] / src / mesa / program / ir_to_mesa.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
24 */
25
26 /**
27 * \file ir_to_mesa.cpp
28 *
29 * Translate GLSL IR to Mesa's gl_program representation.
30 */
31
32 #include <stdio.h>
33 #include "main/compiler.h"
34 #include "ir.h"
35 #include "ir_visitor.h"
36 #include "ir_expression_flattening.h"
37 #include "ir_uniform.h"
38 #include "glsl_types.h"
39 #include "glsl_parser_extras.h"
40 #include "../glsl/program.h"
41 #include "ir_optimization.h"
42 #include "ast.h"
43 #include "linker.h"
44
45 #include "main/mtypes.h"
46 #include "main/shaderobj.h"
47 #include "main/uniforms.h"
48 #include "program/hash_table.h"
49
50 extern "C" {
51 #include "main/shaderapi.h"
52 #include "program/prog_instruction.h"
53 #include "program/prog_optimize.h"
54 #include "program/prog_print.h"
55 #include "program/program.h"
56 #include "program/prog_parameter.h"
57 #include "program/sampler.h"
58 }
59
60 static int swizzle_for_size(int size);
61
62 namespace {
63
64 class src_reg;
65 class dst_reg;
66
67 /**
68 * This struct is a corresponding struct to Mesa prog_src_register, with
69 * wider fields.
70 */
71 class src_reg {
72 public:
73 src_reg(gl_register_file file, int index, const glsl_type *type)
74 {
75 this->file = file;
76 this->index = index;
77 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
78 this->swizzle = swizzle_for_size(type->vector_elements);
79 else
80 this->swizzle = SWIZZLE_XYZW;
81 this->negate = 0;
82 this->reladdr = NULL;
83 }
84
85 src_reg()
86 {
87 this->file = PROGRAM_UNDEFINED;
88 this->index = 0;
89 this->swizzle = 0;
90 this->negate = 0;
91 this->reladdr = NULL;
92 }
93
94 explicit src_reg(dst_reg reg);
95
96 gl_register_file file; /**< PROGRAM_* from Mesa */
97 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
98 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
99 int negate; /**< NEGATE_XYZW mask from mesa */
100 /** Register index should be offset by the integer in this reg. */
101 src_reg *reladdr;
102 };
103
104 class dst_reg {
105 public:
106 dst_reg(gl_register_file file, int writemask)
107 {
108 this->file = file;
109 this->index = 0;
110 this->writemask = writemask;
111 this->cond_mask = COND_TR;
112 this->reladdr = NULL;
113 }
114
115 dst_reg()
116 {
117 this->file = PROGRAM_UNDEFINED;
118 this->index = 0;
119 this->writemask = 0;
120 this->cond_mask = COND_TR;
121 this->reladdr = NULL;
122 }
123
124 explicit dst_reg(src_reg reg);
125
126 gl_register_file file; /**< PROGRAM_* from Mesa */
127 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
128 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
129 GLuint cond_mask:4;
130 /** Register index should be offset by the integer in this reg. */
131 src_reg *reladdr;
132 };
133
134 } /* anonymous namespace */
135
136 src_reg::src_reg(dst_reg reg)
137 {
138 this->file = reg.file;
139 this->index = reg.index;
140 this->swizzle = SWIZZLE_XYZW;
141 this->negate = 0;
142 this->reladdr = reg.reladdr;
143 }
144
145 dst_reg::dst_reg(src_reg reg)
146 {
147 this->file = reg.file;
148 this->index = reg.index;
149 this->writemask = WRITEMASK_XYZW;
150 this->cond_mask = COND_TR;
151 this->reladdr = reg.reladdr;
152 }
153
154 namespace {
155
156 class ir_to_mesa_instruction : public exec_node {
157 public:
158 DECLARE_RALLOC_CXX_OPERATORS(ir_to_mesa_instruction)
159
160 enum prog_opcode op;
161 dst_reg dst;
162 src_reg src[3];
163 /** Pointer to the ir source this tree came from for debugging */
164 ir_instruction *ir;
165 GLboolean cond_update;
166 bool saturate;
167 int sampler; /**< sampler index */
168 int tex_target; /**< One of TEXTURE_*_INDEX */
169 GLboolean tex_shadow;
170 };
171
172 class variable_storage : public exec_node {
173 public:
174 variable_storage(ir_variable *var, gl_register_file file, int index)
175 : file(file), index(index), var(var)
176 {
177 /* empty */
178 }
179
180 gl_register_file file;
181 int index;
182 ir_variable *var; /* variable that maps to this, if any */
183 };
184
185 class function_entry : public exec_node {
186 public:
187 ir_function_signature *sig;
188
189 /**
190 * identifier of this function signature used by the program.
191 *
192 * At the point that Mesa instructions for function calls are
193 * generated, we don't know the address of the first instruction of
194 * the function body. So we make the BranchTarget that is called a
195 * small integer and rewrite them during set_branchtargets().
196 */
197 int sig_id;
198
199 /**
200 * Pointer to first instruction of the function body.
201 *
202 * Set during function body emits after main() is processed.
203 */
204 ir_to_mesa_instruction *bgn_inst;
205
206 /**
207 * Index of the first instruction of the function body in actual
208 * Mesa IR.
209 *
210 * Set after convertion from ir_to_mesa_instruction to prog_instruction.
211 */
212 int inst;
213
214 /** Storage for the return value. */
215 src_reg return_reg;
216 };
217
218 class ir_to_mesa_visitor : public ir_visitor {
219 public:
220 ir_to_mesa_visitor();
221 ~ir_to_mesa_visitor();
222
223 function_entry *current_function;
224
225 struct gl_context *ctx;
226 struct gl_program *prog;
227 struct gl_shader_program *shader_program;
228 struct gl_shader_compiler_options *options;
229
230 int next_temp;
231
232 variable_storage *find_variable_storage(ir_variable *var);
233
234 src_reg get_temp(const glsl_type *type);
235 void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);
236
237 src_reg src_reg_for_float(float val);
238
239 /**
240 * \name Visit methods
241 *
242 * As typical for the visitor pattern, there must be one \c visit method for
243 * each concrete subclass of \c ir_instruction. Virtual base classes within
244 * the hierarchy should not have \c visit methods.
245 */
246 /*@{*/
247 virtual void visit(ir_variable *);
248 virtual void visit(ir_loop *);
249 virtual void visit(ir_loop_jump *);
250 virtual void visit(ir_function_signature *);
251 virtual void visit(ir_function *);
252 virtual void visit(ir_expression *);
253 virtual void visit(ir_swizzle *);
254 virtual void visit(ir_dereference_variable *);
255 virtual void visit(ir_dereference_array *);
256 virtual void visit(ir_dereference_record *);
257 virtual void visit(ir_assignment *);
258 virtual void visit(ir_constant *);
259 virtual void visit(ir_call *);
260 virtual void visit(ir_return *);
261 virtual void visit(ir_discard *);
262 virtual void visit(ir_texture *);
263 virtual void visit(ir_if *);
264 virtual void visit(ir_emit_vertex *);
265 virtual void visit(ir_end_primitive *);
266 /*@}*/
267
268 src_reg result;
269
270 /** List of variable_storage */
271 exec_list variables;
272
273 /** List of function_entry */
274 exec_list function_signatures;
275 int next_signature_id;
276
277 /** List of ir_to_mesa_instruction */
278 exec_list instructions;
279
280 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);
281
282 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
283 dst_reg dst, src_reg src0);
284
285 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
286 dst_reg dst, src_reg src0, src_reg src1);
287
288 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
289 dst_reg dst,
290 src_reg src0, src_reg src1, src_reg src2);
291
292 /**
293 * Emit the correct dot-product instruction for the type of arguments
294 */
295 ir_to_mesa_instruction * emit_dp(ir_instruction *ir,
296 dst_reg dst,
297 src_reg src0,
298 src_reg src1,
299 unsigned elements);
300
301 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
302 dst_reg dst, src_reg src0);
303
304 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
305 dst_reg dst, src_reg src0, src_reg src1);
306
307 void emit_scs(ir_instruction *ir, enum prog_opcode op,
308 dst_reg dst, const src_reg &src);
309
310 bool try_emit_mad(ir_expression *ir,
311 int mul_operand);
312 bool try_emit_mad_for_and_not(ir_expression *ir,
313 int mul_operand);
314 bool try_emit_sat(ir_expression *ir);
315
316 void emit_swz(ir_expression *ir);
317
318 bool process_move_condition(ir_rvalue *ir);
319
320 void copy_propagate(void);
321
322 void *mem_ctx;
323 };
324
325 } /* anonymous namespace */
326
327 static src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);
328
329 static dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);
330
331 static dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);
332
333 static int
334 swizzle_for_size(int size)
335 {
336 static const int size_swizzles[4] = {
337 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
338 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
339 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
340 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
341 };
342
343 assert((size >= 1) && (size <= 4));
344 return size_swizzles[size - 1];
345 }
346
347 ir_to_mesa_instruction *
348 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
349 dst_reg dst,
350 src_reg src0, src_reg src1, src_reg src2)
351 {
352 ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
353 int num_reladdr = 0;
354
355 /* If we have to do relative addressing, we want to load the ARL
356 * reg directly for one of the regs, and preload the other reladdr
357 * sources into temps.
358 */
359 num_reladdr += dst.reladdr != NULL;
360 num_reladdr += src0.reladdr != NULL;
361 num_reladdr += src1.reladdr != NULL;
362 num_reladdr += src2.reladdr != NULL;
363
364 reladdr_to_temp(ir, &src2, &num_reladdr);
365 reladdr_to_temp(ir, &src1, &num_reladdr);
366 reladdr_to_temp(ir, &src0, &num_reladdr);
367
368 if (dst.reladdr) {
369 emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
370 num_reladdr--;
371 }
372 assert(num_reladdr == 0);
373
374 inst->op = op;
375 inst->dst = dst;
376 inst->src[0] = src0;
377 inst->src[1] = src1;
378 inst->src[2] = src2;
379 inst->ir = ir;
380
381 this->instructions.push_tail(inst);
382
383 return inst;
384 }
385
386
387 ir_to_mesa_instruction *
388 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
389 dst_reg dst, src_reg src0, src_reg src1)
390 {
391 return emit(ir, op, dst, src0, src1, undef_src);
392 }
393
394 ir_to_mesa_instruction *
395 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
396 dst_reg dst, src_reg src0)
397 {
398 assert(dst.writemask != 0);
399 return emit(ir, op, dst, src0, undef_src, undef_src);
400 }
401
402 ir_to_mesa_instruction *
403 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
404 {
405 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
406 }
407
408 ir_to_mesa_instruction *
409 ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
410 dst_reg dst, src_reg src0, src_reg src1,
411 unsigned elements)
412 {
413 static const gl_inst_opcode dot_opcodes[] = {
414 OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
415 };
416
417 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
418 }
419
420 /**
421 * Emits Mesa scalar opcodes to produce unique answers across channels.
422 *
423 * Some Mesa opcodes are scalar-only, like ARB_fp/vp. The src X
424 * channel determines the result across all channels. So to do a vec4
425 * of this operation, we want to emit a scalar per source channel used
426 * to produce dest channels.
427 */
428 void
429 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
430 dst_reg dst,
431 src_reg orig_src0, src_reg orig_src1)
432 {
433 int i, j;
434 int done_mask = ~dst.writemask;
435
436 /* Mesa RCP is a scalar operation splatting results to all channels,
437 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
438 * dst channels.
439 */
440 for (i = 0; i < 4; i++) {
441 GLuint this_mask = (1 << i);
442 ir_to_mesa_instruction *inst;
443 src_reg src0 = orig_src0;
444 src_reg src1 = orig_src1;
445
446 if (done_mask & this_mask)
447 continue;
448
449 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
450 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
451 for (j = i + 1; j < 4; j++) {
452 /* If there is another enabled component in the destination that is
453 * derived from the same inputs, generate its value on this pass as
454 * well.
455 */
456 if (!(done_mask & (1 << j)) &&
457 GET_SWZ(src0.swizzle, j) == src0_swiz &&
458 GET_SWZ(src1.swizzle, j) == src1_swiz) {
459 this_mask |= (1 << j);
460 }
461 }
462 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
463 src0_swiz, src0_swiz);
464 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
465 src1_swiz, src1_swiz);
466
467 inst = emit(ir, op, dst, src0, src1);
468 inst->dst.writemask = this_mask;
469 done_mask |= this_mask;
470 }
471 }
472
473 void
474 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
475 dst_reg dst, src_reg src0)
476 {
477 src_reg undef = undef_src;
478
479 undef.swizzle = SWIZZLE_XXXX;
480
481 emit_scalar(ir, op, dst, src0, undef);
482 }
483
484 /**
485 * Emit an OPCODE_SCS instruction
486 *
487 * The \c SCS opcode functions a bit differently than the other Mesa (or
488 * ARB_fragment_program) opcodes. Instead of splatting its result across all
489 * four components of the destination, it writes one value to the \c x
490 * component and another value to the \c y component.
491 *
492 * \param ir IR instruction being processed
493 * \param op Either \c OPCODE_SIN or \c OPCODE_COS depending on which
494 * value is desired.
495 * \param dst Destination register
496 * \param src Source register
497 */
498 void
499 ir_to_mesa_visitor::emit_scs(ir_instruction *ir, enum prog_opcode op,
500 dst_reg dst,
501 const src_reg &src)
502 {
503 /* Vertex programs cannot use the SCS opcode.
504 */
505 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB) {
506 emit_scalar(ir, op, dst, src);
507 return;
508 }
509
510 const unsigned component = (op == OPCODE_SIN) ? 0 : 1;
511 const unsigned scs_mask = (1U << component);
512 int done_mask = ~dst.writemask;
513 src_reg tmp;
514
515 assert(op == OPCODE_SIN || op == OPCODE_COS);
516
517 /* If there are compnents in the destination that differ from the component
518 * that will be written by the SCS instrution, we'll need a temporary.
519 */
520 if (scs_mask != unsigned(dst.writemask)) {
521 tmp = get_temp(glsl_type::vec4_type);
522 }
523
524 for (unsigned i = 0; i < 4; i++) {
525 unsigned this_mask = (1U << i);
526 src_reg src0 = src;
527
528 if ((done_mask & this_mask) != 0)
529 continue;
530
531 /* The source swizzle specified which component of the source generates
532 * sine / cosine for the current component in the destination. The SCS
533 * instruction requires that this value be swizzle to the X component.
534 * Replace the current swizzle with a swizzle that puts the source in
535 * the X component.
536 */
537 unsigned src0_swiz = GET_SWZ(src.swizzle, i);
538
539 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
540 src0_swiz, src0_swiz);
541 for (unsigned j = i + 1; j < 4; j++) {
542 /* If there is another enabled component in the destination that is
543 * derived from the same inputs, generate its value on this pass as
544 * well.
545 */
546 if (!(done_mask & (1 << j)) &&
547 GET_SWZ(src0.swizzle, j) == src0_swiz) {
548 this_mask |= (1 << j);
549 }
550 }
551
552 if (this_mask != scs_mask) {
553 ir_to_mesa_instruction *inst;
554 dst_reg tmp_dst = dst_reg(tmp);
555
556 /* Emit the SCS instruction.
557 */
558 inst = emit(ir, OPCODE_SCS, tmp_dst, src0);
559 inst->dst.writemask = scs_mask;
560
561 /* Move the result of the SCS instruction to the desired location in
562 * the destination.
563 */
564 tmp.swizzle = MAKE_SWIZZLE4(component, component,
565 component, component);
566 inst = emit(ir, OPCODE_SCS, dst, tmp);
567 inst->dst.writemask = this_mask;
568 } else {
569 /* Emit the SCS instruction to write directly to the destination.
570 */
571 ir_to_mesa_instruction *inst = emit(ir, OPCODE_SCS, dst, src0);
572 inst->dst.writemask = scs_mask;
573 }
574
575 done_mask |= this_mask;
576 }
577 }
578
579 src_reg
580 ir_to_mesa_visitor::src_reg_for_float(float val)
581 {
582 src_reg src(PROGRAM_CONSTANT, -1, NULL);
583
584 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
585 (const gl_constant_value *)&val, 1, &src.swizzle);
586
587 return src;
588 }
589
590 static int
591 type_size(const struct glsl_type *type)
592 {
593 unsigned int i;
594 int size;
595
596 switch (type->base_type) {
597 case GLSL_TYPE_UINT:
598 case GLSL_TYPE_INT:
599 case GLSL_TYPE_FLOAT:
600 case GLSL_TYPE_BOOL:
601 if (type->is_matrix()) {
602 return type->matrix_columns;
603 } else {
604 /* Regardless of size of vector, it gets a vec4. This is bad
605 * packing for things like floats, but otherwise arrays become a
606 * mess. Hopefully a later pass over the code can pack scalars
607 * down if appropriate.
608 */
609 return 1;
610 }
611 case GLSL_TYPE_ARRAY:
612 assert(type->length > 0);
613 return type_size(type->fields.array) * type->length;
614 case GLSL_TYPE_STRUCT:
615 size = 0;
616 for (i = 0; i < type->length; i++) {
617 size += type_size(type->fields.structure[i].type);
618 }
619 return size;
620 case GLSL_TYPE_SAMPLER:
621 /* Samplers take up one slot in UNIFORMS[], but they're baked in
622 * at link time.
623 */
624 return 1;
625 case GLSL_TYPE_VOID:
626 case GLSL_TYPE_ERROR:
627 case GLSL_TYPE_INTERFACE:
628 assert(!"Invalid type in type_size");
629 break;
630 }
631
632 return 0;
633 }
634
635 /**
636 * In the initial pass of codegen, we assign temporary numbers to
637 * intermediate results. (not SSA -- variable assignments will reuse
638 * storage). Actual register allocation for the Mesa VM occurs in a
639 * pass over the Mesa IR later.
640 */
641 src_reg
642 ir_to_mesa_visitor::get_temp(const glsl_type *type)
643 {
644 src_reg src;
645
646 src.file = PROGRAM_TEMPORARY;
647 src.index = next_temp;
648 src.reladdr = NULL;
649 next_temp += type_size(type);
650
651 if (type->is_array() || type->is_record()) {
652 src.swizzle = SWIZZLE_NOOP;
653 } else {
654 src.swizzle = swizzle_for_size(type->vector_elements);
655 }
656 src.negate = 0;
657
658 return src;
659 }
660
661 variable_storage *
662 ir_to_mesa_visitor::find_variable_storage(ir_variable *var)
663 {
664
665 variable_storage *entry;
666
667 foreach_iter(exec_list_iterator, iter, this->variables) {
668 entry = (variable_storage *)iter.get();
669
670 if (entry->var == var)
671 return entry;
672 }
673
674 return NULL;
675 }
676
677 void
678 ir_to_mesa_visitor::visit(ir_variable *ir)
679 {
680 if (strcmp(ir->name, "gl_FragCoord") == 0) {
681 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
682
683 fp->OriginUpperLeft = ir->origin_upper_left;
684 fp->PixelCenterInteger = ir->pixel_center_integer;
685 }
686
687 if (ir->mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
688 unsigned int i;
689 const ir_state_slot *const slots = ir->state_slots;
690 assert(ir->state_slots != NULL);
691
692 /* Check if this statevar's setup in the STATE file exactly
693 * matches how we'll want to reference it as a
694 * struct/array/whatever. If not, then we need to move it into
695 * temporary storage and hope that it'll get copy-propagated
696 * out.
697 */
698 for (i = 0; i < ir->num_state_slots; i++) {
699 if (slots[i].swizzle != SWIZZLE_XYZW) {
700 break;
701 }
702 }
703
704 variable_storage *storage;
705 dst_reg dst;
706 if (i == ir->num_state_slots) {
707 /* We'll set the index later. */
708 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
709 this->variables.push_tail(storage);
710
711 dst = undef_dst;
712 } else {
713 /* The variable_storage constructor allocates slots based on the size
714 * of the type. However, this had better match the number of state
715 * elements that we're going to copy into the new temporary.
716 */
717 assert((int) ir->num_state_slots == type_size(ir->type));
718
719 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
720 this->next_temp);
721 this->variables.push_tail(storage);
722 this->next_temp += type_size(ir->type);
723
724 dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
725 }
726
727
728 for (unsigned int i = 0; i < ir->num_state_slots; i++) {
729 int index = _mesa_add_state_reference(this->prog->Parameters,
730 (gl_state_index *)slots[i].tokens);
731
732 if (storage->file == PROGRAM_STATE_VAR) {
733 if (storage->index == -1) {
734 storage->index = index;
735 } else {
736 assert(index == storage->index + (int)i);
737 }
738 } else {
739 src_reg src(PROGRAM_STATE_VAR, index, NULL);
740 src.swizzle = slots[i].swizzle;
741 emit(ir, OPCODE_MOV, dst, src);
742 /* even a float takes up a whole vec4 reg in a struct/array. */
743 dst.index++;
744 }
745 }
746
747 if (storage->file == PROGRAM_TEMPORARY &&
748 dst.index != storage->index + (int) ir->num_state_slots) {
749 linker_error(this->shader_program,
750 "failed to load builtin uniform `%s' "
751 "(%d/%d regs loaded)\n",
752 ir->name, dst.index - storage->index,
753 type_size(ir->type));
754 }
755 }
756 }
757
758 void
759 ir_to_mesa_visitor::visit(ir_loop *ir)
760 {
761 ir_dereference_variable *counter = NULL;
762
763 if (ir->counter != NULL)
764 counter = new(mem_ctx) ir_dereference_variable(ir->counter);
765
766 if (ir->from != NULL) {
767 assert(ir->counter != NULL);
768
769 ir_assignment *a =
770 new(mem_ctx) ir_assignment(counter, ir->from, NULL);
771
772 a->accept(this);
773 }
774
775 emit(NULL, OPCODE_BGNLOOP);
776
777 if (ir->to) {
778 ir_expression *e =
779 new(mem_ctx) ir_expression(ir->cmp, glsl_type::bool_type,
780 counter, ir->to);
781 ir_if *if_stmt = new(mem_ctx) ir_if(e);
782
783 ir_loop_jump *brk =
784 new(mem_ctx) ir_loop_jump(ir_loop_jump::jump_break);
785
786 if_stmt->then_instructions.push_tail(brk);
787
788 if_stmt->accept(this);
789 }
790
791 visit_exec_list(&ir->body_instructions, this);
792
793 if (ir->increment) {
794 ir_expression *e =
795 new(mem_ctx) ir_expression(ir_binop_add, counter->type,
796 counter, ir->increment);
797
798 ir_assignment *a =
799 new(mem_ctx) ir_assignment(counter, e, NULL);
800
801 a->accept(this);
802 }
803
804 emit(NULL, OPCODE_ENDLOOP);
805 }
806
807 void
808 ir_to_mesa_visitor::visit(ir_loop_jump *ir)
809 {
810 switch (ir->mode) {
811 case ir_loop_jump::jump_break:
812 emit(NULL, OPCODE_BRK);
813 break;
814 case ir_loop_jump::jump_continue:
815 emit(NULL, OPCODE_CONT);
816 break;
817 }
818 }
819
820
821 void
822 ir_to_mesa_visitor::visit(ir_function_signature *ir)
823 {
824 assert(0);
825 (void)ir;
826 }
827
828 void
829 ir_to_mesa_visitor::visit(ir_function *ir)
830 {
831 /* Ignore function bodies other than main() -- we shouldn't see calls to
832 * them since they should all be inlined before we get to ir_to_mesa.
833 */
834 if (strcmp(ir->name, "main") == 0) {
835 const ir_function_signature *sig;
836 exec_list empty;
837
838 sig = ir->matching_signature(NULL, &empty);
839
840 assert(sig);
841
842 foreach_iter(exec_list_iterator, iter, sig->body) {
843 ir_instruction *ir = (ir_instruction *)iter.get();
844
845 ir->accept(this);
846 }
847 }
848 }
849
850 bool
851 ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
852 {
853 int nonmul_operand = 1 - mul_operand;
854 src_reg a, b, c;
855
856 ir_expression *expr = ir->operands[mul_operand]->as_expression();
857 if (!expr || expr->operation != ir_binop_mul)
858 return false;
859
860 expr->operands[0]->accept(this);
861 a = this->result;
862 expr->operands[1]->accept(this);
863 b = this->result;
864 ir->operands[nonmul_operand]->accept(this);
865 c = this->result;
866
867 this->result = get_temp(ir->type);
868 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);
869
870 return true;
871 }
872
873 /**
874 * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b))
875 *
876 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
877 * implemented using multiplication, and logical-or is implemented using
878 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
879 * As result, the logical expression (a & !b) can be rewritten as:
880 *
881 * - a * !b
882 * - a * (1 - b)
883 * - (a * 1) - (a * b)
884 * - a + -(a * b)
885 * - a + (a * -b)
886 *
887 * This final expression can be implemented as a single MAD(a, -b, a)
888 * instruction.
889 */
890 bool
891 ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
892 {
893 const int other_operand = 1 - try_operand;
894 src_reg a, b;
895
896 ir_expression *expr = ir->operands[try_operand]->as_expression();
897 if (!expr || expr->operation != ir_unop_logic_not)
898 return false;
899
900 ir->operands[other_operand]->accept(this);
901 a = this->result;
902 expr->operands[0]->accept(this);
903 b = this->result;
904
905 b.negate = ~b.negate;
906
907 this->result = get_temp(ir->type);
908 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a);
909
910 return true;
911 }
912
913 bool
914 ir_to_mesa_visitor::try_emit_sat(ir_expression *ir)
915 {
916 /* Saturates were only introduced to vertex programs in
917 * NV_vertex_program3, so don't give them to drivers in the VP.
918 */
919 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB)
920 return false;
921
922 ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
923 if (!sat_src)
924 return false;
925
926 sat_src->accept(this);
927 src_reg src = this->result;
928
929 /* If we generated an expression instruction into a temporary in
930 * processing the saturate's operand, apply the saturate to that
931 * instruction. Otherwise, generate a MOV to do the saturate.
932 *
933 * Note that we have to be careful to only do this optimization if
934 * the instruction in question was what generated src->result. For
935 * example, ir_dereference_array might generate a MUL instruction
936 * to create the reladdr, and return us a src reg using that
937 * reladdr. That MUL result is not the value we're trying to
938 * saturate.
939 */
940 ir_expression *sat_src_expr = sat_src->as_expression();
941 ir_to_mesa_instruction *new_inst;
942 new_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
943 if (sat_src_expr && (sat_src_expr->operation == ir_binop_mul ||
944 sat_src_expr->operation == ir_binop_add ||
945 sat_src_expr->operation == ir_binop_dot)) {
946 new_inst->saturate = true;
947 } else {
948 this->result = get_temp(ir->type);
949 ir_to_mesa_instruction *inst;
950 inst = emit(ir, OPCODE_MOV, dst_reg(this->result), src);
951 inst->saturate = true;
952 }
953
954 return true;
955 }
956
957 void
958 ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
959 src_reg *reg, int *num_reladdr)
960 {
961 if (!reg->reladdr)
962 return;
963
964 emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);
965
966 if (*num_reladdr != 1) {
967 src_reg temp = get_temp(glsl_type::vec4_type);
968
969 emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
970 *reg = temp;
971 }
972
973 (*num_reladdr)--;
974 }
975
976 void
977 ir_to_mesa_visitor::emit_swz(ir_expression *ir)
978 {
979 /* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
980 * This means that each of the operands is either an immediate value of -1,
981 * 0, or 1, or is a component from one source register (possibly with
982 * negation).
983 */
984 uint8_t components[4] = { 0 };
985 bool negate[4] = { false };
986 ir_variable *var = NULL;
987
988 for (unsigned i = 0; i < ir->type->vector_elements; i++) {
989 ir_rvalue *op = ir->operands[i];
990
991 assert(op->type->is_scalar());
992
993 while (op != NULL) {
994 switch (op->ir_type) {
995 case ir_type_constant: {
996
997 assert(op->type->is_scalar());
998
999 const ir_constant *const c = op->as_constant();
1000 if (c->is_one()) {
1001 components[i] = SWIZZLE_ONE;
1002 } else if (c->is_zero()) {
1003 components[i] = SWIZZLE_ZERO;
1004 } else if (c->is_negative_one()) {
1005 components[i] = SWIZZLE_ONE;
1006 negate[i] = true;
1007 } else {
1008 assert(!"SWZ constant must be 0.0 or 1.0.");
1009 }
1010
1011 op = NULL;
1012 break;
1013 }
1014
1015 case ir_type_dereference_variable: {
1016 ir_dereference_variable *const deref =
1017 (ir_dereference_variable *) op;
1018
1019 assert((var == NULL) || (deref->var == var));
1020 components[i] = SWIZZLE_X;
1021 var = deref->var;
1022 op = NULL;
1023 break;
1024 }
1025
1026 case ir_type_expression: {
1027 ir_expression *const expr = (ir_expression *) op;
1028
1029 assert(expr->operation == ir_unop_neg);
1030 negate[i] = true;
1031
1032 op = expr->operands[0];
1033 break;
1034 }
1035
1036 case ir_type_swizzle: {
1037 ir_swizzle *const swiz = (ir_swizzle *) op;
1038
1039 components[i] = swiz->mask.x;
1040 op = swiz->val;
1041 break;
1042 }
1043
1044 default:
1045 assert(!"Should not get here.");
1046 return;
1047 }
1048 }
1049 }
1050
1051 assert(var != NULL);
1052
1053 ir_dereference_variable *const deref =
1054 new(mem_ctx) ir_dereference_variable(var);
1055
1056 this->result.file = PROGRAM_UNDEFINED;
1057 deref->accept(this);
1058 if (this->result.file == PROGRAM_UNDEFINED) {
1059 printf("Failed to get tree for expression operand:\n");
1060 deref->print();
1061 printf("\n");
1062 exit(1);
1063 }
1064
1065 src_reg src;
1066
1067 src = this->result;
1068 src.swizzle = MAKE_SWIZZLE4(components[0],
1069 components[1],
1070 components[2],
1071 components[3]);
1072 src.negate = ((unsigned(negate[0]) << 0)
1073 | (unsigned(negate[1]) << 1)
1074 | (unsigned(negate[2]) << 2)
1075 | (unsigned(negate[3]) << 3));
1076
1077 /* Storage for our result. Ideally for an assignment we'd be using the
1078 * actual storage for the result here, instead.
1079 */
1080 const src_reg result_src = get_temp(ir->type);
1081 dst_reg result_dst = dst_reg(result_src);
1082
1083 /* Limit writes to the channels that will be used by result_src later.
1084 * This does limit this temp's use as a temporary for multi-instruction
1085 * sequences.
1086 */
1087 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1088
1089 emit(ir, OPCODE_SWZ, result_dst, src);
1090 this->result = result_src;
1091 }
1092
1093 void
1094 ir_to_mesa_visitor::visit(ir_expression *ir)
1095 {
1096 unsigned int operand;
1097 src_reg op[Elements(ir->operands)];
1098 src_reg result_src;
1099 dst_reg result_dst;
1100
1101 /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
1102 */
1103 if (ir->operation == ir_binop_add) {
1104 if (try_emit_mad(ir, 1))
1105 return;
1106 if (try_emit_mad(ir, 0))
1107 return;
1108 }
1109
1110 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1111 */
1112 if (ir->operation == ir_binop_logic_and) {
1113 if (try_emit_mad_for_and_not(ir, 1))
1114 return;
1115 if (try_emit_mad_for_and_not(ir, 0))
1116 return;
1117 }
1118
1119 if (try_emit_sat(ir))
1120 return;
1121
1122 if (ir->operation == ir_quadop_vector) {
1123 this->emit_swz(ir);
1124 return;
1125 }
1126
1127 for (operand = 0; operand < ir->get_num_operands(); operand++) {
1128 this->result.file = PROGRAM_UNDEFINED;
1129 ir->operands[operand]->accept(this);
1130 if (this->result.file == PROGRAM_UNDEFINED) {
1131 printf("Failed to get tree for expression operand:\n");
1132 ir->operands[operand]->print();
1133 printf("\n");
1134 exit(1);
1135 }
1136 op[operand] = this->result;
1137
1138 /* Matrix expression operands should have been broken down to vector
1139 * operations already.
1140 */
1141 assert(!ir->operands[operand]->type->is_matrix());
1142 }
1143
1144 int vector_elements = ir->operands[0]->type->vector_elements;
1145 if (ir->operands[1]) {
1146 vector_elements = MAX2(vector_elements,
1147 ir->operands[1]->type->vector_elements);
1148 }
1149
1150 this->result.file = PROGRAM_UNDEFINED;
1151
1152 /* Storage for our result. Ideally for an assignment we'd be using
1153 * the actual storage for the result here, instead.
1154 */
1155 result_src = get_temp(ir->type);
1156 /* convenience for the emit functions below. */
1157 result_dst = dst_reg(result_src);
1158 /* Limit writes to the channels that will be used by result_src later.
1159 * This does limit this temp's use as a temporary for multi-instruction
1160 * sequences.
1161 */
1162 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1163
1164 switch (ir->operation) {
1165 case ir_unop_logic_not:
1166 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
1167 * older GPUs implement SEQ using multiple instructions (i915 uses two
1168 * SGE instructions and a MUL instruction). Since our logic values are
1169 * 0.0 and 1.0, 1-x also implements !x.
1170 */
1171 op[0].negate = ~op[0].negate;
1172 emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0));
1173 break;
1174 case ir_unop_neg:
1175 op[0].negate = ~op[0].negate;
1176 result_src = op[0];
1177 break;
1178 case ir_unop_abs:
1179 emit(ir, OPCODE_ABS, result_dst, op[0]);
1180 break;
1181 case ir_unop_sign:
1182 emit(ir, OPCODE_SSG, result_dst, op[0]);
1183 break;
1184 case ir_unop_rcp:
1185 emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
1186 break;
1187
1188 case ir_unop_exp2:
1189 emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
1190 break;
1191 case ir_unop_exp:
1192 case ir_unop_log:
1193 assert(!"not reached: should be handled by ir_explog_to_explog2");
1194 break;
1195 case ir_unop_log2:
1196 emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
1197 break;
1198 case ir_unop_sin:
1199 emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
1200 break;
1201 case ir_unop_cos:
1202 emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
1203 break;
1204 case ir_unop_sin_reduced:
1205 emit_scs(ir, OPCODE_SIN, result_dst, op[0]);
1206 break;
1207 case ir_unop_cos_reduced:
1208 emit_scs(ir, OPCODE_COS, result_dst, op[0]);
1209 break;
1210
1211 case ir_unop_dFdx:
1212 emit(ir, OPCODE_DDX, result_dst, op[0]);
1213 break;
1214 case ir_unop_dFdy:
1215 emit(ir, OPCODE_DDY, result_dst, op[0]);
1216 break;
1217
1218 case ir_unop_noise: {
1219 const enum prog_opcode opcode =
1220 prog_opcode(OPCODE_NOISE1
1221 + (ir->operands[0]->type->vector_elements) - 1);
1222 assert((opcode >= OPCODE_NOISE1) && (opcode <= OPCODE_NOISE4));
1223
1224 emit(ir, opcode, result_dst, op[0]);
1225 break;
1226 }
1227
1228 case ir_binop_add:
1229 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1230 break;
1231 case ir_binop_sub:
1232 emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
1233 break;
1234
1235 case ir_binop_mul:
1236 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1237 break;
1238 case ir_binop_div:
1239 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1240 break;
1241 case ir_binop_mod:
1242 /* Floating point should be lowered by MOD_TO_FRACT in the compiler. */
1243 assert(ir->type->is_integer());
1244 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1245 break;
1246
1247 case ir_binop_less:
1248 emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1249 break;
1250 case ir_binop_greater:
1251 emit(ir, OPCODE_SGT, result_dst, op[0], op[1]);
1252 break;
1253 case ir_binop_lequal:
1254 emit(ir, OPCODE_SLE, result_dst, op[0], op[1]);
1255 break;
1256 case ir_binop_gequal:
1257 emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1258 break;
1259 case ir_binop_equal:
1260 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1261 break;
1262 case ir_binop_nequal:
1263 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1264 break;
1265 case ir_binop_all_equal:
1266 /* "==" operator producing a scalar boolean. */
1267 if (ir->operands[0]->type->is_vector() ||
1268 ir->operands[1]->type->is_vector()) {
1269 src_reg temp = get_temp(glsl_type::vec4_type);
1270 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1271
1272 /* After the dot-product, the value will be an integer on the
1273 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1274 */
1275 emit_dp(ir, result_dst, temp, temp, vector_elements);
1276
1277 /* Negating the result of the dot-product gives values on the range
1278 * [-4, 0]. Zero becomes 1.0, and negative values become zero. This
1279 * achieved using SGE.
1280 */
1281 src_reg sge_src = result_src;
1282 sge_src.negate = ~sge_src.negate;
1283 emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0));
1284 } else {
1285 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1286 }
1287 break;
1288 case ir_binop_any_nequal:
1289 /* "!=" operator producing a scalar boolean. */
1290 if (ir->operands[0]->type->is_vector() ||
1291 ir->operands[1]->type->is_vector()) {
1292 src_reg temp = get_temp(glsl_type::vec4_type);
1293 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1294
1295 /* After the dot-product, the value will be an integer on the
1296 * range [0,4]. Zero stays zero, and positive values become 1.0.
1297 */
1298 ir_to_mesa_instruction *const dp =
1299 emit_dp(ir, result_dst, temp, temp, vector_elements);
1300 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1301 /* The clamping to [0,1] can be done for free in the fragment
1302 * shader with a saturate.
1303 */
1304 dp->saturate = true;
1305 } else {
1306 /* Negating the result of the dot-product gives values on the range
1307 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1308 * achieved using SLT.
1309 */
1310 src_reg slt_src = result_src;
1311 slt_src.negate = ~slt_src.negate;
1312 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1313 }
1314 } else {
1315 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1316 }
1317 break;
1318
1319 case ir_unop_any: {
1320 assert(ir->operands[0]->type->is_vector());
1321
1322 /* After the dot-product, the value will be an integer on the
1323 * range [0,4]. Zero stays zero, and positive values become 1.0.
1324 */
1325 ir_to_mesa_instruction *const dp =
1326 emit_dp(ir, result_dst, op[0], op[0],
1327 ir->operands[0]->type->vector_elements);
1328 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1329 /* The clamping to [0,1] can be done for free in the fragment
1330 * shader with a saturate.
1331 */
1332 dp->saturate = true;
1333 } else {
1334 /* Negating the result of the dot-product gives values on the range
1335 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1336 * is achieved using SLT.
1337 */
1338 src_reg slt_src = result_src;
1339 slt_src.negate = ~slt_src.negate;
1340 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1341 }
1342 break;
1343 }
1344
1345 case ir_binop_logic_xor:
1346 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1347 break;
1348
1349 case ir_binop_logic_or: {
1350 /* After the addition, the value will be an integer on the
1351 * range [0,2]. Zero stays zero, and positive values become 1.0.
1352 */
1353 ir_to_mesa_instruction *add =
1354 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1355 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1356 /* The clamping to [0,1] can be done for free in the fragment
1357 * shader with a saturate.
1358 */
1359 add->saturate = true;
1360 } else {
1361 /* Negating the result of the addition gives values on the range
1362 * [-2, 0]. Zero stays zero, and negative values become 1.0. This
1363 * is achieved using SLT.
1364 */
1365 src_reg slt_src = result_src;
1366 slt_src.negate = ~slt_src.negate;
1367 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1368 }
1369 break;
1370 }
1371
1372 case ir_binop_logic_and:
1373 /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1374 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1375 break;
1376
1377 case ir_binop_dot:
1378 assert(ir->operands[0]->type->is_vector());
1379 assert(ir->operands[0]->type == ir->operands[1]->type);
1380 emit_dp(ir, result_dst, op[0], op[1],
1381 ir->operands[0]->type->vector_elements);
1382 break;
1383
1384 case ir_unop_sqrt:
1385 /* sqrt(x) = x * rsq(x). */
1386 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1387 emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
1388 /* For incoming channels <= 0, set the result to 0. */
1389 op[0].negate = ~op[0].negate;
1390 emit(ir, OPCODE_CMP, result_dst,
1391 op[0], result_src, src_reg_for_float(0.0));
1392 break;
1393 case ir_unop_rsq:
1394 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1395 break;
1396 case ir_unop_i2f:
1397 case ir_unop_u2f:
1398 case ir_unop_b2f:
1399 case ir_unop_b2i:
1400 case ir_unop_i2u:
1401 case ir_unop_u2i:
1402 /* Mesa IR lacks types, ints are stored as truncated floats. */
1403 result_src = op[0];
1404 break;
1405 case ir_unop_f2i:
1406 case ir_unop_f2u:
1407 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1408 break;
1409 case ir_unop_f2b:
1410 case ir_unop_i2b:
1411 emit(ir, OPCODE_SNE, result_dst,
1412 op[0], src_reg_for_float(0.0));
1413 break;
1414 case ir_unop_bitcast_f2i: // Ignore these 4, they can't happen here anyway
1415 case ir_unop_bitcast_f2u:
1416 case ir_unop_bitcast_i2f:
1417 case ir_unop_bitcast_u2f:
1418 break;
1419 case ir_unop_trunc:
1420 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1421 break;
1422 case ir_unop_ceil:
1423 op[0].negate = ~op[0].negate;
1424 emit(ir, OPCODE_FLR, result_dst, op[0]);
1425 result_src.negate = ~result_src.negate;
1426 break;
1427 case ir_unop_floor:
1428 emit(ir, OPCODE_FLR, result_dst, op[0]);
1429 break;
1430 case ir_unop_fract:
1431 emit(ir, OPCODE_FRC, result_dst, op[0]);
1432 break;
1433 case ir_unop_pack_snorm_2x16:
1434 case ir_unop_pack_snorm_4x8:
1435 case ir_unop_pack_unorm_2x16:
1436 case ir_unop_pack_unorm_4x8:
1437 case ir_unop_pack_half_2x16:
1438 case ir_unop_unpack_snorm_2x16:
1439 case ir_unop_unpack_snorm_4x8:
1440 case ir_unop_unpack_unorm_2x16:
1441 case ir_unop_unpack_unorm_4x8:
1442 case ir_unop_unpack_half_2x16:
1443 case ir_unop_unpack_half_2x16_split_x:
1444 case ir_unop_unpack_half_2x16_split_y:
1445 case ir_binop_pack_half_2x16_split:
1446 case ir_unop_bitfield_reverse:
1447 case ir_unop_bit_count:
1448 case ir_unop_find_msb:
1449 case ir_unop_find_lsb:
1450 assert(!"not supported");
1451 break;
1452 case ir_binop_min:
1453 emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
1454 break;
1455 case ir_binop_max:
1456 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1457 break;
1458 case ir_binop_pow:
1459 emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
1460 break;
1461
1462 /* GLSL 1.30 integer ops are unsupported in Mesa IR, but since
1463 * hardware backends have no way to avoid Mesa IR generation
1464 * even if they don't use it, we need to emit "something" and
1465 * continue.
1466 */
1467 case ir_binop_lshift:
1468 case ir_binop_rshift:
1469 case ir_binop_bit_and:
1470 case ir_binop_bit_xor:
1471 case ir_binop_bit_or:
1472 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1473 break;
1474
1475 case ir_unop_bit_not:
1476 case ir_unop_round_even:
1477 emit(ir, OPCODE_MOV, result_dst, op[0]);
1478 break;
1479
1480 case ir_binop_ubo_load:
1481 assert(!"not supported");
1482 break;
1483
1484 case ir_triop_lrp:
1485 /* ir_triop_lrp operands are (x, y, a) while
1486 * OPCODE_LRP operands are (a, y, x) to match ARB_fragment_program.
1487 */
1488 emit(ir, OPCODE_LRP, result_dst, op[2], op[1], op[0]);
1489 break;
1490
1491 case ir_binop_vector_extract:
1492 case ir_binop_bfm:
1493 case ir_triop_fma:
1494 case ir_triop_bfi:
1495 case ir_triop_bitfield_extract:
1496 case ir_triop_vector_insert:
1497 case ir_quadop_bitfield_insert:
1498 case ir_binop_ldexp:
1499 case ir_triop_csel:
1500 case ir_binop_carry:
1501 case ir_binop_borrow:
1502 assert(!"not supported");
1503 break;
1504
1505 case ir_quadop_vector:
1506 /* This operation should have already been handled.
1507 */
1508 assert(!"Should not get here.");
1509 break;
1510 }
1511
1512 this->result = result_src;
1513 }
1514
1515
1516 void
1517 ir_to_mesa_visitor::visit(ir_swizzle *ir)
1518 {
1519 src_reg src;
1520 int i;
1521 int swizzle[4];
1522
1523 /* Note that this is only swizzles in expressions, not those on the left
1524 * hand side of an assignment, which do write masking. See ir_assignment
1525 * for that.
1526 */
1527
1528 ir->val->accept(this);
1529 src = this->result;
1530 assert(src.file != PROGRAM_UNDEFINED);
1531
1532 for (i = 0; i < 4; i++) {
1533 if (i < ir->type->vector_elements) {
1534 switch (i) {
1535 case 0:
1536 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1537 break;
1538 case 1:
1539 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1540 break;
1541 case 2:
1542 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1543 break;
1544 case 3:
1545 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1546 break;
1547 }
1548 } else {
1549 /* If the type is smaller than a vec4, replicate the last
1550 * channel out.
1551 */
1552 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1553 }
1554 }
1555
1556 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1557
1558 this->result = src;
1559 }
1560
1561 void
1562 ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
1563 {
1564 variable_storage *entry = find_variable_storage(ir->var);
1565 ir_variable *var = ir->var;
1566
1567 if (!entry) {
1568 switch (var->mode) {
1569 case ir_var_uniform:
1570 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1571 var->location);
1572 this->variables.push_tail(entry);
1573 break;
1574 case ir_var_shader_in:
1575 /* The linker assigns locations for varyings and attributes,
1576 * including deprecated builtins (like gl_Color),
1577 * user-assigned generic attributes (glBindVertexLocation),
1578 * and user-defined varyings.
1579 */
1580 assert(var->location != -1);
1581 entry = new(mem_ctx) variable_storage(var,
1582 PROGRAM_INPUT,
1583 var->location);
1584 break;
1585 case ir_var_shader_out:
1586 assert(var->location != -1);
1587 entry = new(mem_ctx) variable_storage(var,
1588 PROGRAM_OUTPUT,
1589 var->location);
1590 break;
1591 case ir_var_system_value:
1592 entry = new(mem_ctx) variable_storage(var,
1593 PROGRAM_SYSTEM_VALUE,
1594 var->location);
1595 break;
1596 case ir_var_auto:
1597 case ir_var_temporary:
1598 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1599 this->next_temp);
1600 this->variables.push_tail(entry);
1601
1602 next_temp += type_size(var->type);
1603 break;
1604 }
1605
1606 if (!entry) {
1607 printf("Failed to make storage for %s\n", var->name);
1608 exit(1);
1609 }
1610 }
1611
1612 this->result = src_reg(entry->file, entry->index, var->type);
1613 }
1614
1615 void
1616 ir_to_mesa_visitor::visit(ir_dereference_array *ir)
1617 {
1618 ir_constant *index;
1619 src_reg src;
1620 int element_size = type_size(ir->type);
1621
1622 index = ir->array_index->constant_expression_value();
1623
1624 ir->array->accept(this);
1625 src = this->result;
1626
1627 if (index) {
1628 src.index += index->value.i[0] * element_size;
1629 } else {
1630 /* Variable index array dereference. It eats the "vec4" of the
1631 * base of the array and an index that offsets the Mesa register
1632 * index.
1633 */
1634 ir->array_index->accept(this);
1635
1636 src_reg index_reg;
1637
1638 if (element_size == 1) {
1639 index_reg = this->result;
1640 } else {
1641 index_reg = get_temp(glsl_type::float_type);
1642
1643 emit(ir, OPCODE_MUL, dst_reg(index_reg),
1644 this->result, src_reg_for_float(element_size));
1645 }
1646
1647 /* If there was already a relative address register involved, add the
1648 * new and the old together to get the new offset.
1649 */
1650 if (src.reladdr != NULL) {
1651 src_reg accum_reg = get_temp(glsl_type::float_type);
1652
1653 emit(ir, OPCODE_ADD, dst_reg(accum_reg),
1654 index_reg, *src.reladdr);
1655
1656 index_reg = accum_reg;
1657 }
1658
1659 src.reladdr = ralloc(mem_ctx, src_reg);
1660 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1661 }
1662
1663 /* If the type is smaller than a vec4, replicate the last channel out. */
1664 if (ir->type->is_scalar() || ir->type->is_vector())
1665 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1666 else
1667 src.swizzle = SWIZZLE_NOOP;
1668
1669 this->result = src;
1670 }
1671
1672 void
1673 ir_to_mesa_visitor::visit(ir_dereference_record *ir)
1674 {
1675 unsigned int i;
1676 const glsl_type *struct_type = ir->record->type;
1677 int offset = 0;
1678
1679 ir->record->accept(this);
1680
1681 for (i = 0; i < struct_type->length; i++) {
1682 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1683 break;
1684 offset += type_size(struct_type->fields.structure[i].type);
1685 }
1686
1687 /* If the type is smaller than a vec4, replicate the last channel out. */
1688 if (ir->type->is_scalar() || ir->type->is_vector())
1689 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1690 else
1691 this->result.swizzle = SWIZZLE_NOOP;
1692
1693 this->result.index += offset;
1694 }
1695
1696 /**
1697 * We want to be careful in assignment setup to hit the actual storage
1698 * instead of potentially using a temporary like we might with the
1699 * ir_dereference handler.
1700 */
1701 static dst_reg
1702 get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
1703 {
1704 /* The LHS must be a dereference. If the LHS is a variable indexed array
1705 * access of a vector, it must be separated into a series conditional moves
1706 * before reaching this point (see ir_vec_index_to_cond_assign).
1707 */
1708 assert(ir->as_dereference());
1709 ir_dereference_array *deref_array = ir->as_dereference_array();
1710 if (deref_array) {
1711 assert(!deref_array->array->type->is_vector());
1712 }
1713
1714 /* Use the rvalue deref handler for the most part. We'll ignore
1715 * swizzles in it and write swizzles using writemask, though.
1716 */
1717 ir->accept(v);
1718 return dst_reg(v->result);
1719 }
1720
1721 /**
1722 * Process the condition of a conditional assignment
1723 *
1724 * Examines the condition of a conditional assignment to generate the optimal
1725 * first operand of a \c CMP instruction. If the condition is a relational
1726 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1727 * used as the source for the \c CMP instruction. Otherwise the comparison
1728 * is processed to a boolean result, and the boolean result is used as the
1729 * operand to the CMP instruction.
1730 */
1731 bool
1732 ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
1733 {
1734 ir_rvalue *src_ir = ir;
1735 bool negate = true;
1736 bool switch_order = false;
1737
1738 ir_expression *const expr = ir->as_expression();
1739 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
1740 bool zero_on_left = false;
1741
1742 if (expr->operands[0]->is_zero()) {
1743 src_ir = expr->operands[1];
1744 zero_on_left = true;
1745 } else if (expr->operands[1]->is_zero()) {
1746 src_ir = expr->operands[0];
1747 zero_on_left = false;
1748 }
1749
1750 /* a is - 0 + - 0 +
1751 * (a < 0) T F F ( a < 0) T F F
1752 * (0 < a) F F T (-a < 0) F F T
1753 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
1754 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
1755 * (a > 0) F F T (-a < 0) F F T
1756 * (0 > a) T F F ( a < 0) T F F
1757 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
1758 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
1759 *
1760 * Note that exchanging the order of 0 and 'a' in the comparison simply
1761 * means that the value of 'a' should be negated.
1762 */
1763 if (src_ir != ir) {
1764 switch (expr->operation) {
1765 case ir_binop_less:
1766 switch_order = false;
1767 negate = zero_on_left;
1768 break;
1769
1770 case ir_binop_greater:
1771 switch_order = false;
1772 negate = !zero_on_left;
1773 break;
1774
1775 case ir_binop_lequal:
1776 switch_order = true;
1777 negate = !zero_on_left;
1778 break;
1779
1780 case ir_binop_gequal:
1781 switch_order = true;
1782 negate = zero_on_left;
1783 break;
1784
1785 default:
1786 /* This isn't the right kind of comparison afterall, so make sure
1787 * the whole condition is visited.
1788 */
1789 src_ir = ir;
1790 break;
1791 }
1792 }
1793 }
1794
1795 src_ir->accept(this);
1796
1797 /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1798 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
1799 * choose which value OPCODE_CMP produces without an extra instruction
1800 * computing the condition.
1801 */
1802 if (negate)
1803 this->result.negate = ~this->result.negate;
1804
1805 return switch_order;
1806 }
1807
1808 void
1809 ir_to_mesa_visitor::visit(ir_assignment *ir)
1810 {
1811 dst_reg l;
1812 src_reg r;
1813 int i;
1814
1815 ir->rhs->accept(this);
1816 r = this->result;
1817
1818 l = get_assignment_lhs(ir->lhs, this);
1819
1820 /* FINISHME: This should really set to the correct maximal writemask for each
1821 * FINISHME: component written (in the loops below). This case can only
1822 * FINISHME: occur for matrices, arrays, and structures.
1823 */
1824 if (ir->write_mask == 0) {
1825 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1826 l.writemask = WRITEMASK_XYZW;
1827 } else if (ir->lhs->type->is_scalar()) {
1828 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1829 * FINISHME: W component of fragment shader output zero, work correctly.
1830 */
1831 l.writemask = WRITEMASK_XYZW;
1832 } else {
1833 int swizzles[4];
1834 int first_enabled_chan = 0;
1835 int rhs_chan = 0;
1836
1837 assert(ir->lhs->type->is_vector());
1838 l.writemask = ir->write_mask;
1839
1840 for (int i = 0; i < 4; i++) {
1841 if (l.writemask & (1 << i)) {
1842 first_enabled_chan = GET_SWZ(r.swizzle, i);
1843 break;
1844 }
1845 }
1846
1847 /* Swizzle a small RHS vector into the channels being written.
1848 *
1849 * glsl ir treats write_mask as dictating how many channels are
1850 * present on the RHS while Mesa IR treats write_mask as just
1851 * showing which channels of the vec4 RHS get written.
1852 */
1853 for (int i = 0; i < 4; i++) {
1854 if (l.writemask & (1 << i))
1855 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1856 else
1857 swizzles[i] = first_enabled_chan;
1858 }
1859 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1860 swizzles[2], swizzles[3]);
1861 }
1862
1863 assert(l.file != PROGRAM_UNDEFINED);
1864 assert(r.file != PROGRAM_UNDEFINED);
1865
1866 if (ir->condition) {
1867 const bool switch_order = this->process_move_condition(ir->condition);
1868 src_reg condition = this->result;
1869
1870 for (i = 0; i < type_size(ir->lhs->type); i++) {
1871 if (switch_order) {
1872 emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
1873 } else {
1874 emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
1875 }
1876
1877 l.index++;
1878 r.index++;
1879 }
1880 } else {
1881 for (i = 0; i < type_size(ir->lhs->type); i++) {
1882 emit(ir, OPCODE_MOV, l, r);
1883 l.index++;
1884 r.index++;
1885 }
1886 }
1887 }
1888
1889
1890 void
1891 ir_to_mesa_visitor::visit(ir_constant *ir)
1892 {
1893 src_reg src;
1894 GLfloat stack_vals[4] = { 0 };
1895 GLfloat *values = stack_vals;
1896 unsigned int i;
1897
1898 /* Unfortunately, 4 floats is all we can get into
1899 * _mesa_add_unnamed_constant. So, make a temp to store an
1900 * aggregate constant and move each constant value into it. If we
1901 * get lucky, copy propagation will eliminate the extra moves.
1902 */
1903
1904 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
1905 src_reg temp_base = get_temp(ir->type);
1906 dst_reg temp = dst_reg(temp_base);
1907
1908 foreach_iter(exec_list_iterator, iter, ir->components) {
1909 ir_constant *field_value = (ir_constant *)iter.get();
1910 int size = type_size(field_value->type);
1911
1912 assert(size > 0);
1913
1914 field_value->accept(this);
1915 src = this->result;
1916
1917 for (i = 0; i < (unsigned int)size; i++) {
1918 emit(ir, OPCODE_MOV, temp, src);
1919
1920 src.index++;
1921 temp.index++;
1922 }
1923 }
1924 this->result = temp_base;
1925 return;
1926 }
1927
1928 if (ir->type->is_array()) {
1929 src_reg temp_base = get_temp(ir->type);
1930 dst_reg temp = dst_reg(temp_base);
1931 int size = type_size(ir->type->fields.array);
1932
1933 assert(size > 0);
1934
1935 for (i = 0; i < ir->type->length; i++) {
1936 ir->array_elements[i]->accept(this);
1937 src = this->result;
1938 for (int j = 0; j < size; j++) {
1939 emit(ir, OPCODE_MOV, temp, src);
1940
1941 src.index++;
1942 temp.index++;
1943 }
1944 }
1945 this->result = temp_base;
1946 return;
1947 }
1948
1949 if (ir->type->is_matrix()) {
1950 src_reg mat = get_temp(ir->type);
1951 dst_reg mat_column = dst_reg(mat);
1952
1953 for (i = 0; i < ir->type->matrix_columns; i++) {
1954 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
1955 values = &ir->value.f[i * ir->type->vector_elements];
1956
1957 src = src_reg(PROGRAM_CONSTANT, -1, NULL);
1958 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1959 (gl_constant_value *) values,
1960 ir->type->vector_elements,
1961 &src.swizzle);
1962 emit(ir, OPCODE_MOV, mat_column, src);
1963
1964 mat_column.index++;
1965 }
1966
1967 this->result = mat;
1968 return;
1969 }
1970
1971 src.file = PROGRAM_CONSTANT;
1972 switch (ir->type->base_type) {
1973 case GLSL_TYPE_FLOAT:
1974 values = &ir->value.f[0];
1975 break;
1976 case GLSL_TYPE_UINT:
1977 for (i = 0; i < ir->type->vector_elements; i++) {
1978 values[i] = ir->value.u[i];
1979 }
1980 break;
1981 case GLSL_TYPE_INT:
1982 for (i = 0; i < ir->type->vector_elements; i++) {
1983 values[i] = ir->value.i[i];
1984 }
1985 break;
1986 case GLSL_TYPE_BOOL:
1987 for (i = 0; i < ir->type->vector_elements; i++) {
1988 values[i] = ir->value.b[i];
1989 }
1990 break;
1991 default:
1992 assert(!"Non-float/uint/int/bool constant");
1993 }
1994
1995 this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
1996 this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1997 (gl_constant_value *) values,
1998 ir->type->vector_elements,
1999 &this->result.swizzle);
2000 }
2001
2002 void
2003 ir_to_mesa_visitor::visit(ir_call *ir)
2004 {
2005 assert(!"ir_to_mesa: All function calls should have been inlined by now.");
2006 }
2007
2008 void
2009 ir_to_mesa_visitor::visit(ir_texture *ir)
2010 {
2011 src_reg result_src, coord, lod_info, projector, dx, dy;
2012 dst_reg result_dst, coord_dst;
2013 ir_to_mesa_instruction *inst = NULL;
2014 prog_opcode opcode = OPCODE_NOP;
2015
2016 if (ir->op == ir_txs)
2017 this->result = src_reg_for_float(0.0);
2018 else
2019 ir->coordinate->accept(this);
2020
2021 /* Put our coords in a temp. We'll need to modify them for shadow,
2022 * projection, or LOD, so the only case we'd use it as is is if
2023 * we're doing plain old texturing. Mesa IR optimization should
2024 * handle cleaning up our mess in that case.
2025 */
2026 coord = get_temp(glsl_type::vec4_type);
2027 coord_dst = dst_reg(coord);
2028 emit(ir, OPCODE_MOV, coord_dst, this->result);
2029
2030 if (ir->projector) {
2031 ir->projector->accept(this);
2032 projector = this->result;
2033 }
2034
2035 /* Storage for our result. Ideally for an assignment we'd be using
2036 * the actual storage for the result here, instead.
2037 */
2038 result_src = get_temp(glsl_type::vec4_type);
2039 result_dst = dst_reg(result_src);
2040
2041 switch (ir->op) {
2042 case ir_tex:
2043 case ir_txs:
2044 opcode = OPCODE_TEX;
2045 break;
2046 case ir_txb:
2047 opcode = OPCODE_TXB;
2048 ir->lod_info.bias->accept(this);
2049 lod_info = this->result;
2050 break;
2051 case ir_txf:
2052 /* Pretend to be TXL so the sampler, coordinate, lod are available */
2053 case ir_txl:
2054 opcode = OPCODE_TXL;
2055 ir->lod_info.lod->accept(this);
2056 lod_info = this->result;
2057 break;
2058 case ir_txd:
2059 opcode = OPCODE_TXD;
2060 ir->lod_info.grad.dPdx->accept(this);
2061 dx = this->result;
2062 ir->lod_info.grad.dPdy->accept(this);
2063 dy = this->result;
2064 break;
2065 case ir_txf_ms:
2066 assert(!"Unexpected ir_txf_ms opcode");
2067 break;
2068 case ir_lod:
2069 assert(!"Unexpected ir_lod opcode");
2070 break;
2071 case ir_tg4:
2072 assert(!"Unexpected ir_tg4 opcode");
2073 break;
2074 case ir_query_levels:
2075 assert(!"Unexpected ir_query_levels opcode");
2076 break;
2077 }
2078
2079 const glsl_type *sampler_type = ir->sampler->type;
2080
2081 if (ir->projector) {
2082 if (opcode == OPCODE_TEX) {
2083 /* Slot the projector in as the last component of the coord. */
2084 coord_dst.writemask = WRITEMASK_W;
2085 emit(ir, OPCODE_MOV, coord_dst, projector);
2086 coord_dst.writemask = WRITEMASK_XYZW;
2087 opcode = OPCODE_TXP;
2088 } else {
2089 src_reg coord_w = coord;
2090 coord_w.swizzle = SWIZZLE_WWWW;
2091
2092 /* For the other TEX opcodes there's no projective version
2093 * since the last slot is taken up by lod info. Do the
2094 * projective divide now.
2095 */
2096 coord_dst.writemask = WRITEMASK_W;
2097 emit(ir, OPCODE_RCP, coord_dst, projector);
2098
2099 /* In the case where we have to project the coordinates "by hand,"
2100 * the shadow comparitor value must also be projected.
2101 */
2102 src_reg tmp_src = coord;
2103 if (ir->shadow_comparitor) {
2104 /* Slot the shadow value in as the second to last component of the
2105 * coord.
2106 */
2107 ir->shadow_comparitor->accept(this);
2108
2109 tmp_src = get_temp(glsl_type::vec4_type);
2110 dst_reg tmp_dst = dst_reg(tmp_src);
2111
2112 /* Projective division not allowed for array samplers. */
2113 assert(!sampler_type->sampler_array);
2114
2115 tmp_dst.writemask = WRITEMASK_Z;
2116 emit(ir, OPCODE_MOV, tmp_dst, this->result);
2117
2118 tmp_dst.writemask = WRITEMASK_XY;
2119 emit(ir, OPCODE_MOV, tmp_dst, coord);
2120 }
2121
2122 coord_dst.writemask = WRITEMASK_XYZ;
2123 emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);
2124
2125 coord_dst.writemask = WRITEMASK_XYZW;
2126 coord.swizzle = SWIZZLE_XYZW;
2127 }
2128 }
2129
2130 /* If projection is done and the opcode is not OPCODE_TXP, then the shadow
2131 * comparitor was put in the correct place (and projected) by the code,
2132 * above, that handles by-hand projection.
2133 */
2134 if (ir->shadow_comparitor && (!ir->projector || opcode == OPCODE_TXP)) {
2135 /* Slot the shadow value in as the second to last component of the
2136 * coord.
2137 */
2138 ir->shadow_comparitor->accept(this);
2139
2140 /* XXX This will need to be updated for cubemap array samplers. */
2141 if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2142 sampler_type->sampler_array) {
2143 coord_dst.writemask = WRITEMASK_W;
2144 } else {
2145 coord_dst.writemask = WRITEMASK_Z;
2146 }
2147
2148 emit(ir, OPCODE_MOV, coord_dst, this->result);
2149 coord_dst.writemask = WRITEMASK_XYZW;
2150 }
2151
2152 if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
2153 /* Mesa IR stores lod or lod bias in the last channel of the coords. */
2154 coord_dst.writemask = WRITEMASK_W;
2155 emit(ir, OPCODE_MOV, coord_dst, lod_info);
2156 coord_dst.writemask = WRITEMASK_XYZW;
2157 }
2158
2159 if (opcode == OPCODE_TXD)
2160 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2161 else
2162 inst = emit(ir, opcode, result_dst, coord);
2163
2164 if (ir->shadow_comparitor)
2165 inst->tex_shadow = GL_TRUE;
2166
2167 inst->sampler = _mesa_get_sampler_uniform_value(ir->sampler,
2168 this->shader_program,
2169 this->prog);
2170
2171 switch (sampler_type->sampler_dimensionality) {
2172 case GLSL_SAMPLER_DIM_1D:
2173 inst->tex_target = (sampler_type->sampler_array)
2174 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2175 break;
2176 case GLSL_SAMPLER_DIM_2D:
2177 inst->tex_target = (sampler_type->sampler_array)
2178 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2179 break;
2180 case GLSL_SAMPLER_DIM_3D:
2181 inst->tex_target = TEXTURE_3D_INDEX;
2182 break;
2183 case GLSL_SAMPLER_DIM_CUBE:
2184 inst->tex_target = TEXTURE_CUBE_INDEX;
2185 break;
2186 case GLSL_SAMPLER_DIM_RECT:
2187 inst->tex_target = TEXTURE_RECT_INDEX;
2188 break;
2189 case GLSL_SAMPLER_DIM_BUF:
2190 assert(!"FINISHME: Implement ARB_texture_buffer_object");
2191 break;
2192 case GLSL_SAMPLER_DIM_EXTERNAL:
2193 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2194 break;
2195 default:
2196 assert(!"Should not get here.");
2197 }
2198
2199 this->result = result_src;
2200 }
2201
2202 void
2203 ir_to_mesa_visitor::visit(ir_return *ir)
2204 {
2205 /* Non-void functions should have been inlined. We may still emit RETs
2206 * from main() unless the EmitNoMainReturn option is set.
2207 */
2208 assert(!ir->get_value());
2209 emit(ir, OPCODE_RET);
2210 }
2211
2212 void
2213 ir_to_mesa_visitor::visit(ir_discard *ir)
2214 {
2215 if (ir->condition) {
2216 ir->condition->accept(this);
2217 this->result.negate = ~this->result.negate;
2218 emit(ir, OPCODE_KIL, undef_dst, this->result);
2219 } else {
2220 emit(ir, OPCODE_KIL_NV);
2221 }
2222 }
2223
2224 void
2225 ir_to_mesa_visitor::visit(ir_if *ir)
2226 {
2227 ir_to_mesa_instruction *cond_inst, *if_inst;
2228 ir_to_mesa_instruction *prev_inst;
2229
2230 prev_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2231
2232 ir->condition->accept(this);
2233 assert(this->result.file != PROGRAM_UNDEFINED);
2234
2235 if (this->options->EmitCondCodes) {
2236 cond_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2237
2238 /* See if we actually generated any instruction for generating
2239 * the condition. If not, then cook up a move to a temp so we
2240 * have something to set cond_update on.
2241 */
2242 if (cond_inst == prev_inst) {
2243 src_reg temp = get_temp(glsl_type::bool_type);
2244 cond_inst = emit(ir->condition, OPCODE_MOV, dst_reg(temp), result);
2245 }
2246 cond_inst->cond_update = GL_TRUE;
2247
2248 if_inst = emit(ir->condition, OPCODE_IF);
2249 if_inst->dst.cond_mask = COND_NE;
2250 } else {
2251 if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);
2252 }
2253
2254 this->instructions.push_tail(if_inst);
2255
2256 visit_exec_list(&ir->then_instructions, this);
2257
2258 if (!ir->else_instructions.is_empty()) {
2259 emit(ir->condition, OPCODE_ELSE);
2260 visit_exec_list(&ir->else_instructions, this);
2261 }
2262
2263 emit(ir->condition, OPCODE_ENDIF);
2264 }
2265
2266 void
2267 ir_to_mesa_visitor::visit(ir_emit_vertex *ir)
2268 {
2269 assert(!"Geometry shaders not supported.");
2270 }
2271
2272 void
2273 ir_to_mesa_visitor::visit(ir_end_primitive *ir)
2274 {
2275 assert(!"Geometry shaders not supported.");
2276 }
2277
2278 ir_to_mesa_visitor::ir_to_mesa_visitor()
2279 {
2280 result.file = PROGRAM_UNDEFINED;
2281 next_temp = 1;
2282 next_signature_id = 1;
2283 current_function = NULL;
2284 mem_ctx = ralloc_context(NULL);
2285 }
2286
2287 ir_to_mesa_visitor::~ir_to_mesa_visitor()
2288 {
2289 ralloc_free(mem_ctx);
2290 }
2291
2292 static struct prog_src_register
2293 mesa_src_reg_from_ir_src_reg(src_reg reg)
2294 {
2295 struct prog_src_register mesa_reg;
2296
2297 mesa_reg.File = reg.file;
2298 assert(reg.index < (1 << INST_INDEX_BITS));
2299 mesa_reg.Index = reg.index;
2300 mesa_reg.Swizzle = reg.swizzle;
2301 mesa_reg.RelAddr = reg.reladdr != NULL;
2302 mesa_reg.Negate = reg.negate;
2303 mesa_reg.Abs = 0;
2304 mesa_reg.HasIndex2 = GL_FALSE;
2305 mesa_reg.RelAddr2 = 0;
2306 mesa_reg.Index2 = 0;
2307
2308 return mesa_reg;
2309 }
2310
2311 static void
2312 set_branchtargets(ir_to_mesa_visitor *v,
2313 struct prog_instruction *mesa_instructions,
2314 int num_instructions)
2315 {
2316 int if_count = 0, loop_count = 0;
2317 int *if_stack, *loop_stack;
2318 int if_stack_pos = 0, loop_stack_pos = 0;
2319 int i, j;
2320
2321 for (i = 0; i < num_instructions; i++) {
2322 switch (mesa_instructions[i].Opcode) {
2323 case OPCODE_IF:
2324 if_count++;
2325 break;
2326 case OPCODE_BGNLOOP:
2327 loop_count++;
2328 break;
2329 case OPCODE_BRK:
2330 case OPCODE_CONT:
2331 mesa_instructions[i].BranchTarget = -1;
2332 break;
2333 default:
2334 break;
2335 }
2336 }
2337
2338 if_stack = rzalloc_array(v->mem_ctx, int, if_count);
2339 loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);
2340
2341 for (i = 0; i < num_instructions; i++) {
2342 switch (mesa_instructions[i].Opcode) {
2343 case OPCODE_IF:
2344 if_stack[if_stack_pos] = i;
2345 if_stack_pos++;
2346 break;
2347 case OPCODE_ELSE:
2348 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2349 if_stack[if_stack_pos - 1] = i;
2350 break;
2351 case OPCODE_ENDIF:
2352 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2353 if_stack_pos--;
2354 break;
2355 case OPCODE_BGNLOOP:
2356 loop_stack[loop_stack_pos] = i;
2357 loop_stack_pos++;
2358 break;
2359 case OPCODE_ENDLOOP:
2360 loop_stack_pos--;
2361 /* Rewrite any breaks/conts at this nesting level (haven't
2362 * already had a BranchTarget assigned) to point to the end
2363 * of the loop.
2364 */
2365 for (j = loop_stack[loop_stack_pos]; j < i; j++) {
2366 if (mesa_instructions[j].Opcode == OPCODE_BRK ||
2367 mesa_instructions[j].Opcode == OPCODE_CONT) {
2368 if (mesa_instructions[j].BranchTarget == -1) {
2369 mesa_instructions[j].BranchTarget = i;
2370 }
2371 }
2372 }
2373 /* The loop ends point at each other. */
2374 mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
2375 mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
2376 break;
2377 case OPCODE_CAL:
2378 foreach_iter(exec_list_iterator, iter, v->function_signatures) {
2379 function_entry *entry = (function_entry *)iter.get();
2380
2381 if (entry->sig_id == mesa_instructions[i].BranchTarget) {
2382 mesa_instructions[i].BranchTarget = entry->inst;
2383 break;
2384 }
2385 }
2386 break;
2387 default:
2388 break;
2389 }
2390 }
2391 }
2392
2393 static void
2394 print_program(struct prog_instruction *mesa_instructions,
2395 ir_instruction **mesa_instruction_annotation,
2396 int num_instructions)
2397 {
2398 ir_instruction *last_ir = NULL;
2399 int i;
2400 int indent = 0;
2401
2402 for (i = 0; i < num_instructions; i++) {
2403 struct prog_instruction *mesa_inst = mesa_instructions + i;
2404 ir_instruction *ir = mesa_instruction_annotation[i];
2405
2406 fprintf(stdout, "%3d: ", i);
2407
2408 if (last_ir != ir && ir) {
2409 int j;
2410
2411 for (j = 0; j < indent; j++) {
2412 fprintf(stdout, " ");
2413 }
2414 ir->print();
2415 printf("\n");
2416 last_ir = ir;
2417
2418 fprintf(stdout, " "); /* line number spacing. */
2419 }
2420
2421 indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
2422 PROG_PRINT_DEBUG, NULL);
2423 }
2424 }
2425
2426 namespace {
2427
2428 class add_uniform_to_shader : public program_resource_visitor {
2429 public:
2430 add_uniform_to_shader(struct gl_shader_program *shader_program,
2431 struct gl_program_parameter_list *params,
2432 gl_shader_type shader_type)
2433 : shader_program(shader_program), params(params), idx(-1),
2434 shader_type(shader_type)
2435 {
2436 /* empty */
2437 }
2438
2439 void process(ir_variable *var)
2440 {
2441 this->idx = -1;
2442 this->program_resource_visitor::process(var);
2443
2444 var->location = this->idx;
2445 }
2446
2447 private:
2448 virtual void visit_field(const glsl_type *type, const char *name,
2449 bool row_major);
2450
2451 struct gl_shader_program *shader_program;
2452 struct gl_program_parameter_list *params;
2453 int idx;
2454 gl_shader_type shader_type;
2455 };
2456
2457 } /* anonymous namespace */
2458
2459 void
2460 add_uniform_to_shader::visit_field(const glsl_type *type, const char *name,
2461 bool row_major)
2462 {
2463 unsigned int size;
2464
2465 (void) row_major;
2466
2467 if (type->is_vector() || type->is_scalar()) {
2468 size = type->vector_elements;
2469 } else {
2470 size = type_size(type) * 4;
2471 }
2472
2473 gl_register_file file;
2474 if (type->is_sampler() ||
2475 (type->is_array() && type->fields.array->is_sampler())) {
2476 file = PROGRAM_SAMPLER;
2477 } else {
2478 file = PROGRAM_UNIFORM;
2479 }
2480
2481 int index = _mesa_lookup_parameter_index(params, -1, name);
2482 if (index < 0) {
2483 index = _mesa_add_parameter(params, file, name, size, type->gl_type,
2484 NULL, NULL);
2485
2486 /* Sampler uniform values are stored in prog->SamplerUnits,
2487 * and the entry in that array is selected by this index we
2488 * store in ParameterValues[].
2489 */
2490 if (file == PROGRAM_SAMPLER) {
2491 unsigned location;
2492 const bool found =
2493 this->shader_program->UniformHash->get(location,
2494 params->Parameters[index].Name);
2495 assert(found);
2496
2497 if (!found)
2498 return;
2499
2500 struct gl_uniform_storage *storage =
2501 &this->shader_program->UniformStorage[location];
2502
2503 assert(storage->sampler[shader_type].active);
2504
2505 for (unsigned int j = 0; j < size / 4; j++)
2506 params->ParameterValues[index + j][0].f =
2507 storage->sampler[shader_type].index + j;
2508 }
2509 }
2510
2511 /* The first part of the uniform that's processed determines the base
2512 * location of the whole uniform (for structures).
2513 */
2514 if (this->idx < 0)
2515 this->idx = index;
2516 }
2517
2518 /**
2519 * Generate the program parameters list for the user uniforms in a shader
2520 *
2521 * \param shader_program Linked shader program. This is only used to
2522 * emit possible link errors to the info log.
2523 * \param sh Shader whose uniforms are to be processed.
2524 * \param params Parameter list to be filled in.
2525 */
2526 void
2527 _mesa_generate_parameters_list_for_uniforms(struct gl_shader_program
2528 *shader_program,
2529 struct gl_shader *sh,
2530 struct gl_program_parameter_list
2531 *params)
2532 {
2533 add_uniform_to_shader add(shader_program, params,
2534 _mesa_shader_type_to_index(sh->Type));
2535
2536 foreach_list(node, sh->ir) {
2537 ir_variable *var = ((ir_instruction *) node)->as_variable();
2538
2539 if ((var == NULL) || (var->mode != ir_var_uniform)
2540 || var->is_in_uniform_block() || (strncmp(var->name, "gl_", 3) == 0))
2541 continue;
2542
2543 add.process(var);
2544 }
2545 }
2546
2547 void
2548 _mesa_associate_uniform_storage(struct gl_context *ctx,
2549 struct gl_shader_program *shader_program,
2550 struct gl_program_parameter_list *params)
2551 {
2552 /* After adding each uniform to the parameter list, connect the storage for
2553 * the parameter with the tracking structure used by the API for the
2554 * uniform.
2555 */
2556 unsigned last_location = unsigned(~0);
2557 for (unsigned i = 0; i < params->NumParameters; i++) {
2558 if (params->Parameters[i].Type != PROGRAM_UNIFORM)
2559 continue;
2560
2561 unsigned location;
2562 const bool found =
2563 shader_program->UniformHash->get(location, params->Parameters[i].Name);
2564 assert(found);
2565
2566 if (!found)
2567 continue;
2568
2569 if (location != last_location) {
2570 struct gl_uniform_storage *storage =
2571 &shader_program->UniformStorage[location];
2572 enum gl_uniform_driver_format format = uniform_native;
2573
2574 unsigned columns = 0;
2575 switch (storage->type->base_type) {
2576 case GLSL_TYPE_UINT:
2577 assert(ctx->Const.NativeIntegers);
2578 format = uniform_native;
2579 columns = 1;
2580 break;
2581 case GLSL_TYPE_INT:
2582 format =
2583 (ctx->Const.NativeIntegers) ? uniform_native : uniform_int_float;
2584 columns = 1;
2585 break;
2586 case GLSL_TYPE_FLOAT:
2587 format = uniform_native;
2588 columns = storage->type->matrix_columns;
2589 break;
2590 case GLSL_TYPE_BOOL:
2591 if (ctx->Const.NativeIntegers) {
2592 format = (ctx->Const.UniformBooleanTrue == 1)
2593 ? uniform_bool_int_0_1 : uniform_bool_int_0_not0;
2594 } else {
2595 format = uniform_bool_float;
2596 }
2597 columns = 1;
2598 break;
2599 case GLSL_TYPE_SAMPLER:
2600 format = uniform_native;
2601 columns = 1;
2602 break;
2603 case GLSL_TYPE_ARRAY:
2604 case GLSL_TYPE_VOID:
2605 case GLSL_TYPE_STRUCT:
2606 case GLSL_TYPE_ERROR:
2607 case GLSL_TYPE_INTERFACE:
2608 assert(!"Should not get here.");
2609 break;
2610 }
2611
2612 _mesa_uniform_attach_driver_storage(storage,
2613 4 * sizeof(float) * columns,
2614 4 * sizeof(float),
2615 format,
2616 &params->ParameterValues[i]);
2617
2618 /* After attaching the driver's storage to the uniform, propagate any
2619 * data from the linker's backing store. This will cause values from
2620 * initializers in the source code to be copied over.
2621 */
2622 _mesa_propagate_uniforms_to_driver_storage(storage,
2623 0,
2624 MAX2(1, storage->array_elements));
2625
2626 last_location = location;
2627 }
2628 }
2629 }
2630
2631 /*
2632 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
2633 * channels for copy propagation and updates following instructions to
2634 * use the original versions.
2635 *
2636 * The ir_to_mesa_visitor lazily produces code assuming that this pass
2637 * will occur. As an example, a TXP production before this pass:
2638 *
2639 * 0: MOV TEMP[1], INPUT[4].xyyy;
2640 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2641 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
2642 *
2643 * and after:
2644 *
2645 * 0: MOV TEMP[1], INPUT[4].xyyy;
2646 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2647 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
2648 *
2649 * which allows for dead code elimination on TEMP[1]'s writes.
2650 */
2651 void
2652 ir_to_mesa_visitor::copy_propagate(void)
2653 {
2654 ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
2655 ir_to_mesa_instruction *,
2656 this->next_temp * 4);
2657 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
2658 int level = 0;
2659
2660 foreach_iter(exec_list_iterator, iter, this->instructions) {
2661 ir_to_mesa_instruction *inst = (ir_to_mesa_instruction *)iter.get();
2662
2663 assert(inst->dst.file != PROGRAM_TEMPORARY
2664 || inst->dst.index < this->next_temp);
2665
2666 /* First, do any copy propagation possible into the src regs. */
2667 for (int r = 0; r < 3; r++) {
2668 ir_to_mesa_instruction *first = NULL;
2669 bool good = true;
2670 int acp_base = inst->src[r].index * 4;
2671
2672 if (inst->src[r].file != PROGRAM_TEMPORARY ||
2673 inst->src[r].reladdr)
2674 continue;
2675
2676 /* See if we can find entries in the ACP consisting of MOVs
2677 * from the same src register for all the swizzled channels
2678 * of this src register reference.
2679 */
2680 for (int i = 0; i < 4; i++) {
2681 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2682 ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];
2683
2684 if (!copy_chan) {
2685 good = false;
2686 break;
2687 }
2688
2689 assert(acp_level[acp_base + src_chan] <= level);
2690
2691 if (!first) {
2692 first = copy_chan;
2693 } else {
2694 if (first->src[0].file != copy_chan->src[0].file ||
2695 first->src[0].index != copy_chan->src[0].index) {
2696 good = false;
2697 break;
2698 }
2699 }
2700 }
2701
2702 if (good) {
2703 /* We've now validated that we can copy-propagate to
2704 * replace this src register reference. Do it.
2705 */
2706 inst->src[r].file = first->src[0].file;
2707 inst->src[r].index = first->src[0].index;
2708
2709 int swizzle = 0;
2710 for (int i = 0; i < 4; i++) {
2711 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2712 ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
2713 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
2714 (3 * i));
2715 }
2716 inst->src[r].swizzle = swizzle;
2717 }
2718 }
2719
2720 switch (inst->op) {
2721 case OPCODE_BGNLOOP:
2722 case OPCODE_ENDLOOP:
2723 /* End of a basic block, clear the ACP entirely. */
2724 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2725 break;
2726
2727 case OPCODE_IF:
2728 ++level;
2729 break;
2730
2731 case OPCODE_ENDIF:
2732 case OPCODE_ELSE:
2733 /* Clear all channels written inside the block from the ACP, but
2734 * leaving those that were not touched.
2735 */
2736 for (int r = 0; r < this->next_temp; r++) {
2737 for (int c = 0; c < 4; c++) {
2738 if (!acp[4 * r + c])
2739 continue;
2740
2741 if (acp_level[4 * r + c] >= level)
2742 acp[4 * r + c] = NULL;
2743 }
2744 }
2745 if (inst->op == OPCODE_ENDIF)
2746 --level;
2747 break;
2748
2749 default:
2750 /* Continuing the block, clear any written channels from
2751 * the ACP.
2752 */
2753 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
2754 /* Any temporary might be written, so no copy propagation
2755 * across this instruction.
2756 */
2757 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2758 } else if (inst->dst.file == PROGRAM_OUTPUT &&
2759 inst->dst.reladdr) {
2760 /* Any output might be written, so no copy propagation
2761 * from outputs across this instruction.
2762 */
2763 for (int r = 0; r < this->next_temp; r++) {
2764 for (int c = 0; c < 4; c++) {
2765 if (!acp[4 * r + c])
2766 continue;
2767
2768 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
2769 acp[4 * r + c] = NULL;
2770 }
2771 }
2772 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
2773 inst->dst.file == PROGRAM_OUTPUT) {
2774 /* Clear where it's used as dst. */
2775 if (inst->dst.file == PROGRAM_TEMPORARY) {
2776 for (int c = 0; c < 4; c++) {
2777 if (inst->dst.writemask & (1 << c)) {
2778 acp[4 * inst->dst.index + c] = NULL;
2779 }
2780 }
2781 }
2782
2783 /* Clear where it's used as src. */
2784 for (int r = 0; r < this->next_temp; r++) {
2785 for (int c = 0; c < 4; c++) {
2786 if (!acp[4 * r + c])
2787 continue;
2788
2789 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
2790
2791 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
2792 acp[4 * r + c]->src[0].index == inst->dst.index &&
2793 inst->dst.writemask & (1 << src_chan))
2794 {
2795 acp[4 * r + c] = NULL;
2796 }
2797 }
2798 }
2799 }
2800 break;
2801 }
2802
2803 /* If this is a copy, add it to the ACP. */
2804 if (inst->op == OPCODE_MOV &&
2805 inst->dst.file == PROGRAM_TEMPORARY &&
2806 !(inst->dst.file == inst->src[0].file &&
2807 inst->dst.index == inst->src[0].index) &&
2808 !inst->dst.reladdr &&
2809 !inst->saturate &&
2810 !inst->src[0].reladdr &&
2811 !inst->src[0].negate) {
2812 for (int i = 0; i < 4; i++) {
2813 if (inst->dst.writemask & (1 << i)) {
2814 acp[4 * inst->dst.index + i] = inst;
2815 acp_level[4 * inst->dst.index + i] = level;
2816 }
2817 }
2818 }
2819 }
2820
2821 ralloc_free(acp_level);
2822 ralloc_free(acp);
2823 }
2824
2825
2826 /**
2827 * Convert a shader's GLSL IR into a Mesa gl_program.
2828 */
2829 static struct gl_program *
2830 get_mesa_program(struct gl_context *ctx,
2831 struct gl_shader_program *shader_program,
2832 struct gl_shader *shader)
2833 {
2834 ir_to_mesa_visitor v;
2835 struct prog_instruction *mesa_instructions, *mesa_inst;
2836 ir_instruction **mesa_instruction_annotation;
2837 int i;
2838 struct gl_program *prog;
2839 GLenum target;
2840 const char *target_string = _mesa_glsl_shader_target_name(shader->Type);
2841 struct gl_shader_compiler_options *options =
2842 &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(shader->Type)];
2843
2844 switch (shader->Type) {
2845 case GL_VERTEX_SHADER:
2846 target = GL_VERTEX_PROGRAM_ARB;
2847 break;
2848 case GL_FRAGMENT_SHADER:
2849 target = GL_FRAGMENT_PROGRAM_ARB;
2850 break;
2851 case GL_GEOMETRY_SHADER:
2852 target = GL_GEOMETRY_PROGRAM_NV;
2853 break;
2854 default:
2855 assert(!"should not be reached");
2856 return NULL;
2857 }
2858
2859 validate_ir_tree(shader->ir);
2860
2861 prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
2862 if (!prog)
2863 return NULL;
2864 prog->Parameters = _mesa_new_parameter_list();
2865 v.ctx = ctx;
2866 v.prog = prog;
2867 v.shader_program = shader_program;
2868 v.options = options;
2869
2870 _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
2871 prog->Parameters);
2872
2873 /* Emit Mesa IR for main(). */
2874 visit_exec_list(shader->ir, &v);
2875 v.emit(NULL, OPCODE_END);
2876
2877 prog->NumTemporaries = v.next_temp;
2878
2879 int num_instructions = 0;
2880 foreach_iter(exec_list_iterator, iter, v.instructions) {
2881 num_instructions++;
2882 }
2883
2884 mesa_instructions =
2885 (struct prog_instruction *)calloc(num_instructions,
2886 sizeof(*mesa_instructions));
2887 mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
2888 num_instructions);
2889
2890 v.copy_propagate();
2891
2892 /* Convert ir_mesa_instructions into prog_instructions.
2893 */
2894 mesa_inst = mesa_instructions;
2895 i = 0;
2896 foreach_iter(exec_list_iterator, iter, v.instructions) {
2897 const ir_to_mesa_instruction *inst = (ir_to_mesa_instruction *)iter.get();
2898
2899 mesa_inst->Opcode = inst->op;
2900 mesa_inst->CondUpdate = inst->cond_update;
2901 if (inst->saturate)
2902 mesa_inst->SaturateMode = SATURATE_ZERO_ONE;
2903 mesa_inst->DstReg.File = inst->dst.file;
2904 mesa_inst->DstReg.Index = inst->dst.index;
2905 mesa_inst->DstReg.CondMask = inst->dst.cond_mask;
2906 mesa_inst->DstReg.WriteMask = inst->dst.writemask;
2907 mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
2908 mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
2909 mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
2910 mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
2911 mesa_inst->TexSrcUnit = inst->sampler;
2912 mesa_inst->TexSrcTarget = inst->tex_target;
2913 mesa_inst->TexShadow = inst->tex_shadow;
2914 mesa_instruction_annotation[i] = inst->ir;
2915
2916 /* Set IndirectRegisterFiles. */
2917 if (mesa_inst->DstReg.RelAddr)
2918 prog->IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;
2919
2920 /* Update program's bitmask of indirectly accessed register files */
2921 for (unsigned src = 0; src < 3; src++)
2922 if (mesa_inst->SrcReg[src].RelAddr)
2923 prog->IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;
2924
2925 switch (mesa_inst->Opcode) {
2926 case OPCODE_IF:
2927 if (options->MaxIfDepth == 0) {
2928 linker_warning(shader_program,
2929 "Couldn't flatten if-statement. "
2930 "This will likely result in software "
2931 "rasterization.\n");
2932 }
2933 break;
2934 case OPCODE_BGNLOOP:
2935 if (options->EmitNoLoops) {
2936 linker_warning(shader_program,
2937 "Couldn't unroll loop. "
2938 "This will likely result in software "
2939 "rasterization.\n");
2940 }
2941 break;
2942 case OPCODE_CONT:
2943 if (options->EmitNoCont) {
2944 linker_warning(shader_program,
2945 "Couldn't lower continue-statement. "
2946 "This will likely result in software "
2947 "rasterization.\n");
2948 }
2949 break;
2950 case OPCODE_ARL:
2951 prog->NumAddressRegs = 1;
2952 break;
2953 default:
2954 break;
2955 }
2956
2957 mesa_inst++;
2958 i++;
2959
2960 if (!shader_program->LinkStatus)
2961 break;
2962 }
2963
2964 if (!shader_program->LinkStatus) {
2965 goto fail_exit;
2966 }
2967
2968 set_branchtargets(&v, mesa_instructions, num_instructions);
2969
2970 if (ctx->Shader.Flags & GLSL_DUMP) {
2971 printf("\n");
2972 printf("GLSL IR for linked %s program %d:\n", target_string,
2973 shader_program->Name);
2974 _mesa_print_ir(shader->ir, NULL);
2975 printf("\n");
2976 printf("\n");
2977 printf("Mesa IR for linked %s program %d:\n", target_string,
2978 shader_program->Name);
2979 print_program(mesa_instructions, mesa_instruction_annotation,
2980 num_instructions);
2981 }
2982
2983 prog->Instructions = mesa_instructions;
2984 prog->NumInstructions = num_instructions;
2985
2986 /* Setting this to NULL prevents a possible double free in the fail_exit
2987 * path (far below).
2988 */
2989 mesa_instructions = NULL;
2990
2991 do_set_program_inouts(shader->ir, prog, shader->Type);
2992
2993 prog->SamplersUsed = shader->active_samplers;
2994 prog->ShadowSamplers = shader->shadow_samplers;
2995 _mesa_update_shader_textures_used(shader_program, prog);
2996
2997 /* Set the gl_FragDepth layout. */
2998 if (target == GL_FRAGMENT_PROGRAM_ARB) {
2999 struct gl_fragment_program *fp = (struct gl_fragment_program *)prog;
3000 fp->FragDepthLayout = shader_program->FragDepthLayout;
3001 }
3002
3003 _mesa_reference_program(ctx, &shader->Program, prog);
3004
3005 if ((ctx->Shader.Flags & GLSL_NO_OPT) == 0) {
3006 _mesa_optimize_program(ctx, prog);
3007 }
3008
3009 /* This has to be done last. Any operation that can cause
3010 * prog->ParameterValues to get reallocated (e.g., anything that adds a
3011 * program constant) has to happen before creating this linkage.
3012 */
3013 _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
3014 if (!shader_program->LinkStatus) {
3015 goto fail_exit;
3016 }
3017
3018 return prog;
3019
3020 fail_exit:
3021 free(mesa_instructions);
3022 _mesa_reference_program(ctx, &shader->Program, NULL);
3023 return NULL;
3024 }
3025
3026 extern "C" {
3027
3028 /**
3029 * Link a shader.
3030 * Called via ctx->Driver.LinkShader()
3031 * This actually involves converting GLSL IR into Mesa gl_programs with
3032 * code lowering and other optimizations.
3033 */
3034 GLboolean
3035 _mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3036 {
3037 assert(prog->LinkStatus);
3038
3039 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
3040 if (prog->_LinkedShaders[i] == NULL)
3041 continue;
3042
3043 bool progress;
3044 exec_list *ir = prog->_LinkedShaders[i]->ir;
3045 const struct gl_shader_compiler_options *options =
3046 &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(prog->_LinkedShaders[i]->Type)];
3047
3048 do {
3049 progress = false;
3050
3051 /* Lowering */
3052 do_mat_op_to_vec(ir);
3053 lower_instructions(ir, (MOD_TO_FRACT | DIV_TO_MUL_RCP | EXP_TO_EXP2
3054 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
3055 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
3056
3057 progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
3058
3059 progress = do_common_optimization(ir, true, true,
3060 options->MaxUnrollIterations,
3061 options)
3062 || progress;
3063
3064 progress = lower_quadop_vector(ir, true) || progress;
3065
3066 if (options->MaxIfDepth == 0)
3067 progress = lower_discard(ir) || progress;
3068
3069 progress = lower_if_to_cond_assign(ir, options->MaxIfDepth) || progress;
3070
3071 if (options->EmitNoNoise)
3072 progress = lower_noise(ir) || progress;
3073
3074 /* If there are forms of indirect addressing that the driver
3075 * cannot handle, perform the lowering pass.
3076 */
3077 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
3078 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
3079 progress =
3080 lower_variable_index_to_cond_assign(ir,
3081 options->EmitNoIndirectInput,
3082 options->EmitNoIndirectOutput,
3083 options->EmitNoIndirectTemp,
3084 options->EmitNoIndirectUniform)
3085 || progress;
3086
3087 progress = do_vec_index_to_cond_assign(ir) || progress;
3088 progress = lower_vector_insert(ir, true) || progress;
3089 } while (progress);
3090
3091 validate_ir_tree(ir);
3092 }
3093
3094 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
3095 struct gl_program *linked_prog;
3096
3097 if (prog->_LinkedShaders[i] == NULL)
3098 continue;
3099
3100 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
3101
3102 if (linked_prog) {
3103 _mesa_copy_linked_program_data((gl_shader_type) i, prog, linked_prog);
3104
3105 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
3106 linked_prog);
3107 if (!ctx->Driver.ProgramStringNotify(ctx,
3108 _mesa_program_index_to_target(i),
3109 linked_prog)) {
3110 return GL_FALSE;
3111 }
3112 }
3113
3114 _mesa_reference_program(ctx, &linked_prog, NULL);
3115 }
3116
3117 return prog->LinkStatus;
3118 }
3119
3120 /**
3121 * Link a GLSL shader program. Called via glLinkProgram().
3122 */
3123 void
3124 _mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3125 {
3126 unsigned int i;
3127
3128 _mesa_clear_shader_program_data(ctx, prog);
3129
3130 prog->LinkStatus = GL_TRUE;
3131
3132 for (i = 0; i < prog->NumShaders; i++) {
3133 if (!prog->Shaders[i]->CompileStatus) {
3134 linker_error(prog, "linking with uncompiled shader");
3135 }
3136 }
3137
3138 if (prog->LinkStatus) {
3139 link_shaders(ctx, prog);
3140 }
3141
3142 if (prog->LinkStatus) {
3143 if (!ctx->Driver.LinkShader(ctx, prog)) {
3144 prog->LinkStatus = GL_FALSE;
3145 }
3146 }
3147
3148 if (ctx->Shader.Flags & GLSL_DUMP) {
3149 if (!prog->LinkStatus) {
3150 printf("GLSL shader program %d failed to link\n", prog->Name);
3151 }
3152
3153 if (prog->InfoLog && prog->InfoLog[0] != 0) {
3154 printf("GLSL shader program %d info log:\n", prog->Name);
3155 printf("%s\n", prog->InfoLog);
3156 }
3157 }
3158 }
3159
3160 } /* extern "C" */