Replace IS_INF_OR_NAN with util_is_inf_or_nan
[mesa.git] / src / mesa / program / ir_to_mesa.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
24 */
25
26 /**
27 * \file ir_to_mesa.cpp
28 *
29 * Translate GLSL IR to Mesa's gl_program representation.
30 */
31
32 #include <stdio.h>
33 #include "main/macros.h"
34 #include "main/mtypes.h"
35 #include "main/shaderapi.h"
36 #include "main/shaderobj.h"
37 #include "main/uniforms.h"
38 #include "main/glspirv.h"
39 #include "compiler/glsl/ast.h"
40 #include "compiler/glsl/ir.h"
41 #include "compiler/glsl/ir_expression_flattening.h"
42 #include "compiler/glsl/ir_visitor.h"
43 #include "compiler/glsl/ir_optimization.h"
44 #include "compiler/glsl/ir_uniform.h"
45 #include "compiler/glsl/glsl_parser_extras.h"
46 #include "compiler/glsl_types.h"
47 #include "compiler/glsl/linker.h"
48 #include "compiler/glsl/program.h"
49 #include "compiler/glsl/shader_cache.h"
50 #include "compiler/glsl/string_to_uint_map.h"
51 #include "program/prog_instruction.h"
52 #include "program/prog_optimize.h"
53 #include "program/prog_print.h"
54 #include "program/program.h"
55 #include "program/prog_parameter.h"
56
57
58 static int swizzle_for_size(int size);
59
60 namespace {
61
62 class src_reg;
63 class dst_reg;
64
65 /**
66 * This struct is a corresponding struct to Mesa prog_src_register, with
67 * wider fields.
68 */
69 class src_reg {
70 public:
71 src_reg(gl_register_file file, int index, const glsl_type *type)
72 {
73 this->file = file;
74 this->index = index;
75 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
76 this->swizzle = swizzle_for_size(type->vector_elements);
77 else
78 this->swizzle = SWIZZLE_XYZW;
79 this->negate = 0;
80 this->reladdr = NULL;
81 }
82
83 src_reg()
84 {
85 this->file = PROGRAM_UNDEFINED;
86 this->index = 0;
87 this->swizzle = 0;
88 this->negate = 0;
89 this->reladdr = NULL;
90 }
91
92 explicit src_reg(dst_reg reg);
93
94 gl_register_file file; /**< PROGRAM_* from Mesa */
95 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
96 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
97 int negate; /**< NEGATE_XYZW mask from mesa */
98 /** Register index should be offset by the integer in this reg. */
99 src_reg *reladdr;
100 };
101
102 class dst_reg {
103 public:
104 dst_reg(gl_register_file file, int writemask)
105 {
106 this->file = file;
107 this->index = 0;
108 this->writemask = writemask;
109 this->reladdr = NULL;
110 }
111
112 dst_reg()
113 {
114 this->file = PROGRAM_UNDEFINED;
115 this->index = 0;
116 this->writemask = 0;
117 this->reladdr = NULL;
118 }
119
120 explicit dst_reg(src_reg reg);
121
122 gl_register_file file; /**< PROGRAM_* from Mesa */
123 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
124 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
125 /** Register index should be offset by the integer in this reg. */
126 src_reg *reladdr;
127 };
128
129 } /* anonymous namespace */
130
131 src_reg::src_reg(dst_reg reg)
132 {
133 this->file = reg.file;
134 this->index = reg.index;
135 this->swizzle = SWIZZLE_XYZW;
136 this->negate = 0;
137 this->reladdr = reg.reladdr;
138 }
139
140 dst_reg::dst_reg(src_reg reg)
141 {
142 this->file = reg.file;
143 this->index = reg.index;
144 this->writemask = WRITEMASK_XYZW;
145 this->reladdr = reg.reladdr;
146 }
147
148 namespace {
149
150 class ir_to_mesa_instruction : public exec_node {
151 public:
152 DECLARE_RALLOC_CXX_OPERATORS(ir_to_mesa_instruction)
153
154 enum prog_opcode op;
155 dst_reg dst;
156 src_reg src[3];
157 /** Pointer to the ir source this tree came from for debugging */
158 ir_instruction *ir;
159 bool saturate;
160 int sampler; /**< sampler index */
161 int tex_target; /**< One of TEXTURE_*_INDEX */
162 GLboolean tex_shadow;
163 };
164
165 class variable_storage : public exec_node {
166 public:
167 variable_storage(ir_variable *var, gl_register_file file, int index)
168 : file(file), index(index), var(var)
169 {
170 /* empty */
171 }
172
173 gl_register_file file;
174 int index;
175 ir_variable *var; /* variable that maps to this, if any */
176 };
177
178 class function_entry : public exec_node {
179 public:
180 ir_function_signature *sig;
181
182 /**
183 * identifier of this function signature used by the program.
184 *
185 * At the point that Mesa instructions for function calls are
186 * generated, we don't know the address of the first instruction of
187 * the function body. So we make the BranchTarget that is called a
188 * small integer and rewrite them during set_branchtargets().
189 */
190 int sig_id;
191
192 /**
193 * Pointer to first instruction of the function body.
194 *
195 * Set during function body emits after main() is processed.
196 */
197 ir_to_mesa_instruction *bgn_inst;
198
199 /**
200 * Index of the first instruction of the function body in actual
201 * Mesa IR.
202 *
203 * Set after convertion from ir_to_mesa_instruction to prog_instruction.
204 */
205 int inst;
206
207 /** Storage for the return value. */
208 src_reg return_reg;
209 };
210
211 class ir_to_mesa_visitor : public ir_visitor {
212 public:
213 ir_to_mesa_visitor();
214 ~ir_to_mesa_visitor();
215
216 function_entry *current_function;
217
218 struct gl_context *ctx;
219 struct gl_program *prog;
220 struct gl_shader_program *shader_program;
221 struct gl_shader_compiler_options *options;
222
223 int next_temp;
224
225 variable_storage *find_variable_storage(const ir_variable *var);
226
227 src_reg get_temp(const glsl_type *type);
228 void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);
229
230 src_reg src_reg_for_float(float val);
231
232 /**
233 * \name Visit methods
234 *
235 * As typical for the visitor pattern, there must be one \c visit method for
236 * each concrete subclass of \c ir_instruction. Virtual base classes within
237 * the hierarchy should not have \c visit methods.
238 */
239 /*@{*/
240 virtual void visit(ir_variable *);
241 virtual void visit(ir_loop *);
242 virtual void visit(ir_loop_jump *);
243 virtual void visit(ir_function_signature *);
244 virtual void visit(ir_function *);
245 virtual void visit(ir_expression *);
246 virtual void visit(ir_swizzle *);
247 virtual void visit(ir_dereference_variable *);
248 virtual void visit(ir_dereference_array *);
249 virtual void visit(ir_dereference_record *);
250 virtual void visit(ir_assignment *);
251 virtual void visit(ir_constant *);
252 virtual void visit(ir_call *);
253 virtual void visit(ir_return *);
254 virtual void visit(ir_discard *);
255 virtual void visit(ir_demote *);
256 virtual void visit(ir_texture *);
257 virtual void visit(ir_if *);
258 virtual void visit(ir_emit_vertex *);
259 virtual void visit(ir_end_primitive *);
260 virtual void visit(ir_barrier *);
261 /*@}*/
262
263 src_reg result;
264
265 /** List of variable_storage */
266 exec_list variables;
267
268 /** List of function_entry */
269 exec_list function_signatures;
270 int next_signature_id;
271
272 /** List of ir_to_mesa_instruction */
273 exec_list instructions;
274
275 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);
276
277 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
278 dst_reg dst, src_reg src0);
279
280 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
281 dst_reg dst, src_reg src0, src_reg src1);
282
283 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
284 dst_reg dst,
285 src_reg src0, src_reg src1, src_reg src2);
286
287 /**
288 * Emit the correct dot-product instruction for the type of arguments
289 */
290 ir_to_mesa_instruction * emit_dp(ir_instruction *ir,
291 dst_reg dst,
292 src_reg src0,
293 src_reg src1,
294 unsigned elements);
295
296 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
297 dst_reg dst, src_reg src0);
298
299 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
300 dst_reg dst, src_reg src0, src_reg src1);
301
302 bool try_emit_mad(ir_expression *ir,
303 int mul_operand);
304 bool try_emit_mad_for_and_not(ir_expression *ir,
305 int mul_operand);
306
307 void emit_swz(ir_expression *ir);
308
309 void emit_equality_comparison(ir_expression *ir, enum prog_opcode op,
310 dst_reg dst,
311 const src_reg &src0, const src_reg &src1);
312
313 inline void emit_sne(ir_expression *ir, dst_reg dst,
314 const src_reg &src0, const src_reg &src1)
315 {
316 emit_equality_comparison(ir, OPCODE_SLT, dst, src0, src1);
317 }
318
319 inline void emit_seq(ir_expression *ir, dst_reg dst,
320 const src_reg &src0, const src_reg &src1)
321 {
322 emit_equality_comparison(ir, OPCODE_SGE, dst, src0, src1);
323 }
324
325 bool process_move_condition(ir_rvalue *ir);
326
327 void copy_propagate(void);
328
329 void *mem_ctx;
330 };
331
332 } /* anonymous namespace */
333
334 static src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);
335
336 static dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);
337
338 static dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);
339
340 static int
341 swizzle_for_size(int size)
342 {
343 static const int size_swizzles[4] = {
344 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
345 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
346 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
347 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
348 };
349
350 assert((size >= 1) && (size <= 4));
351 return size_swizzles[size - 1];
352 }
353
354 ir_to_mesa_instruction *
355 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
356 dst_reg dst,
357 src_reg src0, src_reg src1, src_reg src2)
358 {
359 ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
360 int num_reladdr = 0;
361
362 /* If we have to do relative addressing, we want to load the ARL
363 * reg directly for one of the regs, and preload the other reladdr
364 * sources into temps.
365 */
366 num_reladdr += dst.reladdr != NULL;
367 num_reladdr += src0.reladdr != NULL;
368 num_reladdr += src1.reladdr != NULL;
369 num_reladdr += src2.reladdr != NULL;
370
371 reladdr_to_temp(ir, &src2, &num_reladdr);
372 reladdr_to_temp(ir, &src1, &num_reladdr);
373 reladdr_to_temp(ir, &src0, &num_reladdr);
374
375 if (dst.reladdr) {
376 emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
377 num_reladdr--;
378 }
379 assert(num_reladdr == 0);
380
381 inst->op = op;
382 inst->dst = dst;
383 inst->src[0] = src0;
384 inst->src[1] = src1;
385 inst->src[2] = src2;
386 inst->ir = ir;
387
388 this->instructions.push_tail(inst);
389
390 return inst;
391 }
392
393
394 ir_to_mesa_instruction *
395 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
396 dst_reg dst, src_reg src0, src_reg src1)
397 {
398 return emit(ir, op, dst, src0, src1, undef_src);
399 }
400
401 ir_to_mesa_instruction *
402 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
403 dst_reg dst, src_reg src0)
404 {
405 assert(dst.writemask != 0);
406 return emit(ir, op, dst, src0, undef_src, undef_src);
407 }
408
409 ir_to_mesa_instruction *
410 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
411 {
412 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
413 }
414
415 ir_to_mesa_instruction *
416 ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
417 dst_reg dst, src_reg src0, src_reg src1,
418 unsigned elements)
419 {
420 static const enum prog_opcode dot_opcodes[] = {
421 OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
422 };
423
424 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
425 }
426
427 /**
428 * Emits Mesa scalar opcodes to produce unique answers across channels.
429 *
430 * Some Mesa opcodes are scalar-only, like ARB_fp/vp. The src X
431 * channel determines the result across all channels. So to do a vec4
432 * of this operation, we want to emit a scalar per source channel used
433 * to produce dest channels.
434 */
435 void
436 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
437 dst_reg dst,
438 src_reg orig_src0, src_reg orig_src1)
439 {
440 int i, j;
441 int done_mask = ~dst.writemask;
442
443 /* Mesa RCP is a scalar operation splatting results to all channels,
444 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
445 * dst channels.
446 */
447 for (i = 0; i < 4; i++) {
448 GLuint this_mask = (1 << i);
449 ir_to_mesa_instruction *inst;
450 src_reg src0 = orig_src0;
451 src_reg src1 = orig_src1;
452
453 if (done_mask & this_mask)
454 continue;
455
456 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
457 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
458 for (j = i + 1; j < 4; j++) {
459 /* If there is another enabled component in the destination that is
460 * derived from the same inputs, generate its value on this pass as
461 * well.
462 */
463 if (!(done_mask & (1 << j)) &&
464 GET_SWZ(src0.swizzle, j) == src0_swiz &&
465 GET_SWZ(src1.swizzle, j) == src1_swiz) {
466 this_mask |= (1 << j);
467 }
468 }
469 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
470 src0_swiz, src0_swiz);
471 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
472 src1_swiz, src1_swiz);
473
474 inst = emit(ir, op, dst, src0, src1);
475 inst->dst.writemask = this_mask;
476 done_mask |= this_mask;
477 }
478 }
479
480 void
481 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
482 dst_reg dst, src_reg src0)
483 {
484 src_reg undef = undef_src;
485
486 undef.swizzle = SWIZZLE_XXXX;
487
488 emit_scalar(ir, op, dst, src0, undef);
489 }
490
491 src_reg
492 ir_to_mesa_visitor::src_reg_for_float(float val)
493 {
494 src_reg src(PROGRAM_CONSTANT, -1, NULL);
495
496 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
497 (const gl_constant_value *)&val, 1, &src.swizzle);
498
499 return src;
500 }
501
502 static int
503 type_size(const struct glsl_type *type)
504 {
505 return type->count_vec4_slots(false, false);
506 }
507
508 /**
509 * In the initial pass of codegen, we assign temporary numbers to
510 * intermediate results. (not SSA -- variable assignments will reuse
511 * storage). Actual register allocation for the Mesa VM occurs in a
512 * pass over the Mesa IR later.
513 */
514 src_reg
515 ir_to_mesa_visitor::get_temp(const glsl_type *type)
516 {
517 src_reg src;
518
519 src.file = PROGRAM_TEMPORARY;
520 src.index = next_temp;
521 src.reladdr = NULL;
522 next_temp += type_size(type);
523
524 if (type->is_array() || type->is_struct()) {
525 src.swizzle = SWIZZLE_NOOP;
526 } else {
527 src.swizzle = swizzle_for_size(type->vector_elements);
528 }
529 src.negate = 0;
530
531 return src;
532 }
533
534 variable_storage *
535 ir_to_mesa_visitor::find_variable_storage(const ir_variable *var)
536 {
537 foreach_in_list(variable_storage, entry, &this->variables) {
538 if (entry->var == var)
539 return entry;
540 }
541
542 return NULL;
543 }
544
545 void
546 ir_to_mesa_visitor::visit(ir_variable *ir)
547 {
548 if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
549 unsigned int i;
550 const ir_state_slot *const slots = ir->get_state_slots();
551 assert(slots != NULL);
552
553 /* Check if this statevar's setup in the STATE file exactly
554 * matches how we'll want to reference it as a
555 * struct/array/whatever. If not, then we need to move it into
556 * temporary storage and hope that it'll get copy-propagated
557 * out.
558 */
559 for (i = 0; i < ir->get_num_state_slots(); i++) {
560 if (slots[i].swizzle != SWIZZLE_XYZW) {
561 break;
562 }
563 }
564
565 variable_storage *storage;
566 dst_reg dst;
567 if (i == ir->get_num_state_slots()) {
568 /* We'll set the index later. */
569 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
570 this->variables.push_tail(storage);
571
572 dst = undef_dst;
573 } else {
574 /* The variable_storage constructor allocates slots based on the size
575 * of the type. However, this had better match the number of state
576 * elements that we're going to copy into the new temporary.
577 */
578 assert((int) ir->get_num_state_slots() == type_size(ir->type));
579
580 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
581 this->next_temp);
582 this->variables.push_tail(storage);
583 this->next_temp += type_size(ir->type);
584
585 dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
586 }
587
588
589 for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
590 int index = _mesa_add_state_reference(this->prog->Parameters,
591 slots[i].tokens);
592
593 if (storage->file == PROGRAM_STATE_VAR) {
594 if (storage->index == -1) {
595 storage->index = index;
596 } else {
597 assert(index == storage->index + (int)i);
598 }
599 } else {
600 src_reg src(PROGRAM_STATE_VAR, index, NULL);
601 src.swizzle = slots[i].swizzle;
602 emit(ir, OPCODE_MOV, dst, src);
603 /* even a float takes up a whole vec4 reg in a struct/array. */
604 dst.index++;
605 }
606 }
607
608 if (storage->file == PROGRAM_TEMPORARY &&
609 dst.index != storage->index + (int) ir->get_num_state_slots()) {
610 linker_error(this->shader_program,
611 "failed to load builtin uniform `%s' "
612 "(%d/%d regs loaded)\n",
613 ir->name, dst.index - storage->index,
614 type_size(ir->type));
615 }
616 }
617 }
618
619 void
620 ir_to_mesa_visitor::visit(ir_loop *ir)
621 {
622 emit(NULL, OPCODE_BGNLOOP);
623
624 visit_exec_list(&ir->body_instructions, this);
625
626 emit(NULL, OPCODE_ENDLOOP);
627 }
628
629 void
630 ir_to_mesa_visitor::visit(ir_loop_jump *ir)
631 {
632 switch (ir->mode) {
633 case ir_loop_jump::jump_break:
634 emit(NULL, OPCODE_BRK);
635 break;
636 case ir_loop_jump::jump_continue:
637 emit(NULL, OPCODE_CONT);
638 break;
639 }
640 }
641
642
643 void
644 ir_to_mesa_visitor::visit(ir_function_signature *ir)
645 {
646 assert(0);
647 (void)ir;
648 }
649
650 void
651 ir_to_mesa_visitor::visit(ir_function *ir)
652 {
653 /* Ignore function bodies other than main() -- we shouldn't see calls to
654 * them since they should all be inlined before we get to ir_to_mesa.
655 */
656 if (strcmp(ir->name, "main") == 0) {
657 const ir_function_signature *sig;
658 exec_list empty;
659
660 sig = ir->matching_signature(NULL, &empty, false);
661
662 assert(sig);
663
664 foreach_in_list(ir_instruction, ir, &sig->body) {
665 ir->accept(this);
666 }
667 }
668 }
669
670 bool
671 ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
672 {
673 int nonmul_operand = 1 - mul_operand;
674 src_reg a, b, c;
675
676 ir_expression *expr = ir->operands[mul_operand]->as_expression();
677 if (!expr || expr->operation != ir_binop_mul)
678 return false;
679
680 expr->operands[0]->accept(this);
681 a = this->result;
682 expr->operands[1]->accept(this);
683 b = this->result;
684 ir->operands[nonmul_operand]->accept(this);
685 c = this->result;
686
687 this->result = get_temp(ir->type);
688 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);
689
690 return true;
691 }
692
693 /**
694 * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b))
695 *
696 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
697 * implemented using multiplication, and logical-or is implemented using
698 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
699 * As result, the logical expression (a & !b) can be rewritten as:
700 *
701 * - a * !b
702 * - a * (1 - b)
703 * - (a * 1) - (a * b)
704 * - a + -(a * b)
705 * - a + (a * -b)
706 *
707 * This final expression can be implemented as a single MAD(a, -b, a)
708 * instruction.
709 */
710 bool
711 ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
712 {
713 const int other_operand = 1 - try_operand;
714 src_reg a, b;
715
716 ir_expression *expr = ir->operands[try_operand]->as_expression();
717 if (!expr || expr->operation != ir_unop_logic_not)
718 return false;
719
720 ir->operands[other_operand]->accept(this);
721 a = this->result;
722 expr->operands[0]->accept(this);
723 b = this->result;
724
725 b.negate = ~b.negate;
726
727 this->result = get_temp(ir->type);
728 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a);
729
730 return true;
731 }
732
733 void
734 ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
735 src_reg *reg, int *num_reladdr)
736 {
737 if (!reg->reladdr)
738 return;
739
740 emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);
741
742 if (*num_reladdr != 1) {
743 src_reg temp = get_temp(glsl_type::vec4_type);
744
745 emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
746 *reg = temp;
747 }
748
749 (*num_reladdr)--;
750 }
751
752 void
753 ir_to_mesa_visitor::emit_swz(ir_expression *ir)
754 {
755 /* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
756 * This means that each of the operands is either an immediate value of -1,
757 * 0, or 1, or is a component from one source register (possibly with
758 * negation).
759 */
760 uint8_t components[4] = { 0 };
761 bool negate[4] = { false };
762 ir_variable *var = NULL;
763
764 for (unsigned i = 0; i < ir->type->vector_elements; i++) {
765 ir_rvalue *op = ir->operands[i];
766
767 assert(op->type->is_scalar());
768
769 while (op != NULL) {
770 switch (op->ir_type) {
771 case ir_type_constant: {
772
773 assert(op->type->is_scalar());
774
775 const ir_constant *const c = op->as_constant();
776 if (c->is_one()) {
777 components[i] = SWIZZLE_ONE;
778 } else if (c->is_zero()) {
779 components[i] = SWIZZLE_ZERO;
780 } else if (c->is_negative_one()) {
781 components[i] = SWIZZLE_ONE;
782 negate[i] = true;
783 } else {
784 assert(!"SWZ constant must be 0.0 or 1.0.");
785 }
786
787 op = NULL;
788 break;
789 }
790
791 case ir_type_dereference_variable: {
792 ir_dereference_variable *const deref =
793 (ir_dereference_variable *) op;
794
795 assert((var == NULL) || (deref->var == var));
796 components[i] = SWIZZLE_X;
797 var = deref->var;
798 op = NULL;
799 break;
800 }
801
802 case ir_type_expression: {
803 ir_expression *const expr = (ir_expression *) op;
804
805 assert(expr->operation == ir_unop_neg);
806 negate[i] = true;
807
808 op = expr->operands[0];
809 break;
810 }
811
812 case ir_type_swizzle: {
813 ir_swizzle *const swiz = (ir_swizzle *) op;
814
815 components[i] = swiz->mask.x;
816 op = swiz->val;
817 break;
818 }
819
820 default:
821 assert(!"Should not get here.");
822 return;
823 }
824 }
825 }
826
827 assert(var != NULL);
828
829 ir_dereference_variable *const deref =
830 new(mem_ctx) ir_dereference_variable(var);
831
832 this->result.file = PROGRAM_UNDEFINED;
833 deref->accept(this);
834 if (this->result.file == PROGRAM_UNDEFINED) {
835 printf("Failed to get tree for expression operand:\n");
836 deref->print();
837 printf("\n");
838 exit(1);
839 }
840
841 src_reg src;
842
843 src = this->result;
844 src.swizzle = MAKE_SWIZZLE4(components[0],
845 components[1],
846 components[2],
847 components[3]);
848 src.negate = ((unsigned(negate[0]) << 0)
849 | (unsigned(negate[1]) << 1)
850 | (unsigned(negate[2]) << 2)
851 | (unsigned(negate[3]) << 3));
852
853 /* Storage for our result. Ideally for an assignment we'd be using the
854 * actual storage for the result here, instead.
855 */
856 const src_reg result_src = get_temp(ir->type);
857 dst_reg result_dst = dst_reg(result_src);
858
859 /* Limit writes to the channels that will be used by result_src later.
860 * This does limit this temp's use as a temporary for multi-instruction
861 * sequences.
862 */
863 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
864
865 emit(ir, OPCODE_SWZ, result_dst, src);
866 this->result = result_src;
867 }
868
869 void
870 ir_to_mesa_visitor::emit_equality_comparison(ir_expression *ir,
871 enum prog_opcode op,
872 dst_reg dst,
873 const src_reg &src0,
874 const src_reg &src1)
875 {
876 src_reg difference;
877 src_reg abs_difference = get_temp(glsl_type::vec4_type);
878 const src_reg zero = src_reg_for_float(0.0);
879
880 /* x == y is equivalent to -abs(x-y) >= 0. Since all of the code that
881 * consumes the generated IR is pretty dumb, take special care when one
882 * of the operands is zero.
883 *
884 * Similarly, x != y is equivalent to -abs(x-y) < 0.
885 */
886 if (src0.file == zero.file &&
887 src0.index == zero.index &&
888 src0.swizzle == zero.swizzle) {
889 difference = src1;
890 } else if (src1.file == zero.file &&
891 src1.index == zero.index &&
892 src1.swizzle == zero.swizzle) {
893 difference = src0;
894 } else {
895 difference = get_temp(glsl_type::vec4_type);
896
897 src_reg tmp_src = src0;
898 tmp_src.negate = ~tmp_src.negate;
899
900 emit(ir, OPCODE_ADD, dst_reg(difference), tmp_src, src1);
901 }
902
903 emit(ir, OPCODE_ABS, dst_reg(abs_difference), difference);
904
905 abs_difference.negate = ~abs_difference.negate;
906 emit(ir, op, dst, abs_difference, zero);
907 }
908
909 void
910 ir_to_mesa_visitor::visit(ir_expression *ir)
911 {
912 unsigned int operand;
913 src_reg op[ARRAY_SIZE(ir->operands)];
914 src_reg result_src;
915 dst_reg result_dst;
916
917 /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
918 */
919 if (ir->operation == ir_binop_add) {
920 if (try_emit_mad(ir, 1))
921 return;
922 if (try_emit_mad(ir, 0))
923 return;
924 }
925
926 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
927 */
928 if (ir->operation == ir_binop_logic_and) {
929 if (try_emit_mad_for_and_not(ir, 1))
930 return;
931 if (try_emit_mad_for_and_not(ir, 0))
932 return;
933 }
934
935 if (ir->operation == ir_quadop_vector) {
936 this->emit_swz(ir);
937 return;
938 }
939
940 for (operand = 0; operand < ir->num_operands; operand++) {
941 this->result.file = PROGRAM_UNDEFINED;
942 ir->operands[operand]->accept(this);
943 if (this->result.file == PROGRAM_UNDEFINED) {
944 printf("Failed to get tree for expression operand:\n");
945 ir->operands[operand]->print();
946 printf("\n");
947 exit(1);
948 }
949 op[operand] = this->result;
950
951 /* Matrix expression operands should have been broken down to vector
952 * operations already.
953 */
954 assert(!ir->operands[operand]->type->is_matrix());
955 }
956
957 int vector_elements = ir->operands[0]->type->vector_elements;
958 if (ir->operands[1]) {
959 vector_elements = MAX2(vector_elements,
960 ir->operands[1]->type->vector_elements);
961 }
962
963 this->result.file = PROGRAM_UNDEFINED;
964
965 /* Storage for our result. Ideally for an assignment we'd be using
966 * the actual storage for the result here, instead.
967 */
968 result_src = get_temp(ir->type);
969 /* convenience for the emit functions below. */
970 result_dst = dst_reg(result_src);
971 /* Limit writes to the channels that will be used by result_src later.
972 * This does limit this temp's use as a temporary for multi-instruction
973 * sequences.
974 */
975 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
976
977 switch (ir->operation) {
978 case ir_unop_logic_not:
979 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
980 * older GPUs implement SEQ using multiple instructions (i915 uses two
981 * SGE instructions and a MUL instruction). Since our logic values are
982 * 0.0 and 1.0, 1-x also implements !x.
983 */
984 op[0].negate = ~op[0].negate;
985 emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0));
986 break;
987 case ir_unop_neg:
988 op[0].negate = ~op[0].negate;
989 result_src = op[0];
990 break;
991 case ir_unop_abs:
992 emit(ir, OPCODE_ABS, result_dst, op[0]);
993 break;
994 case ir_unop_sign:
995 emit(ir, OPCODE_SSG, result_dst, op[0]);
996 break;
997 case ir_unop_rcp:
998 emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
999 break;
1000
1001 case ir_unop_exp2:
1002 emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
1003 break;
1004 case ir_unop_exp:
1005 assert(!"not reached: should be handled by exp_to_exp2");
1006 break;
1007 case ir_unop_log:
1008 assert(!"not reached: should be handled by log_to_log2");
1009 break;
1010 case ir_unop_log2:
1011 emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
1012 break;
1013 case ir_unop_sin:
1014 emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
1015 break;
1016 case ir_unop_cos:
1017 emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
1018 break;
1019
1020 case ir_unop_dFdx:
1021 emit(ir, OPCODE_DDX, result_dst, op[0]);
1022 break;
1023 case ir_unop_dFdy:
1024 emit(ir, OPCODE_DDY, result_dst, op[0]);
1025 break;
1026
1027 case ir_unop_saturate: {
1028 ir_to_mesa_instruction *inst = emit(ir, OPCODE_MOV,
1029 result_dst, op[0]);
1030 inst->saturate = true;
1031 break;
1032 }
1033
1034 case ir_binop_add:
1035 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1036 break;
1037 case ir_binop_sub:
1038 emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
1039 break;
1040
1041 case ir_binop_mul:
1042 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1043 break;
1044 case ir_binop_div:
1045 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1046 break;
1047 case ir_binop_mod:
1048 /* Floating point should be lowered by MOD_TO_FLOOR in the compiler. */
1049 assert(ir->type->is_integer_32());
1050 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1051 break;
1052
1053 case ir_binop_less:
1054 emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1055 break;
1056 case ir_binop_gequal:
1057 emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1058 break;
1059 case ir_binop_equal:
1060 emit_seq(ir, result_dst, op[0], op[1]);
1061 break;
1062 case ir_binop_nequal:
1063 emit_sne(ir, result_dst, op[0], op[1]);
1064 break;
1065 case ir_binop_all_equal:
1066 /* "==" operator producing a scalar boolean. */
1067 if (ir->operands[0]->type->is_vector() ||
1068 ir->operands[1]->type->is_vector()) {
1069 src_reg temp = get_temp(glsl_type::vec4_type);
1070 emit_sne(ir, dst_reg(temp), op[0], op[1]);
1071
1072 /* After the dot-product, the value will be an integer on the
1073 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1074 */
1075 emit_dp(ir, result_dst, temp, temp, vector_elements);
1076
1077 /* Negating the result of the dot-product gives values on the range
1078 * [-4, 0]. Zero becomes 1.0, and negative values become zero. This
1079 * achieved using SGE.
1080 */
1081 src_reg sge_src = result_src;
1082 sge_src.negate = ~sge_src.negate;
1083 emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0));
1084 } else {
1085 emit_seq(ir, result_dst, op[0], op[1]);
1086 }
1087 break;
1088 case ir_binop_any_nequal:
1089 /* "!=" operator producing a scalar boolean. */
1090 if (ir->operands[0]->type->is_vector() ||
1091 ir->operands[1]->type->is_vector()) {
1092 src_reg temp = get_temp(glsl_type::vec4_type);
1093 if (ir->operands[0]->type->is_boolean() &&
1094 ir->operands[1]->as_constant() &&
1095 ir->operands[1]->as_constant()->is_zero()) {
1096 temp = op[0];
1097 } else {
1098 emit_sne(ir, dst_reg(temp), op[0], op[1]);
1099 }
1100
1101 /* After the dot-product, the value will be an integer on the
1102 * range [0,4]. Zero stays zero, and positive values become 1.0.
1103 */
1104 ir_to_mesa_instruction *const dp =
1105 emit_dp(ir, result_dst, temp, temp, vector_elements);
1106 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1107 /* The clamping to [0,1] can be done for free in the fragment
1108 * shader with a saturate.
1109 */
1110 dp->saturate = true;
1111 } else {
1112 /* Negating the result of the dot-product gives values on the range
1113 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1114 * achieved using SLT.
1115 */
1116 src_reg slt_src = result_src;
1117 slt_src.negate = ~slt_src.negate;
1118 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1119 }
1120 } else {
1121 emit_sne(ir, result_dst, op[0], op[1]);
1122 }
1123 break;
1124
1125 case ir_binop_logic_xor:
1126 emit_sne(ir, result_dst, op[0], op[1]);
1127 break;
1128
1129 case ir_binop_logic_or: {
1130 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1131 /* After the addition, the value will be an integer on the
1132 * range [0,2]. Zero stays zero, and positive values become 1.0.
1133 */
1134 ir_to_mesa_instruction *add =
1135 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1136 add->saturate = true;
1137 } else {
1138 /* The Boolean arguments are stored as float 0.0 and 1.0. If either
1139 * value is 1.0, the result of the logcal-or should be 1.0. If both
1140 * values are 0.0, the result should be 0.0. This is exactly what
1141 * MAX does.
1142 */
1143 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1144 }
1145 break;
1146 }
1147
1148 case ir_binop_logic_and:
1149 /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1150 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1151 break;
1152
1153 case ir_binop_dot:
1154 assert(ir->operands[0]->type->is_vector());
1155 assert(ir->operands[0]->type == ir->operands[1]->type);
1156 emit_dp(ir, result_dst, op[0], op[1],
1157 ir->operands[0]->type->vector_elements);
1158 break;
1159
1160 case ir_unop_sqrt:
1161 /* sqrt(x) = x * rsq(x). */
1162 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1163 emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
1164 /* For incoming channels <= 0, set the result to 0. */
1165 op[0].negate = ~op[0].negate;
1166 emit(ir, OPCODE_CMP, result_dst,
1167 op[0], result_src, src_reg_for_float(0.0));
1168 break;
1169 case ir_unop_rsq:
1170 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1171 break;
1172 case ir_unop_i2f:
1173 case ir_unop_u2f:
1174 case ir_unop_b2f:
1175 case ir_unop_b2i:
1176 case ir_unop_i2u:
1177 case ir_unop_u2i:
1178 /* Mesa IR lacks types, ints are stored as truncated floats. */
1179 result_src = op[0];
1180 break;
1181 case ir_unop_f2i:
1182 case ir_unop_f2u:
1183 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1184 break;
1185 case ir_unop_f2b:
1186 case ir_unop_i2b:
1187 emit_sne(ir, result_dst, op[0], src_reg_for_float(0.0));
1188 break;
1189 case ir_unop_bitcast_f2i: // Ignore these 4, they can't happen here anyway
1190 case ir_unop_bitcast_f2u:
1191 case ir_unop_bitcast_i2f:
1192 case ir_unop_bitcast_u2f:
1193 break;
1194 case ir_unop_trunc:
1195 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1196 break;
1197 case ir_unop_ceil:
1198 op[0].negate = ~op[0].negate;
1199 emit(ir, OPCODE_FLR, result_dst, op[0]);
1200 result_src.negate = ~result_src.negate;
1201 break;
1202 case ir_unop_floor:
1203 emit(ir, OPCODE_FLR, result_dst, op[0]);
1204 break;
1205 case ir_unop_fract:
1206 emit(ir, OPCODE_FRC, result_dst, op[0]);
1207 break;
1208 case ir_unop_pack_snorm_2x16:
1209 case ir_unop_pack_snorm_4x8:
1210 case ir_unop_pack_unorm_2x16:
1211 case ir_unop_pack_unorm_4x8:
1212 case ir_unop_pack_half_2x16:
1213 case ir_unop_pack_double_2x32:
1214 case ir_unop_unpack_snorm_2x16:
1215 case ir_unop_unpack_snorm_4x8:
1216 case ir_unop_unpack_unorm_2x16:
1217 case ir_unop_unpack_unorm_4x8:
1218 case ir_unop_unpack_half_2x16:
1219 case ir_unop_unpack_double_2x32:
1220 case ir_unop_bitfield_reverse:
1221 case ir_unop_bit_count:
1222 case ir_unop_find_msb:
1223 case ir_unop_find_lsb:
1224 case ir_unop_d2f:
1225 case ir_unop_f2d:
1226 case ir_unop_d2i:
1227 case ir_unop_i2d:
1228 case ir_unop_d2u:
1229 case ir_unop_u2d:
1230 case ir_unop_d2b:
1231 case ir_unop_frexp_sig:
1232 case ir_unop_frexp_exp:
1233 assert(!"not supported");
1234 break;
1235 case ir_binop_min:
1236 emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
1237 break;
1238 case ir_binop_max:
1239 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1240 break;
1241 case ir_binop_pow:
1242 emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
1243 break;
1244
1245 /* GLSL 1.30 integer ops are unsupported in Mesa IR, but since
1246 * hardware backends have no way to avoid Mesa IR generation
1247 * even if they don't use it, we need to emit "something" and
1248 * continue.
1249 */
1250 case ir_binop_lshift:
1251 case ir_binop_rshift:
1252 case ir_binop_bit_and:
1253 case ir_binop_bit_xor:
1254 case ir_binop_bit_or:
1255 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1256 break;
1257
1258 case ir_unop_bit_not:
1259 case ir_unop_round_even:
1260 emit(ir, OPCODE_MOV, result_dst, op[0]);
1261 break;
1262
1263 case ir_binop_ubo_load:
1264 assert(!"not supported");
1265 break;
1266
1267 case ir_triop_lrp:
1268 /* ir_triop_lrp operands are (x, y, a) while
1269 * OPCODE_LRP operands are (a, y, x) to match ARB_fragment_program.
1270 */
1271 emit(ir, OPCODE_LRP, result_dst, op[2], op[1], op[0]);
1272 break;
1273
1274 case ir_triop_csel:
1275 /* We assume that boolean true and false are 1.0 and 0.0. OPCODE_CMP
1276 * selects src1 if src0 is < 0, src2 otherwise.
1277 */
1278 op[0].negate = ~op[0].negate;
1279 emit(ir, OPCODE_CMP, result_dst, op[0], op[1], op[2]);
1280 break;
1281
1282 case ir_binop_vector_extract:
1283 case ir_triop_fma:
1284 case ir_triop_bitfield_extract:
1285 case ir_triop_vector_insert:
1286 case ir_quadop_bitfield_insert:
1287 case ir_binop_ldexp:
1288 case ir_binop_carry:
1289 case ir_binop_borrow:
1290 case ir_binop_abs_sub:
1291 case ir_binop_add_sat:
1292 case ir_binop_sub_sat:
1293 case ir_binop_avg:
1294 case ir_binop_avg_round:
1295 case ir_binop_mul_32x16:
1296 case ir_binop_imul_high:
1297 case ir_unop_interpolate_at_centroid:
1298 case ir_binop_interpolate_at_offset:
1299 case ir_binop_interpolate_at_sample:
1300 case ir_unop_dFdx_coarse:
1301 case ir_unop_dFdx_fine:
1302 case ir_unop_dFdy_coarse:
1303 case ir_unop_dFdy_fine:
1304 case ir_unop_subroutine_to_int:
1305 case ir_unop_get_buffer_size:
1306 case ir_unop_bitcast_u642d:
1307 case ir_unop_bitcast_i642d:
1308 case ir_unop_bitcast_d2u64:
1309 case ir_unop_bitcast_d2i64:
1310 case ir_unop_i642i:
1311 case ir_unop_u642i:
1312 case ir_unop_i642u:
1313 case ir_unop_u642u:
1314 case ir_unop_i642b:
1315 case ir_unop_i642f:
1316 case ir_unop_u642f:
1317 case ir_unop_i642d:
1318 case ir_unop_u642d:
1319 case ir_unop_i2i64:
1320 case ir_unop_u2i64:
1321 case ir_unop_b2i64:
1322 case ir_unop_f2i64:
1323 case ir_unop_d2i64:
1324 case ir_unop_i2u64:
1325 case ir_unop_u2u64:
1326 case ir_unop_f2u64:
1327 case ir_unop_d2u64:
1328 case ir_unop_u642i64:
1329 case ir_unop_i642u64:
1330 case ir_unop_pack_int_2x32:
1331 case ir_unop_unpack_int_2x32:
1332 case ir_unop_pack_uint_2x32:
1333 case ir_unop_unpack_uint_2x32:
1334 case ir_unop_pack_sampler_2x32:
1335 case ir_unop_unpack_sampler_2x32:
1336 case ir_unop_pack_image_2x32:
1337 case ir_unop_unpack_image_2x32:
1338 case ir_unop_atan:
1339 case ir_binop_atan2:
1340 case ir_unop_clz:
1341 case ir_unop_f162f:
1342 case ir_unop_f2f16:
1343 case ir_unop_f2fmp:
1344 case ir_unop_f162b:
1345 case ir_unop_b2f16:
1346 assert(!"not supported");
1347 break;
1348
1349 case ir_unop_ssbo_unsized_array_length:
1350 case ir_quadop_vector:
1351 /* This operation should have already been handled.
1352 */
1353 assert(!"Should not get here.");
1354 break;
1355 }
1356
1357 this->result = result_src;
1358 }
1359
1360
1361 void
1362 ir_to_mesa_visitor::visit(ir_swizzle *ir)
1363 {
1364 src_reg src;
1365 int i;
1366 int swizzle[4] = {0};
1367
1368 /* Note that this is only swizzles in expressions, not those on the left
1369 * hand side of an assignment, which do write masking. See ir_assignment
1370 * for that.
1371 */
1372
1373 ir->val->accept(this);
1374 src = this->result;
1375 assert(src.file != PROGRAM_UNDEFINED);
1376 assert(ir->type->vector_elements > 0);
1377
1378 for (i = 0; i < 4; i++) {
1379 if (i < ir->type->vector_elements) {
1380 switch (i) {
1381 case 0:
1382 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1383 break;
1384 case 1:
1385 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1386 break;
1387 case 2:
1388 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1389 break;
1390 case 3:
1391 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1392 break;
1393 }
1394 } else {
1395 /* If the type is smaller than a vec4, replicate the last
1396 * channel out.
1397 */
1398 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1399 }
1400 }
1401
1402 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1403
1404 this->result = src;
1405 }
1406
1407 void
1408 ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
1409 {
1410 variable_storage *entry = find_variable_storage(ir->var);
1411 ir_variable *var = ir->var;
1412
1413 if (!entry) {
1414 switch (var->data.mode) {
1415 case ir_var_uniform:
1416 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1417 var->data.param_index);
1418 this->variables.push_tail(entry);
1419 break;
1420 case ir_var_shader_in:
1421 /* The linker assigns locations for varyings and attributes,
1422 * including deprecated builtins (like gl_Color),
1423 * user-assigned generic attributes (glBindVertexLocation),
1424 * and user-defined varyings.
1425 */
1426 assert(var->data.location != -1);
1427 entry = new(mem_ctx) variable_storage(var,
1428 PROGRAM_INPUT,
1429 var->data.location);
1430 break;
1431 case ir_var_shader_out:
1432 assert(var->data.location != -1);
1433 entry = new(mem_ctx) variable_storage(var,
1434 PROGRAM_OUTPUT,
1435 var->data.location);
1436 break;
1437 case ir_var_system_value:
1438 entry = new(mem_ctx) variable_storage(var,
1439 PROGRAM_SYSTEM_VALUE,
1440 var->data.location);
1441 break;
1442 case ir_var_auto:
1443 case ir_var_temporary:
1444 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1445 this->next_temp);
1446 this->variables.push_tail(entry);
1447
1448 next_temp += type_size(var->type);
1449 break;
1450 }
1451
1452 if (!entry) {
1453 printf("Failed to make storage for %s\n", var->name);
1454 exit(1);
1455 }
1456 }
1457
1458 this->result = src_reg(entry->file, entry->index, var->type);
1459 }
1460
1461 void
1462 ir_to_mesa_visitor::visit(ir_dereference_array *ir)
1463 {
1464 ir_constant *index;
1465 src_reg src;
1466 int element_size = type_size(ir->type);
1467
1468 index = ir->array_index->constant_expression_value(ralloc_parent(ir));
1469
1470 ir->array->accept(this);
1471 src = this->result;
1472
1473 if (index) {
1474 src.index += index->value.i[0] * element_size;
1475 } else {
1476 /* Variable index array dereference. It eats the "vec4" of the
1477 * base of the array and an index that offsets the Mesa register
1478 * index.
1479 */
1480 ir->array_index->accept(this);
1481
1482 src_reg index_reg;
1483
1484 if (element_size == 1) {
1485 index_reg = this->result;
1486 } else {
1487 index_reg = get_temp(glsl_type::float_type);
1488
1489 emit(ir, OPCODE_MUL, dst_reg(index_reg),
1490 this->result, src_reg_for_float(element_size));
1491 }
1492
1493 /* If there was already a relative address register involved, add the
1494 * new and the old together to get the new offset.
1495 */
1496 if (src.reladdr != NULL) {
1497 src_reg accum_reg = get_temp(glsl_type::float_type);
1498
1499 emit(ir, OPCODE_ADD, dst_reg(accum_reg),
1500 index_reg, *src.reladdr);
1501
1502 index_reg = accum_reg;
1503 }
1504
1505 src.reladdr = ralloc(mem_ctx, src_reg);
1506 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1507 }
1508
1509 /* If the type is smaller than a vec4, replicate the last channel out. */
1510 if (ir->type->is_scalar() || ir->type->is_vector())
1511 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1512 else
1513 src.swizzle = SWIZZLE_NOOP;
1514
1515 this->result = src;
1516 }
1517
1518 void
1519 ir_to_mesa_visitor::visit(ir_dereference_record *ir)
1520 {
1521 unsigned int i;
1522 const glsl_type *struct_type = ir->record->type;
1523 int offset = 0;
1524
1525 ir->record->accept(this);
1526
1527 assert(ir->field_idx >= 0);
1528 for (i = 0; i < struct_type->length; i++) {
1529 if (i == (unsigned) ir->field_idx)
1530 break;
1531 offset += type_size(struct_type->fields.structure[i].type);
1532 }
1533
1534 /* If the type is smaller than a vec4, replicate the last channel out. */
1535 if (ir->type->is_scalar() || ir->type->is_vector())
1536 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1537 else
1538 this->result.swizzle = SWIZZLE_NOOP;
1539
1540 this->result.index += offset;
1541 }
1542
1543 /**
1544 * We want to be careful in assignment setup to hit the actual storage
1545 * instead of potentially using a temporary like we might with the
1546 * ir_dereference handler.
1547 */
1548 static dst_reg
1549 get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
1550 {
1551 /* The LHS must be a dereference. If the LHS is a variable indexed array
1552 * access of a vector, it must be separated into a series conditional moves
1553 * before reaching this point (see ir_vec_index_to_cond_assign).
1554 */
1555 assert(ir->as_dereference());
1556 ir_dereference_array *deref_array = ir->as_dereference_array();
1557 if (deref_array) {
1558 assert(!deref_array->array->type->is_vector());
1559 }
1560
1561 /* Use the rvalue deref handler for the most part. We'll ignore
1562 * swizzles in it and write swizzles using writemask, though.
1563 */
1564 ir->accept(v);
1565 return dst_reg(v->result);
1566 }
1567
1568 /* Calculate the sampler index and also calculate the base uniform location
1569 * for struct members.
1570 */
1571 static void
1572 calc_sampler_offsets(struct gl_shader_program *prog, ir_dereference *deref,
1573 unsigned *offset, unsigned *array_elements,
1574 unsigned *location)
1575 {
1576 if (deref->ir_type == ir_type_dereference_variable)
1577 return;
1578
1579 switch (deref->ir_type) {
1580 case ir_type_dereference_array: {
1581 ir_dereference_array *deref_arr = deref->as_dereference_array();
1582
1583 void *mem_ctx = ralloc_parent(deref_arr);
1584 ir_constant *array_index =
1585 deref_arr->array_index->constant_expression_value(mem_ctx);
1586
1587 if (!array_index) {
1588 /* GLSL 1.10 and 1.20 allowed variable sampler array indices,
1589 * while GLSL 1.30 requires that the array indices be
1590 * constant integer expressions. We don't expect any driver
1591 * to actually work with a really variable array index, so
1592 * all that would work would be an unrolled loop counter that ends
1593 * up being constant above.
1594 */
1595 ralloc_strcat(&prog->data->InfoLog,
1596 "warning: Variable sampler array index unsupported.\n"
1597 "This feature of the language was removed in GLSL 1.20 "
1598 "and is unlikely to be supported for 1.10 in Mesa.\n");
1599 } else {
1600 *offset += array_index->value.u[0] * *array_elements;
1601 }
1602
1603 *array_elements *= deref_arr->array->type->length;
1604
1605 calc_sampler_offsets(prog, deref_arr->array->as_dereference(),
1606 offset, array_elements, location);
1607 break;
1608 }
1609
1610 case ir_type_dereference_record: {
1611 ir_dereference_record *deref_record = deref->as_dereference_record();
1612 unsigned field_index = deref_record->field_idx;
1613 *location +=
1614 deref_record->record->type->struct_location_offset(field_index);
1615 calc_sampler_offsets(prog, deref_record->record->as_dereference(),
1616 offset, array_elements, location);
1617 break;
1618 }
1619
1620 default:
1621 unreachable("Invalid deref type");
1622 break;
1623 }
1624 }
1625
1626 static int
1627 get_sampler_uniform_value(class ir_dereference *sampler,
1628 struct gl_shader_program *shader_program,
1629 const struct gl_program *prog)
1630 {
1631 GLuint shader = _mesa_program_enum_to_shader_stage(prog->Target);
1632 ir_variable *var = sampler->variable_referenced();
1633 unsigned location = var->data.location;
1634 unsigned array_elements = 1;
1635 unsigned offset = 0;
1636
1637 calc_sampler_offsets(shader_program, sampler, &offset, &array_elements,
1638 &location);
1639
1640 assert(shader_program->data->UniformStorage[location].opaque[shader].active);
1641 return shader_program->data->UniformStorage[location].opaque[shader].index +
1642 offset;
1643 }
1644
1645 /**
1646 * Process the condition of a conditional assignment
1647 *
1648 * Examines the condition of a conditional assignment to generate the optimal
1649 * first operand of a \c CMP instruction. If the condition is a relational
1650 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1651 * used as the source for the \c CMP instruction. Otherwise the comparison
1652 * is processed to a boolean result, and the boolean result is used as the
1653 * operand to the CMP instruction.
1654 */
1655 bool
1656 ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
1657 {
1658 ir_rvalue *src_ir = ir;
1659 bool negate = true;
1660 bool switch_order = false;
1661
1662 ir_expression *const expr = ir->as_expression();
1663 if ((expr != NULL) && (expr->num_operands == 2)) {
1664 bool zero_on_left = false;
1665
1666 if (expr->operands[0]->is_zero()) {
1667 src_ir = expr->operands[1];
1668 zero_on_left = true;
1669 } else if (expr->operands[1]->is_zero()) {
1670 src_ir = expr->operands[0];
1671 zero_on_left = false;
1672 }
1673
1674 /* a is - 0 + - 0 +
1675 * (a < 0) T F F ( a < 0) T F F
1676 * (0 < a) F F T (-a < 0) F F T
1677 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
1678 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
1679 *
1680 * Note that exchanging the order of 0 and 'a' in the comparison simply
1681 * means that the value of 'a' should be negated.
1682 */
1683 if (src_ir != ir) {
1684 switch (expr->operation) {
1685 case ir_binop_less:
1686 switch_order = false;
1687 negate = zero_on_left;
1688 break;
1689
1690 case ir_binop_gequal:
1691 switch_order = true;
1692 negate = zero_on_left;
1693 break;
1694
1695 default:
1696 /* This isn't the right kind of comparison afterall, so make sure
1697 * the whole condition is visited.
1698 */
1699 src_ir = ir;
1700 break;
1701 }
1702 }
1703 }
1704
1705 src_ir->accept(this);
1706
1707 /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1708 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
1709 * choose which value OPCODE_CMP produces without an extra instruction
1710 * computing the condition.
1711 */
1712 if (negate)
1713 this->result.negate = ~this->result.negate;
1714
1715 return switch_order;
1716 }
1717
1718 void
1719 ir_to_mesa_visitor::visit(ir_assignment *ir)
1720 {
1721 dst_reg l;
1722 src_reg r;
1723 int i;
1724
1725 ir->rhs->accept(this);
1726 r = this->result;
1727
1728 l = get_assignment_lhs(ir->lhs, this);
1729
1730 /* FINISHME: This should really set to the correct maximal writemask for each
1731 * FINISHME: component written (in the loops below). This case can only
1732 * FINISHME: occur for matrices, arrays, and structures.
1733 */
1734 if (ir->write_mask == 0) {
1735 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1736 l.writemask = WRITEMASK_XYZW;
1737 } else if (ir->lhs->type->is_scalar()) {
1738 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1739 * FINISHME: W component of fragment shader output zero, work correctly.
1740 */
1741 l.writemask = WRITEMASK_XYZW;
1742 } else {
1743 int swizzles[4];
1744 int first_enabled_chan = 0;
1745 int rhs_chan = 0;
1746
1747 assert(ir->lhs->type->is_vector());
1748 l.writemask = ir->write_mask;
1749
1750 for (int i = 0; i < 4; i++) {
1751 if (l.writemask & (1 << i)) {
1752 first_enabled_chan = GET_SWZ(r.swizzle, i);
1753 break;
1754 }
1755 }
1756
1757 /* Swizzle a small RHS vector into the channels being written.
1758 *
1759 * glsl ir treats write_mask as dictating how many channels are
1760 * present on the RHS while Mesa IR treats write_mask as just
1761 * showing which channels of the vec4 RHS get written.
1762 */
1763 for (int i = 0; i < 4; i++) {
1764 if (l.writemask & (1 << i))
1765 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1766 else
1767 swizzles[i] = first_enabled_chan;
1768 }
1769 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1770 swizzles[2], swizzles[3]);
1771 }
1772
1773 assert(l.file != PROGRAM_UNDEFINED);
1774 assert(r.file != PROGRAM_UNDEFINED);
1775
1776 if (ir->condition) {
1777 const bool switch_order = this->process_move_condition(ir->condition);
1778 src_reg condition = this->result;
1779
1780 for (i = 0; i < type_size(ir->lhs->type); i++) {
1781 if (switch_order) {
1782 emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
1783 } else {
1784 emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
1785 }
1786
1787 l.index++;
1788 r.index++;
1789 }
1790 } else {
1791 for (i = 0; i < type_size(ir->lhs->type); i++) {
1792 emit(ir, OPCODE_MOV, l, r);
1793 l.index++;
1794 r.index++;
1795 }
1796 }
1797 }
1798
1799
1800 void
1801 ir_to_mesa_visitor::visit(ir_constant *ir)
1802 {
1803 src_reg src;
1804 GLfloat stack_vals[4] = { 0 };
1805 GLfloat *values = stack_vals;
1806 unsigned int i;
1807
1808 /* Unfortunately, 4 floats is all we can get into
1809 * _mesa_add_unnamed_constant. So, make a temp to store an
1810 * aggregate constant and move each constant value into it. If we
1811 * get lucky, copy propagation will eliminate the extra moves.
1812 */
1813
1814 if (ir->type->is_struct()) {
1815 src_reg temp_base = get_temp(ir->type);
1816 dst_reg temp = dst_reg(temp_base);
1817
1818 for (i = 0; i < ir->type->length; i++) {
1819 ir_constant *const field_value = ir->get_record_field(i);
1820 int size = type_size(field_value->type);
1821
1822 assert(size > 0);
1823
1824 field_value->accept(this);
1825 src = this->result;
1826
1827 for (unsigned j = 0; j < (unsigned int)size; j++) {
1828 emit(ir, OPCODE_MOV, temp, src);
1829
1830 src.index++;
1831 temp.index++;
1832 }
1833 }
1834 this->result = temp_base;
1835 return;
1836 }
1837
1838 if (ir->type->is_array()) {
1839 src_reg temp_base = get_temp(ir->type);
1840 dst_reg temp = dst_reg(temp_base);
1841 int size = type_size(ir->type->fields.array);
1842
1843 assert(size > 0);
1844
1845 for (i = 0; i < ir->type->length; i++) {
1846 ir->const_elements[i]->accept(this);
1847 src = this->result;
1848 for (int j = 0; j < size; j++) {
1849 emit(ir, OPCODE_MOV, temp, src);
1850
1851 src.index++;
1852 temp.index++;
1853 }
1854 }
1855 this->result = temp_base;
1856 return;
1857 }
1858
1859 if (ir->type->is_matrix()) {
1860 src_reg mat = get_temp(ir->type);
1861 dst_reg mat_column = dst_reg(mat);
1862
1863 for (i = 0; i < ir->type->matrix_columns; i++) {
1864 assert(ir->type->is_float());
1865 values = &ir->value.f[i * ir->type->vector_elements];
1866
1867 src = src_reg(PROGRAM_CONSTANT, -1, NULL);
1868 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1869 (gl_constant_value *) values,
1870 ir->type->vector_elements,
1871 &src.swizzle);
1872 emit(ir, OPCODE_MOV, mat_column, src);
1873
1874 mat_column.index++;
1875 }
1876
1877 this->result = mat;
1878 return;
1879 }
1880
1881 src.file = PROGRAM_CONSTANT;
1882 switch (ir->type->base_type) {
1883 case GLSL_TYPE_FLOAT:
1884 values = &ir->value.f[0];
1885 break;
1886 case GLSL_TYPE_UINT:
1887 for (i = 0; i < ir->type->vector_elements; i++) {
1888 values[i] = ir->value.u[i];
1889 }
1890 break;
1891 case GLSL_TYPE_INT:
1892 for (i = 0; i < ir->type->vector_elements; i++) {
1893 values[i] = ir->value.i[i];
1894 }
1895 break;
1896 case GLSL_TYPE_BOOL:
1897 for (i = 0; i < ir->type->vector_elements; i++) {
1898 values[i] = ir->value.b[i];
1899 }
1900 break;
1901 default:
1902 assert(!"Non-float/uint/int/bool constant");
1903 }
1904
1905 this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
1906 this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1907 (gl_constant_value *) values,
1908 ir->type->vector_elements,
1909 &this->result.swizzle);
1910 }
1911
1912 void
1913 ir_to_mesa_visitor::visit(ir_call *)
1914 {
1915 assert(!"ir_to_mesa: All function calls should have been inlined by now.");
1916 }
1917
1918 void
1919 ir_to_mesa_visitor::visit(ir_texture *ir)
1920 {
1921 src_reg result_src, coord, lod_info, projector, dx, dy;
1922 dst_reg result_dst, coord_dst;
1923 ir_to_mesa_instruction *inst = NULL;
1924 prog_opcode opcode = OPCODE_NOP;
1925
1926 if (ir->op == ir_txs)
1927 this->result = src_reg_for_float(0.0);
1928 else
1929 ir->coordinate->accept(this);
1930
1931 /* Put our coords in a temp. We'll need to modify them for shadow,
1932 * projection, or LOD, so the only case we'd use it as-is is if
1933 * we're doing plain old texturing. Mesa IR optimization should
1934 * handle cleaning up our mess in that case.
1935 */
1936 coord = get_temp(glsl_type::vec4_type);
1937 coord_dst = dst_reg(coord);
1938 emit(ir, OPCODE_MOV, coord_dst, this->result);
1939
1940 if (ir->projector) {
1941 ir->projector->accept(this);
1942 projector = this->result;
1943 }
1944
1945 /* Storage for our result. Ideally for an assignment we'd be using
1946 * the actual storage for the result here, instead.
1947 */
1948 result_src = get_temp(glsl_type::vec4_type);
1949 result_dst = dst_reg(result_src);
1950
1951 switch (ir->op) {
1952 case ir_tex:
1953 case ir_txs:
1954 opcode = OPCODE_TEX;
1955 break;
1956 case ir_txb:
1957 opcode = OPCODE_TXB;
1958 ir->lod_info.bias->accept(this);
1959 lod_info = this->result;
1960 break;
1961 case ir_txf:
1962 /* Pretend to be TXL so the sampler, coordinate, lod are available */
1963 case ir_txl:
1964 opcode = OPCODE_TXL;
1965 ir->lod_info.lod->accept(this);
1966 lod_info = this->result;
1967 break;
1968 case ir_txd:
1969 opcode = OPCODE_TXD;
1970 ir->lod_info.grad.dPdx->accept(this);
1971 dx = this->result;
1972 ir->lod_info.grad.dPdy->accept(this);
1973 dy = this->result;
1974 break;
1975 case ir_txf_ms:
1976 assert(!"Unexpected ir_txf_ms opcode");
1977 break;
1978 case ir_lod:
1979 assert(!"Unexpected ir_lod opcode");
1980 break;
1981 case ir_tg4:
1982 assert(!"Unexpected ir_tg4 opcode");
1983 break;
1984 case ir_query_levels:
1985 assert(!"Unexpected ir_query_levels opcode");
1986 break;
1987 case ir_samples_identical:
1988 unreachable("Unexpected ir_samples_identical opcode");
1989 case ir_texture_samples:
1990 unreachable("Unexpected ir_texture_samples opcode");
1991 }
1992
1993 const glsl_type *sampler_type = ir->sampler->type;
1994
1995 if (ir->projector) {
1996 if (opcode == OPCODE_TEX) {
1997 /* Slot the projector in as the last component of the coord. */
1998 coord_dst.writemask = WRITEMASK_W;
1999 emit(ir, OPCODE_MOV, coord_dst, projector);
2000 coord_dst.writemask = WRITEMASK_XYZW;
2001 opcode = OPCODE_TXP;
2002 } else {
2003 src_reg coord_w = coord;
2004 coord_w.swizzle = SWIZZLE_WWWW;
2005
2006 /* For the other TEX opcodes there's no projective version
2007 * since the last slot is taken up by lod info. Do the
2008 * projective divide now.
2009 */
2010 coord_dst.writemask = WRITEMASK_W;
2011 emit(ir, OPCODE_RCP, coord_dst, projector);
2012
2013 /* In the case where we have to project the coordinates "by hand,"
2014 * the shadow comparator value must also be projected.
2015 */
2016 src_reg tmp_src = coord;
2017 if (ir->shadow_comparator) {
2018 /* Slot the shadow value in as the second to last component of the
2019 * coord.
2020 */
2021 ir->shadow_comparator->accept(this);
2022
2023 tmp_src = get_temp(glsl_type::vec4_type);
2024 dst_reg tmp_dst = dst_reg(tmp_src);
2025
2026 /* Projective division not allowed for array samplers. */
2027 assert(!sampler_type->sampler_array);
2028
2029 tmp_dst.writemask = WRITEMASK_Z;
2030 emit(ir, OPCODE_MOV, tmp_dst, this->result);
2031
2032 tmp_dst.writemask = WRITEMASK_XY;
2033 emit(ir, OPCODE_MOV, tmp_dst, coord);
2034 }
2035
2036 coord_dst.writemask = WRITEMASK_XYZ;
2037 emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);
2038
2039 coord_dst.writemask = WRITEMASK_XYZW;
2040 coord.swizzle = SWIZZLE_XYZW;
2041 }
2042 }
2043
2044 /* If projection is done and the opcode is not OPCODE_TXP, then the shadow
2045 * comparator was put in the correct place (and projected) by the code,
2046 * above, that handles by-hand projection.
2047 */
2048 if (ir->shadow_comparator && (!ir->projector || opcode == OPCODE_TXP)) {
2049 /* Slot the shadow value in as the second to last component of the
2050 * coord.
2051 */
2052 ir->shadow_comparator->accept(this);
2053
2054 /* XXX This will need to be updated for cubemap array samplers. */
2055 if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2056 sampler_type->sampler_array) {
2057 coord_dst.writemask = WRITEMASK_W;
2058 } else {
2059 coord_dst.writemask = WRITEMASK_Z;
2060 }
2061
2062 emit(ir, OPCODE_MOV, coord_dst, this->result);
2063 coord_dst.writemask = WRITEMASK_XYZW;
2064 }
2065
2066 if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
2067 /* Mesa IR stores lod or lod bias in the last channel of the coords. */
2068 coord_dst.writemask = WRITEMASK_W;
2069 emit(ir, OPCODE_MOV, coord_dst, lod_info);
2070 coord_dst.writemask = WRITEMASK_XYZW;
2071 }
2072
2073 if (opcode == OPCODE_TXD)
2074 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2075 else
2076 inst = emit(ir, opcode, result_dst, coord);
2077
2078 if (ir->shadow_comparator)
2079 inst->tex_shadow = GL_TRUE;
2080
2081 inst->sampler = get_sampler_uniform_value(ir->sampler, shader_program,
2082 prog);
2083
2084 switch (sampler_type->sampler_dimensionality) {
2085 case GLSL_SAMPLER_DIM_1D:
2086 inst->tex_target = (sampler_type->sampler_array)
2087 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2088 break;
2089 case GLSL_SAMPLER_DIM_2D:
2090 inst->tex_target = (sampler_type->sampler_array)
2091 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2092 break;
2093 case GLSL_SAMPLER_DIM_3D:
2094 inst->tex_target = TEXTURE_3D_INDEX;
2095 break;
2096 case GLSL_SAMPLER_DIM_CUBE:
2097 inst->tex_target = TEXTURE_CUBE_INDEX;
2098 break;
2099 case GLSL_SAMPLER_DIM_RECT:
2100 inst->tex_target = TEXTURE_RECT_INDEX;
2101 break;
2102 case GLSL_SAMPLER_DIM_BUF:
2103 assert(!"FINISHME: Implement ARB_texture_buffer_object");
2104 break;
2105 case GLSL_SAMPLER_DIM_EXTERNAL:
2106 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2107 break;
2108 default:
2109 assert(!"Should not get here.");
2110 }
2111
2112 this->result = result_src;
2113 }
2114
2115 void
2116 ir_to_mesa_visitor::visit(ir_return *ir)
2117 {
2118 /* Non-void functions should have been inlined. We may still emit RETs
2119 * from main() unless the EmitNoMainReturn option is set.
2120 */
2121 assert(!ir->get_value());
2122 emit(ir, OPCODE_RET);
2123 }
2124
2125 void
2126 ir_to_mesa_visitor::visit(ir_discard *ir)
2127 {
2128 if (!ir->condition)
2129 ir->condition = new(mem_ctx) ir_constant(true);
2130
2131 ir->condition->accept(this);
2132 this->result.negate = ~this->result.negate;
2133 emit(ir, OPCODE_KIL, undef_dst, this->result);
2134 }
2135
2136 void
2137 ir_to_mesa_visitor::visit(ir_demote *ir)
2138 {
2139 assert(!"demote statement unsupported");
2140 }
2141
2142 void
2143 ir_to_mesa_visitor::visit(ir_if *ir)
2144 {
2145 ir_to_mesa_instruction *if_inst;
2146
2147 ir->condition->accept(this);
2148 assert(this->result.file != PROGRAM_UNDEFINED);
2149
2150 if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);
2151
2152 this->instructions.push_tail(if_inst);
2153
2154 visit_exec_list(&ir->then_instructions, this);
2155
2156 if (!ir->else_instructions.is_empty()) {
2157 emit(ir->condition, OPCODE_ELSE);
2158 visit_exec_list(&ir->else_instructions, this);
2159 }
2160
2161 emit(ir->condition, OPCODE_ENDIF);
2162 }
2163
2164 void
2165 ir_to_mesa_visitor::visit(ir_emit_vertex *)
2166 {
2167 assert(!"Geometry shaders not supported.");
2168 }
2169
2170 void
2171 ir_to_mesa_visitor::visit(ir_end_primitive *)
2172 {
2173 assert(!"Geometry shaders not supported.");
2174 }
2175
2176 void
2177 ir_to_mesa_visitor::visit(ir_barrier *)
2178 {
2179 unreachable("GLSL barrier() not supported.");
2180 }
2181
2182 ir_to_mesa_visitor::ir_to_mesa_visitor()
2183 {
2184 result.file = PROGRAM_UNDEFINED;
2185 next_temp = 1;
2186 next_signature_id = 1;
2187 current_function = NULL;
2188 mem_ctx = ralloc_context(NULL);
2189 }
2190
2191 ir_to_mesa_visitor::~ir_to_mesa_visitor()
2192 {
2193 ralloc_free(mem_ctx);
2194 }
2195
2196 static struct prog_src_register
2197 mesa_src_reg_from_ir_src_reg(src_reg reg)
2198 {
2199 struct prog_src_register mesa_reg;
2200
2201 mesa_reg.File = reg.file;
2202 assert(reg.index < (1 << INST_INDEX_BITS));
2203 mesa_reg.Index = reg.index;
2204 mesa_reg.Swizzle = reg.swizzle;
2205 mesa_reg.RelAddr = reg.reladdr != NULL;
2206 mesa_reg.Negate = reg.negate;
2207
2208 return mesa_reg;
2209 }
2210
2211 static void
2212 set_branchtargets(ir_to_mesa_visitor *v,
2213 struct prog_instruction *mesa_instructions,
2214 int num_instructions)
2215 {
2216 int if_count = 0, loop_count = 0;
2217 int *if_stack, *loop_stack;
2218 int if_stack_pos = 0, loop_stack_pos = 0;
2219 int i, j;
2220
2221 for (i = 0; i < num_instructions; i++) {
2222 switch (mesa_instructions[i].Opcode) {
2223 case OPCODE_IF:
2224 if_count++;
2225 break;
2226 case OPCODE_BGNLOOP:
2227 loop_count++;
2228 break;
2229 case OPCODE_BRK:
2230 case OPCODE_CONT:
2231 mesa_instructions[i].BranchTarget = -1;
2232 break;
2233 default:
2234 break;
2235 }
2236 }
2237
2238 if_stack = rzalloc_array(v->mem_ctx, int, if_count);
2239 loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);
2240
2241 for (i = 0; i < num_instructions; i++) {
2242 switch (mesa_instructions[i].Opcode) {
2243 case OPCODE_IF:
2244 if_stack[if_stack_pos] = i;
2245 if_stack_pos++;
2246 break;
2247 case OPCODE_ELSE:
2248 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2249 if_stack[if_stack_pos - 1] = i;
2250 break;
2251 case OPCODE_ENDIF:
2252 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2253 if_stack_pos--;
2254 break;
2255 case OPCODE_BGNLOOP:
2256 loop_stack[loop_stack_pos] = i;
2257 loop_stack_pos++;
2258 break;
2259 case OPCODE_ENDLOOP:
2260 loop_stack_pos--;
2261 /* Rewrite any breaks/conts at this nesting level (haven't
2262 * already had a BranchTarget assigned) to point to the end
2263 * of the loop.
2264 */
2265 for (j = loop_stack[loop_stack_pos]; j < i; j++) {
2266 if (mesa_instructions[j].Opcode == OPCODE_BRK ||
2267 mesa_instructions[j].Opcode == OPCODE_CONT) {
2268 if (mesa_instructions[j].BranchTarget == -1) {
2269 mesa_instructions[j].BranchTarget = i;
2270 }
2271 }
2272 }
2273 /* The loop ends point at each other. */
2274 mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
2275 mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
2276 break;
2277 case OPCODE_CAL:
2278 foreach_in_list(function_entry, entry, &v->function_signatures) {
2279 if (entry->sig_id == mesa_instructions[i].BranchTarget) {
2280 mesa_instructions[i].BranchTarget = entry->inst;
2281 break;
2282 }
2283 }
2284 break;
2285 default:
2286 break;
2287 }
2288 }
2289 }
2290
2291 static void
2292 print_program(struct prog_instruction *mesa_instructions,
2293 ir_instruction **mesa_instruction_annotation,
2294 int num_instructions)
2295 {
2296 ir_instruction *last_ir = NULL;
2297 int i;
2298 int indent = 0;
2299
2300 for (i = 0; i < num_instructions; i++) {
2301 struct prog_instruction *mesa_inst = mesa_instructions + i;
2302 ir_instruction *ir = mesa_instruction_annotation[i];
2303
2304 fprintf(stdout, "%3d: ", i);
2305
2306 if (last_ir != ir && ir) {
2307 int j;
2308
2309 for (j = 0; j < indent; j++) {
2310 fprintf(stdout, " ");
2311 }
2312 ir->print();
2313 printf("\n");
2314 last_ir = ir;
2315
2316 fprintf(stdout, " "); /* line number spacing. */
2317 }
2318
2319 indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
2320 PROG_PRINT_DEBUG, NULL);
2321 }
2322 }
2323
2324 namespace {
2325
2326 class add_uniform_to_shader : public program_resource_visitor {
2327 public:
2328 add_uniform_to_shader(struct gl_context *ctx,
2329 struct gl_shader_program *shader_program,
2330 struct gl_program_parameter_list *params)
2331 : ctx(ctx), shader_program(shader_program), params(params), idx(-1)
2332 {
2333 /* empty */
2334 }
2335
2336 void process(ir_variable *var)
2337 {
2338 this->idx = -1;
2339 this->var = var;
2340 this->program_resource_visitor::process(var,
2341 ctx->Const.UseSTD430AsDefaultPacking);
2342 var->data.param_index = this->idx;
2343 }
2344
2345 private:
2346 virtual void visit_field(const glsl_type *type, const char *name,
2347 bool row_major, const glsl_type *record_type,
2348 const enum glsl_interface_packing packing,
2349 bool last_field);
2350
2351 struct gl_context *ctx;
2352 struct gl_shader_program *shader_program;
2353 struct gl_program_parameter_list *params;
2354 int idx;
2355 ir_variable *var;
2356 };
2357
2358 } /* anonymous namespace */
2359
2360 void
2361 add_uniform_to_shader::visit_field(const glsl_type *type, const char *name,
2362 bool /* row_major */,
2363 const glsl_type * /* record_type */,
2364 const enum glsl_interface_packing,
2365 bool /* last_field */)
2366 {
2367 /* opaque types don't use storage in the param list unless they are
2368 * bindless samplers or images.
2369 */
2370 if (type->contains_opaque() && !var->data.bindless)
2371 return;
2372
2373 /* Add the uniform to the param list */
2374 assert(_mesa_lookup_parameter_index(params, name) < 0);
2375 int index = _mesa_lookup_parameter_index(params, name);
2376
2377 unsigned num_params = type->arrays_of_arrays_size();
2378 num_params = MAX2(num_params, 1);
2379 num_params *= type->without_array()->matrix_columns;
2380
2381 bool is_dual_slot = type->without_array()->is_dual_slot();
2382 if (is_dual_slot)
2383 num_params *= 2;
2384
2385 _mesa_reserve_parameter_storage(params, num_params);
2386 index = params->NumParameters;
2387
2388 if (ctx->Const.PackedDriverUniformStorage) {
2389 for (unsigned i = 0; i < num_params; i++) {
2390 unsigned dmul = type->without_array()->is_64bit() ? 2 : 1;
2391 unsigned comps = type->without_array()->vector_elements * dmul;
2392 if (is_dual_slot) {
2393 if (i & 0x1)
2394 comps -= 4;
2395 else
2396 comps = 4;
2397 }
2398
2399 _mesa_add_parameter(params, PROGRAM_UNIFORM, name, comps,
2400 type->gl_type, NULL, NULL, false);
2401 }
2402 } else {
2403 for (unsigned i = 0; i < num_params; i++) {
2404 _mesa_add_parameter(params, PROGRAM_UNIFORM, name, 4,
2405 type->gl_type, NULL, NULL, true);
2406 }
2407 }
2408
2409 /* The first part of the uniform that's processed determines the base
2410 * location of the whole uniform (for structures).
2411 */
2412 if (this->idx < 0)
2413 this->idx = index;
2414
2415 /* Each Parameter will hold the index to the backing uniform storage.
2416 * This avoids relying on names to match parameters and uniform
2417 * storages later when associating uniform storage.
2418 */
2419 unsigned location = -1;
2420 ASSERTED const bool found =
2421 shader_program->UniformHash->get(location, params->Parameters[index].Name);
2422 assert(found);
2423
2424 for (unsigned i = 0; i < num_params; i++) {
2425 struct gl_program_parameter *param = &params->Parameters[index + i];
2426 param->UniformStorageIndex = location;
2427 param->MainUniformStorageIndex = params->Parameters[this->idx].UniformStorageIndex;
2428 }
2429 }
2430
2431 /**
2432 * Generate the program parameters list for the user uniforms in a shader
2433 *
2434 * \param shader_program Linked shader program. This is only used to
2435 * emit possible link errors to the info log.
2436 * \param sh Shader whose uniforms are to be processed.
2437 * \param params Parameter list to be filled in.
2438 */
2439 void
2440 _mesa_generate_parameters_list_for_uniforms(struct gl_context *ctx,
2441 struct gl_shader_program
2442 *shader_program,
2443 struct gl_linked_shader *sh,
2444 struct gl_program_parameter_list
2445 *params)
2446 {
2447 add_uniform_to_shader add(ctx, shader_program, params);
2448
2449 foreach_in_list(ir_instruction, node, sh->ir) {
2450 ir_variable *var = node->as_variable();
2451
2452 if ((var == NULL) || (var->data.mode != ir_var_uniform)
2453 || var->is_in_buffer_block() || (strncmp(var->name, "gl_", 3) == 0))
2454 continue;
2455
2456 add.process(var);
2457 }
2458 }
2459
2460 void
2461 _mesa_associate_uniform_storage(struct gl_context *ctx,
2462 struct gl_shader_program *shader_program,
2463 struct gl_program *prog)
2464 {
2465 struct gl_program_parameter_list *params = prog->Parameters;
2466 gl_shader_stage shader_type = prog->info.stage;
2467
2468 /* After adding each uniform to the parameter list, connect the storage for
2469 * the parameter with the tracking structure used by the API for the
2470 * uniform.
2471 */
2472 unsigned last_location = unsigned(~0);
2473 for (unsigned i = 0; i < params->NumParameters; i++) {
2474 if (params->Parameters[i].Type != PROGRAM_UNIFORM)
2475 continue;
2476
2477 unsigned location = params->Parameters[i].UniformStorageIndex;
2478
2479 struct gl_uniform_storage *storage =
2480 &shader_program->data->UniformStorage[location];
2481
2482 /* Do not associate any uniform storage to built-in uniforms */
2483 if (storage->builtin)
2484 continue;
2485
2486 if (location != last_location) {
2487 enum gl_uniform_driver_format format = uniform_native;
2488 unsigned columns = 0;
2489
2490 int dmul;
2491 if (ctx->Const.PackedDriverUniformStorage && !prog->is_arb_asm) {
2492 dmul = storage->type->vector_elements * sizeof(float);
2493 } else {
2494 dmul = 4 * sizeof(float);
2495 }
2496
2497 switch (storage->type->base_type) {
2498 case GLSL_TYPE_UINT64:
2499 if (storage->type->vector_elements > 2)
2500 dmul *= 2;
2501 /* fallthrough */
2502 case GLSL_TYPE_UINT:
2503 case GLSL_TYPE_UINT16:
2504 case GLSL_TYPE_UINT8:
2505 assert(ctx->Const.NativeIntegers);
2506 format = uniform_native;
2507 columns = 1;
2508 break;
2509 case GLSL_TYPE_INT64:
2510 if (storage->type->vector_elements > 2)
2511 dmul *= 2;
2512 /* fallthrough */
2513 case GLSL_TYPE_INT:
2514 case GLSL_TYPE_INT16:
2515 case GLSL_TYPE_INT8:
2516 format =
2517 (ctx->Const.NativeIntegers) ? uniform_native : uniform_int_float;
2518 columns = 1;
2519 break;
2520 case GLSL_TYPE_DOUBLE:
2521 if (storage->type->vector_elements > 2)
2522 dmul *= 2;
2523 /* fallthrough */
2524 case GLSL_TYPE_FLOAT:
2525 case GLSL_TYPE_FLOAT16:
2526 format = uniform_native;
2527 columns = storage->type->matrix_columns;
2528 break;
2529 case GLSL_TYPE_BOOL:
2530 format = uniform_native;
2531 columns = 1;
2532 break;
2533 case GLSL_TYPE_SAMPLER:
2534 case GLSL_TYPE_IMAGE:
2535 case GLSL_TYPE_SUBROUTINE:
2536 format = uniform_native;
2537 columns = 1;
2538 break;
2539 case GLSL_TYPE_ATOMIC_UINT:
2540 case GLSL_TYPE_ARRAY:
2541 case GLSL_TYPE_VOID:
2542 case GLSL_TYPE_STRUCT:
2543 case GLSL_TYPE_ERROR:
2544 case GLSL_TYPE_INTERFACE:
2545 case GLSL_TYPE_FUNCTION:
2546 assert(!"Should not get here.");
2547 break;
2548 }
2549
2550 unsigned pvo = params->ParameterValueOffset[i];
2551 _mesa_uniform_attach_driver_storage(storage, dmul * columns, dmul,
2552 format,
2553 &params->ParameterValues[pvo]);
2554
2555 /* When a bindless sampler/image is bound to a texture/image unit, we
2556 * have to overwrite the constant value by the resident handle
2557 * directly in the constant buffer before the next draw. One solution
2558 * is to keep track a pointer to the base of the data.
2559 */
2560 if (storage->is_bindless && (prog->sh.NumBindlessSamplers ||
2561 prog->sh.NumBindlessImages)) {
2562 unsigned array_elements = MAX2(1, storage->array_elements);
2563
2564 for (unsigned j = 0; j < array_elements; ++j) {
2565 unsigned unit = storage->opaque[shader_type].index + j;
2566
2567 if (storage->type->without_array()->is_sampler()) {
2568 assert(unit >= 0 && unit < prog->sh.NumBindlessSamplers);
2569 prog->sh.BindlessSamplers[unit].data =
2570 &params->ParameterValues[pvo] + 4 * j;
2571 } else if (storage->type->without_array()->is_image()) {
2572 assert(unit >= 0 && unit < prog->sh.NumBindlessImages);
2573 prog->sh.BindlessImages[unit].data =
2574 &params->ParameterValues[pvo] + 4 * j;
2575 }
2576 }
2577 }
2578
2579 /* After attaching the driver's storage to the uniform, propagate any
2580 * data from the linker's backing store. This will cause values from
2581 * initializers in the source code to be copied over.
2582 */
2583 unsigned array_elements = MAX2(1, storage->array_elements);
2584 if (ctx->Const.PackedDriverUniformStorage && !prog->is_arb_asm &&
2585 (storage->is_bindless || !storage->type->contains_opaque())) {
2586 const int dmul = storage->type->is_64bit() ? 2 : 1;
2587 const unsigned components =
2588 storage->type->vector_elements *
2589 storage->type->matrix_columns;
2590
2591 for (unsigned s = 0; s < storage->num_driver_storage; s++) {
2592 gl_constant_value *uni_storage = (gl_constant_value *)
2593 storage->driver_storage[s].data;
2594 memcpy(uni_storage, storage->storage,
2595 sizeof(storage->storage[0]) * components *
2596 array_elements * dmul);
2597 }
2598 } else {
2599 _mesa_propagate_uniforms_to_driver_storage(storage, 0,
2600 array_elements);
2601 }
2602
2603 last_location = location;
2604 }
2605 }
2606 }
2607
2608 /*
2609 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
2610 * channels for copy propagation and updates following instructions to
2611 * use the original versions.
2612 *
2613 * The ir_to_mesa_visitor lazily produces code assuming that this pass
2614 * will occur. As an example, a TXP production before this pass:
2615 *
2616 * 0: MOV TEMP[1], INPUT[4].xyyy;
2617 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2618 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
2619 *
2620 * and after:
2621 *
2622 * 0: MOV TEMP[1], INPUT[4].xyyy;
2623 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2624 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
2625 *
2626 * which allows for dead code elimination on TEMP[1]'s writes.
2627 */
2628 void
2629 ir_to_mesa_visitor::copy_propagate(void)
2630 {
2631 ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
2632 ir_to_mesa_instruction *,
2633 this->next_temp * 4);
2634 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
2635 int level = 0;
2636
2637 foreach_in_list(ir_to_mesa_instruction, inst, &this->instructions) {
2638 assert(inst->dst.file != PROGRAM_TEMPORARY
2639 || inst->dst.index < this->next_temp);
2640
2641 /* First, do any copy propagation possible into the src regs. */
2642 for (int r = 0; r < 3; r++) {
2643 ir_to_mesa_instruction *first = NULL;
2644 bool good = true;
2645 int acp_base = inst->src[r].index * 4;
2646
2647 if (inst->src[r].file != PROGRAM_TEMPORARY ||
2648 inst->src[r].reladdr)
2649 continue;
2650
2651 /* See if we can find entries in the ACP consisting of MOVs
2652 * from the same src register for all the swizzled channels
2653 * of this src register reference.
2654 */
2655 for (int i = 0; i < 4; i++) {
2656 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2657 ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];
2658
2659 if (!copy_chan) {
2660 good = false;
2661 break;
2662 }
2663
2664 assert(acp_level[acp_base + src_chan] <= level);
2665
2666 if (!first) {
2667 first = copy_chan;
2668 } else {
2669 if (first->src[0].file != copy_chan->src[0].file ||
2670 first->src[0].index != copy_chan->src[0].index) {
2671 good = false;
2672 break;
2673 }
2674 }
2675 }
2676
2677 if (good) {
2678 /* We've now validated that we can copy-propagate to
2679 * replace this src register reference. Do it.
2680 */
2681 inst->src[r].file = first->src[0].file;
2682 inst->src[r].index = first->src[0].index;
2683
2684 int swizzle = 0;
2685 for (int i = 0; i < 4; i++) {
2686 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2687 ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
2688 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
2689 (3 * i));
2690 }
2691 inst->src[r].swizzle = swizzle;
2692 }
2693 }
2694
2695 switch (inst->op) {
2696 case OPCODE_BGNLOOP:
2697 case OPCODE_ENDLOOP:
2698 /* End of a basic block, clear the ACP entirely. */
2699 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2700 break;
2701
2702 case OPCODE_IF:
2703 ++level;
2704 break;
2705
2706 case OPCODE_ENDIF:
2707 case OPCODE_ELSE:
2708 /* Clear all channels written inside the block from the ACP, but
2709 * leaving those that were not touched.
2710 */
2711 for (int r = 0; r < this->next_temp; r++) {
2712 for (int c = 0; c < 4; c++) {
2713 if (!acp[4 * r + c])
2714 continue;
2715
2716 if (acp_level[4 * r + c] >= level)
2717 acp[4 * r + c] = NULL;
2718 }
2719 }
2720 if (inst->op == OPCODE_ENDIF)
2721 --level;
2722 break;
2723
2724 default:
2725 /* Continuing the block, clear any written channels from
2726 * the ACP.
2727 */
2728 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
2729 /* Any temporary might be written, so no copy propagation
2730 * across this instruction.
2731 */
2732 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2733 } else if (inst->dst.file == PROGRAM_OUTPUT &&
2734 inst->dst.reladdr) {
2735 /* Any output might be written, so no copy propagation
2736 * from outputs across this instruction.
2737 */
2738 for (int r = 0; r < this->next_temp; r++) {
2739 for (int c = 0; c < 4; c++) {
2740 if (!acp[4 * r + c])
2741 continue;
2742
2743 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
2744 acp[4 * r + c] = NULL;
2745 }
2746 }
2747 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
2748 inst->dst.file == PROGRAM_OUTPUT) {
2749 /* Clear where it's used as dst. */
2750 if (inst->dst.file == PROGRAM_TEMPORARY) {
2751 for (int c = 0; c < 4; c++) {
2752 if (inst->dst.writemask & (1 << c)) {
2753 acp[4 * inst->dst.index + c] = NULL;
2754 }
2755 }
2756 }
2757
2758 /* Clear where it's used as src. */
2759 for (int r = 0; r < this->next_temp; r++) {
2760 for (int c = 0; c < 4; c++) {
2761 if (!acp[4 * r + c])
2762 continue;
2763
2764 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
2765
2766 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
2767 acp[4 * r + c]->src[0].index == inst->dst.index &&
2768 inst->dst.writemask & (1 << src_chan))
2769 {
2770 acp[4 * r + c] = NULL;
2771 }
2772 }
2773 }
2774 }
2775 break;
2776 }
2777
2778 /* If this is a copy, add it to the ACP. */
2779 if (inst->op == OPCODE_MOV &&
2780 inst->dst.file == PROGRAM_TEMPORARY &&
2781 !(inst->dst.file == inst->src[0].file &&
2782 inst->dst.index == inst->src[0].index) &&
2783 !inst->dst.reladdr &&
2784 !inst->saturate &&
2785 !inst->src[0].reladdr &&
2786 !inst->src[0].negate) {
2787 for (int i = 0; i < 4; i++) {
2788 if (inst->dst.writemask & (1 << i)) {
2789 acp[4 * inst->dst.index + i] = inst;
2790 acp_level[4 * inst->dst.index + i] = level;
2791 }
2792 }
2793 }
2794 }
2795
2796 ralloc_free(acp_level);
2797 ralloc_free(acp);
2798 }
2799
2800
2801 /**
2802 * Convert a shader's GLSL IR into a Mesa gl_program.
2803 */
2804 static struct gl_program *
2805 get_mesa_program(struct gl_context *ctx,
2806 struct gl_shader_program *shader_program,
2807 struct gl_linked_shader *shader)
2808 {
2809 ir_to_mesa_visitor v;
2810 struct prog_instruction *mesa_instructions, *mesa_inst;
2811 ir_instruction **mesa_instruction_annotation;
2812 int i;
2813 struct gl_program *prog;
2814 GLenum target = _mesa_shader_stage_to_program(shader->Stage);
2815 const char *target_string = _mesa_shader_stage_to_string(shader->Stage);
2816 struct gl_shader_compiler_options *options =
2817 &ctx->Const.ShaderCompilerOptions[shader->Stage];
2818
2819 validate_ir_tree(shader->ir);
2820
2821 prog = shader->Program;
2822 prog->Parameters = _mesa_new_parameter_list();
2823 v.ctx = ctx;
2824 v.prog = prog;
2825 v.shader_program = shader_program;
2826 v.options = options;
2827
2828 _mesa_generate_parameters_list_for_uniforms(ctx, shader_program, shader,
2829 prog->Parameters);
2830
2831 /* Emit Mesa IR for main(). */
2832 visit_exec_list(shader->ir, &v);
2833 v.emit(NULL, OPCODE_END);
2834
2835 prog->arb.NumTemporaries = v.next_temp;
2836
2837 unsigned num_instructions = v.instructions.length();
2838
2839 mesa_instructions = rzalloc_array(prog, struct prog_instruction,
2840 num_instructions);
2841 mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
2842 num_instructions);
2843
2844 v.copy_propagate();
2845
2846 /* Convert ir_mesa_instructions into prog_instructions.
2847 */
2848 mesa_inst = mesa_instructions;
2849 i = 0;
2850 foreach_in_list(const ir_to_mesa_instruction, inst, &v.instructions) {
2851 mesa_inst->Opcode = inst->op;
2852 if (inst->saturate)
2853 mesa_inst->Saturate = GL_TRUE;
2854 mesa_inst->DstReg.File = inst->dst.file;
2855 mesa_inst->DstReg.Index = inst->dst.index;
2856 mesa_inst->DstReg.WriteMask = inst->dst.writemask;
2857 mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
2858 mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
2859 mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
2860 mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
2861 mesa_inst->TexSrcUnit = inst->sampler;
2862 mesa_inst->TexSrcTarget = inst->tex_target;
2863 mesa_inst->TexShadow = inst->tex_shadow;
2864 mesa_instruction_annotation[i] = inst->ir;
2865
2866 /* Set IndirectRegisterFiles. */
2867 if (mesa_inst->DstReg.RelAddr)
2868 prog->arb.IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;
2869
2870 /* Update program's bitmask of indirectly accessed register files */
2871 for (unsigned src = 0; src < 3; src++)
2872 if (mesa_inst->SrcReg[src].RelAddr)
2873 prog->arb.IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;
2874
2875 switch (mesa_inst->Opcode) {
2876 case OPCODE_IF:
2877 if (options->MaxIfDepth == 0) {
2878 linker_warning(shader_program,
2879 "Couldn't flatten if-statement. "
2880 "This will likely result in software "
2881 "rasterization.\n");
2882 }
2883 break;
2884 case OPCODE_BGNLOOP:
2885 if (options->EmitNoLoops) {
2886 linker_warning(shader_program,
2887 "Couldn't unroll loop. "
2888 "This will likely result in software "
2889 "rasterization.\n");
2890 }
2891 break;
2892 case OPCODE_CONT:
2893 if (options->EmitNoCont) {
2894 linker_warning(shader_program,
2895 "Couldn't lower continue-statement. "
2896 "This will likely result in software "
2897 "rasterization.\n");
2898 }
2899 break;
2900 case OPCODE_ARL:
2901 prog->arb.NumAddressRegs = 1;
2902 break;
2903 default:
2904 break;
2905 }
2906
2907 mesa_inst++;
2908 i++;
2909
2910 if (!shader_program->data->LinkStatus)
2911 break;
2912 }
2913
2914 if (!shader_program->data->LinkStatus) {
2915 goto fail_exit;
2916 }
2917
2918 set_branchtargets(&v, mesa_instructions, num_instructions);
2919
2920 if (ctx->_Shader->Flags & GLSL_DUMP) {
2921 fprintf(stderr, "\n");
2922 fprintf(stderr, "GLSL IR for linked %s program %d:\n", target_string,
2923 shader_program->Name);
2924 _mesa_print_ir(stderr, shader->ir, NULL);
2925 fprintf(stderr, "\n");
2926 fprintf(stderr, "\n");
2927 fprintf(stderr, "Mesa IR for linked %s program %d:\n", target_string,
2928 shader_program->Name);
2929 print_program(mesa_instructions, mesa_instruction_annotation,
2930 num_instructions);
2931 fflush(stderr);
2932 }
2933
2934 prog->arb.Instructions = mesa_instructions;
2935 prog->arb.NumInstructions = num_instructions;
2936
2937 /* Setting this to NULL prevents a possible double free in the fail_exit
2938 * path (far below).
2939 */
2940 mesa_instructions = NULL;
2941
2942 do_set_program_inouts(shader->ir, prog, shader->Stage);
2943
2944 prog->ShadowSamplers = shader->shadow_samplers;
2945 prog->ExternalSamplersUsed = gl_external_samplers(prog);
2946 _mesa_update_shader_textures_used(shader_program, prog);
2947
2948 /* Set the gl_FragDepth layout. */
2949 if (target == GL_FRAGMENT_PROGRAM_ARB) {
2950 prog->info.fs.depth_layout = shader_program->FragDepthLayout;
2951 }
2952
2953 _mesa_optimize_program(prog, prog);
2954
2955 /* This has to be done last. Any operation that can cause
2956 * prog->ParameterValues to get reallocated (e.g., anything that adds a
2957 * program constant) has to happen before creating this linkage.
2958 */
2959 _mesa_associate_uniform_storage(ctx, shader_program, prog);
2960 if (!shader_program->data->LinkStatus) {
2961 goto fail_exit;
2962 }
2963
2964 return prog;
2965
2966 fail_exit:
2967 ralloc_free(mesa_instructions);
2968 _mesa_reference_program(ctx, &shader->Program, NULL);
2969 return NULL;
2970 }
2971
2972 extern "C" {
2973
2974 /**
2975 * Link a shader.
2976 * Called via ctx->Driver.LinkShader()
2977 * This actually involves converting GLSL IR into Mesa gl_programs with
2978 * code lowering and other optimizations.
2979 */
2980 GLboolean
2981 _mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
2982 {
2983 assert(prog->data->LinkStatus);
2984
2985 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2986 if (prog->_LinkedShaders[i] == NULL)
2987 continue;
2988
2989 bool progress;
2990 exec_list *ir = prog->_LinkedShaders[i]->ir;
2991 const struct gl_shader_compiler_options *options =
2992 &ctx->Const.ShaderCompilerOptions[prog->_LinkedShaders[i]->Stage];
2993
2994 do {
2995 progress = false;
2996
2997 /* Lowering */
2998 do_mat_op_to_vec(ir);
2999 lower_instructions(ir, (MOD_TO_FLOOR | DIV_TO_MUL_RCP | EXP_TO_EXP2
3000 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
3001 | MUL64_TO_MUL_AND_MUL_HIGH
3002 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
3003
3004 progress = do_common_optimization(ir, true, true,
3005 options, ctx->Const.NativeIntegers)
3006 || progress;
3007
3008 progress = lower_quadop_vector(ir, true) || progress;
3009
3010 if (options->MaxIfDepth == 0)
3011 progress = lower_discard(ir) || progress;
3012
3013 progress = lower_if_to_cond_assign((gl_shader_stage)i, ir,
3014 options->MaxIfDepth) || progress;
3015
3016 /* If there are forms of indirect addressing that the driver
3017 * cannot handle, perform the lowering pass.
3018 */
3019 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
3020 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
3021 progress =
3022 lower_variable_index_to_cond_assign(prog->_LinkedShaders[i]->Stage, ir,
3023 options->EmitNoIndirectInput,
3024 options->EmitNoIndirectOutput,
3025 options->EmitNoIndirectTemp,
3026 options->EmitNoIndirectUniform)
3027 || progress;
3028
3029 progress = do_vec_index_to_cond_assign(ir) || progress;
3030 progress = lower_vector_insert(ir, true) || progress;
3031 } while (progress);
3032
3033 validate_ir_tree(ir);
3034 }
3035
3036 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3037 struct gl_program *linked_prog;
3038
3039 if (prog->_LinkedShaders[i] == NULL)
3040 continue;
3041
3042 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
3043
3044 if (linked_prog) {
3045 _mesa_copy_linked_program_data(prog, prog->_LinkedShaders[i]);
3046
3047 if (!ctx->Driver.ProgramStringNotify(ctx,
3048 _mesa_shader_stage_to_program(i),
3049 linked_prog)) {
3050 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
3051 NULL);
3052 return GL_FALSE;
3053 }
3054 }
3055 }
3056
3057 build_program_resource_list(ctx, prog, false);
3058 return prog->data->LinkStatus;
3059 }
3060
3061 /**
3062 * Link a GLSL shader program. Called via glLinkProgram().
3063 */
3064 void
3065 _mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3066 {
3067 unsigned int i;
3068 bool spirv = false;
3069
3070 _mesa_clear_shader_program_data(ctx, prog);
3071
3072 prog->data = _mesa_create_shader_program_data();
3073
3074 prog->data->LinkStatus = LINKING_SUCCESS;
3075
3076 for (i = 0; i < prog->NumShaders; i++) {
3077 if (!prog->Shaders[i]->CompileStatus) {
3078 linker_error(prog, "linking with uncompiled/unspecialized shader");
3079 }
3080
3081 if (!i) {
3082 spirv = (prog->Shaders[i]->spirv_data != NULL);
3083 } else if (spirv && !prog->Shaders[i]->spirv_data) {
3084 /* The GL_ARB_gl_spirv spec adds a new bullet point to the list of
3085 * reasons LinkProgram can fail:
3086 *
3087 * "All the shader objects attached to <program> do not have the
3088 * same value for the SPIR_V_BINARY_ARB state."
3089 */
3090 linker_error(prog,
3091 "not all attached shaders have the same "
3092 "SPIR_V_BINARY_ARB state");
3093 }
3094 }
3095 prog->data->spirv = spirv;
3096
3097 if (prog->data->LinkStatus) {
3098 if (!spirv)
3099 link_shaders(ctx, prog);
3100 else
3101 _mesa_spirv_link_shaders(ctx, prog);
3102 }
3103
3104 /* If LinkStatus is LINKING_SUCCESS, then reset sampler validated to true.
3105 * Validation happens via the LinkShader call below. If LinkStatus is
3106 * LINKING_SKIPPED, then SamplersValidated will have been restored from the
3107 * shader cache.
3108 */
3109 if (prog->data->LinkStatus == LINKING_SUCCESS) {
3110 prog->SamplersValidated = GL_TRUE;
3111 }
3112
3113 if (prog->data->LinkStatus && !ctx->Driver.LinkShader(ctx, prog)) {
3114 prog->data->LinkStatus = LINKING_FAILURE;
3115 }
3116
3117 if (prog->data->LinkStatus != LINKING_FAILURE)
3118 _mesa_create_program_resource_hash(prog);
3119
3120 /* Return early if we are loading the shader from on-disk cache */
3121 if (prog->data->LinkStatus == LINKING_SKIPPED)
3122 return;
3123
3124 if (ctx->_Shader->Flags & GLSL_DUMP) {
3125 if (!prog->data->LinkStatus) {
3126 fprintf(stderr, "GLSL shader program %d failed to link\n", prog->Name);
3127 }
3128
3129 if (prog->data->InfoLog && prog->data->InfoLog[0] != 0) {
3130 fprintf(stderr, "GLSL shader program %d info log:\n", prog->Name);
3131 fprintf(stderr, "%s\n", prog->data->InfoLog);
3132 }
3133 }
3134
3135 #ifdef ENABLE_SHADER_CACHE
3136 if (prog->data->LinkStatus)
3137 shader_cache_write_program_metadata(ctx, prog);
3138 #endif
3139 }
3140
3141 } /* extern "C" */