nouveau: don't expose HEVC decoding support
[mesa.git] / src / mesa / program / ir_to_mesa.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
24 */
25
26 /**
27 * \file ir_to_mesa.cpp
28 *
29 * Translate GLSL IR to Mesa's gl_program representation.
30 */
31
32 #include <stdio.h>
33 #include "main/compiler.h"
34 #include "main/mtypes.h"
35 #include "main/shaderapi.h"
36 #include "main/shaderobj.h"
37 #include "main/uniforms.h"
38 #include "glsl/ast.h"
39 #include "glsl/ir.h"
40 #include "glsl/ir_expression_flattening.h"
41 #include "glsl/ir_visitor.h"
42 #include "glsl/ir_optimization.h"
43 #include "glsl/ir_uniform.h"
44 #include "glsl/glsl_parser_extras.h"
45 #include "glsl/nir/glsl_types.h"
46 #include "glsl/linker.h"
47 #include "glsl/program.h"
48 #include "program/hash_table.h"
49 #include "program/prog_instruction.h"
50 #include "program/prog_optimize.h"
51 #include "program/prog_print.h"
52 #include "program/program.h"
53 #include "program/prog_parameter.h"
54 #include "program/sampler.h"
55
56
57 static int swizzle_for_size(int size);
58
59 namespace {
60
61 class src_reg;
62 class dst_reg;
63
64 /**
65 * This struct is a corresponding struct to Mesa prog_src_register, with
66 * wider fields.
67 */
68 class src_reg {
69 public:
70 src_reg(gl_register_file file, int index, const glsl_type *type)
71 {
72 this->file = file;
73 this->index = index;
74 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
75 this->swizzle = swizzle_for_size(type->vector_elements);
76 else
77 this->swizzle = SWIZZLE_XYZW;
78 this->negate = 0;
79 this->reladdr = NULL;
80 }
81
82 src_reg()
83 {
84 this->file = PROGRAM_UNDEFINED;
85 this->index = 0;
86 this->swizzle = 0;
87 this->negate = 0;
88 this->reladdr = NULL;
89 }
90
91 explicit src_reg(dst_reg reg);
92
93 gl_register_file file; /**< PROGRAM_* from Mesa */
94 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
95 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
96 int negate; /**< NEGATE_XYZW mask from mesa */
97 /** Register index should be offset by the integer in this reg. */
98 src_reg *reladdr;
99 };
100
101 class dst_reg {
102 public:
103 dst_reg(gl_register_file file, int writemask)
104 {
105 this->file = file;
106 this->index = 0;
107 this->writemask = writemask;
108 this->cond_mask = COND_TR;
109 this->reladdr = NULL;
110 }
111
112 dst_reg()
113 {
114 this->file = PROGRAM_UNDEFINED;
115 this->index = 0;
116 this->writemask = 0;
117 this->cond_mask = COND_TR;
118 this->reladdr = NULL;
119 }
120
121 explicit dst_reg(src_reg reg);
122
123 gl_register_file file; /**< PROGRAM_* from Mesa */
124 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
125 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
126 GLuint cond_mask:4;
127 /** Register index should be offset by the integer in this reg. */
128 src_reg *reladdr;
129 };
130
131 } /* anonymous namespace */
132
133 src_reg::src_reg(dst_reg reg)
134 {
135 this->file = reg.file;
136 this->index = reg.index;
137 this->swizzle = SWIZZLE_XYZW;
138 this->negate = 0;
139 this->reladdr = reg.reladdr;
140 }
141
142 dst_reg::dst_reg(src_reg reg)
143 {
144 this->file = reg.file;
145 this->index = reg.index;
146 this->writemask = WRITEMASK_XYZW;
147 this->cond_mask = COND_TR;
148 this->reladdr = reg.reladdr;
149 }
150
151 namespace {
152
153 class ir_to_mesa_instruction : public exec_node {
154 public:
155 DECLARE_RALLOC_CXX_OPERATORS(ir_to_mesa_instruction)
156
157 enum prog_opcode op;
158 dst_reg dst;
159 src_reg src[3];
160 /** Pointer to the ir source this tree came from for debugging */
161 ir_instruction *ir;
162 GLboolean cond_update;
163 bool saturate;
164 int sampler; /**< sampler index */
165 int tex_target; /**< One of TEXTURE_*_INDEX */
166 GLboolean tex_shadow;
167 };
168
169 class variable_storage : public exec_node {
170 public:
171 variable_storage(ir_variable *var, gl_register_file file, int index)
172 : file(file), index(index), var(var)
173 {
174 /* empty */
175 }
176
177 gl_register_file file;
178 int index;
179 ir_variable *var; /* variable that maps to this, if any */
180 };
181
182 class function_entry : public exec_node {
183 public:
184 ir_function_signature *sig;
185
186 /**
187 * identifier of this function signature used by the program.
188 *
189 * At the point that Mesa instructions for function calls are
190 * generated, we don't know the address of the first instruction of
191 * the function body. So we make the BranchTarget that is called a
192 * small integer and rewrite them during set_branchtargets().
193 */
194 int sig_id;
195
196 /**
197 * Pointer to first instruction of the function body.
198 *
199 * Set during function body emits after main() is processed.
200 */
201 ir_to_mesa_instruction *bgn_inst;
202
203 /**
204 * Index of the first instruction of the function body in actual
205 * Mesa IR.
206 *
207 * Set after convertion from ir_to_mesa_instruction to prog_instruction.
208 */
209 int inst;
210
211 /** Storage for the return value. */
212 src_reg return_reg;
213 };
214
215 class ir_to_mesa_visitor : public ir_visitor {
216 public:
217 ir_to_mesa_visitor();
218 ~ir_to_mesa_visitor();
219
220 function_entry *current_function;
221
222 struct gl_context *ctx;
223 struct gl_program *prog;
224 struct gl_shader_program *shader_program;
225 struct gl_shader_compiler_options *options;
226
227 int next_temp;
228
229 variable_storage *find_variable_storage(const ir_variable *var);
230
231 src_reg get_temp(const glsl_type *type);
232 void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);
233
234 src_reg src_reg_for_float(float val);
235
236 /**
237 * \name Visit methods
238 *
239 * As typical for the visitor pattern, there must be one \c visit method for
240 * each concrete subclass of \c ir_instruction. Virtual base classes within
241 * the hierarchy should not have \c visit methods.
242 */
243 /*@{*/
244 virtual void visit(ir_variable *);
245 virtual void visit(ir_loop *);
246 virtual void visit(ir_loop_jump *);
247 virtual void visit(ir_function_signature *);
248 virtual void visit(ir_function *);
249 virtual void visit(ir_expression *);
250 virtual void visit(ir_swizzle *);
251 virtual void visit(ir_dereference_variable *);
252 virtual void visit(ir_dereference_array *);
253 virtual void visit(ir_dereference_record *);
254 virtual void visit(ir_assignment *);
255 virtual void visit(ir_constant *);
256 virtual void visit(ir_call *);
257 virtual void visit(ir_return *);
258 virtual void visit(ir_discard *);
259 virtual void visit(ir_texture *);
260 virtual void visit(ir_if *);
261 virtual void visit(ir_emit_vertex *);
262 virtual void visit(ir_end_primitive *);
263 virtual void visit(ir_barrier *);
264 /*@}*/
265
266 src_reg result;
267
268 /** List of variable_storage */
269 exec_list variables;
270
271 /** List of function_entry */
272 exec_list function_signatures;
273 int next_signature_id;
274
275 /** List of ir_to_mesa_instruction */
276 exec_list instructions;
277
278 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);
279
280 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
281 dst_reg dst, src_reg src0);
282
283 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
284 dst_reg dst, src_reg src0, src_reg src1);
285
286 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
287 dst_reg dst,
288 src_reg src0, src_reg src1, src_reg src2);
289
290 /**
291 * Emit the correct dot-product instruction for the type of arguments
292 */
293 ir_to_mesa_instruction * emit_dp(ir_instruction *ir,
294 dst_reg dst,
295 src_reg src0,
296 src_reg src1,
297 unsigned elements);
298
299 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
300 dst_reg dst, src_reg src0);
301
302 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
303 dst_reg dst, src_reg src0, src_reg src1);
304
305 bool try_emit_mad(ir_expression *ir,
306 int mul_operand);
307 bool try_emit_mad_for_and_not(ir_expression *ir,
308 int mul_operand);
309
310 void emit_swz(ir_expression *ir);
311
312 bool process_move_condition(ir_rvalue *ir);
313
314 void copy_propagate(void);
315
316 void *mem_ctx;
317 };
318
319 } /* anonymous namespace */
320
321 static src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);
322
323 static dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);
324
325 static dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);
326
327 static int
328 swizzle_for_size(int size)
329 {
330 static const int size_swizzles[4] = {
331 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
332 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
333 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
334 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
335 };
336
337 assert((size >= 1) && (size <= 4));
338 return size_swizzles[size - 1];
339 }
340
341 ir_to_mesa_instruction *
342 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
343 dst_reg dst,
344 src_reg src0, src_reg src1, src_reg src2)
345 {
346 ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
347 int num_reladdr = 0;
348
349 /* If we have to do relative addressing, we want to load the ARL
350 * reg directly for one of the regs, and preload the other reladdr
351 * sources into temps.
352 */
353 num_reladdr += dst.reladdr != NULL;
354 num_reladdr += src0.reladdr != NULL;
355 num_reladdr += src1.reladdr != NULL;
356 num_reladdr += src2.reladdr != NULL;
357
358 reladdr_to_temp(ir, &src2, &num_reladdr);
359 reladdr_to_temp(ir, &src1, &num_reladdr);
360 reladdr_to_temp(ir, &src0, &num_reladdr);
361
362 if (dst.reladdr) {
363 emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
364 num_reladdr--;
365 }
366 assert(num_reladdr == 0);
367
368 inst->op = op;
369 inst->dst = dst;
370 inst->src[0] = src0;
371 inst->src[1] = src1;
372 inst->src[2] = src2;
373 inst->ir = ir;
374
375 this->instructions.push_tail(inst);
376
377 return inst;
378 }
379
380
381 ir_to_mesa_instruction *
382 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
383 dst_reg dst, src_reg src0, src_reg src1)
384 {
385 return emit(ir, op, dst, src0, src1, undef_src);
386 }
387
388 ir_to_mesa_instruction *
389 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
390 dst_reg dst, src_reg src0)
391 {
392 assert(dst.writemask != 0);
393 return emit(ir, op, dst, src0, undef_src, undef_src);
394 }
395
396 ir_to_mesa_instruction *
397 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
398 {
399 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
400 }
401
402 ir_to_mesa_instruction *
403 ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
404 dst_reg dst, src_reg src0, src_reg src1,
405 unsigned elements)
406 {
407 static const enum prog_opcode dot_opcodes[] = {
408 OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
409 };
410
411 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
412 }
413
414 /**
415 * Emits Mesa scalar opcodes to produce unique answers across channels.
416 *
417 * Some Mesa opcodes are scalar-only, like ARB_fp/vp. The src X
418 * channel determines the result across all channels. So to do a vec4
419 * of this operation, we want to emit a scalar per source channel used
420 * to produce dest channels.
421 */
422 void
423 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
424 dst_reg dst,
425 src_reg orig_src0, src_reg orig_src1)
426 {
427 int i, j;
428 int done_mask = ~dst.writemask;
429
430 /* Mesa RCP is a scalar operation splatting results to all channels,
431 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
432 * dst channels.
433 */
434 for (i = 0; i < 4; i++) {
435 GLuint this_mask = (1 << i);
436 ir_to_mesa_instruction *inst;
437 src_reg src0 = orig_src0;
438 src_reg src1 = orig_src1;
439
440 if (done_mask & this_mask)
441 continue;
442
443 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
444 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
445 for (j = i + 1; j < 4; j++) {
446 /* If there is another enabled component in the destination that is
447 * derived from the same inputs, generate its value on this pass as
448 * well.
449 */
450 if (!(done_mask & (1 << j)) &&
451 GET_SWZ(src0.swizzle, j) == src0_swiz &&
452 GET_SWZ(src1.swizzle, j) == src1_swiz) {
453 this_mask |= (1 << j);
454 }
455 }
456 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
457 src0_swiz, src0_swiz);
458 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
459 src1_swiz, src1_swiz);
460
461 inst = emit(ir, op, dst, src0, src1);
462 inst->dst.writemask = this_mask;
463 done_mask |= this_mask;
464 }
465 }
466
467 void
468 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
469 dst_reg dst, src_reg src0)
470 {
471 src_reg undef = undef_src;
472
473 undef.swizzle = SWIZZLE_XXXX;
474
475 emit_scalar(ir, op, dst, src0, undef);
476 }
477
478 src_reg
479 ir_to_mesa_visitor::src_reg_for_float(float val)
480 {
481 src_reg src(PROGRAM_CONSTANT, -1, NULL);
482
483 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
484 (const gl_constant_value *)&val, 1, &src.swizzle);
485
486 return src;
487 }
488
489 static int
490 type_size(const struct glsl_type *type)
491 {
492 unsigned int i;
493 int size;
494
495 switch (type->base_type) {
496 case GLSL_TYPE_UINT:
497 case GLSL_TYPE_INT:
498 case GLSL_TYPE_FLOAT:
499 case GLSL_TYPE_BOOL:
500 if (type->is_matrix()) {
501 return type->matrix_columns;
502 } else {
503 /* Regardless of size of vector, it gets a vec4. This is bad
504 * packing for things like floats, but otherwise arrays become a
505 * mess. Hopefully a later pass over the code can pack scalars
506 * down if appropriate.
507 */
508 return 1;
509 }
510 break;
511 case GLSL_TYPE_DOUBLE:
512 if (type->is_matrix()) {
513 if (type->vector_elements > 2)
514 return type->matrix_columns * 2;
515 else
516 return type->matrix_columns;
517 } else {
518 if (type->vector_elements > 2)
519 return 2;
520 else
521 return 1;
522 }
523 break;
524 case GLSL_TYPE_ARRAY:
525 assert(type->length > 0);
526 return type_size(type->fields.array) * type->length;
527 case GLSL_TYPE_STRUCT:
528 size = 0;
529 for (i = 0; i < type->length; i++) {
530 size += type_size(type->fields.structure[i].type);
531 }
532 return size;
533 case GLSL_TYPE_SAMPLER:
534 case GLSL_TYPE_IMAGE:
535 case GLSL_TYPE_SUBROUTINE:
536 /* Samplers take up one slot in UNIFORMS[], but they're baked in
537 * at link time.
538 */
539 return 1;
540 case GLSL_TYPE_ATOMIC_UINT:
541 case GLSL_TYPE_VOID:
542 case GLSL_TYPE_ERROR:
543 case GLSL_TYPE_INTERFACE:
544 assert(!"Invalid type in type_size");
545 break;
546 }
547
548 return 0;
549 }
550
551 /**
552 * In the initial pass of codegen, we assign temporary numbers to
553 * intermediate results. (not SSA -- variable assignments will reuse
554 * storage). Actual register allocation for the Mesa VM occurs in a
555 * pass over the Mesa IR later.
556 */
557 src_reg
558 ir_to_mesa_visitor::get_temp(const glsl_type *type)
559 {
560 src_reg src;
561
562 src.file = PROGRAM_TEMPORARY;
563 src.index = next_temp;
564 src.reladdr = NULL;
565 next_temp += type_size(type);
566
567 if (type->is_array() || type->is_record()) {
568 src.swizzle = SWIZZLE_NOOP;
569 } else {
570 src.swizzle = swizzle_for_size(type->vector_elements);
571 }
572 src.negate = 0;
573
574 return src;
575 }
576
577 variable_storage *
578 ir_to_mesa_visitor::find_variable_storage(const ir_variable *var)
579 {
580 foreach_in_list(variable_storage, entry, &this->variables) {
581 if (entry->var == var)
582 return entry;
583 }
584
585 return NULL;
586 }
587
588 void
589 ir_to_mesa_visitor::visit(ir_variable *ir)
590 {
591 if (strcmp(ir->name, "gl_FragCoord") == 0) {
592 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
593
594 fp->OriginUpperLeft = ir->data.origin_upper_left;
595 fp->PixelCenterInteger = ir->data.pixel_center_integer;
596 }
597
598 if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
599 unsigned int i;
600 const ir_state_slot *const slots = ir->get_state_slots();
601 assert(slots != NULL);
602
603 /* Check if this statevar's setup in the STATE file exactly
604 * matches how we'll want to reference it as a
605 * struct/array/whatever. If not, then we need to move it into
606 * temporary storage and hope that it'll get copy-propagated
607 * out.
608 */
609 for (i = 0; i < ir->get_num_state_slots(); i++) {
610 if (slots[i].swizzle != SWIZZLE_XYZW) {
611 break;
612 }
613 }
614
615 variable_storage *storage;
616 dst_reg dst;
617 if (i == ir->get_num_state_slots()) {
618 /* We'll set the index later. */
619 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
620 this->variables.push_tail(storage);
621
622 dst = undef_dst;
623 } else {
624 /* The variable_storage constructor allocates slots based on the size
625 * of the type. However, this had better match the number of state
626 * elements that we're going to copy into the new temporary.
627 */
628 assert((int) ir->get_num_state_slots() == type_size(ir->type));
629
630 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
631 this->next_temp);
632 this->variables.push_tail(storage);
633 this->next_temp += type_size(ir->type);
634
635 dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
636 }
637
638
639 for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
640 int index = _mesa_add_state_reference(this->prog->Parameters,
641 (gl_state_index *)slots[i].tokens);
642
643 if (storage->file == PROGRAM_STATE_VAR) {
644 if (storage->index == -1) {
645 storage->index = index;
646 } else {
647 assert(index == storage->index + (int)i);
648 }
649 } else {
650 src_reg src(PROGRAM_STATE_VAR, index, NULL);
651 src.swizzle = slots[i].swizzle;
652 emit(ir, OPCODE_MOV, dst, src);
653 /* even a float takes up a whole vec4 reg in a struct/array. */
654 dst.index++;
655 }
656 }
657
658 if (storage->file == PROGRAM_TEMPORARY &&
659 dst.index != storage->index + (int) ir->get_num_state_slots()) {
660 linker_error(this->shader_program,
661 "failed to load builtin uniform `%s' "
662 "(%d/%d regs loaded)\n",
663 ir->name, dst.index - storage->index,
664 type_size(ir->type));
665 }
666 }
667 }
668
669 void
670 ir_to_mesa_visitor::visit(ir_loop *ir)
671 {
672 emit(NULL, OPCODE_BGNLOOP);
673
674 visit_exec_list(&ir->body_instructions, this);
675
676 emit(NULL, OPCODE_ENDLOOP);
677 }
678
679 void
680 ir_to_mesa_visitor::visit(ir_loop_jump *ir)
681 {
682 switch (ir->mode) {
683 case ir_loop_jump::jump_break:
684 emit(NULL, OPCODE_BRK);
685 break;
686 case ir_loop_jump::jump_continue:
687 emit(NULL, OPCODE_CONT);
688 break;
689 }
690 }
691
692
693 void
694 ir_to_mesa_visitor::visit(ir_function_signature *ir)
695 {
696 assert(0);
697 (void)ir;
698 }
699
700 void
701 ir_to_mesa_visitor::visit(ir_function *ir)
702 {
703 /* Ignore function bodies other than main() -- we shouldn't see calls to
704 * them since they should all be inlined before we get to ir_to_mesa.
705 */
706 if (strcmp(ir->name, "main") == 0) {
707 const ir_function_signature *sig;
708 exec_list empty;
709
710 sig = ir->matching_signature(NULL, &empty, false);
711
712 assert(sig);
713
714 foreach_in_list(ir_instruction, ir, &sig->body) {
715 ir->accept(this);
716 }
717 }
718 }
719
720 bool
721 ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
722 {
723 int nonmul_operand = 1 - mul_operand;
724 src_reg a, b, c;
725
726 ir_expression *expr = ir->operands[mul_operand]->as_expression();
727 if (!expr || expr->operation != ir_binop_mul)
728 return false;
729
730 expr->operands[0]->accept(this);
731 a = this->result;
732 expr->operands[1]->accept(this);
733 b = this->result;
734 ir->operands[nonmul_operand]->accept(this);
735 c = this->result;
736
737 this->result = get_temp(ir->type);
738 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);
739
740 return true;
741 }
742
743 /**
744 * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b))
745 *
746 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
747 * implemented using multiplication, and logical-or is implemented using
748 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
749 * As result, the logical expression (a & !b) can be rewritten as:
750 *
751 * - a * !b
752 * - a * (1 - b)
753 * - (a * 1) - (a * b)
754 * - a + -(a * b)
755 * - a + (a * -b)
756 *
757 * This final expression can be implemented as a single MAD(a, -b, a)
758 * instruction.
759 */
760 bool
761 ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
762 {
763 const int other_operand = 1 - try_operand;
764 src_reg a, b;
765
766 ir_expression *expr = ir->operands[try_operand]->as_expression();
767 if (!expr || expr->operation != ir_unop_logic_not)
768 return false;
769
770 ir->operands[other_operand]->accept(this);
771 a = this->result;
772 expr->operands[0]->accept(this);
773 b = this->result;
774
775 b.negate = ~b.negate;
776
777 this->result = get_temp(ir->type);
778 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a);
779
780 return true;
781 }
782
783 void
784 ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
785 src_reg *reg, int *num_reladdr)
786 {
787 if (!reg->reladdr)
788 return;
789
790 emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);
791
792 if (*num_reladdr != 1) {
793 src_reg temp = get_temp(glsl_type::vec4_type);
794
795 emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
796 *reg = temp;
797 }
798
799 (*num_reladdr)--;
800 }
801
802 void
803 ir_to_mesa_visitor::emit_swz(ir_expression *ir)
804 {
805 /* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
806 * This means that each of the operands is either an immediate value of -1,
807 * 0, or 1, or is a component from one source register (possibly with
808 * negation).
809 */
810 uint8_t components[4] = { 0 };
811 bool negate[4] = { false };
812 ir_variable *var = NULL;
813
814 for (unsigned i = 0; i < ir->type->vector_elements; i++) {
815 ir_rvalue *op = ir->operands[i];
816
817 assert(op->type->is_scalar());
818
819 while (op != NULL) {
820 switch (op->ir_type) {
821 case ir_type_constant: {
822
823 assert(op->type->is_scalar());
824
825 const ir_constant *const c = op->as_constant();
826 if (c->is_one()) {
827 components[i] = SWIZZLE_ONE;
828 } else if (c->is_zero()) {
829 components[i] = SWIZZLE_ZERO;
830 } else if (c->is_negative_one()) {
831 components[i] = SWIZZLE_ONE;
832 negate[i] = true;
833 } else {
834 assert(!"SWZ constant must be 0.0 or 1.0.");
835 }
836
837 op = NULL;
838 break;
839 }
840
841 case ir_type_dereference_variable: {
842 ir_dereference_variable *const deref =
843 (ir_dereference_variable *) op;
844
845 assert((var == NULL) || (deref->var == var));
846 components[i] = SWIZZLE_X;
847 var = deref->var;
848 op = NULL;
849 break;
850 }
851
852 case ir_type_expression: {
853 ir_expression *const expr = (ir_expression *) op;
854
855 assert(expr->operation == ir_unop_neg);
856 negate[i] = true;
857
858 op = expr->operands[0];
859 break;
860 }
861
862 case ir_type_swizzle: {
863 ir_swizzle *const swiz = (ir_swizzle *) op;
864
865 components[i] = swiz->mask.x;
866 op = swiz->val;
867 break;
868 }
869
870 default:
871 assert(!"Should not get here.");
872 return;
873 }
874 }
875 }
876
877 assert(var != NULL);
878
879 ir_dereference_variable *const deref =
880 new(mem_ctx) ir_dereference_variable(var);
881
882 this->result.file = PROGRAM_UNDEFINED;
883 deref->accept(this);
884 if (this->result.file == PROGRAM_UNDEFINED) {
885 printf("Failed to get tree for expression operand:\n");
886 deref->print();
887 printf("\n");
888 exit(1);
889 }
890
891 src_reg src;
892
893 src = this->result;
894 src.swizzle = MAKE_SWIZZLE4(components[0],
895 components[1],
896 components[2],
897 components[3]);
898 src.negate = ((unsigned(negate[0]) << 0)
899 | (unsigned(negate[1]) << 1)
900 | (unsigned(negate[2]) << 2)
901 | (unsigned(negate[3]) << 3));
902
903 /* Storage for our result. Ideally for an assignment we'd be using the
904 * actual storage for the result here, instead.
905 */
906 const src_reg result_src = get_temp(ir->type);
907 dst_reg result_dst = dst_reg(result_src);
908
909 /* Limit writes to the channels that will be used by result_src later.
910 * This does limit this temp's use as a temporary for multi-instruction
911 * sequences.
912 */
913 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
914
915 emit(ir, OPCODE_SWZ, result_dst, src);
916 this->result = result_src;
917 }
918
919 void
920 ir_to_mesa_visitor::visit(ir_expression *ir)
921 {
922 unsigned int operand;
923 src_reg op[ARRAY_SIZE(ir->operands)];
924 src_reg result_src;
925 dst_reg result_dst;
926
927 /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
928 */
929 if (ir->operation == ir_binop_add) {
930 if (try_emit_mad(ir, 1))
931 return;
932 if (try_emit_mad(ir, 0))
933 return;
934 }
935
936 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
937 */
938 if (ir->operation == ir_binop_logic_and) {
939 if (try_emit_mad_for_and_not(ir, 1))
940 return;
941 if (try_emit_mad_for_and_not(ir, 0))
942 return;
943 }
944
945 if (ir->operation == ir_quadop_vector) {
946 this->emit_swz(ir);
947 return;
948 }
949
950 for (operand = 0; operand < ir->get_num_operands(); operand++) {
951 this->result.file = PROGRAM_UNDEFINED;
952 ir->operands[operand]->accept(this);
953 if (this->result.file == PROGRAM_UNDEFINED) {
954 printf("Failed to get tree for expression operand:\n");
955 ir->operands[operand]->print();
956 printf("\n");
957 exit(1);
958 }
959 op[operand] = this->result;
960
961 /* Matrix expression operands should have been broken down to vector
962 * operations already.
963 */
964 assert(!ir->operands[operand]->type->is_matrix());
965 }
966
967 int vector_elements = ir->operands[0]->type->vector_elements;
968 if (ir->operands[1]) {
969 vector_elements = MAX2(vector_elements,
970 ir->operands[1]->type->vector_elements);
971 }
972
973 this->result.file = PROGRAM_UNDEFINED;
974
975 /* Storage for our result. Ideally for an assignment we'd be using
976 * the actual storage for the result here, instead.
977 */
978 result_src = get_temp(ir->type);
979 /* convenience for the emit functions below. */
980 result_dst = dst_reg(result_src);
981 /* Limit writes to the channels that will be used by result_src later.
982 * This does limit this temp's use as a temporary for multi-instruction
983 * sequences.
984 */
985 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
986
987 switch (ir->operation) {
988 case ir_unop_logic_not:
989 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
990 * older GPUs implement SEQ using multiple instructions (i915 uses two
991 * SGE instructions and a MUL instruction). Since our logic values are
992 * 0.0 and 1.0, 1-x also implements !x.
993 */
994 op[0].negate = ~op[0].negate;
995 emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0));
996 break;
997 case ir_unop_neg:
998 op[0].negate = ~op[0].negate;
999 result_src = op[0];
1000 break;
1001 case ir_unop_abs:
1002 emit(ir, OPCODE_ABS, result_dst, op[0]);
1003 break;
1004 case ir_unop_sign:
1005 emit(ir, OPCODE_SSG, result_dst, op[0]);
1006 break;
1007 case ir_unop_rcp:
1008 emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
1009 break;
1010
1011 case ir_unop_exp2:
1012 emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
1013 break;
1014 case ir_unop_exp:
1015 case ir_unop_log:
1016 assert(!"not reached: should be handled by ir_explog_to_explog2");
1017 break;
1018 case ir_unop_log2:
1019 emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
1020 break;
1021 case ir_unop_sin:
1022 emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
1023 break;
1024 case ir_unop_cos:
1025 emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
1026 break;
1027
1028 case ir_unop_dFdx:
1029 emit(ir, OPCODE_DDX, result_dst, op[0]);
1030 break;
1031 case ir_unop_dFdy:
1032 emit(ir, OPCODE_DDY, result_dst, op[0]);
1033 break;
1034
1035 case ir_unop_saturate: {
1036 ir_to_mesa_instruction *inst = emit(ir, OPCODE_MOV,
1037 result_dst, op[0]);
1038 inst->saturate = true;
1039 break;
1040 }
1041 case ir_unop_noise: {
1042 const enum prog_opcode opcode =
1043 prog_opcode(OPCODE_NOISE1
1044 + (ir->operands[0]->type->vector_elements) - 1);
1045 assert((opcode >= OPCODE_NOISE1) && (opcode <= OPCODE_NOISE4));
1046
1047 emit(ir, opcode, result_dst, op[0]);
1048 break;
1049 }
1050
1051 case ir_binop_add:
1052 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1053 break;
1054 case ir_binop_sub:
1055 emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
1056 break;
1057
1058 case ir_binop_mul:
1059 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1060 break;
1061 case ir_binop_div:
1062 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1063 break;
1064 case ir_binop_mod:
1065 /* Floating point should be lowered by MOD_TO_FLOOR in the compiler. */
1066 assert(ir->type->is_integer());
1067 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1068 break;
1069
1070 case ir_binop_less:
1071 emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1072 break;
1073 case ir_binop_greater:
1074 emit(ir, OPCODE_SGT, result_dst, op[0], op[1]);
1075 break;
1076 case ir_binop_lequal:
1077 emit(ir, OPCODE_SLE, result_dst, op[0], op[1]);
1078 break;
1079 case ir_binop_gequal:
1080 emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1081 break;
1082 case ir_binop_equal:
1083 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1084 break;
1085 case ir_binop_nequal:
1086 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1087 break;
1088 case ir_binop_all_equal:
1089 /* "==" operator producing a scalar boolean. */
1090 if (ir->operands[0]->type->is_vector() ||
1091 ir->operands[1]->type->is_vector()) {
1092 src_reg temp = get_temp(glsl_type::vec4_type);
1093 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1094
1095 /* After the dot-product, the value will be an integer on the
1096 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1097 */
1098 emit_dp(ir, result_dst, temp, temp, vector_elements);
1099
1100 /* Negating the result of the dot-product gives values on the range
1101 * [-4, 0]. Zero becomes 1.0, and negative values become zero. This
1102 * achieved using SGE.
1103 */
1104 src_reg sge_src = result_src;
1105 sge_src.negate = ~sge_src.negate;
1106 emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0));
1107 } else {
1108 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1109 }
1110 break;
1111 case ir_binop_any_nequal:
1112 /* "!=" operator producing a scalar boolean. */
1113 if (ir->operands[0]->type->is_vector() ||
1114 ir->operands[1]->type->is_vector()) {
1115 src_reg temp = get_temp(glsl_type::vec4_type);
1116 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1117
1118 /* After the dot-product, the value will be an integer on the
1119 * range [0,4]. Zero stays zero, and positive values become 1.0.
1120 */
1121 ir_to_mesa_instruction *const dp =
1122 emit_dp(ir, result_dst, temp, temp, vector_elements);
1123 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1124 /* The clamping to [0,1] can be done for free in the fragment
1125 * shader with a saturate.
1126 */
1127 dp->saturate = true;
1128 } else {
1129 /* Negating the result of the dot-product gives values on the range
1130 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1131 * achieved using SLT.
1132 */
1133 src_reg slt_src = result_src;
1134 slt_src.negate = ~slt_src.negate;
1135 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1136 }
1137 } else {
1138 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1139 }
1140 break;
1141
1142 case ir_unop_any: {
1143 assert(ir->operands[0]->type->is_vector());
1144
1145 /* After the dot-product, the value will be an integer on the
1146 * range [0,4]. Zero stays zero, and positive values become 1.0.
1147 */
1148 ir_to_mesa_instruction *const dp =
1149 emit_dp(ir, result_dst, op[0], op[0],
1150 ir->operands[0]->type->vector_elements);
1151 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1152 /* The clamping to [0,1] can be done for free in the fragment
1153 * shader with a saturate.
1154 */
1155 dp->saturate = true;
1156 } else {
1157 /* Negating the result of the dot-product gives values on the range
1158 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1159 * is achieved using SLT.
1160 */
1161 src_reg slt_src = result_src;
1162 slt_src.negate = ~slt_src.negate;
1163 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1164 }
1165 break;
1166 }
1167
1168 case ir_binop_logic_xor:
1169 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1170 break;
1171
1172 case ir_binop_logic_or: {
1173 /* After the addition, the value will be an integer on the
1174 * range [0,2]. Zero stays zero, and positive values become 1.0.
1175 */
1176 ir_to_mesa_instruction *add =
1177 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1178 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1179 /* The clamping to [0,1] can be done for free in the fragment
1180 * shader with a saturate.
1181 */
1182 add->saturate = true;
1183 } else {
1184 /* Negating the result of the addition gives values on the range
1185 * [-2, 0]. Zero stays zero, and negative values become 1.0. This
1186 * is achieved using SLT.
1187 */
1188 src_reg slt_src = result_src;
1189 slt_src.negate = ~slt_src.negate;
1190 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1191 }
1192 break;
1193 }
1194
1195 case ir_binop_logic_and:
1196 /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1197 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1198 break;
1199
1200 case ir_binop_dot:
1201 assert(ir->operands[0]->type->is_vector());
1202 assert(ir->operands[0]->type == ir->operands[1]->type);
1203 emit_dp(ir, result_dst, op[0], op[1],
1204 ir->operands[0]->type->vector_elements);
1205 break;
1206
1207 case ir_unop_sqrt:
1208 /* sqrt(x) = x * rsq(x). */
1209 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1210 emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
1211 /* For incoming channels <= 0, set the result to 0. */
1212 op[0].negate = ~op[0].negate;
1213 emit(ir, OPCODE_CMP, result_dst,
1214 op[0], result_src, src_reg_for_float(0.0));
1215 break;
1216 case ir_unop_rsq:
1217 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1218 break;
1219 case ir_unop_i2f:
1220 case ir_unop_u2f:
1221 case ir_unop_b2f:
1222 case ir_unop_b2i:
1223 case ir_unop_i2u:
1224 case ir_unop_u2i:
1225 /* Mesa IR lacks types, ints are stored as truncated floats. */
1226 result_src = op[0];
1227 break;
1228 case ir_unop_f2i:
1229 case ir_unop_f2u:
1230 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1231 break;
1232 case ir_unop_f2b:
1233 case ir_unop_i2b:
1234 emit(ir, OPCODE_SNE, result_dst,
1235 op[0], src_reg_for_float(0.0));
1236 break;
1237 case ir_unop_bitcast_f2i: // Ignore these 4, they can't happen here anyway
1238 case ir_unop_bitcast_f2u:
1239 case ir_unop_bitcast_i2f:
1240 case ir_unop_bitcast_u2f:
1241 break;
1242 case ir_unop_trunc:
1243 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1244 break;
1245 case ir_unop_ceil:
1246 op[0].negate = ~op[0].negate;
1247 emit(ir, OPCODE_FLR, result_dst, op[0]);
1248 result_src.negate = ~result_src.negate;
1249 break;
1250 case ir_unop_floor:
1251 emit(ir, OPCODE_FLR, result_dst, op[0]);
1252 break;
1253 case ir_unop_fract:
1254 emit(ir, OPCODE_FRC, result_dst, op[0]);
1255 break;
1256 case ir_unop_pack_snorm_2x16:
1257 case ir_unop_pack_snorm_4x8:
1258 case ir_unop_pack_unorm_2x16:
1259 case ir_unop_pack_unorm_4x8:
1260 case ir_unop_pack_half_2x16:
1261 case ir_unop_pack_double_2x32:
1262 case ir_unop_unpack_snorm_2x16:
1263 case ir_unop_unpack_snorm_4x8:
1264 case ir_unop_unpack_unorm_2x16:
1265 case ir_unop_unpack_unorm_4x8:
1266 case ir_unop_unpack_half_2x16:
1267 case ir_unop_unpack_half_2x16_split_x:
1268 case ir_unop_unpack_half_2x16_split_y:
1269 case ir_unop_unpack_double_2x32:
1270 case ir_binop_pack_half_2x16_split:
1271 case ir_unop_bitfield_reverse:
1272 case ir_unop_bit_count:
1273 case ir_unop_find_msb:
1274 case ir_unop_find_lsb:
1275 case ir_unop_d2f:
1276 case ir_unop_f2d:
1277 case ir_unop_d2i:
1278 case ir_unop_i2d:
1279 case ir_unop_d2u:
1280 case ir_unop_u2d:
1281 case ir_unop_d2b:
1282 case ir_unop_frexp_sig:
1283 case ir_unop_frexp_exp:
1284 assert(!"not supported");
1285 break;
1286 case ir_binop_min:
1287 emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
1288 break;
1289 case ir_binop_max:
1290 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1291 break;
1292 case ir_binop_pow:
1293 emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
1294 break;
1295
1296 /* GLSL 1.30 integer ops are unsupported in Mesa IR, but since
1297 * hardware backends have no way to avoid Mesa IR generation
1298 * even if they don't use it, we need to emit "something" and
1299 * continue.
1300 */
1301 case ir_binop_lshift:
1302 case ir_binop_rshift:
1303 case ir_binop_bit_and:
1304 case ir_binop_bit_xor:
1305 case ir_binop_bit_or:
1306 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1307 break;
1308
1309 case ir_unop_bit_not:
1310 case ir_unop_round_even:
1311 emit(ir, OPCODE_MOV, result_dst, op[0]);
1312 break;
1313
1314 case ir_binop_ubo_load:
1315 assert(!"not supported");
1316 break;
1317
1318 case ir_triop_lrp:
1319 /* ir_triop_lrp operands are (x, y, a) while
1320 * OPCODE_LRP operands are (a, y, x) to match ARB_fragment_program.
1321 */
1322 emit(ir, OPCODE_LRP, result_dst, op[2], op[1], op[0]);
1323 break;
1324
1325 case ir_binop_vector_extract:
1326 case ir_binop_bfm:
1327 case ir_triop_fma:
1328 case ir_triop_bfi:
1329 case ir_triop_bitfield_extract:
1330 case ir_triop_vector_insert:
1331 case ir_quadop_bitfield_insert:
1332 case ir_binop_ldexp:
1333 case ir_triop_csel:
1334 case ir_binop_carry:
1335 case ir_binop_borrow:
1336 case ir_binop_imul_high:
1337 case ir_unop_interpolate_at_centroid:
1338 case ir_binop_interpolate_at_offset:
1339 case ir_binop_interpolate_at_sample:
1340 case ir_unop_dFdx_coarse:
1341 case ir_unop_dFdx_fine:
1342 case ir_unop_dFdy_coarse:
1343 case ir_unop_dFdy_fine:
1344 case ir_unop_subroutine_to_int:
1345 case ir_unop_get_buffer_size:
1346 assert(!"not supported");
1347 break;
1348
1349 case ir_unop_ssbo_unsized_array_length:
1350 case ir_quadop_vector:
1351 /* This operation should have already been handled.
1352 */
1353 assert(!"Should not get here.");
1354 break;
1355 }
1356
1357 this->result = result_src;
1358 }
1359
1360
1361 void
1362 ir_to_mesa_visitor::visit(ir_swizzle *ir)
1363 {
1364 src_reg src;
1365 int i;
1366 int swizzle[4];
1367
1368 /* Note that this is only swizzles in expressions, not those on the left
1369 * hand side of an assignment, which do write masking. See ir_assignment
1370 * for that.
1371 */
1372
1373 ir->val->accept(this);
1374 src = this->result;
1375 assert(src.file != PROGRAM_UNDEFINED);
1376 assert(ir->type->vector_elements > 0);
1377
1378 for (i = 0; i < 4; i++) {
1379 if (i < ir->type->vector_elements) {
1380 switch (i) {
1381 case 0:
1382 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1383 break;
1384 case 1:
1385 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1386 break;
1387 case 2:
1388 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1389 break;
1390 case 3:
1391 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1392 break;
1393 }
1394 } else {
1395 /* If the type is smaller than a vec4, replicate the last
1396 * channel out.
1397 */
1398 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1399 }
1400 }
1401
1402 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1403
1404 this->result = src;
1405 }
1406
1407 void
1408 ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
1409 {
1410 variable_storage *entry = find_variable_storage(ir->var);
1411 ir_variable *var = ir->var;
1412
1413 if (!entry) {
1414 switch (var->data.mode) {
1415 case ir_var_uniform:
1416 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1417 var->data.location);
1418 this->variables.push_tail(entry);
1419 break;
1420 case ir_var_shader_in:
1421 /* The linker assigns locations for varyings and attributes,
1422 * including deprecated builtins (like gl_Color),
1423 * user-assigned generic attributes (glBindVertexLocation),
1424 * and user-defined varyings.
1425 */
1426 assert(var->data.location != -1);
1427 entry = new(mem_ctx) variable_storage(var,
1428 PROGRAM_INPUT,
1429 var->data.location);
1430 break;
1431 case ir_var_shader_out:
1432 assert(var->data.location != -1);
1433 entry = new(mem_ctx) variable_storage(var,
1434 PROGRAM_OUTPUT,
1435 var->data.location);
1436 break;
1437 case ir_var_system_value:
1438 entry = new(mem_ctx) variable_storage(var,
1439 PROGRAM_SYSTEM_VALUE,
1440 var->data.location);
1441 break;
1442 case ir_var_auto:
1443 case ir_var_temporary:
1444 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1445 this->next_temp);
1446 this->variables.push_tail(entry);
1447
1448 next_temp += type_size(var->type);
1449 break;
1450 }
1451
1452 if (!entry) {
1453 printf("Failed to make storage for %s\n", var->name);
1454 exit(1);
1455 }
1456 }
1457
1458 this->result = src_reg(entry->file, entry->index, var->type);
1459 }
1460
1461 void
1462 ir_to_mesa_visitor::visit(ir_dereference_array *ir)
1463 {
1464 ir_constant *index;
1465 src_reg src;
1466 int element_size = type_size(ir->type);
1467
1468 index = ir->array_index->constant_expression_value();
1469
1470 ir->array->accept(this);
1471 src = this->result;
1472
1473 if (index) {
1474 src.index += index->value.i[0] * element_size;
1475 } else {
1476 /* Variable index array dereference. It eats the "vec4" of the
1477 * base of the array and an index that offsets the Mesa register
1478 * index.
1479 */
1480 ir->array_index->accept(this);
1481
1482 src_reg index_reg;
1483
1484 if (element_size == 1) {
1485 index_reg = this->result;
1486 } else {
1487 index_reg = get_temp(glsl_type::float_type);
1488
1489 emit(ir, OPCODE_MUL, dst_reg(index_reg),
1490 this->result, src_reg_for_float(element_size));
1491 }
1492
1493 /* If there was already a relative address register involved, add the
1494 * new and the old together to get the new offset.
1495 */
1496 if (src.reladdr != NULL) {
1497 src_reg accum_reg = get_temp(glsl_type::float_type);
1498
1499 emit(ir, OPCODE_ADD, dst_reg(accum_reg),
1500 index_reg, *src.reladdr);
1501
1502 index_reg = accum_reg;
1503 }
1504
1505 src.reladdr = ralloc(mem_ctx, src_reg);
1506 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1507 }
1508
1509 /* If the type is smaller than a vec4, replicate the last channel out. */
1510 if (ir->type->is_scalar() || ir->type->is_vector())
1511 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1512 else
1513 src.swizzle = SWIZZLE_NOOP;
1514
1515 this->result = src;
1516 }
1517
1518 void
1519 ir_to_mesa_visitor::visit(ir_dereference_record *ir)
1520 {
1521 unsigned int i;
1522 const glsl_type *struct_type = ir->record->type;
1523 int offset = 0;
1524
1525 ir->record->accept(this);
1526
1527 for (i = 0; i < struct_type->length; i++) {
1528 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1529 break;
1530 offset += type_size(struct_type->fields.structure[i].type);
1531 }
1532
1533 /* If the type is smaller than a vec4, replicate the last channel out. */
1534 if (ir->type->is_scalar() || ir->type->is_vector())
1535 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1536 else
1537 this->result.swizzle = SWIZZLE_NOOP;
1538
1539 this->result.index += offset;
1540 }
1541
1542 /**
1543 * We want to be careful in assignment setup to hit the actual storage
1544 * instead of potentially using a temporary like we might with the
1545 * ir_dereference handler.
1546 */
1547 static dst_reg
1548 get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
1549 {
1550 /* The LHS must be a dereference. If the LHS is a variable indexed array
1551 * access of a vector, it must be separated into a series conditional moves
1552 * before reaching this point (see ir_vec_index_to_cond_assign).
1553 */
1554 assert(ir->as_dereference());
1555 ir_dereference_array *deref_array = ir->as_dereference_array();
1556 if (deref_array) {
1557 assert(!deref_array->array->type->is_vector());
1558 }
1559
1560 /* Use the rvalue deref handler for the most part. We'll ignore
1561 * swizzles in it and write swizzles using writemask, though.
1562 */
1563 ir->accept(v);
1564 return dst_reg(v->result);
1565 }
1566
1567 /**
1568 * Process the condition of a conditional assignment
1569 *
1570 * Examines the condition of a conditional assignment to generate the optimal
1571 * first operand of a \c CMP instruction. If the condition is a relational
1572 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1573 * used as the source for the \c CMP instruction. Otherwise the comparison
1574 * is processed to a boolean result, and the boolean result is used as the
1575 * operand to the CMP instruction.
1576 */
1577 bool
1578 ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
1579 {
1580 ir_rvalue *src_ir = ir;
1581 bool negate = true;
1582 bool switch_order = false;
1583
1584 ir_expression *const expr = ir->as_expression();
1585 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
1586 bool zero_on_left = false;
1587
1588 if (expr->operands[0]->is_zero()) {
1589 src_ir = expr->operands[1];
1590 zero_on_left = true;
1591 } else if (expr->operands[1]->is_zero()) {
1592 src_ir = expr->operands[0];
1593 zero_on_left = false;
1594 }
1595
1596 /* a is - 0 + - 0 +
1597 * (a < 0) T F F ( a < 0) T F F
1598 * (0 < a) F F T (-a < 0) F F T
1599 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
1600 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
1601 * (a > 0) F F T (-a < 0) F F T
1602 * (0 > a) T F F ( a < 0) T F F
1603 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
1604 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
1605 *
1606 * Note that exchanging the order of 0 and 'a' in the comparison simply
1607 * means that the value of 'a' should be negated.
1608 */
1609 if (src_ir != ir) {
1610 switch (expr->operation) {
1611 case ir_binop_less:
1612 switch_order = false;
1613 negate = zero_on_left;
1614 break;
1615
1616 case ir_binop_greater:
1617 switch_order = false;
1618 negate = !zero_on_left;
1619 break;
1620
1621 case ir_binop_lequal:
1622 switch_order = true;
1623 negate = !zero_on_left;
1624 break;
1625
1626 case ir_binop_gequal:
1627 switch_order = true;
1628 negate = zero_on_left;
1629 break;
1630
1631 default:
1632 /* This isn't the right kind of comparison afterall, so make sure
1633 * the whole condition is visited.
1634 */
1635 src_ir = ir;
1636 break;
1637 }
1638 }
1639 }
1640
1641 src_ir->accept(this);
1642
1643 /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1644 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
1645 * choose which value OPCODE_CMP produces without an extra instruction
1646 * computing the condition.
1647 */
1648 if (negate)
1649 this->result.negate = ~this->result.negate;
1650
1651 return switch_order;
1652 }
1653
1654 void
1655 ir_to_mesa_visitor::visit(ir_assignment *ir)
1656 {
1657 dst_reg l;
1658 src_reg r;
1659 int i;
1660
1661 ir->rhs->accept(this);
1662 r = this->result;
1663
1664 l = get_assignment_lhs(ir->lhs, this);
1665
1666 /* FINISHME: This should really set to the correct maximal writemask for each
1667 * FINISHME: component written (in the loops below). This case can only
1668 * FINISHME: occur for matrices, arrays, and structures.
1669 */
1670 if (ir->write_mask == 0) {
1671 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1672 l.writemask = WRITEMASK_XYZW;
1673 } else if (ir->lhs->type->is_scalar()) {
1674 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1675 * FINISHME: W component of fragment shader output zero, work correctly.
1676 */
1677 l.writemask = WRITEMASK_XYZW;
1678 } else {
1679 int swizzles[4];
1680 int first_enabled_chan = 0;
1681 int rhs_chan = 0;
1682
1683 assert(ir->lhs->type->is_vector());
1684 l.writemask = ir->write_mask;
1685
1686 for (int i = 0; i < 4; i++) {
1687 if (l.writemask & (1 << i)) {
1688 first_enabled_chan = GET_SWZ(r.swizzle, i);
1689 break;
1690 }
1691 }
1692
1693 /* Swizzle a small RHS vector into the channels being written.
1694 *
1695 * glsl ir treats write_mask as dictating how many channels are
1696 * present on the RHS while Mesa IR treats write_mask as just
1697 * showing which channels of the vec4 RHS get written.
1698 */
1699 for (int i = 0; i < 4; i++) {
1700 if (l.writemask & (1 << i))
1701 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1702 else
1703 swizzles[i] = first_enabled_chan;
1704 }
1705 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1706 swizzles[2], swizzles[3]);
1707 }
1708
1709 assert(l.file != PROGRAM_UNDEFINED);
1710 assert(r.file != PROGRAM_UNDEFINED);
1711
1712 if (ir->condition) {
1713 const bool switch_order = this->process_move_condition(ir->condition);
1714 src_reg condition = this->result;
1715
1716 for (i = 0; i < type_size(ir->lhs->type); i++) {
1717 if (switch_order) {
1718 emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
1719 } else {
1720 emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
1721 }
1722
1723 l.index++;
1724 r.index++;
1725 }
1726 } else {
1727 for (i = 0; i < type_size(ir->lhs->type); i++) {
1728 emit(ir, OPCODE_MOV, l, r);
1729 l.index++;
1730 r.index++;
1731 }
1732 }
1733 }
1734
1735
1736 void
1737 ir_to_mesa_visitor::visit(ir_constant *ir)
1738 {
1739 src_reg src;
1740 GLfloat stack_vals[4] = { 0 };
1741 GLfloat *values = stack_vals;
1742 unsigned int i;
1743
1744 /* Unfortunately, 4 floats is all we can get into
1745 * _mesa_add_unnamed_constant. So, make a temp to store an
1746 * aggregate constant and move each constant value into it. If we
1747 * get lucky, copy propagation will eliminate the extra moves.
1748 */
1749
1750 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
1751 src_reg temp_base = get_temp(ir->type);
1752 dst_reg temp = dst_reg(temp_base);
1753
1754 foreach_in_list(ir_constant, field_value, &ir->components) {
1755 int size = type_size(field_value->type);
1756
1757 assert(size > 0);
1758
1759 field_value->accept(this);
1760 src = this->result;
1761
1762 for (i = 0; i < (unsigned int)size; i++) {
1763 emit(ir, OPCODE_MOV, temp, src);
1764
1765 src.index++;
1766 temp.index++;
1767 }
1768 }
1769 this->result = temp_base;
1770 return;
1771 }
1772
1773 if (ir->type->is_array()) {
1774 src_reg temp_base = get_temp(ir->type);
1775 dst_reg temp = dst_reg(temp_base);
1776 int size = type_size(ir->type->fields.array);
1777
1778 assert(size > 0);
1779
1780 for (i = 0; i < ir->type->length; i++) {
1781 ir->array_elements[i]->accept(this);
1782 src = this->result;
1783 for (int j = 0; j < size; j++) {
1784 emit(ir, OPCODE_MOV, temp, src);
1785
1786 src.index++;
1787 temp.index++;
1788 }
1789 }
1790 this->result = temp_base;
1791 return;
1792 }
1793
1794 if (ir->type->is_matrix()) {
1795 src_reg mat = get_temp(ir->type);
1796 dst_reg mat_column = dst_reg(mat);
1797
1798 for (i = 0; i < ir->type->matrix_columns; i++) {
1799 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
1800 values = &ir->value.f[i * ir->type->vector_elements];
1801
1802 src = src_reg(PROGRAM_CONSTANT, -1, NULL);
1803 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1804 (gl_constant_value *) values,
1805 ir->type->vector_elements,
1806 &src.swizzle);
1807 emit(ir, OPCODE_MOV, mat_column, src);
1808
1809 mat_column.index++;
1810 }
1811
1812 this->result = mat;
1813 return;
1814 }
1815
1816 src.file = PROGRAM_CONSTANT;
1817 switch (ir->type->base_type) {
1818 case GLSL_TYPE_FLOAT:
1819 values = &ir->value.f[0];
1820 break;
1821 case GLSL_TYPE_UINT:
1822 for (i = 0; i < ir->type->vector_elements; i++) {
1823 values[i] = ir->value.u[i];
1824 }
1825 break;
1826 case GLSL_TYPE_INT:
1827 for (i = 0; i < ir->type->vector_elements; i++) {
1828 values[i] = ir->value.i[i];
1829 }
1830 break;
1831 case GLSL_TYPE_BOOL:
1832 for (i = 0; i < ir->type->vector_elements; i++) {
1833 values[i] = ir->value.b[i];
1834 }
1835 break;
1836 default:
1837 assert(!"Non-float/uint/int/bool constant");
1838 }
1839
1840 this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
1841 this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1842 (gl_constant_value *) values,
1843 ir->type->vector_elements,
1844 &this->result.swizzle);
1845 }
1846
1847 void
1848 ir_to_mesa_visitor::visit(ir_call *)
1849 {
1850 assert(!"ir_to_mesa: All function calls should have been inlined by now.");
1851 }
1852
1853 void
1854 ir_to_mesa_visitor::visit(ir_texture *ir)
1855 {
1856 src_reg result_src, coord, lod_info, projector, dx, dy;
1857 dst_reg result_dst, coord_dst;
1858 ir_to_mesa_instruction *inst = NULL;
1859 prog_opcode opcode = OPCODE_NOP;
1860
1861 if (ir->op == ir_txs)
1862 this->result = src_reg_for_float(0.0);
1863 else
1864 ir->coordinate->accept(this);
1865
1866 /* Put our coords in a temp. We'll need to modify them for shadow,
1867 * projection, or LOD, so the only case we'd use it as is is if
1868 * we're doing plain old texturing. Mesa IR optimization should
1869 * handle cleaning up our mess in that case.
1870 */
1871 coord = get_temp(glsl_type::vec4_type);
1872 coord_dst = dst_reg(coord);
1873 emit(ir, OPCODE_MOV, coord_dst, this->result);
1874
1875 if (ir->projector) {
1876 ir->projector->accept(this);
1877 projector = this->result;
1878 }
1879
1880 /* Storage for our result. Ideally for an assignment we'd be using
1881 * the actual storage for the result here, instead.
1882 */
1883 result_src = get_temp(glsl_type::vec4_type);
1884 result_dst = dst_reg(result_src);
1885
1886 switch (ir->op) {
1887 case ir_tex:
1888 case ir_txs:
1889 opcode = OPCODE_TEX;
1890 break;
1891 case ir_txb:
1892 opcode = OPCODE_TXB;
1893 ir->lod_info.bias->accept(this);
1894 lod_info = this->result;
1895 break;
1896 case ir_txf:
1897 /* Pretend to be TXL so the sampler, coordinate, lod are available */
1898 case ir_txl:
1899 opcode = OPCODE_TXL;
1900 ir->lod_info.lod->accept(this);
1901 lod_info = this->result;
1902 break;
1903 case ir_txd:
1904 opcode = OPCODE_TXD;
1905 ir->lod_info.grad.dPdx->accept(this);
1906 dx = this->result;
1907 ir->lod_info.grad.dPdy->accept(this);
1908 dy = this->result;
1909 break;
1910 case ir_txf_ms:
1911 assert(!"Unexpected ir_txf_ms opcode");
1912 break;
1913 case ir_lod:
1914 assert(!"Unexpected ir_lod opcode");
1915 break;
1916 case ir_tg4:
1917 assert(!"Unexpected ir_tg4 opcode");
1918 break;
1919 case ir_query_levels:
1920 assert(!"Unexpected ir_query_levels opcode");
1921 break;
1922 case ir_texture_samples:
1923 unreachable("Unexpected ir_texture_samples opcode");
1924 }
1925
1926 const glsl_type *sampler_type = ir->sampler->type;
1927
1928 if (ir->projector) {
1929 if (opcode == OPCODE_TEX) {
1930 /* Slot the projector in as the last component of the coord. */
1931 coord_dst.writemask = WRITEMASK_W;
1932 emit(ir, OPCODE_MOV, coord_dst, projector);
1933 coord_dst.writemask = WRITEMASK_XYZW;
1934 opcode = OPCODE_TXP;
1935 } else {
1936 src_reg coord_w = coord;
1937 coord_w.swizzle = SWIZZLE_WWWW;
1938
1939 /* For the other TEX opcodes there's no projective version
1940 * since the last slot is taken up by lod info. Do the
1941 * projective divide now.
1942 */
1943 coord_dst.writemask = WRITEMASK_W;
1944 emit(ir, OPCODE_RCP, coord_dst, projector);
1945
1946 /* In the case where we have to project the coordinates "by hand,"
1947 * the shadow comparitor value must also be projected.
1948 */
1949 src_reg tmp_src = coord;
1950 if (ir->shadow_comparitor) {
1951 /* Slot the shadow value in as the second to last component of the
1952 * coord.
1953 */
1954 ir->shadow_comparitor->accept(this);
1955
1956 tmp_src = get_temp(glsl_type::vec4_type);
1957 dst_reg tmp_dst = dst_reg(tmp_src);
1958
1959 /* Projective division not allowed for array samplers. */
1960 assert(!sampler_type->sampler_array);
1961
1962 tmp_dst.writemask = WRITEMASK_Z;
1963 emit(ir, OPCODE_MOV, tmp_dst, this->result);
1964
1965 tmp_dst.writemask = WRITEMASK_XY;
1966 emit(ir, OPCODE_MOV, tmp_dst, coord);
1967 }
1968
1969 coord_dst.writemask = WRITEMASK_XYZ;
1970 emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);
1971
1972 coord_dst.writemask = WRITEMASK_XYZW;
1973 coord.swizzle = SWIZZLE_XYZW;
1974 }
1975 }
1976
1977 /* If projection is done and the opcode is not OPCODE_TXP, then the shadow
1978 * comparitor was put in the correct place (and projected) by the code,
1979 * above, that handles by-hand projection.
1980 */
1981 if (ir->shadow_comparitor && (!ir->projector || opcode == OPCODE_TXP)) {
1982 /* Slot the shadow value in as the second to last component of the
1983 * coord.
1984 */
1985 ir->shadow_comparitor->accept(this);
1986
1987 /* XXX This will need to be updated for cubemap array samplers. */
1988 if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
1989 sampler_type->sampler_array) {
1990 coord_dst.writemask = WRITEMASK_W;
1991 } else {
1992 coord_dst.writemask = WRITEMASK_Z;
1993 }
1994
1995 emit(ir, OPCODE_MOV, coord_dst, this->result);
1996 coord_dst.writemask = WRITEMASK_XYZW;
1997 }
1998
1999 if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
2000 /* Mesa IR stores lod or lod bias in the last channel of the coords. */
2001 coord_dst.writemask = WRITEMASK_W;
2002 emit(ir, OPCODE_MOV, coord_dst, lod_info);
2003 coord_dst.writemask = WRITEMASK_XYZW;
2004 }
2005
2006 if (opcode == OPCODE_TXD)
2007 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2008 else
2009 inst = emit(ir, opcode, result_dst, coord);
2010
2011 if (ir->shadow_comparitor)
2012 inst->tex_shadow = GL_TRUE;
2013
2014 inst->sampler = _mesa_get_sampler_uniform_value(ir->sampler,
2015 this->shader_program,
2016 this->prog);
2017
2018 switch (sampler_type->sampler_dimensionality) {
2019 case GLSL_SAMPLER_DIM_1D:
2020 inst->tex_target = (sampler_type->sampler_array)
2021 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2022 break;
2023 case GLSL_SAMPLER_DIM_2D:
2024 inst->tex_target = (sampler_type->sampler_array)
2025 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2026 break;
2027 case GLSL_SAMPLER_DIM_3D:
2028 inst->tex_target = TEXTURE_3D_INDEX;
2029 break;
2030 case GLSL_SAMPLER_DIM_CUBE:
2031 inst->tex_target = TEXTURE_CUBE_INDEX;
2032 break;
2033 case GLSL_SAMPLER_DIM_RECT:
2034 inst->tex_target = TEXTURE_RECT_INDEX;
2035 break;
2036 case GLSL_SAMPLER_DIM_BUF:
2037 assert(!"FINISHME: Implement ARB_texture_buffer_object");
2038 break;
2039 case GLSL_SAMPLER_DIM_EXTERNAL:
2040 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2041 break;
2042 default:
2043 assert(!"Should not get here.");
2044 }
2045
2046 this->result = result_src;
2047 }
2048
2049 void
2050 ir_to_mesa_visitor::visit(ir_return *ir)
2051 {
2052 /* Non-void functions should have been inlined. We may still emit RETs
2053 * from main() unless the EmitNoMainReturn option is set.
2054 */
2055 assert(!ir->get_value());
2056 emit(ir, OPCODE_RET);
2057 }
2058
2059 void
2060 ir_to_mesa_visitor::visit(ir_discard *ir)
2061 {
2062 if (ir->condition) {
2063 ir->condition->accept(this);
2064 this->result.negate = ~this->result.negate;
2065 emit(ir, OPCODE_KIL, undef_dst, this->result);
2066 } else {
2067 emit(ir, OPCODE_KIL_NV);
2068 }
2069 }
2070
2071 void
2072 ir_to_mesa_visitor::visit(ir_if *ir)
2073 {
2074 ir_to_mesa_instruction *cond_inst, *if_inst;
2075 ir_to_mesa_instruction *prev_inst;
2076
2077 prev_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2078
2079 ir->condition->accept(this);
2080 assert(this->result.file != PROGRAM_UNDEFINED);
2081
2082 if (this->options->EmitCondCodes) {
2083 cond_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2084
2085 /* See if we actually generated any instruction for generating
2086 * the condition. If not, then cook up a move to a temp so we
2087 * have something to set cond_update on.
2088 */
2089 if (cond_inst == prev_inst) {
2090 src_reg temp = get_temp(glsl_type::bool_type);
2091 cond_inst = emit(ir->condition, OPCODE_MOV, dst_reg(temp), result);
2092 }
2093 cond_inst->cond_update = GL_TRUE;
2094
2095 if_inst = emit(ir->condition, OPCODE_IF);
2096 if_inst->dst.cond_mask = COND_NE;
2097 } else {
2098 if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);
2099 }
2100
2101 this->instructions.push_tail(if_inst);
2102
2103 visit_exec_list(&ir->then_instructions, this);
2104
2105 if (!ir->else_instructions.is_empty()) {
2106 emit(ir->condition, OPCODE_ELSE);
2107 visit_exec_list(&ir->else_instructions, this);
2108 }
2109
2110 emit(ir->condition, OPCODE_ENDIF);
2111 }
2112
2113 void
2114 ir_to_mesa_visitor::visit(ir_emit_vertex *)
2115 {
2116 assert(!"Geometry shaders not supported.");
2117 }
2118
2119 void
2120 ir_to_mesa_visitor::visit(ir_end_primitive *)
2121 {
2122 assert(!"Geometry shaders not supported.");
2123 }
2124
2125 void
2126 ir_to_mesa_visitor::visit(ir_barrier *)
2127 {
2128 unreachable("GLSL barrier() not supported.");
2129 }
2130
2131 ir_to_mesa_visitor::ir_to_mesa_visitor()
2132 {
2133 result.file = PROGRAM_UNDEFINED;
2134 next_temp = 1;
2135 next_signature_id = 1;
2136 current_function = NULL;
2137 mem_ctx = ralloc_context(NULL);
2138 }
2139
2140 ir_to_mesa_visitor::~ir_to_mesa_visitor()
2141 {
2142 ralloc_free(mem_ctx);
2143 }
2144
2145 static struct prog_src_register
2146 mesa_src_reg_from_ir_src_reg(src_reg reg)
2147 {
2148 struct prog_src_register mesa_reg;
2149
2150 mesa_reg.File = reg.file;
2151 assert(reg.index < (1 << INST_INDEX_BITS));
2152 mesa_reg.Index = reg.index;
2153 mesa_reg.Swizzle = reg.swizzle;
2154 mesa_reg.RelAddr = reg.reladdr != NULL;
2155 mesa_reg.Negate = reg.negate;
2156 mesa_reg.Abs = 0;
2157 mesa_reg.HasIndex2 = GL_FALSE;
2158 mesa_reg.RelAddr2 = 0;
2159 mesa_reg.Index2 = 0;
2160
2161 return mesa_reg;
2162 }
2163
2164 static void
2165 set_branchtargets(ir_to_mesa_visitor *v,
2166 struct prog_instruction *mesa_instructions,
2167 int num_instructions)
2168 {
2169 int if_count = 0, loop_count = 0;
2170 int *if_stack, *loop_stack;
2171 int if_stack_pos = 0, loop_stack_pos = 0;
2172 int i, j;
2173
2174 for (i = 0; i < num_instructions; i++) {
2175 switch (mesa_instructions[i].Opcode) {
2176 case OPCODE_IF:
2177 if_count++;
2178 break;
2179 case OPCODE_BGNLOOP:
2180 loop_count++;
2181 break;
2182 case OPCODE_BRK:
2183 case OPCODE_CONT:
2184 mesa_instructions[i].BranchTarget = -1;
2185 break;
2186 default:
2187 break;
2188 }
2189 }
2190
2191 if_stack = rzalloc_array(v->mem_ctx, int, if_count);
2192 loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);
2193
2194 for (i = 0; i < num_instructions; i++) {
2195 switch (mesa_instructions[i].Opcode) {
2196 case OPCODE_IF:
2197 if_stack[if_stack_pos] = i;
2198 if_stack_pos++;
2199 break;
2200 case OPCODE_ELSE:
2201 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2202 if_stack[if_stack_pos - 1] = i;
2203 break;
2204 case OPCODE_ENDIF:
2205 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2206 if_stack_pos--;
2207 break;
2208 case OPCODE_BGNLOOP:
2209 loop_stack[loop_stack_pos] = i;
2210 loop_stack_pos++;
2211 break;
2212 case OPCODE_ENDLOOP:
2213 loop_stack_pos--;
2214 /* Rewrite any breaks/conts at this nesting level (haven't
2215 * already had a BranchTarget assigned) to point to the end
2216 * of the loop.
2217 */
2218 for (j = loop_stack[loop_stack_pos]; j < i; j++) {
2219 if (mesa_instructions[j].Opcode == OPCODE_BRK ||
2220 mesa_instructions[j].Opcode == OPCODE_CONT) {
2221 if (mesa_instructions[j].BranchTarget == -1) {
2222 mesa_instructions[j].BranchTarget = i;
2223 }
2224 }
2225 }
2226 /* The loop ends point at each other. */
2227 mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
2228 mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
2229 break;
2230 case OPCODE_CAL:
2231 foreach_in_list(function_entry, entry, &v->function_signatures) {
2232 if (entry->sig_id == mesa_instructions[i].BranchTarget) {
2233 mesa_instructions[i].BranchTarget = entry->inst;
2234 break;
2235 }
2236 }
2237 break;
2238 default:
2239 break;
2240 }
2241 }
2242 }
2243
2244 static void
2245 print_program(struct prog_instruction *mesa_instructions,
2246 ir_instruction **mesa_instruction_annotation,
2247 int num_instructions)
2248 {
2249 ir_instruction *last_ir = NULL;
2250 int i;
2251 int indent = 0;
2252
2253 for (i = 0; i < num_instructions; i++) {
2254 struct prog_instruction *mesa_inst = mesa_instructions + i;
2255 ir_instruction *ir = mesa_instruction_annotation[i];
2256
2257 fprintf(stdout, "%3d: ", i);
2258
2259 if (last_ir != ir && ir) {
2260 int j;
2261
2262 for (j = 0; j < indent; j++) {
2263 fprintf(stdout, " ");
2264 }
2265 ir->print();
2266 printf("\n");
2267 last_ir = ir;
2268
2269 fprintf(stdout, " "); /* line number spacing. */
2270 }
2271
2272 indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
2273 PROG_PRINT_DEBUG, NULL);
2274 }
2275 }
2276
2277 namespace {
2278
2279 class add_uniform_to_shader : public program_resource_visitor {
2280 public:
2281 add_uniform_to_shader(struct gl_shader_program *shader_program,
2282 struct gl_program_parameter_list *params,
2283 gl_shader_stage shader_type)
2284 : shader_program(shader_program), params(params), idx(-1),
2285 shader_type(shader_type)
2286 {
2287 /* empty */
2288 }
2289
2290 void process(ir_variable *var)
2291 {
2292 this->idx = -1;
2293 this->program_resource_visitor::process(var);
2294
2295 var->data.location = this->idx;
2296 }
2297
2298 private:
2299 virtual void visit_field(const glsl_type *type, const char *name,
2300 bool row_major);
2301
2302 struct gl_shader_program *shader_program;
2303 struct gl_program_parameter_list *params;
2304 int idx;
2305 gl_shader_stage shader_type;
2306 };
2307
2308 } /* anonymous namespace */
2309
2310 void
2311 add_uniform_to_shader::visit_field(const glsl_type *type, const char *name,
2312 bool row_major)
2313 {
2314 unsigned int size;
2315
2316 (void) row_major;
2317
2318 if (type->is_vector() || type->is_scalar()) {
2319 size = type->vector_elements;
2320 if (type->is_double())
2321 size *= 2;
2322 } else {
2323 size = type_size(type) * 4;
2324 }
2325
2326 gl_register_file file;
2327 if (type->without_array()->is_sampler()) {
2328 file = PROGRAM_SAMPLER;
2329 } else {
2330 file = PROGRAM_UNIFORM;
2331 }
2332
2333 int index = _mesa_lookup_parameter_index(params, -1, name);
2334 if (index < 0) {
2335 index = _mesa_add_parameter(params, file, name, size, type->gl_type,
2336 NULL, NULL);
2337
2338 /* Sampler uniform values are stored in prog->SamplerUnits,
2339 * and the entry in that array is selected by this index we
2340 * store in ParameterValues[].
2341 */
2342 if (file == PROGRAM_SAMPLER) {
2343 unsigned location;
2344 const bool found =
2345 this->shader_program->UniformHash->get(location,
2346 params->Parameters[index].Name);
2347 assert(found);
2348
2349 if (!found)
2350 return;
2351
2352 struct gl_uniform_storage *storage =
2353 &this->shader_program->UniformStorage[location];
2354
2355 assert(storage->type->is_sampler() &&
2356 storage->opaque[shader_type].active);
2357
2358 for (unsigned int j = 0; j < size / 4; j++)
2359 params->ParameterValues[index + j][0].f =
2360 storage->opaque[shader_type].index + j;
2361 }
2362 }
2363
2364 /* The first part of the uniform that's processed determines the base
2365 * location of the whole uniform (for structures).
2366 */
2367 if (this->idx < 0)
2368 this->idx = index;
2369 }
2370
2371 /**
2372 * Generate the program parameters list for the user uniforms in a shader
2373 *
2374 * \param shader_program Linked shader program. This is only used to
2375 * emit possible link errors to the info log.
2376 * \param sh Shader whose uniforms are to be processed.
2377 * \param params Parameter list to be filled in.
2378 */
2379 void
2380 _mesa_generate_parameters_list_for_uniforms(struct gl_shader_program
2381 *shader_program,
2382 struct gl_shader *sh,
2383 struct gl_program_parameter_list
2384 *params)
2385 {
2386 add_uniform_to_shader add(shader_program, params, sh->Stage);
2387
2388 foreach_in_list(ir_instruction, node, sh->ir) {
2389 ir_variable *var = node->as_variable();
2390
2391 if ((var == NULL) || (var->data.mode != ir_var_uniform)
2392 || var->is_in_buffer_block() || (strncmp(var->name, "gl_", 3) == 0))
2393 continue;
2394
2395 add.process(var);
2396 }
2397 }
2398
2399 void
2400 _mesa_associate_uniform_storage(struct gl_context *ctx,
2401 struct gl_shader_program *shader_program,
2402 struct gl_program_parameter_list *params)
2403 {
2404 /* After adding each uniform to the parameter list, connect the storage for
2405 * the parameter with the tracking structure used by the API for the
2406 * uniform.
2407 */
2408 unsigned last_location = unsigned(~0);
2409 for (unsigned i = 0; i < params->NumParameters; i++) {
2410 if (params->Parameters[i].Type != PROGRAM_UNIFORM)
2411 continue;
2412
2413 unsigned location;
2414 const bool found =
2415 shader_program->UniformHash->get(location, params->Parameters[i].Name);
2416 assert(found);
2417
2418 if (!found)
2419 continue;
2420
2421 struct gl_uniform_storage *storage =
2422 &shader_program->UniformStorage[location];
2423
2424 /* Do not associate any uniform storage to built-in uniforms */
2425 if (storage->builtin)
2426 continue;
2427
2428 if (location != last_location) {
2429 enum gl_uniform_driver_format format = uniform_native;
2430
2431 unsigned columns = 0;
2432 int dmul = 4 * sizeof(float);
2433 switch (storage->type->base_type) {
2434 case GLSL_TYPE_UINT:
2435 assert(ctx->Const.NativeIntegers);
2436 format = uniform_native;
2437 columns = 1;
2438 break;
2439 case GLSL_TYPE_INT:
2440 format =
2441 (ctx->Const.NativeIntegers) ? uniform_native : uniform_int_float;
2442 columns = 1;
2443 break;
2444
2445 case GLSL_TYPE_DOUBLE:
2446 if (storage->type->vector_elements > 2)
2447 dmul *= 2;
2448 /* fallthrough */
2449 case GLSL_TYPE_FLOAT:
2450 format = uniform_native;
2451 columns = storage->type->matrix_columns;
2452 break;
2453 case GLSL_TYPE_BOOL:
2454 format = uniform_native;
2455 columns = 1;
2456 break;
2457 case GLSL_TYPE_SAMPLER:
2458 case GLSL_TYPE_IMAGE:
2459 case GLSL_TYPE_SUBROUTINE:
2460 format = uniform_native;
2461 columns = 1;
2462 break;
2463 case GLSL_TYPE_ATOMIC_UINT:
2464 case GLSL_TYPE_ARRAY:
2465 case GLSL_TYPE_VOID:
2466 case GLSL_TYPE_STRUCT:
2467 case GLSL_TYPE_ERROR:
2468 case GLSL_TYPE_INTERFACE:
2469 assert(!"Should not get here.");
2470 break;
2471 }
2472
2473 _mesa_uniform_attach_driver_storage(storage,
2474 dmul * columns,
2475 dmul,
2476 format,
2477 &params->ParameterValues[i]);
2478
2479 /* After attaching the driver's storage to the uniform, propagate any
2480 * data from the linker's backing store. This will cause values from
2481 * initializers in the source code to be copied over.
2482 */
2483 _mesa_propagate_uniforms_to_driver_storage(storage,
2484 0,
2485 MAX2(1, storage->array_elements));
2486
2487 last_location = location;
2488 }
2489 }
2490 }
2491
2492 /*
2493 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
2494 * channels for copy propagation and updates following instructions to
2495 * use the original versions.
2496 *
2497 * The ir_to_mesa_visitor lazily produces code assuming that this pass
2498 * will occur. As an example, a TXP production before this pass:
2499 *
2500 * 0: MOV TEMP[1], INPUT[4].xyyy;
2501 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2502 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
2503 *
2504 * and after:
2505 *
2506 * 0: MOV TEMP[1], INPUT[4].xyyy;
2507 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2508 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
2509 *
2510 * which allows for dead code elimination on TEMP[1]'s writes.
2511 */
2512 void
2513 ir_to_mesa_visitor::copy_propagate(void)
2514 {
2515 ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
2516 ir_to_mesa_instruction *,
2517 this->next_temp * 4);
2518 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
2519 int level = 0;
2520
2521 foreach_in_list(ir_to_mesa_instruction, inst, &this->instructions) {
2522 assert(inst->dst.file != PROGRAM_TEMPORARY
2523 || inst->dst.index < this->next_temp);
2524
2525 /* First, do any copy propagation possible into the src regs. */
2526 for (int r = 0; r < 3; r++) {
2527 ir_to_mesa_instruction *first = NULL;
2528 bool good = true;
2529 int acp_base = inst->src[r].index * 4;
2530
2531 if (inst->src[r].file != PROGRAM_TEMPORARY ||
2532 inst->src[r].reladdr)
2533 continue;
2534
2535 /* See if we can find entries in the ACP consisting of MOVs
2536 * from the same src register for all the swizzled channels
2537 * of this src register reference.
2538 */
2539 for (int i = 0; i < 4; i++) {
2540 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2541 ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];
2542
2543 if (!copy_chan) {
2544 good = false;
2545 break;
2546 }
2547
2548 assert(acp_level[acp_base + src_chan] <= level);
2549
2550 if (!first) {
2551 first = copy_chan;
2552 } else {
2553 if (first->src[0].file != copy_chan->src[0].file ||
2554 first->src[0].index != copy_chan->src[0].index) {
2555 good = false;
2556 break;
2557 }
2558 }
2559 }
2560
2561 if (good) {
2562 /* We've now validated that we can copy-propagate to
2563 * replace this src register reference. Do it.
2564 */
2565 inst->src[r].file = first->src[0].file;
2566 inst->src[r].index = first->src[0].index;
2567
2568 int swizzle = 0;
2569 for (int i = 0; i < 4; i++) {
2570 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2571 ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
2572 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
2573 (3 * i));
2574 }
2575 inst->src[r].swizzle = swizzle;
2576 }
2577 }
2578
2579 switch (inst->op) {
2580 case OPCODE_BGNLOOP:
2581 case OPCODE_ENDLOOP:
2582 /* End of a basic block, clear the ACP entirely. */
2583 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2584 break;
2585
2586 case OPCODE_IF:
2587 ++level;
2588 break;
2589
2590 case OPCODE_ENDIF:
2591 case OPCODE_ELSE:
2592 /* Clear all channels written inside the block from the ACP, but
2593 * leaving those that were not touched.
2594 */
2595 for (int r = 0; r < this->next_temp; r++) {
2596 for (int c = 0; c < 4; c++) {
2597 if (!acp[4 * r + c])
2598 continue;
2599
2600 if (acp_level[4 * r + c] >= level)
2601 acp[4 * r + c] = NULL;
2602 }
2603 }
2604 if (inst->op == OPCODE_ENDIF)
2605 --level;
2606 break;
2607
2608 default:
2609 /* Continuing the block, clear any written channels from
2610 * the ACP.
2611 */
2612 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
2613 /* Any temporary might be written, so no copy propagation
2614 * across this instruction.
2615 */
2616 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2617 } else if (inst->dst.file == PROGRAM_OUTPUT &&
2618 inst->dst.reladdr) {
2619 /* Any output might be written, so no copy propagation
2620 * from outputs across this instruction.
2621 */
2622 for (int r = 0; r < this->next_temp; r++) {
2623 for (int c = 0; c < 4; c++) {
2624 if (!acp[4 * r + c])
2625 continue;
2626
2627 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
2628 acp[4 * r + c] = NULL;
2629 }
2630 }
2631 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
2632 inst->dst.file == PROGRAM_OUTPUT) {
2633 /* Clear where it's used as dst. */
2634 if (inst->dst.file == PROGRAM_TEMPORARY) {
2635 for (int c = 0; c < 4; c++) {
2636 if (inst->dst.writemask & (1 << c)) {
2637 acp[4 * inst->dst.index + c] = NULL;
2638 }
2639 }
2640 }
2641
2642 /* Clear where it's used as src. */
2643 for (int r = 0; r < this->next_temp; r++) {
2644 for (int c = 0; c < 4; c++) {
2645 if (!acp[4 * r + c])
2646 continue;
2647
2648 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
2649
2650 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
2651 acp[4 * r + c]->src[0].index == inst->dst.index &&
2652 inst->dst.writemask & (1 << src_chan))
2653 {
2654 acp[4 * r + c] = NULL;
2655 }
2656 }
2657 }
2658 }
2659 break;
2660 }
2661
2662 /* If this is a copy, add it to the ACP. */
2663 if (inst->op == OPCODE_MOV &&
2664 inst->dst.file == PROGRAM_TEMPORARY &&
2665 !(inst->dst.file == inst->src[0].file &&
2666 inst->dst.index == inst->src[0].index) &&
2667 !inst->dst.reladdr &&
2668 !inst->saturate &&
2669 !inst->src[0].reladdr &&
2670 !inst->src[0].negate) {
2671 for (int i = 0; i < 4; i++) {
2672 if (inst->dst.writemask & (1 << i)) {
2673 acp[4 * inst->dst.index + i] = inst;
2674 acp_level[4 * inst->dst.index + i] = level;
2675 }
2676 }
2677 }
2678 }
2679
2680 ralloc_free(acp_level);
2681 ralloc_free(acp);
2682 }
2683
2684
2685 /**
2686 * Convert a shader's GLSL IR into a Mesa gl_program.
2687 */
2688 static struct gl_program *
2689 get_mesa_program(struct gl_context *ctx,
2690 struct gl_shader_program *shader_program,
2691 struct gl_shader *shader)
2692 {
2693 ir_to_mesa_visitor v;
2694 struct prog_instruction *mesa_instructions, *mesa_inst;
2695 ir_instruction **mesa_instruction_annotation;
2696 int i;
2697 struct gl_program *prog;
2698 GLenum target = _mesa_shader_stage_to_program(shader->Stage);
2699 const char *target_string = _mesa_shader_stage_to_string(shader->Stage);
2700 struct gl_shader_compiler_options *options =
2701 &ctx->Const.ShaderCompilerOptions[shader->Stage];
2702
2703 validate_ir_tree(shader->ir);
2704
2705 prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
2706 if (!prog)
2707 return NULL;
2708 prog->Parameters = _mesa_new_parameter_list();
2709 v.ctx = ctx;
2710 v.prog = prog;
2711 v.shader_program = shader_program;
2712 v.options = options;
2713
2714 _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
2715 prog->Parameters);
2716
2717 /* Emit Mesa IR for main(). */
2718 visit_exec_list(shader->ir, &v);
2719 v.emit(NULL, OPCODE_END);
2720
2721 prog->NumTemporaries = v.next_temp;
2722
2723 unsigned num_instructions = v.instructions.length();
2724
2725 mesa_instructions =
2726 (struct prog_instruction *)calloc(num_instructions,
2727 sizeof(*mesa_instructions));
2728 mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
2729 num_instructions);
2730
2731 v.copy_propagate();
2732
2733 /* Convert ir_mesa_instructions into prog_instructions.
2734 */
2735 mesa_inst = mesa_instructions;
2736 i = 0;
2737 foreach_in_list(const ir_to_mesa_instruction, inst, &v.instructions) {
2738 mesa_inst->Opcode = inst->op;
2739 mesa_inst->CondUpdate = inst->cond_update;
2740 if (inst->saturate)
2741 mesa_inst->Saturate = GL_TRUE;
2742 mesa_inst->DstReg.File = inst->dst.file;
2743 mesa_inst->DstReg.Index = inst->dst.index;
2744 mesa_inst->DstReg.CondMask = inst->dst.cond_mask;
2745 mesa_inst->DstReg.WriteMask = inst->dst.writemask;
2746 mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
2747 mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
2748 mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
2749 mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
2750 mesa_inst->TexSrcUnit = inst->sampler;
2751 mesa_inst->TexSrcTarget = inst->tex_target;
2752 mesa_inst->TexShadow = inst->tex_shadow;
2753 mesa_instruction_annotation[i] = inst->ir;
2754
2755 /* Set IndirectRegisterFiles. */
2756 if (mesa_inst->DstReg.RelAddr)
2757 prog->IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;
2758
2759 /* Update program's bitmask of indirectly accessed register files */
2760 for (unsigned src = 0; src < 3; src++)
2761 if (mesa_inst->SrcReg[src].RelAddr)
2762 prog->IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;
2763
2764 switch (mesa_inst->Opcode) {
2765 case OPCODE_IF:
2766 if (options->MaxIfDepth == 0) {
2767 linker_warning(shader_program,
2768 "Couldn't flatten if-statement. "
2769 "This will likely result in software "
2770 "rasterization.\n");
2771 }
2772 break;
2773 case OPCODE_BGNLOOP:
2774 if (options->EmitNoLoops) {
2775 linker_warning(shader_program,
2776 "Couldn't unroll loop. "
2777 "This will likely result in software "
2778 "rasterization.\n");
2779 }
2780 break;
2781 case OPCODE_CONT:
2782 if (options->EmitNoCont) {
2783 linker_warning(shader_program,
2784 "Couldn't lower continue-statement. "
2785 "This will likely result in software "
2786 "rasterization.\n");
2787 }
2788 break;
2789 case OPCODE_ARL:
2790 prog->NumAddressRegs = 1;
2791 break;
2792 default:
2793 break;
2794 }
2795
2796 mesa_inst++;
2797 i++;
2798
2799 if (!shader_program->LinkStatus)
2800 break;
2801 }
2802
2803 if (!shader_program->LinkStatus) {
2804 goto fail_exit;
2805 }
2806
2807 set_branchtargets(&v, mesa_instructions, num_instructions);
2808
2809 if (ctx->_Shader->Flags & GLSL_DUMP) {
2810 fprintf(stderr, "\n");
2811 fprintf(stderr, "GLSL IR for linked %s program %d:\n", target_string,
2812 shader_program->Name);
2813 _mesa_print_ir(stderr, shader->ir, NULL);
2814 fprintf(stderr, "\n");
2815 fprintf(stderr, "\n");
2816 fprintf(stderr, "Mesa IR for linked %s program %d:\n", target_string,
2817 shader_program->Name);
2818 print_program(mesa_instructions, mesa_instruction_annotation,
2819 num_instructions);
2820 fflush(stderr);
2821 }
2822
2823 prog->Instructions = mesa_instructions;
2824 prog->NumInstructions = num_instructions;
2825
2826 /* Setting this to NULL prevents a possible double free in the fail_exit
2827 * path (far below).
2828 */
2829 mesa_instructions = NULL;
2830
2831 do_set_program_inouts(shader->ir, prog, shader->Stage);
2832
2833 prog->SamplersUsed = shader->active_samplers;
2834 prog->ShadowSamplers = shader->shadow_samplers;
2835 _mesa_update_shader_textures_used(shader_program, prog);
2836
2837 /* Set the gl_FragDepth layout. */
2838 if (target == GL_FRAGMENT_PROGRAM_ARB) {
2839 struct gl_fragment_program *fp = (struct gl_fragment_program *)prog;
2840 fp->FragDepthLayout = shader_program->FragDepthLayout;
2841 }
2842
2843 _mesa_reference_program(ctx, &shader->Program, prog);
2844
2845 if ((ctx->_Shader->Flags & GLSL_NO_OPT) == 0) {
2846 _mesa_optimize_program(ctx, prog);
2847 }
2848
2849 /* This has to be done last. Any operation that can cause
2850 * prog->ParameterValues to get reallocated (e.g., anything that adds a
2851 * program constant) has to happen before creating this linkage.
2852 */
2853 _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
2854 if (!shader_program->LinkStatus) {
2855 goto fail_exit;
2856 }
2857
2858 return prog;
2859
2860 fail_exit:
2861 free(mesa_instructions);
2862 _mesa_reference_program(ctx, &shader->Program, NULL);
2863 return NULL;
2864 }
2865
2866 extern "C" {
2867
2868 /**
2869 * Link a shader.
2870 * Called via ctx->Driver.LinkShader()
2871 * This actually involves converting GLSL IR into Mesa gl_programs with
2872 * code lowering and other optimizations.
2873 */
2874 GLboolean
2875 _mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
2876 {
2877 assert(prog->LinkStatus);
2878
2879 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2880 if (prog->_LinkedShaders[i] == NULL)
2881 continue;
2882
2883 bool progress;
2884 exec_list *ir = prog->_LinkedShaders[i]->ir;
2885 const struct gl_shader_compiler_options *options =
2886 &ctx->Const.ShaderCompilerOptions[prog->_LinkedShaders[i]->Stage];
2887
2888 do {
2889 progress = false;
2890
2891 /* Lowering */
2892 do_mat_op_to_vec(ir);
2893 lower_instructions(ir, (MOD_TO_FLOOR | DIV_TO_MUL_RCP | EXP_TO_EXP2
2894 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
2895 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
2896
2897 progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
2898
2899 progress = do_common_optimization(ir, true, true,
2900 options, ctx->Const.NativeIntegers)
2901 || progress;
2902
2903 progress = lower_quadop_vector(ir, true) || progress;
2904
2905 if (options->MaxIfDepth == 0)
2906 progress = lower_discard(ir) || progress;
2907
2908 progress = lower_if_to_cond_assign(ir, options->MaxIfDepth) || progress;
2909
2910 if (options->EmitNoNoise)
2911 progress = lower_noise(ir) || progress;
2912
2913 /* If there are forms of indirect addressing that the driver
2914 * cannot handle, perform the lowering pass.
2915 */
2916 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
2917 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
2918 progress =
2919 lower_variable_index_to_cond_assign(prog->_LinkedShaders[i]->Stage, ir,
2920 options->EmitNoIndirectInput,
2921 options->EmitNoIndirectOutput,
2922 options->EmitNoIndirectTemp,
2923 options->EmitNoIndirectUniform)
2924 || progress;
2925
2926 progress = do_vec_index_to_cond_assign(ir) || progress;
2927 progress = lower_vector_insert(ir, true) || progress;
2928 } while (progress);
2929
2930 validate_ir_tree(ir);
2931 }
2932
2933 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2934 struct gl_program *linked_prog;
2935
2936 if (prog->_LinkedShaders[i] == NULL)
2937 continue;
2938
2939 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
2940
2941 if (linked_prog) {
2942 _mesa_copy_linked_program_data((gl_shader_stage) i, prog, linked_prog);
2943
2944 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
2945 linked_prog);
2946 if (!ctx->Driver.ProgramStringNotify(ctx,
2947 _mesa_shader_stage_to_program(i),
2948 linked_prog)) {
2949 return GL_FALSE;
2950 }
2951 }
2952
2953 _mesa_reference_program(ctx, &linked_prog, NULL);
2954 }
2955
2956 return prog->LinkStatus;
2957 }
2958
2959 /**
2960 * Link a GLSL shader program. Called via glLinkProgram().
2961 */
2962 void
2963 _mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
2964 {
2965 unsigned int i;
2966
2967 _mesa_clear_shader_program_data(prog);
2968
2969 prog->LinkStatus = GL_TRUE;
2970
2971 for (i = 0; i < prog->NumShaders; i++) {
2972 if (!prog->Shaders[i]->CompileStatus) {
2973 linker_error(prog, "linking with uncompiled shader");
2974 }
2975 }
2976
2977 if (prog->LinkStatus) {
2978 link_shaders(ctx, prog);
2979 }
2980
2981 if (prog->LinkStatus) {
2982 if (!ctx->Driver.LinkShader(ctx, prog)) {
2983 prog->LinkStatus = GL_FALSE;
2984 } else {
2985 build_program_resource_list(prog);
2986 }
2987 }
2988
2989 if (ctx->_Shader->Flags & GLSL_DUMP) {
2990 if (!prog->LinkStatus) {
2991 fprintf(stderr, "GLSL shader program %d failed to link\n", prog->Name);
2992 }
2993
2994 if (prog->InfoLog && prog->InfoLog[0] != 0) {
2995 fprintf(stderr, "GLSL shader program %d info log:\n", prog->Name);
2996 fprintf(stderr, "%s\n", prog->InfoLog);
2997 }
2998 }
2999 }
3000
3001 } /* extern "C" */