697313fc36ea74c072edebe09938d2cd587d82e1
[mesa.git] / src / mesa / program / ir_to_mesa.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
24 */
25
26 /**
27 * \file ir_to_mesa.cpp
28 *
29 * Translate GLSL IR to Mesa's gl_program representation.
30 */
31
32 #include <stdio.h>
33 #include "main/compiler.h"
34 #include "ir.h"
35 #include "ir_visitor.h"
36 #include "ir_print_visitor.h"
37 #include "ir_expression_flattening.h"
38 #include "ir_uniform.h"
39 #include "glsl_types.h"
40 #include "glsl_parser_extras.h"
41 #include "../glsl/program.h"
42 #include "ir_optimization.h"
43 #include "ast.h"
44 #include "linker.h"
45
46 #include "main/mtypes.h"
47 #include "main/shaderobj.h"
48 #include "program/hash_table.h"
49
50 extern "C" {
51 #include "main/shaderapi.h"
52 #include "main/uniforms.h"
53 #include "program/prog_instruction.h"
54 #include "program/prog_optimize.h"
55 #include "program/prog_print.h"
56 #include "program/program.h"
57 #include "program/prog_parameter.h"
58 #include "program/sampler.h"
59 }
60
61 class src_reg;
62 class dst_reg;
63
64 static int swizzle_for_size(int size);
65
66 /**
67 * This struct is a corresponding struct to Mesa prog_src_register, with
68 * wider fields.
69 */
70 class src_reg {
71 public:
72 src_reg(gl_register_file file, int index, const glsl_type *type)
73 {
74 this->file = file;
75 this->index = index;
76 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
77 this->swizzle = swizzle_for_size(type->vector_elements);
78 else
79 this->swizzle = SWIZZLE_XYZW;
80 this->negate = 0;
81 this->reladdr = NULL;
82 }
83
84 src_reg()
85 {
86 this->file = PROGRAM_UNDEFINED;
87 this->index = 0;
88 this->swizzle = 0;
89 this->negate = 0;
90 this->reladdr = NULL;
91 }
92
93 explicit src_reg(dst_reg reg);
94
95 gl_register_file file; /**< PROGRAM_* from Mesa */
96 int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */
97 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
98 int negate; /**< NEGATE_XYZW mask from mesa */
99 /** Register index should be offset by the integer in this reg. */
100 src_reg *reladdr;
101 };
102
103 class dst_reg {
104 public:
105 dst_reg(gl_register_file file, int writemask)
106 {
107 this->file = file;
108 this->index = 0;
109 this->writemask = writemask;
110 this->cond_mask = COND_TR;
111 this->reladdr = NULL;
112 }
113
114 dst_reg()
115 {
116 this->file = PROGRAM_UNDEFINED;
117 this->index = 0;
118 this->writemask = 0;
119 this->cond_mask = COND_TR;
120 this->reladdr = NULL;
121 }
122
123 explicit dst_reg(src_reg reg);
124
125 gl_register_file file; /**< PROGRAM_* from Mesa */
126 int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */
127 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
128 GLuint cond_mask:4;
129 /** Register index should be offset by the integer in this reg. */
130 src_reg *reladdr;
131 };
132
133 src_reg::src_reg(dst_reg reg)
134 {
135 this->file = reg.file;
136 this->index = reg.index;
137 this->swizzle = SWIZZLE_XYZW;
138 this->negate = 0;
139 this->reladdr = reg.reladdr;
140 }
141
142 dst_reg::dst_reg(src_reg reg)
143 {
144 this->file = reg.file;
145 this->index = reg.index;
146 this->writemask = WRITEMASK_XYZW;
147 this->cond_mask = COND_TR;
148 this->reladdr = reg.reladdr;
149 }
150
151 class ir_to_mesa_instruction : public exec_node {
152 public:
153 /* Callers of this ralloc-based new need not call delete. It's
154 * easier to just ralloc_free 'ctx' (or any of its ancestors). */
155 static void* operator new(size_t size, void *ctx)
156 {
157 void *node;
158
159 node = rzalloc_size(ctx, size);
160 assert(node != NULL);
161
162 return node;
163 }
164
165 enum prog_opcode op;
166 dst_reg dst;
167 src_reg src[3];
168 /** Pointer to the ir source this tree came from for debugging */
169 ir_instruction *ir;
170 GLboolean cond_update;
171 bool saturate;
172 int sampler; /**< sampler index */
173 int tex_target; /**< One of TEXTURE_*_INDEX */
174 GLboolean tex_shadow;
175
176 class function_entry *function; /* Set on OPCODE_CAL or OPCODE_BGNSUB */
177 };
178
179 class variable_storage : public exec_node {
180 public:
181 variable_storage(ir_variable *var, gl_register_file file, int index)
182 : file(file), index(index), var(var)
183 {
184 /* empty */
185 }
186
187 gl_register_file file;
188 int index;
189 ir_variable *var; /* variable that maps to this, if any */
190 };
191
192 class function_entry : public exec_node {
193 public:
194 ir_function_signature *sig;
195
196 /**
197 * identifier of this function signature used by the program.
198 *
199 * At the point that Mesa instructions for function calls are
200 * generated, we don't know the address of the first instruction of
201 * the function body. So we make the BranchTarget that is called a
202 * small integer and rewrite them during set_branchtargets().
203 */
204 int sig_id;
205
206 /**
207 * Pointer to first instruction of the function body.
208 *
209 * Set during function body emits after main() is processed.
210 */
211 ir_to_mesa_instruction *bgn_inst;
212
213 /**
214 * Index of the first instruction of the function body in actual
215 * Mesa IR.
216 *
217 * Set after convertion from ir_to_mesa_instruction to prog_instruction.
218 */
219 int inst;
220
221 /** Storage for the return value. */
222 src_reg return_reg;
223 };
224
225 class ir_to_mesa_visitor : public ir_visitor {
226 public:
227 ir_to_mesa_visitor();
228 ~ir_to_mesa_visitor();
229
230 function_entry *current_function;
231
232 struct gl_context *ctx;
233 struct gl_program *prog;
234 struct gl_shader_program *shader_program;
235 struct gl_shader_compiler_options *options;
236
237 int next_temp;
238
239 variable_storage *find_variable_storage(ir_variable *var);
240
241 function_entry *get_function_signature(ir_function_signature *sig);
242
243 src_reg get_temp(const glsl_type *type);
244 void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);
245
246 src_reg src_reg_for_float(float val);
247
248 /**
249 * \name Visit methods
250 *
251 * As typical for the visitor pattern, there must be one \c visit method for
252 * each concrete subclass of \c ir_instruction. Virtual base classes within
253 * the hierarchy should not have \c visit methods.
254 */
255 /*@{*/
256 virtual void visit(ir_variable *);
257 virtual void visit(ir_loop *);
258 virtual void visit(ir_loop_jump *);
259 virtual void visit(ir_function_signature *);
260 virtual void visit(ir_function *);
261 virtual void visit(ir_expression *);
262 virtual void visit(ir_swizzle *);
263 virtual void visit(ir_dereference_variable *);
264 virtual void visit(ir_dereference_array *);
265 virtual void visit(ir_dereference_record *);
266 virtual void visit(ir_assignment *);
267 virtual void visit(ir_constant *);
268 virtual void visit(ir_call *);
269 virtual void visit(ir_return *);
270 virtual void visit(ir_discard *);
271 virtual void visit(ir_texture *);
272 virtual void visit(ir_if *);
273 /*@}*/
274
275 src_reg result;
276
277 /** List of variable_storage */
278 exec_list variables;
279
280 /** List of function_entry */
281 exec_list function_signatures;
282 int next_signature_id;
283
284 /** List of ir_to_mesa_instruction */
285 exec_list instructions;
286
287 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);
288
289 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
290 dst_reg dst, src_reg src0);
291
292 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
293 dst_reg dst, src_reg src0, src_reg src1);
294
295 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
296 dst_reg dst,
297 src_reg src0, src_reg src1, src_reg src2);
298
299 /**
300 * Emit the correct dot-product instruction for the type of arguments
301 */
302 ir_to_mesa_instruction * emit_dp(ir_instruction *ir,
303 dst_reg dst,
304 src_reg src0,
305 src_reg src1,
306 unsigned elements);
307
308 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
309 dst_reg dst, src_reg src0);
310
311 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
312 dst_reg dst, src_reg src0, src_reg src1);
313
314 void emit_scs(ir_instruction *ir, enum prog_opcode op,
315 dst_reg dst, const src_reg &src);
316
317 bool try_emit_mad(ir_expression *ir,
318 int mul_operand);
319 bool try_emit_mad_for_and_not(ir_expression *ir,
320 int mul_operand);
321 bool try_emit_sat(ir_expression *ir);
322
323 void emit_swz(ir_expression *ir);
324
325 bool process_move_condition(ir_rvalue *ir);
326
327 void copy_propagate(void);
328
329 void *mem_ctx;
330 };
331
332 src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);
333
334 dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);
335
336 dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);
337
338 static int
339 swizzle_for_size(int size)
340 {
341 int size_swizzles[4] = {
342 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
343 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
344 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
345 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
346 };
347
348 assert((size >= 1) && (size <= 4));
349 return size_swizzles[size - 1];
350 }
351
352 ir_to_mesa_instruction *
353 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
354 dst_reg dst,
355 src_reg src0, src_reg src1, src_reg src2)
356 {
357 ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
358 int num_reladdr = 0;
359
360 /* If we have to do relative addressing, we want to load the ARL
361 * reg directly for one of the regs, and preload the other reladdr
362 * sources into temps.
363 */
364 num_reladdr += dst.reladdr != NULL;
365 num_reladdr += src0.reladdr != NULL;
366 num_reladdr += src1.reladdr != NULL;
367 num_reladdr += src2.reladdr != NULL;
368
369 reladdr_to_temp(ir, &src2, &num_reladdr);
370 reladdr_to_temp(ir, &src1, &num_reladdr);
371 reladdr_to_temp(ir, &src0, &num_reladdr);
372
373 if (dst.reladdr) {
374 emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
375 num_reladdr--;
376 }
377 assert(num_reladdr == 0);
378
379 inst->op = op;
380 inst->dst = dst;
381 inst->src[0] = src0;
382 inst->src[1] = src1;
383 inst->src[2] = src2;
384 inst->ir = ir;
385
386 inst->function = NULL;
387
388 this->instructions.push_tail(inst);
389
390 return inst;
391 }
392
393
394 ir_to_mesa_instruction *
395 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
396 dst_reg dst, src_reg src0, src_reg src1)
397 {
398 return emit(ir, op, dst, src0, src1, undef_src);
399 }
400
401 ir_to_mesa_instruction *
402 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
403 dst_reg dst, src_reg src0)
404 {
405 assert(dst.writemask != 0);
406 return emit(ir, op, dst, src0, undef_src, undef_src);
407 }
408
409 ir_to_mesa_instruction *
410 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
411 {
412 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
413 }
414
415 ir_to_mesa_instruction *
416 ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
417 dst_reg dst, src_reg src0, src_reg src1,
418 unsigned elements)
419 {
420 static const gl_inst_opcode dot_opcodes[] = {
421 OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
422 };
423
424 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
425 }
426
427 /**
428 * Emits Mesa scalar opcodes to produce unique answers across channels.
429 *
430 * Some Mesa opcodes are scalar-only, like ARB_fp/vp. The src X
431 * channel determines the result across all channels. So to do a vec4
432 * of this operation, we want to emit a scalar per source channel used
433 * to produce dest channels.
434 */
435 void
436 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
437 dst_reg dst,
438 src_reg orig_src0, src_reg orig_src1)
439 {
440 int i, j;
441 int done_mask = ~dst.writemask;
442
443 /* Mesa RCP is a scalar operation splatting results to all channels,
444 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
445 * dst channels.
446 */
447 for (i = 0; i < 4; i++) {
448 GLuint this_mask = (1 << i);
449 ir_to_mesa_instruction *inst;
450 src_reg src0 = orig_src0;
451 src_reg src1 = orig_src1;
452
453 if (done_mask & this_mask)
454 continue;
455
456 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
457 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
458 for (j = i + 1; j < 4; j++) {
459 /* If there is another enabled component in the destination that is
460 * derived from the same inputs, generate its value on this pass as
461 * well.
462 */
463 if (!(done_mask & (1 << j)) &&
464 GET_SWZ(src0.swizzle, j) == src0_swiz &&
465 GET_SWZ(src1.swizzle, j) == src1_swiz) {
466 this_mask |= (1 << j);
467 }
468 }
469 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
470 src0_swiz, src0_swiz);
471 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
472 src1_swiz, src1_swiz);
473
474 inst = emit(ir, op, dst, src0, src1);
475 inst->dst.writemask = this_mask;
476 done_mask |= this_mask;
477 }
478 }
479
480 void
481 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
482 dst_reg dst, src_reg src0)
483 {
484 src_reg undef = undef_src;
485
486 undef.swizzle = SWIZZLE_XXXX;
487
488 emit_scalar(ir, op, dst, src0, undef);
489 }
490
491 /**
492 * Emit an OPCODE_SCS instruction
493 *
494 * The \c SCS opcode functions a bit differently than the other Mesa (or
495 * ARB_fragment_program) opcodes. Instead of splatting its result across all
496 * four components of the destination, it writes one value to the \c x
497 * component and another value to the \c y component.
498 *
499 * \param ir IR instruction being processed
500 * \param op Either \c OPCODE_SIN or \c OPCODE_COS depending on which
501 * value is desired.
502 * \param dst Destination register
503 * \param src Source register
504 */
505 void
506 ir_to_mesa_visitor::emit_scs(ir_instruction *ir, enum prog_opcode op,
507 dst_reg dst,
508 const src_reg &src)
509 {
510 /* Vertex programs cannot use the SCS opcode.
511 */
512 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB) {
513 emit_scalar(ir, op, dst, src);
514 return;
515 }
516
517 const unsigned component = (op == OPCODE_SIN) ? 0 : 1;
518 const unsigned scs_mask = (1U << component);
519 int done_mask = ~dst.writemask;
520 src_reg tmp;
521
522 assert(op == OPCODE_SIN || op == OPCODE_COS);
523
524 /* If there are compnents in the destination that differ from the component
525 * that will be written by the SCS instrution, we'll need a temporary.
526 */
527 if (scs_mask != unsigned(dst.writemask)) {
528 tmp = get_temp(glsl_type::vec4_type);
529 }
530
531 for (unsigned i = 0; i < 4; i++) {
532 unsigned this_mask = (1U << i);
533 src_reg src0 = src;
534
535 if ((done_mask & this_mask) != 0)
536 continue;
537
538 /* The source swizzle specified which component of the source generates
539 * sine / cosine for the current component in the destination. The SCS
540 * instruction requires that this value be swizzle to the X component.
541 * Replace the current swizzle with a swizzle that puts the source in
542 * the X component.
543 */
544 unsigned src0_swiz = GET_SWZ(src.swizzle, i);
545
546 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
547 src0_swiz, src0_swiz);
548 for (unsigned j = i + 1; j < 4; j++) {
549 /* If there is another enabled component in the destination that is
550 * derived from the same inputs, generate its value on this pass as
551 * well.
552 */
553 if (!(done_mask & (1 << j)) &&
554 GET_SWZ(src0.swizzle, j) == src0_swiz) {
555 this_mask |= (1 << j);
556 }
557 }
558
559 if (this_mask != scs_mask) {
560 ir_to_mesa_instruction *inst;
561 dst_reg tmp_dst = dst_reg(tmp);
562
563 /* Emit the SCS instruction.
564 */
565 inst = emit(ir, OPCODE_SCS, tmp_dst, src0);
566 inst->dst.writemask = scs_mask;
567
568 /* Move the result of the SCS instruction to the desired location in
569 * the destination.
570 */
571 tmp.swizzle = MAKE_SWIZZLE4(component, component,
572 component, component);
573 inst = emit(ir, OPCODE_SCS, dst, tmp);
574 inst->dst.writemask = this_mask;
575 } else {
576 /* Emit the SCS instruction to write directly to the destination.
577 */
578 ir_to_mesa_instruction *inst = emit(ir, OPCODE_SCS, dst, src0);
579 inst->dst.writemask = scs_mask;
580 }
581
582 done_mask |= this_mask;
583 }
584 }
585
586 src_reg
587 ir_to_mesa_visitor::src_reg_for_float(float val)
588 {
589 src_reg src(PROGRAM_CONSTANT, -1, NULL);
590
591 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
592 (const gl_constant_value *)&val, 1, &src.swizzle);
593
594 return src;
595 }
596
597 static int
598 type_size(const struct glsl_type *type)
599 {
600 unsigned int i;
601 int size;
602
603 switch (type->base_type) {
604 case GLSL_TYPE_UINT:
605 case GLSL_TYPE_INT:
606 case GLSL_TYPE_FLOAT:
607 case GLSL_TYPE_BOOL:
608 if (type->is_matrix()) {
609 return type->matrix_columns;
610 } else {
611 /* Regardless of size of vector, it gets a vec4. This is bad
612 * packing for things like floats, but otherwise arrays become a
613 * mess. Hopefully a later pass over the code can pack scalars
614 * down if appropriate.
615 */
616 return 1;
617 }
618 case GLSL_TYPE_ARRAY:
619 assert(type->length > 0);
620 return type_size(type->fields.array) * type->length;
621 case GLSL_TYPE_STRUCT:
622 size = 0;
623 for (i = 0; i < type->length; i++) {
624 size += type_size(type->fields.structure[i].type);
625 }
626 return size;
627 case GLSL_TYPE_SAMPLER:
628 /* Samplers take up one slot in UNIFORMS[], but they're baked in
629 * at link time.
630 */
631 return 1;
632 default:
633 assert(0);
634 return 0;
635 }
636 }
637
638 /**
639 * In the initial pass of codegen, we assign temporary numbers to
640 * intermediate results. (not SSA -- variable assignments will reuse
641 * storage). Actual register allocation for the Mesa VM occurs in a
642 * pass over the Mesa IR later.
643 */
644 src_reg
645 ir_to_mesa_visitor::get_temp(const glsl_type *type)
646 {
647 src_reg src;
648
649 src.file = PROGRAM_TEMPORARY;
650 src.index = next_temp;
651 src.reladdr = NULL;
652 next_temp += type_size(type);
653
654 if (type->is_array() || type->is_record()) {
655 src.swizzle = SWIZZLE_NOOP;
656 } else {
657 src.swizzle = swizzle_for_size(type->vector_elements);
658 }
659 src.negate = 0;
660
661 return src;
662 }
663
664 variable_storage *
665 ir_to_mesa_visitor::find_variable_storage(ir_variable *var)
666 {
667
668 variable_storage *entry;
669
670 foreach_iter(exec_list_iterator, iter, this->variables) {
671 entry = (variable_storage *)iter.get();
672
673 if (entry->var == var)
674 return entry;
675 }
676
677 return NULL;
678 }
679
680 void
681 ir_to_mesa_visitor::visit(ir_variable *ir)
682 {
683 if (strcmp(ir->name, "gl_FragCoord") == 0) {
684 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
685
686 fp->OriginUpperLeft = ir->origin_upper_left;
687 fp->PixelCenterInteger = ir->pixel_center_integer;
688 }
689
690 if (ir->mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
691 unsigned int i;
692 const ir_state_slot *const slots = ir->state_slots;
693 assert(ir->state_slots != NULL);
694
695 /* Check if this statevar's setup in the STATE file exactly
696 * matches how we'll want to reference it as a
697 * struct/array/whatever. If not, then we need to move it into
698 * temporary storage and hope that it'll get copy-propagated
699 * out.
700 */
701 for (i = 0; i < ir->num_state_slots; i++) {
702 if (slots[i].swizzle != SWIZZLE_XYZW) {
703 break;
704 }
705 }
706
707 variable_storage *storage;
708 dst_reg dst;
709 if (i == ir->num_state_slots) {
710 /* We'll set the index later. */
711 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
712 this->variables.push_tail(storage);
713
714 dst = undef_dst;
715 } else {
716 /* The variable_storage constructor allocates slots based on the size
717 * of the type. However, this had better match the number of state
718 * elements that we're going to copy into the new temporary.
719 */
720 assert((int) ir->num_state_slots == type_size(ir->type));
721
722 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
723 this->next_temp);
724 this->variables.push_tail(storage);
725 this->next_temp += type_size(ir->type);
726
727 dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
728 }
729
730
731 for (unsigned int i = 0; i < ir->num_state_slots; i++) {
732 int index = _mesa_add_state_reference(this->prog->Parameters,
733 (gl_state_index *)slots[i].tokens);
734
735 if (storage->file == PROGRAM_STATE_VAR) {
736 if (storage->index == -1) {
737 storage->index = index;
738 } else {
739 assert(index == storage->index + (int)i);
740 }
741 } else {
742 src_reg src(PROGRAM_STATE_VAR, index, NULL);
743 src.swizzle = slots[i].swizzle;
744 emit(ir, OPCODE_MOV, dst, src);
745 /* even a float takes up a whole vec4 reg in a struct/array. */
746 dst.index++;
747 }
748 }
749
750 if (storage->file == PROGRAM_TEMPORARY &&
751 dst.index != storage->index + (int) ir->num_state_slots) {
752 linker_error(this->shader_program,
753 "failed to load builtin uniform `%s' "
754 "(%d/%d regs loaded)\n",
755 ir->name, dst.index - storage->index,
756 type_size(ir->type));
757 }
758 }
759 }
760
761 void
762 ir_to_mesa_visitor::visit(ir_loop *ir)
763 {
764 ir_dereference_variable *counter = NULL;
765
766 if (ir->counter != NULL)
767 counter = new(mem_ctx) ir_dereference_variable(ir->counter);
768
769 if (ir->from != NULL) {
770 assert(ir->counter != NULL);
771
772 ir_assignment *a =
773 new(mem_ctx) ir_assignment(counter, ir->from, NULL);
774
775 a->accept(this);
776 }
777
778 emit(NULL, OPCODE_BGNLOOP);
779
780 if (ir->to) {
781 ir_expression *e =
782 new(mem_ctx) ir_expression(ir->cmp, glsl_type::bool_type,
783 counter, ir->to);
784 ir_if *if_stmt = new(mem_ctx) ir_if(e);
785
786 ir_loop_jump *brk =
787 new(mem_ctx) ir_loop_jump(ir_loop_jump::jump_break);
788
789 if_stmt->then_instructions.push_tail(brk);
790
791 if_stmt->accept(this);
792 }
793
794 visit_exec_list(&ir->body_instructions, this);
795
796 if (ir->increment) {
797 ir_expression *e =
798 new(mem_ctx) ir_expression(ir_binop_add, counter->type,
799 counter, ir->increment);
800
801 ir_assignment *a =
802 new(mem_ctx) ir_assignment(counter, e, NULL);
803
804 a->accept(this);
805 }
806
807 emit(NULL, OPCODE_ENDLOOP);
808 }
809
810 void
811 ir_to_mesa_visitor::visit(ir_loop_jump *ir)
812 {
813 switch (ir->mode) {
814 case ir_loop_jump::jump_break:
815 emit(NULL, OPCODE_BRK);
816 break;
817 case ir_loop_jump::jump_continue:
818 emit(NULL, OPCODE_CONT);
819 break;
820 }
821 }
822
823
824 void
825 ir_to_mesa_visitor::visit(ir_function_signature *ir)
826 {
827 assert(0);
828 (void)ir;
829 }
830
831 void
832 ir_to_mesa_visitor::visit(ir_function *ir)
833 {
834 /* Ignore function bodies other than main() -- we shouldn't see calls to
835 * them since they should all be inlined before we get to ir_to_mesa.
836 */
837 if (strcmp(ir->name, "main") == 0) {
838 const ir_function_signature *sig;
839 exec_list empty;
840
841 sig = ir->matching_signature(&empty);
842
843 assert(sig);
844
845 foreach_iter(exec_list_iterator, iter, sig->body) {
846 ir_instruction *ir = (ir_instruction *)iter.get();
847
848 ir->accept(this);
849 }
850 }
851 }
852
853 bool
854 ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
855 {
856 int nonmul_operand = 1 - mul_operand;
857 src_reg a, b, c;
858
859 ir_expression *expr = ir->operands[mul_operand]->as_expression();
860 if (!expr || expr->operation != ir_binop_mul)
861 return false;
862
863 expr->operands[0]->accept(this);
864 a = this->result;
865 expr->operands[1]->accept(this);
866 b = this->result;
867 ir->operands[nonmul_operand]->accept(this);
868 c = this->result;
869
870 this->result = get_temp(ir->type);
871 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);
872
873 return true;
874 }
875
876 /**
877 * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b))
878 *
879 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
880 * implemented using multiplication, and logical-or is implemented using
881 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
882 * As result, the logical expression (a & !b) can be rewritten as:
883 *
884 * - a * !b
885 * - a * (1 - b)
886 * - (a * 1) - (a * b)
887 * - a + -(a * b)
888 * - a + (a * -b)
889 *
890 * This final expression can be implemented as a single MAD(a, -b, a)
891 * instruction.
892 */
893 bool
894 ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
895 {
896 const int other_operand = 1 - try_operand;
897 src_reg a, b;
898
899 ir_expression *expr = ir->operands[try_operand]->as_expression();
900 if (!expr || expr->operation != ir_unop_logic_not)
901 return false;
902
903 ir->operands[other_operand]->accept(this);
904 a = this->result;
905 expr->operands[0]->accept(this);
906 b = this->result;
907
908 b.negate = ~b.negate;
909
910 this->result = get_temp(ir->type);
911 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a);
912
913 return true;
914 }
915
916 bool
917 ir_to_mesa_visitor::try_emit_sat(ir_expression *ir)
918 {
919 /* Saturates were only introduced to vertex programs in
920 * NV_vertex_program3, so don't give them to drivers in the VP.
921 */
922 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB)
923 return false;
924
925 ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
926 if (!sat_src)
927 return false;
928
929 sat_src->accept(this);
930 src_reg src = this->result;
931
932 /* If we generated an expression instruction into a temporary in
933 * processing the saturate's operand, apply the saturate to that
934 * instruction. Otherwise, generate a MOV to do the saturate.
935 *
936 * Note that we have to be careful to only do this optimization if
937 * the instruction in question was what generated src->result. For
938 * example, ir_dereference_array might generate a MUL instruction
939 * to create the reladdr, and return us a src reg using that
940 * reladdr. That MUL result is not the value we're trying to
941 * saturate.
942 */
943 ir_expression *sat_src_expr = sat_src->as_expression();
944 ir_to_mesa_instruction *new_inst;
945 new_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
946 if (sat_src_expr && (sat_src_expr->operation == ir_binop_mul ||
947 sat_src_expr->operation == ir_binop_add ||
948 sat_src_expr->operation == ir_binop_dot)) {
949 new_inst->saturate = true;
950 } else {
951 this->result = get_temp(ir->type);
952 ir_to_mesa_instruction *inst;
953 inst = emit(ir, OPCODE_MOV, dst_reg(this->result), src);
954 inst->saturate = true;
955 }
956
957 return true;
958 }
959
960 void
961 ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
962 src_reg *reg, int *num_reladdr)
963 {
964 if (!reg->reladdr)
965 return;
966
967 emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);
968
969 if (*num_reladdr != 1) {
970 src_reg temp = get_temp(glsl_type::vec4_type);
971
972 emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
973 *reg = temp;
974 }
975
976 (*num_reladdr)--;
977 }
978
979 void
980 ir_to_mesa_visitor::emit_swz(ir_expression *ir)
981 {
982 /* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
983 * This means that each of the operands is either an immediate value of -1,
984 * 0, or 1, or is a component from one source register (possibly with
985 * negation).
986 */
987 uint8_t components[4] = { 0 };
988 bool negate[4] = { false };
989 ir_variable *var = NULL;
990
991 for (unsigned i = 0; i < ir->type->vector_elements; i++) {
992 ir_rvalue *op = ir->operands[i];
993
994 assert(op->type->is_scalar());
995
996 while (op != NULL) {
997 switch (op->ir_type) {
998 case ir_type_constant: {
999
1000 assert(op->type->is_scalar());
1001
1002 const ir_constant *const c = op->as_constant();
1003 if (c->is_one()) {
1004 components[i] = SWIZZLE_ONE;
1005 } else if (c->is_zero()) {
1006 components[i] = SWIZZLE_ZERO;
1007 } else if (c->is_negative_one()) {
1008 components[i] = SWIZZLE_ONE;
1009 negate[i] = true;
1010 } else {
1011 assert(!"SWZ constant must be 0.0 or 1.0.");
1012 }
1013
1014 op = NULL;
1015 break;
1016 }
1017
1018 case ir_type_dereference_variable: {
1019 ir_dereference_variable *const deref =
1020 (ir_dereference_variable *) op;
1021
1022 assert((var == NULL) || (deref->var == var));
1023 components[i] = SWIZZLE_X;
1024 var = deref->var;
1025 op = NULL;
1026 break;
1027 }
1028
1029 case ir_type_expression: {
1030 ir_expression *const expr = (ir_expression *) op;
1031
1032 assert(expr->operation == ir_unop_neg);
1033 negate[i] = true;
1034
1035 op = expr->operands[0];
1036 break;
1037 }
1038
1039 case ir_type_swizzle: {
1040 ir_swizzle *const swiz = (ir_swizzle *) op;
1041
1042 components[i] = swiz->mask.x;
1043 op = swiz->val;
1044 break;
1045 }
1046
1047 default:
1048 assert(!"Should not get here.");
1049 return;
1050 }
1051 }
1052 }
1053
1054 assert(var != NULL);
1055
1056 ir_dereference_variable *const deref =
1057 new(mem_ctx) ir_dereference_variable(var);
1058
1059 this->result.file = PROGRAM_UNDEFINED;
1060 deref->accept(this);
1061 if (this->result.file == PROGRAM_UNDEFINED) {
1062 ir_print_visitor v;
1063 printf("Failed to get tree for expression operand:\n");
1064 deref->accept(&v);
1065 exit(1);
1066 }
1067
1068 src_reg src;
1069
1070 src = this->result;
1071 src.swizzle = MAKE_SWIZZLE4(components[0],
1072 components[1],
1073 components[2],
1074 components[3]);
1075 src.negate = ((unsigned(negate[0]) << 0)
1076 | (unsigned(negate[1]) << 1)
1077 | (unsigned(negate[2]) << 2)
1078 | (unsigned(negate[3]) << 3));
1079
1080 /* Storage for our result. Ideally for an assignment we'd be using the
1081 * actual storage for the result here, instead.
1082 */
1083 const src_reg result_src = get_temp(ir->type);
1084 dst_reg result_dst = dst_reg(result_src);
1085
1086 /* Limit writes to the channels that will be used by result_src later.
1087 * This does limit this temp's use as a temporary for multi-instruction
1088 * sequences.
1089 */
1090 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1091
1092 emit(ir, OPCODE_SWZ, result_dst, src);
1093 this->result = result_src;
1094 }
1095
1096 void
1097 ir_to_mesa_visitor::visit(ir_expression *ir)
1098 {
1099 unsigned int operand;
1100 src_reg op[Elements(ir->operands)];
1101 src_reg result_src;
1102 dst_reg result_dst;
1103
1104 /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
1105 */
1106 if (ir->operation == ir_binop_add) {
1107 if (try_emit_mad(ir, 1))
1108 return;
1109 if (try_emit_mad(ir, 0))
1110 return;
1111 }
1112
1113 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1114 */
1115 if (ir->operation == ir_binop_logic_and) {
1116 if (try_emit_mad_for_and_not(ir, 1))
1117 return;
1118 if (try_emit_mad_for_and_not(ir, 0))
1119 return;
1120 }
1121
1122 if (try_emit_sat(ir))
1123 return;
1124
1125 if (ir->operation == ir_quadop_vector) {
1126 this->emit_swz(ir);
1127 return;
1128 }
1129
1130 for (operand = 0; operand < ir->get_num_operands(); operand++) {
1131 this->result.file = PROGRAM_UNDEFINED;
1132 ir->operands[operand]->accept(this);
1133 if (this->result.file == PROGRAM_UNDEFINED) {
1134 ir_print_visitor v;
1135 printf("Failed to get tree for expression operand:\n");
1136 ir->operands[operand]->accept(&v);
1137 exit(1);
1138 }
1139 op[operand] = this->result;
1140
1141 /* Matrix expression operands should have been broken down to vector
1142 * operations already.
1143 */
1144 assert(!ir->operands[operand]->type->is_matrix());
1145 }
1146
1147 int vector_elements = ir->operands[0]->type->vector_elements;
1148 if (ir->operands[1]) {
1149 vector_elements = MAX2(vector_elements,
1150 ir->operands[1]->type->vector_elements);
1151 }
1152
1153 this->result.file = PROGRAM_UNDEFINED;
1154
1155 /* Storage for our result. Ideally for an assignment we'd be using
1156 * the actual storage for the result here, instead.
1157 */
1158 result_src = get_temp(ir->type);
1159 /* convenience for the emit functions below. */
1160 result_dst = dst_reg(result_src);
1161 /* Limit writes to the channels that will be used by result_src later.
1162 * This does limit this temp's use as a temporary for multi-instruction
1163 * sequences.
1164 */
1165 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1166
1167 switch (ir->operation) {
1168 case ir_unop_logic_not:
1169 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
1170 * older GPUs implement SEQ using multiple instructions (i915 uses two
1171 * SGE instructions and a MUL instruction). Since our logic values are
1172 * 0.0 and 1.0, 1-x also implements !x.
1173 */
1174 op[0].negate = ~op[0].negate;
1175 emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0));
1176 break;
1177 case ir_unop_neg:
1178 op[0].negate = ~op[0].negate;
1179 result_src = op[0];
1180 break;
1181 case ir_unop_abs:
1182 emit(ir, OPCODE_ABS, result_dst, op[0]);
1183 break;
1184 case ir_unop_sign:
1185 emit(ir, OPCODE_SSG, result_dst, op[0]);
1186 break;
1187 case ir_unop_rcp:
1188 emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
1189 break;
1190
1191 case ir_unop_exp2:
1192 emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
1193 break;
1194 case ir_unop_exp:
1195 case ir_unop_log:
1196 assert(!"not reached: should be handled by ir_explog_to_explog2");
1197 break;
1198 case ir_unop_log2:
1199 emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
1200 break;
1201 case ir_unop_sin:
1202 emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
1203 break;
1204 case ir_unop_cos:
1205 emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
1206 break;
1207 case ir_unop_sin_reduced:
1208 emit_scs(ir, OPCODE_SIN, result_dst, op[0]);
1209 break;
1210 case ir_unop_cos_reduced:
1211 emit_scs(ir, OPCODE_COS, result_dst, op[0]);
1212 break;
1213
1214 case ir_unop_dFdx:
1215 emit(ir, OPCODE_DDX, result_dst, op[0]);
1216 break;
1217 case ir_unop_dFdy:
1218 emit(ir, OPCODE_DDY, result_dst, op[0]);
1219 break;
1220
1221 case ir_unop_noise: {
1222 const enum prog_opcode opcode =
1223 prog_opcode(OPCODE_NOISE1
1224 + (ir->operands[0]->type->vector_elements) - 1);
1225 assert((opcode >= OPCODE_NOISE1) && (opcode <= OPCODE_NOISE4));
1226
1227 emit(ir, opcode, result_dst, op[0]);
1228 break;
1229 }
1230
1231 case ir_binop_add:
1232 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1233 break;
1234 case ir_binop_sub:
1235 emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
1236 break;
1237
1238 case ir_binop_mul:
1239 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1240 break;
1241 case ir_binop_div:
1242 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1243 break;
1244 case ir_binop_mod:
1245 /* Floating point should be lowered by MOD_TO_FRACT in the compiler. */
1246 assert(ir->type->is_integer());
1247 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1248 break;
1249
1250 case ir_binop_less:
1251 emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1252 break;
1253 case ir_binop_greater:
1254 emit(ir, OPCODE_SGT, result_dst, op[0], op[1]);
1255 break;
1256 case ir_binop_lequal:
1257 emit(ir, OPCODE_SLE, result_dst, op[0], op[1]);
1258 break;
1259 case ir_binop_gequal:
1260 emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1261 break;
1262 case ir_binop_equal:
1263 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1264 break;
1265 case ir_binop_nequal:
1266 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1267 break;
1268 case ir_binop_all_equal:
1269 /* "==" operator producing a scalar boolean. */
1270 if (ir->operands[0]->type->is_vector() ||
1271 ir->operands[1]->type->is_vector()) {
1272 src_reg temp = get_temp(glsl_type::vec4_type);
1273 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1274
1275 /* After the dot-product, the value will be an integer on the
1276 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1277 */
1278 emit_dp(ir, result_dst, temp, temp, vector_elements);
1279
1280 /* Negating the result of the dot-product gives values on the range
1281 * [-4, 0]. Zero becomes 1.0, and negative values become zero. This
1282 * achieved using SGE.
1283 */
1284 src_reg sge_src = result_src;
1285 sge_src.negate = ~sge_src.negate;
1286 emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0));
1287 } else {
1288 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1289 }
1290 break;
1291 case ir_binop_any_nequal:
1292 /* "!=" operator producing a scalar boolean. */
1293 if (ir->operands[0]->type->is_vector() ||
1294 ir->operands[1]->type->is_vector()) {
1295 src_reg temp = get_temp(glsl_type::vec4_type);
1296 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1297
1298 /* After the dot-product, the value will be an integer on the
1299 * range [0,4]. Zero stays zero, and positive values become 1.0.
1300 */
1301 ir_to_mesa_instruction *const dp =
1302 emit_dp(ir, result_dst, temp, temp, vector_elements);
1303 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1304 /* The clamping to [0,1] can be done for free in the fragment
1305 * shader with a saturate.
1306 */
1307 dp->saturate = true;
1308 } else {
1309 /* Negating the result of the dot-product gives values on the range
1310 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1311 * achieved using SLT.
1312 */
1313 src_reg slt_src = result_src;
1314 slt_src.negate = ~slt_src.negate;
1315 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1316 }
1317 } else {
1318 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1319 }
1320 break;
1321
1322 case ir_unop_any: {
1323 assert(ir->operands[0]->type->is_vector());
1324
1325 /* After the dot-product, the value will be an integer on the
1326 * range [0,4]. Zero stays zero, and positive values become 1.0.
1327 */
1328 ir_to_mesa_instruction *const dp =
1329 emit_dp(ir, result_dst, op[0], op[0],
1330 ir->operands[0]->type->vector_elements);
1331 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1332 /* The clamping to [0,1] can be done for free in the fragment
1333 * shader with a saturate.
1334 */
1335 dp->saturate = true;
1336 } else {
1337 /* Negating the result of the dot-product gives values on the range
1338 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1339 * is achieved using SLT.
1340 */
1341 src_reg slt_src = result_src;
1342 slt_src.negate = ~slt_src.negate;
1343 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1344 }
1345 break;
1346 }
1347
1348 case ir_binop_logic_xor:
1349 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1350 break;
1351
1352 case ir_binop_logic_or: {
1353 /* After the addition, the value will be an integer on the
1354 * range [0,2]. Zero stays zero, and positive values become 1.0.
1355 */
1356 ir_to_mesa_instruction *add =
1357 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1358 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1359 /* The clamping to [0,1] can be done for free in the fragment
1360 * shader with a saturate.
1361 */
1362 add->saturate = true;
1363 } else {
1364 /* Negating the result of the addition gives values on the range
1365 * [-2, 0]. Zero stays zero, and negative values become 1.0. This
1366 * is achieved using SLT.
1367 */
1368 src_reg slt_src = result_src;
1369 slt_src.negate = ~slt_src.negate;
1370 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1371 }
1372 break;
1373 }
1374
1375 case ir_binop_logic_and:
1376 /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1377 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1378 break;
1379
1380 case ir_binop_dot:
1381 assert(ir->operands[0]->type->is_vector());
1382 assert(ir->operands[0]->type == ir->operands[1]->type);
1383 emit_dp(ir, result_dst, op[0], op[1],
1384 ir->operands[0]->type->vector_elements);
1385 break;
1386
1387 case ir_unop_sqrt:
1388 /* sqrt(x) = x * rsq(x). */
1389 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1390 emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
1391 /* For incoming channels <= 0, set the result to 0. */
1392 op[0].negate = ~op[0].negate;
1393 emit(ir, OPCODE_CMP, result_dst,
1394 op[0], result_src, src_reg_for_float(0.0));
1395 break;
1396 case ir_unop_rsq:
1397 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1398 break;
1399 case ir_unop_i2f:
1400 case ir_unop_u2f:
1401 case ir_unop_b2f:
1402 case ir_unop_b2i:
1403 case ir_unop_i2u:
1404 case ir_unop_u2i:
1405 /* Mesa IR lacks types, ints are stored as truncated floats. */
1406 result_src = op[0];
1407 break;
1408 case ir_unop_f2i:
1409 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1410 break;
1411 case ir_unop_f2b:
1412 case ir_unop_i2b:
1413 emit(ir, OPCODE_SNE, result_dst,
1414 op[0], src_reg_for_float(0.0));
1415 break;
1416 case ir_unop_trunc:
1417 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1418 break;
1419 case ir_unop_ceil:
1420 op[0].negate = ~op[0].negate;
1421 emit(ir, OPCODE_FLR, result_dst, op[0]);
1422 result_src.negate = ~result_src.negate;
1423 break;
1424 case ir_unop_floor:
1425 emit(ir, OPCODE_FLR, result_dst, op[0]);
1426 break;
1427 case ir_unop_fract:
1428 emit(ir, OPCODE_FRC, result_dst, op[0]);
1429 break;
1430
1431 case ir_binop_min:
1432 emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
1433 break;
1434 case ir_binop_max:
1435 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1436 break;
1437 case ir_binop_pow:
1438 emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
1439 break;
1440
1441 /* GLSL 1.30 integer ops are unsupported in Mesa IR, but since
1442 * hardware backends have no way to avoid Mesa IR generation
1443 * even if they don't use it, we need to emit "something" and
1444 * continue.
1445 */
1446 case ir_binop_lshift:
1447 case ir_binop_rshift:
1448 case ir_binop_bit_and:
1449 case ir_binop_bit_xor:
1450 case ir_binop_bit_or:
1451 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1452 break;
1453
1454 case ir_unop_bit_not:
1455 case ir_unop_round_even:
1456 emit(ir, OPCODE_MOV, result_dst, op[0]);
1457 break;
1458
1459 case ir_quadop_vector:
1460 /* This operation should have already been handled.
1461 */
1462 assert(!"Should not get here.");
1463 break;
1464 }
1465
1466 this->result = result_src;
1467 }
1468
1469
1470 void
1471 ir_to_mesa_visitor::visit(ir_swizzle *ir)
1472 {
1473 src_reg src;
1474 int i;
1475 int swizzle[4];
1476
1477 /* Note that this is only swizzles in expressions, not those on the left
1478 * hand side of an assignment, which do write masking. See ir_assignment
1479 * for that.
1480 */
1481
1482 ir->val->accept(this);
1483 src = this->result;
1484 assert(src.file != PROGRAM_UNDEFINED);
1485
1486 for (i = 0; i < 4; i++) {
1487 if (i < ir->type->vector_elements) {
1488 switch (i) {
1489 case 0:
1490 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1491 break;
1492 case 1:
1493 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1494 break;
1495 case 2:
1496 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1497 break;
1498 case 3:
1499 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1500 break;
1501 }
1502 } else {
1503 /* If the type is smaller than a vec4, replicate the last
1504 * channel out.
1505 */
1506 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1507 }
1508 }
1509
1510 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1511
1512 this->result = src;
1513 }
1514
1515 void
1516 ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
1517 {
1518 variable_storage *entry = find_variable_storage(ir->var);
1519 ir_variable *var = ir->var;
1520
1521 if (!entry) {
1522 switch (var->mode) {
1523 case ir_var_uniform:
1524 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1525 var->location);
1526 this->variables.push_tail(entry);
1527 break;
1528 case ir_var_in:
1529 case ir_var_inout:
1530 /* The linker assigns locations for varyings and attributes,
1531 * including deprecated builtins (like gl_Color),
1532 * user-assigned generic attributes (glBindVertexLocation),
1533 * and user-defined varyings.
1534 *
1535 * FINISHME: We would hit this path for function arguments. Fix!
1536 */
1537 assert(var->location != -1);
1538 entry = new(mem_ctx) variable_storage(var,
1539 PROGRAM_INPUT,
1540 var->location);
1541 break;
1542 case ir_var_out:
1543 assert(var->location != -1);
1544 entry = new(mem_ctx) variable_storage(var,
1545 PROGRAM_OUTPUT,
1546 var->location);
1547 break;
1548 case ir_var_system_value:
1549 entry = new(mem_ctx) variable_storage(var,
1550 PROGRAM_SYSTEM_VALUE,
1551 var->location);
1552 break;
1553 case ir_var_auto:
1554 case ir_var_temporary:
1555 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1556 this->next_temp);
1557 this->variables.push_tail(entry);
1558
1559 next_temp += type_size(var->type);
1560 break;
1561 }
1562
1563 if (!entry) {
1564 printf("Failed to make storage for %s\n", var->name);
1565 exit(1);
1566 }
1567 }
1568
1569 this->result = src_reg(entry->file, entry->index, var->type);
1570 }
1571
1572 void
1573 ir_to_mesa_visitor::visit(ir_dereference_array *ir)
1574 {
1575 ir_constant *index;
1576 src_reg src;
1577 int element_size = type_size(ir->type);
1578
1579 index = ir->array_index->constant_expression_value();
1580
1581 ir->array->accept(this);
1582 src = this->result;
1583
1584 if (index) {
1585 src.index += index->value.i[0] * element_size;
1586 } else {
1587 /* Variable index array dereference. It eats the "vec4" of the
1588 * base of the array and an index that offsets the Mesa register
1589 * index.
1590 */
1591 ir->array_index->accept(this);
1592
1593 src_reg index_reg;
1594
1595 if (element_size == 1) {
1596 index_reg = this->result;
1597 } else {
1598 index_reg = get_temp(glsl_type::float_type);
1599
1600 emit(ir, OPCODE_MUL, dst_reg(index_reg),
1601 this->result, src_reg_for_float(element_size));
1602 }
1603
1604 /* If there was already a relative address register involved, add the
1605 * new and the old together to get the new offset.
1606 */
1607 if (src.reladdr != NULL) {
1608 src_reg accum_reg = get_temp(glsl_type::float_type);
1609
1610 emit(ir, OPCODE_ADD, dst_reg(accum_reg),
1611 index_reg, *src.reladdr);
1612
1613 index_reg = accum_reg;
1614 }
1615
1616 src.reladdr = ralloc(mem_ctx, src_reg);
1617 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1618 }
1619
1620 /* If the type is smaller than a vec4, replicate the last channel out. */
1621 if (ir->type->is_scalar() || ir->type->is_vector())
1622 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1623 else
1624 src.swizzle = SWIZZLE_NOOP;
1625
1626 this->result = src;
1627 }
1628
1629 void
1630 ir_to_mesa_visitor::visit(ir_dereference_record *ir)
1631 {
1632 unsigned int i;
1633 const glsl_type *struct_type = ir->record->type;
1634 int offset = 0;
1635
1636 ir->record->accept(this);
1637
1638 for (i = 0; i < struct_type->length; i++) {
1639 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1640 break;
1641 offset += type_size(struct_type->fields.structure[i].type);
1642 }
1643
1644 /* If the type is smaller than a vec4, replicate the last channel out. */
1645 if (ir->type->is_scalar() || ir->type->is_vector())
1646 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1647 else
1648 this->result.swizzle = SWIZZLE_NOOP;
1649
1650 this->result.index += offset;
1651 }
1652
1653 /**
1654 * We want to be careful in assignment setup to hit the actual storage
1655 * instead of potentially using a temporary like we might with the
1656 * ir_dereference handler.
1657 */
1658 static dst_reg
1659 get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
1660 {
1661 /* The LHS must be a dereference. If the LHS is a variable indexed array
1662 * access of a vector, it must be separated into a series conditional moves
1663 * before reaching this point (see ir_vec_index_to_cond_assign).
1664 */
1665 assert(ir->as_dereference());
1666 ir_dereference_array *deref_array = ir->as_dereference_array();
1667 if (deref_array) {
1668 assert(!deref_array->array->type->is_vector());
1669 }
1670
1671 /* Use the rvalue deref handler for the most part. We'll ignore
1672 * swizzles in it and write swizzles using writemask, though.
1673 */
1674 ir->accept(v);
1675 return dst_reg(v->result);
1676 }
1677
1678 /**
1679 * Process the condition of a conditional assignment
1680 *
1681 * Examines the condition of a conditional assignment to generate the optimal
1682 * first operand of a \c CMP instruction. If the condition is a relational
1683 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1684 * used as the source for the \c CMP instruction. Otherwise the comparison
1685 * is processed to a boolean result, and the boolean result is used as the
1686 * operand to the CMP instruction.
1687 */
1688 bool
1689 ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
1690 {
1691 ir_rvalue *src_ir = ir;
1692 bool negate = true;
1693 bool switch_order = false;
1694
1695 ir_expression *const expr = ir->as_expression();
1696 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
1697 bool zero_on_left = false;
1698
1699 if (expr->operands[0]->is_zero()) {
1700 src_ir = expr->operands[1];
1701 zero_on_left = true;
1702 } else if (expr->operands[1]->is_zero()) {
1703 src_ir = expr->operands[0];
1704 zero_on_left = false;
1705 }
1706
1707 /* a is - 0 + - 0 +
1708 * (a < 0) T F F ( a < 0) T F F
1709 * (0 < a) F F T (-a < 0) F F T
1710 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
1711 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
1712 * (a > 0) F F T (-a < 0) F F T
1713 * (0 > a) T F F ( a < 0) T F F
1714 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
1715 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
1716 *
1717 * Note that exchanging the order of 0 and 'a' in the comparison simply
1718 * means that the value of 'a' should be negated.
1719 */
1720 if (src_ir != ir) {
1721 switch (expr->operation) {
1722 case ir_binop_less:
1723 switch_order = false;
1724 negate = zero_on_left;
1725 break;
1726
1727 case ir_binop_greater:
1728 switch_order = false;
1729 negate = !zero_on_left;
1730 break;
1731
1732 case ir_binop_lequal:
1733 switch_order = true;
1734 negate = !zero_on_left;
1735 break;
1736
1737 case ir_binop_gequal:
1738 switch_order = true;
1739 negate = zero_on_left;
1740 break;
1741
1742 default:
1743 /* This isn't the right kind of comparison afterall, so make sure
1744 * the whole condition is visited.
1745 */
1746 src_ir = ir;
1747 break;
1748 }
1749 }
1750 }
1751
1752 src_ir->accept(this);
1753
1754 /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1755 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
1756 * choose which value OPCODE_CMP produces without an extra instruction
1757 * computing the condition.
1758 */
1759 if (negate)
1760 this->result.negate = ~this->result.negate;
1761
1762 return switch_order;
1763 }
1764
1765 void
1766 ir_to_mesa_visitor::visit(ir_assignment *ir)
1767 {
1768 dst_reg l;
1769 src_reg r;
1770 int i;
1771
1772 ir->rhs->accept(this);
1773 r = this->result;
1774
1775 l = get_assignment_lhs(ir->lhs, this);
1776
1777 /* FINISHME: This should really set to the correct maximal writemask for each
1778 * FINISHME: component written (in the loops below). This case can only
1779 * FINISHME: occur for matrices, arrays, and structures.
1780 */
1781 if (ir->write_mask == 0) {
1782 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1783 l.writemask = WRITEMASK_XYZW;
1784 } else if (ir->lhs->type->is_scalar()) {
1785 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1786 * FINISHME: W component of fragment shader output zero, work correctly.
1787 */
1788 l.writemask = WRITEMASK_XYZW;
1789 } else {
1790 int swizzles[4];
1791 int first_enabled_chan = 0;
1792 int rhs_chan = 0;
1793
1794 assert(ir->lhs->type->is_vector());
1795 l.writemask = ir->write_mask;
1796
1797 for (int i = 0; i < 4; i++) {
1798 if (l.writemask & (1 << i)) {
1799 first_enabled_chan = GET_SWZ(r.swizzle, i);
1800 break;
1801 }
1802 }
1803
1804 /* Swizzle a small RHS vector into the channels being written.
1805 *
1806 * glsl ir treats write_mask as dictating how many channels are
1807 * present on the RHS while Mesa IR treats write_mask as just
1808 * showing which channels of the vec4 RHS get written.
1809 */
1810 for (int i = 0; i < 4; i++) {
1811 if (l.writemask & (1 << i))
1812 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1813 else
1814 swizzles[i] = first_enabled_chan;
1815 }
1816 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1817 swizzles[2], swizzles[3]);
1818 }
1819
1820 assert(l.file != PROGRAM_UNDEFINED);
1821 assert(r.file != PROGRAM_UNDEFINED);
1822
1823 if (ir->condition) {
1824 const bool switch_order = this->process_move_condition(ir->condition);
1825 src_reg condition = this->result;
1826
1827 for (i = 0; i < type_size(ir->lhs->type); i++) {
1828 if (switch_order) {
1829 emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
1830 } else {
1831 emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
1832 }
1833
1834 l.index++;
1835 r.index++;
1836 }
1837 } else {
1838 for (i = 0; i < type_size(ir->lhs->type); i++) {
1839 emit(ir, OPCODE_MOV, l, r);
1840 l.index++;
1841 r.index++;
1842 }
1843 }
1844 }
1845
1846
1847 void
1848 ir_to_mesa_visitor::visit(ir_constant *ir)
1849 {
1850 src_reg src;
1851 GLfloat stack_vals[4] = { 0 };
1852 GLfloat *values = stack_vals;
1853 unsigned int i;
1854
1855 /* Unfortunately, 4 floats is all we can get into
1856 * _mesa_add_unnamed_constant. So, make a temp to store an
1857 * aggregate constant and move each constant value into it. If we
1858 * get lucky, copy propagation will eliminate the extra moves.
1859 */
1860
1861 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
1862 src_reg temp_base = get_temp(ir->type);
1863 dst_reg temp = dst_reg(temp_base);
1864
1865 foreach_iter(exec_list_iterator, iter, ir->components) {
1866 ir_constant *field_value = (ir_constant *)iter.get();
1867 int size = type_size(field_value->type);
1868
1869 assert(size > 0);
1870
1871 field_value->accept(this);
1872 src = this->result;
1873
1874 for (i = 0; i < (unsigned int)size; i++) {
1875 emit(ir, OPCODE_MOV, temp, src);
1876
1877 src.index++;
1878 temp.index++;
1879 }
1880 }
1881 this->result = temp_base;
1882 return;
1883 }
1884
1885 if (ir->type->is_array()) {
1886 src_reg temp_base = get_temp(ir->type);
1887 dst_reg temp = dst_reg(temp_base);
1888 int size = type_size(ir->type->fields.array);
1889
1890 assert(size > 0);
1891
1892 for (i = 0; i < ir->type->length; i++) {
1893 ir->array_elements[i]->accept(this);
1894 src = this->result;
1895 for (int j = 0; j < size; j++) {
1896 emit(ir, OPCODE_MOV, temp, src);
1897
1898 src.index++;
1899 temp.index++;
1900 }
1901 }
1902 this->result = temp_base;
1903 return;
1904 }
1905
1906 if (ir->type->is_matrix()) {
1907 src_reg mat = get_temp(ir->type);
1908 dst_reg mat_column = dst_reg(mat);
1909
1910 for (i = 0; i < ir->type->matrix_columns; i++) {
1911 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
1912 values = &ir->value.f[i * ir->type->vector_elements];
1913
1914 src = src_reg(PROGRAM_CONSTANT, -1, NULL);
1915 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1916 (gl_constant_value *) values,
1917 ir->type->vector_elements,
1918 &src.swizzle);
1919 emit(ir, OPCODE_MOV, mat_column, src);
1920
1921 mat_column.index++;
1922 }
1923
1924 this->result = mat;
1925 return;
1926 }
1927
1928 src.file = PROGRAM_CONSTANT;
1929 switch (ir->type->base_type) {
1930 case GLSL_TYPE_FLOAT:
1931 values = &ir->value.f[0];
1932 break;
1933 case GLSL_TYPE_UINT:
1934 for (i = 0; i < ir->type->vector_elements; i++) {
1935 values[i] = ir->value.u[i];
1936 }
1937 break;
1938 case GLSL_TYPE_INT:
1939 for (i = 0; i < ir->type->vector_elements; i++) {
1940 values[i] = ir->value.i[i];
1941 }
1942 break;
1943 case GLSL_TYPE_BOOL:
1944 for (i = 0; i < ir->type->vector_elements; i++) {
1945 values[i] = ir->value.b[i];
1946 }
1947 break;
1948 default:
1949 assert(!"Non-float/uint/int/bool constant");
1950 }
1951
1952 this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
1953 this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1954 (gl_constant_value *) values,
1955 ir->type->vector_elements,
1956 &this->result.swizzle);
1957 }
1958
1959 function_entry *
1960 ir_to_mesa_visitor::get_function_signature(ir_function_signature *sig)
1961 {
1962 function_entry *entry;
1963
1964 foreach_iter(exec_list_iterator, iter, this->function_signatures) {
1965 entry = (function_entry *)iter.get();
1966
1967 if (entry->sig == sig)
1968 return entry;
1969 }
1970
1971 entry = ralloc(mem_ctx, function_entry);
1972 entry->sig = sig;
1973 entry->sig_id = this->next_signature_id++;
1974 entry->bgn_inst = NULL;
1975
1976 /* Allocate storage for all the parameters. */
1977 foreach_iter(exec_list_iterator, iter, sig->parameters) {
1978 ir_variable *param = (ir_variable *)iter.get();
1979 variable_storage *storage;
1980
1981 storage = find_variable_storage(param);
1982 assert(!storage);
1983
1984 storage = new(mem_ctx) variable_storage(param, PROGRAM_TEMPORARY,
1985 this->next_temp);
1986 this->variables.push_tail(storage);
1987
1988 this->next_temp += type_size(param->type);
1989 }
1990
1991 if (!sig->return_type->is_void()) {
1992 entry->return_reg = get_temp(sig->return_type);
1993 } else {
1994 entry->return_reg = undef_src;
1995 }
1996
1997 this->function_signatures.push_tail(entry);
1998 return entry;
1999 }
2000
2001 void
2002 ir_to_mesa_visitor::visit(ir_call *ir)
2003 {
2004 ir_to_mesa_instruction *call_inst;
2005 ir_function_signature *sig = ir->callee;
2006 function_entry *entry = get_function_signature(sig);
2007 int i;
2008
2009 /* Process in parameters. */
2010 exec_list_iterator sig_iter = sig->parameters.iterator();
2011 foreach_iter(exec_list_iterator, iter, *ir) {
2012 ir_rvalue *param_rval = (ir_rvalue *)iter.get();
2013 ir_variable *param = (ir_variable *)sig_iter.get();
2014
2015 if (param->mode == ir_var_in ||
2016 param->mode == ir_var_inout) {
2017 variable_storage *storage = find_variable_storage(param);
2018 assert(storage);
2019
2020 param_rval->accept(this);
2021 src_reg r = this->result;
2022
2023 dst_reg l;
2024 l.file = storage->file;
2025 l.index = storage->index;
2026 l.reladdr = NULL;
2027 l.writemask = WRITEMASK_XYZW;
2028 l.cond_mask = COND_TR;
2029
2030 for (i = 0; i < type_size(param->type); i++) {
2031 emit(ir, OPCODE_MOV, l, r);
2032 l.index++;
2033 r.index++;
2034 }
2035 }
2036
2037 sig_iter.next();
2038 }
2039 assert(!sig_iter.has_next());
2040
2041 /* Emit call instruction */
2042 call_inst = emit(ir, OPCODE_CAL);
2043 call_inst->function = entry;
2044
2045 /* Process out parameters. */
2046 sig_iter = sig->parameters.iterator();
2047 foreach_iter(exec_list_iterator, iter, *ir) {
2048 ir_rvalue *param_rval = (ir_rvalue *)iter.get();
2049 ir_variable *param = (ir_variable *)sig_iter.get();
2050
2051 if (param->mode == ir_var_out ||
2052 param->mode == ir_var_inout) {
2053 variable_storage *storage = find_variable_storage(param);
2054 assert(storage);
2055
2056 src_reg r;
2057 r.file = storage->file;
2058 r.index = storage->index;
2059 r.reladdr = NULL;
2060 r.swizzle = SWIZZLE_NOOP;
2061 r.negate = 0;
2062
2063 param_rval->accept(this);
2064 dst_reg l = dst_reg(this->result);
2065
2066 for (i = 0; i < type_size(param->type); i++) {
2067 emit(ir, OPCODE_MOV, l, r);
2068 l.index++;
2069 r.index++;
2070 }
2071 }
2072
2073 sig_iter.next();
2074 }
2075 assert(!sig_iter.has_next());
2076
2077 /* Process return value. */
2078 this->result = entry->return_reg;
2079 }
2080
2081 void
2082 ir_to_mesa_visitor::visit(ir_texture *ir)
2083 {
2084 src_reg result_src, coord, lod_info, projector, dx, dy;
2085 dst_reg result_dst, coord_dst;
2086 ir_to_mesa_instruction *inst = NULL;
2087 prog_opcode opcode = OPCODE_NOP;
2088
2089 if (ir->op == ir_txs)
2090 this->result = src_reg_for_float(0.0);
2091 else
2092 ir->coordinate->accept(this);
2093
2094 /* Put our coords in a temp. We'll need to modify them for shadow,
2095 * projection, or LOD, so the only case we'd use it as is is if
2096 * we're doing plain old texturing. Mesa IR optimization should
2097 * handle cleaning up our mess in that case.
2098 */
2099 coord = get_temp(glsl_type::vec4_type);
2100 coord_dst = dst_reg(coord);
2101 emit(ir, OPCODE_MOV, coord_dst, this->result);
2102
2103 if (ir->projector) {
2104 ir->projector->accept(this);
2105 projector = this->result;
2106 }
2107
2108 /* Storage for our result. Ideally for an assignment we'd be using
2109 * the actual storage for the result here, instead.
2110 */
2111 result_src = get_temp(glsl_type::vec4_type);
2112 result_dst = dst_reg(result_src);
2113
2114 switch (ir->op) {
2115 case ir_tex:
2116 case ir_txs:
2117 opcode = OPCODE_TEX;
2118 break;
2119 case ir_txb:
2120 opcode = OPCODE_TXB;
2121 ir->lod_info.bias->accept(this);
2122 lod_info = this->result;
2123 break;
2124 case ir_txf:
2125 /* Pretend to be TXL so the sampler, coordinate, lod are available */
2126 case ir_txl:
2127 opcode = OPCODE_TXL;
2128 ir->lod_info.lod->accept(this);
2129 lod_info = this->result;
2130 break;
2131 case ir_txd:
2132 opcode = OPCODE_TXD;
2133 ir->lod_info.grad.dPdx->accept(this);
2134 dx = this->result;
2135 ir->lod_info.grad.dPdy->accept(this);
2136 dy = this->result;
2137 break;
2138 }
2139
2140 const glsl_type *sampler_type = ir->sampler->type;
2141
2142 if (ir->projector) {
2143 if (opcode == OPCODE_TEX) {
2144 /* Slot the projector in as the last component of the coord. */
2145 coord_dst.writemask = WRITEMASK_W;
2146 emit(ir, OPCODE_MOV, coord_dst, projector);
2147 coord_dst.writemask = WRITEMASK_XYZW;
2148 opcode = OPCODE_TXP;
2149 } else {
2150 src_reg coord_w = coord;
2151 coord_w.swizzle = SWIZZLE_WWWW;
2152
2153 /* For the other TEX opcodes there's no projective version
2154 * since the last slot is taken up by lod info. Do the
2155 * projective divide now.
2156 */
2157 coord_dst.writemask = WRITEMASK_W;
2158 emit(ir, OPCODE_RCP, coord_dst, projector);
2159
2160 /* In the case where we have to project the coordinates "by hand,"
2161 * the shadow comparitor value must also be projected.
2162 */
2163 src_reg tmp_src = coord;
2164 if (ir->shadow_comparitor) {
2165 /* Slot the shadow value in as the second to last component of the
2166 * coord.
2167 */
2168 ir->shadow_comparitor->accept(this);
2169
2170 tmp_src = get_temp(glsl_type::vec4_type);
2171 dst_reg tmp_dst = dst_reg(tmp_src);
2172
2173 /* Projective division not allowed for array samplers. */
2174 assert(!sampler_type->sampler_array);
2175
2176 tmp_dst.writemask = WRITEMASK_Z;
2177 emit(ir, OPCODE_MOV, tmp_dst, this->result);
2178
2179 tmp_dst.writemask = WRITEMASK_XY;
2180 emit(ir, OPCODE_MOV, tmp_dst, coord);
2181 }
2182
2183 coord_dst.writemask = WRITEMASK_XYZ;
2184 emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);
2185
2186 coord_dst.writemask = WRITEMASK_XYZW;
2187 coord.swizzle = SWIZZLE_XYZW;
2188 }
2189 }
2190
2191 /* If projection is done and the opcode is not OPCODE_TXP, then the shadow
2192 * comparitor was put in the correct place (and projected) by the code,
2193 * above, that handles by-hand projection.
2194 */
2195 if (ir->shadow_comparitor && (!ir->projector || opcode == OPCODE_TXP)) {
2196 /* Slot the shadow value in as the second to last component of the
2197 * coord.
2198 */
2199 ir->shadow_comparitor->accept(this);
2200
2201 /* XXX This will need to be updated for cubemap array samplers. */
2202 if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2203 sampler_type->sampler_array) {
2204 coord_dst.writemask = WRITEMASK_W;
2205 } else {
2206 coord_dst.writemask = WRITEMASK_Z;
2207 }
2208
2209 emit(ir, OPCODE_MOV, coord_dst, this->result);
2210 coord_dst.writemask = WRITEMASK_XYZW;
2211 }
2212
2213 if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
2214 /* Mesa IR stores lod or lod bias in the last channel of the coords. */
2215 coord_dst.writemask = WRITEMASK_W;
2216 emit(ir, OPCODE_MOV, coord_dst, lod_info);
2217 coord_dst.writemask = WRITEMASK_XYZW;
2218 }
2219
2220 if (opcode == OPCODE_TXD)
2221 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2222 else
2223 inst = emit(ir, opcode, result_dst, coord);
2224
2225 if (ir->shadow_comparitor)
2226 inst->tex_shadow = GL_TRUE;
2227
2228 inst->sampler = _mesa_get_sampler_uniform_value(ir->sampler,
2229 this->shader_program,
2230 this->prog);
2231
2232 switch (sampler_type->sampler_dimensionality) {
2233 case GLSL_SAMPLER_DIM_1D:
2234 inst->tex_target = (sampler_type->sampler_array)
2235 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2236 break;
2237 case GLSL_SAMPLER_DIM_2D:
2238 inst->tex_target = (sampler_type->sampler_array)
2239 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2240 break;
2241 case GLSL_SAMPLER_DIM_3D:
2242 inst->tex_target = TEXTURE_3D_INDEX;
2243 break;
2244 case GLSL_SAMPLER_DIM_CUBE:
2245 inst->tex_target = TEXTURE_CUBE_INDEX;
2246 break;
2247 case GLSL_SAMPLER_DIM_RECT:
2248 inst->tex_target = TEXTURE_RECT_INDEX;
2249 break;
2250 case GLSL_SAMPLER_DIM_BUF:
2251 assert(!"FINISHME: Implement ARB_texture_buffer_object");
2252 break;
2253 case GLSL_SAMPLER_DIM_EXTERNAL:
2254 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2255 break;
2256 default:
2257 assert(!"Should not get here.");
2258 }
2259
2260 this->result = result_src;
2261 }
2262
2263 void
2264 ir_to_mesa_visitor::visit(ir_return *ir)
2265 {
2266 if (ir->get_value()) {
2267 dst_reg l;
2268 int i;
2269
2270 assert(current_function);
2271
2272 ir->get_value()->accept(this);
2273 src_reg r = this->result;
2274
2275 l = dst_reg(current_function->return_reg);
2276
2277 for (i = 0; i < type_size(current_function->sig->return_type); i++) {
2278 emit(ir, OPCODE_MOV, l, r);
2279 l.index++;
2280 r.index++;
2281 }
2282 }
2283
2284 emit(ir, OPCODE_RET);
2285 }
2286
2287 void
2288 ir_to_mesa_visitor::visit(ir_discard *ir)
2289 {
2290 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
2291
2292 if (ir->condition) {
2293 ir->condition->accept(this);
2294 this->result.negate = ~this->result.negate;
2295 emit(ir, OPCODE_KIL, undef_dst, this->result);
2296 } else {
2297 emit(ir, OPCODE_KIL_NV);
2298 }
2299
2300 fp->UsesKill = GL_TRUE;
2301 }
2302
2303 void
2304 ir_to_mesa_visitor::visit(ir_if *ir)
2305 {
2306 ir_to_mesa_instruction *cond_inst, *if_inst;
2307 ir_to_mesa_instruction *prev_inst;
2308
2309 prev_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2310
2311 ir->condition->accept(this);
2312 assert(this->result.file != PROGRAM_UNDEFINED);
2313
2314 if (this->options->EmitCondCodes) {
2315 cond_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2316
2317 /* See if we actually generated any instruction for generating
2318 * the condition. If not, then cook up a move to a temp so we
2319 * have something to set cond_update on.
2320 */
2321 if (cond_inst == prev_inst) {
2322 src_reg temp = get_temp(glsl_type::bool_type);
2323 cond_inst = emit(ir->condition, OPCODE_MOV, dst_reg(temp), result);
2324 }
2325 cond_inst->cond_update = GL_TRUE;
2326
2327 if_inst = emit(ir->condition, OPCODE_IF);
2328 if_inst->dst.cond_mask = COND_NE;
2329 } else {
2330 if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);
2331 }
2332
2333 this->instructions.push_tail(if_inst);
2334
2335 visit_exec_list(&ir->then_instructions, this);
2336
2337 if (!ir->else_instructions.is_empty()) {
2338 emit(ir->condition, OPCODE_ELSE);
2339 visit_exec_list(&ir->else_instructions, this);
2340 }
2341
2342 if_inst = emit(ir->condition, OPCODE_ENDIF);
2343 }
2344
2345 ir_to_mesa_visitor::ir_to_mesa_visitor()
2346 {
2347 result.file = PROGRAM_UNDEFINED;
2348 next_temp = 1;
2349 next_signature_id = 1;
2350 current_function = NULL;
2351 mem_ctx = ralloc_context(NULL);
2352 }
2353
2354 ir_to_mesa_visitor::~ir_to_mesa_visitor()
2355 {
2356 ralloc_free(mem_ctx);
2357 }
2358
2359 static struct prog_src_register
2360 mesa_src_reg_from_ir_src_reg(src_reg reg)
2361 {
2362 struct prog_src_register mesa_reg;
2363
2364 mesa_reg.File = reg.file;
2365 assert(reg.index < (1 << INST_INDEX_BITS));
2366 mesa_reg.Index = reg.index;
2367 mesa_reg.Swizzle = reg.swizzle;
2368 mesa_reg.RelAddr = reg.reladdr != NULL;
2369 mesa_reg.Negate = reg.negate;
2370 mesa_reg.Abs = 0;
2371 mesa_reg.HasIndex2 = GL_FALSE;
2372 mesa_reg.RelAddr2 = 0;
2373 mesa_reg.Index2 = 0;
2374
2375 return mesa_reg;
2376 }
2377
2378 static void
2379 set_branchtargets(ir_to_mesa_visitor *v,
2380 struct prog_instruction *mesa_instructions,
2381 int num_instructions)
2382 {
2383 int if_count = 0, loop_count = 0;
2384 int *if_stack, *loop_stack;
2385 int if_stack_pos = 0, loop_stack_pos = 0;
2386 int i, j;
2387
2388 for (i = 0; i < num_instructions; i++) {
2389 switch (mesa_instructions[i].Opcode) {
2390 case OPCODE_IF:
2391 if_count++;
2392 break;
2393 case OPCODE_BGNLOOP:
2394 loop_count++;
2395 break;
2396 case OPCODE_BRK:
2397 case OPCODE_CONT:
2398 mesa_instructions[i].BranchTarget = -1;
2399 break;
2400 default:
2401 break;
2402 }
2403 }
2404
2405 if_stack = rzalloc_array(v->mem_ctx, int, if_count);
2406 loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);
2407
2408 for (i = 0; i < num_instructions; i++) {
2409 switch (mesa_instructions[i].Opcode) {
2410 case OPCODE_IF:
2411 if_stack[if_stack_pos] = i;
2412 if_stack_pos++;
2413 break;
2414 case OPCODE_ELSE:
2415 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2416 if_stack[if_stack_pos - 1] = i;
2417 break;
2418 case OPCODE_ENDIF:
2419 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2420 if_stack_pos--;
2421 break;
2422 case OPCODE_BGNLOOP:
2423 loop_stack[loop_stack_pos] = i;
2424 loop_stack_pos++;
2425 break;
2426 case OPCODE_ENDLOOP:
2427 loop_stack_pos--;
2428 /* Rewrite any breaks/conts at this nesting level (haven't
2429 * already had a BranchTarget assigned) to point to the end
2430 * of the loop.
2431 */
2432 for (j = loop_stack[loop_stack_pos]; j < i; j++) {
2433 if (mesa_instructions[j].Opcode == OPCODE_BRK ||
2434 mesa_instructions[j].Opcode == OPCODE_CONT) {
2435 if (mesa_instructions[j].BranchTarget == -1) {
2436 mesa_instructions[j].BranchTarget = i;
2437 }
2438 }
2439 }
2440 /* The loop ends point at each other. */
2441 mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
2442 mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
2443 break;
2444 case OPCODE_CAL:
2445 foreach_iter(exec_list_iterator, iter, v->function_signatures) {
2446 function_entry *entry = (function_entry *)iter.get();
2447
2448 if (entry->sig_id == mesa_instructions[i].BranchTarget) {
2449 mesa_instructions[i].BranchTarget = entry->inst;
2450 break;
2451 }
2452 }
2453 break;
2454 default:
2455 break;
2456 }
2457 }
2458 }
2459
2460 static void
2461 print_program(struct prog_instruction *mesa_instructions,
2462 ir_instruction **mesa_instruction_annotation,
2463 int num_instructions)
2464 {
2465 ir_instruction *last_ir = NULL;
2466 int i;
2467 int indent = 0;
2468
2469 for (i = 0; i < num_instructions; i++) {
2470 struct prog_instruction *mesa_inst = mesa_instructions + i;
2471 ir_instruction *ir = mesa_instruction_annotation[i];
2472
2473 fprintf(stdout, "%3d: ", i);
2474
2475 if (last_ir != ir && ir) {
2476 int j;
2477
2478 for (j = 0; j < indent; j++) {
2479 fprintf(stdout, " ");
2480 }
2481 ir->print();
2482 printf("\n");
2483 last_ir = ir;
2484
2485 fprintf(stdout, " "); /* line number spacing. */
2486 }
2487
2488 indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
2489 PROG_PRINT_DEBUG, NULL);
2490 }
2491 }
2492
2493 class add_uniform_to_shader : public uniform_field_visitor {
2494 public:
2495 add_uniform_to_shader(struct gl_shader_program *shader_program,
2496 struct gl_program_parameter_list *params)
2497 : shader_program(shader_program), params(params)
2498 {
2499 /* empty */
2500 }
2501
2502 void process(ir_variable *var)
2503 {
2504 this->idx = -1;
2505 this->uniform_field_visitor::process(var);
2506
2507 var->location = this->idx;
2508 }
2509
2510 private:
2511 virtual void visit_field(const glsl_type *type, const char *name);
2512
2513 struct gl_shader_program *shader_program;
2514 struct gl_program_parameter_list *params;
2515 int idx;
2516 };
2517
2518 void
2519 add_uniform_to_shader::visit_field(const glsl_type *type, const char *name)
2520 {
2521 unsigned int size;
2522
2523 if (type->is_vector() || type->is_scalar()) {
2524 size = type->vector_elements;
2525 } else {
2526 size = type_size(type) * 4;
2527 }
2528
2529 gl_register_file file;
2530 if (type->is_sampler() ||
2531 (type->is_array() && type->fields.array->is_sampler())) {
2532 file = PROGRAM_SAMPLER;
2533 } else {
2534 file = PROGRAM_UNIFORM;
2535 }
2536
2537 int index = _mesa_lookup_parameter_index(params, -1, name);
2538 if (index < 0) {
2539 index = _mesa_add_parameter(params, file, name, size, type->gl_type,
2540 NULL, NULL, 0x0);
2541
2542 /* Sampler uniform values are stored in prog->SamplerUnits,
2543 * and the entry in that array is selected by this index we
2544 * store in ParameterValues[].
2545 */
2546 if (file == PROGRAM_SAMPLER) {
2547 unsigned location;
2548 const bool found =
2549 this->shader_program->UniformHash->get(location,
2550 params->Parameters[index].Name);
2551 assert(found);
2552
2553 if (!found)
2554 return;
2555
2556 struct gl_uniform_storage *storage =
2557 &this->shader_program->UniformStorage[location];
2558
2559 for (unsigned int j = 0; j < size / 4; j++)
2560 params->ParameterValues[index + j][0].f = storage->sampler + j;
2561 }
2562 }
2563
2564 /* The first part of the uniform that's processed determines the base
2565 * location of the whole uniform (for structures).
2566 */
2567 if (this->idx < 0)
2568 this->idx = index;
2569 }
2570
2571 /**
2572 * Generate the program parameters list for the user uniforms in a shader
2573 *
2574 * \param shader_program Linked shader program. This is only used to
2575 * emit possible link errors to the info log.
2576 * \param sh Shader whose uniforms are to be processed.
2577 * \param params Parameter list to be filled in.
2578 */
2579 void
2580 _mesa_generate_parameters_list_for_uniforms(struct gl_shader_program
2581 *shader_program,
2582 struct gl_shader *sh,
2583 struct gl_program_parameter_list
2584 *params)
2585 {
2586 add_uniform_to_shader add(shader_program, params);
2587
2588 foreach_list(node, sh->ir) {
2589 ir_variable *var = ((ir_instruction *) node)->as_variable();
2590
2591 if ((var == NULL) || (var->mode != ir_var_uniform)
2592 || (strncmp(var->name, "gl_", 3) == 0))
2593 continue;
2594
2595 add.process(var);
2596 }
2597 }
2598
2599 void
2600 _mesa_associate_uniform_storage(struct gl_context *ctx,
2601 struct gl_shader_program *shader_program,
2602 struct gl_program_parameter_list *params)
2603 {
2604 /* After adding each uniform to the parameter list, connect the storage for
2605 * the parameter with the tracking structure used by the API for the
2606 * uniform.
2607 */
2608 unsigned last_location = unsigned(~0);
2609 for (unsigned i = 0; i < params->NumParameters; i++) {
2610 if (params->Parameters[i].Type != PROGRAM_UNIFORM)
2611 continue;
2612
2613 unsigned location;
2614 const bool found =
2615 shader_program->UniformHash->get(location, params->Parameters[i].Name);
2616 assert(found);
2617
2618 if (!found)
2619 continue;
2620
2621 if (location != last_location) {
2622 struct gl_uniform_storage *storage =
2623 &shader_program->UniformStorage[location];
2624 enum gl_uniform_driver_format format = uniform_native;
2625
2626 unsigned columns = 0;
2627 switch (storage->type->base_type) {
2628 case GLSL_TYPE_UINT:
2629 assert(ctx->Const.NativeIntegers);
2630 format = uniform_native;
2631 columns = 1;
2632 break;
2633 case GLSL_TYPE_INT:
2634 format =
2635 (ctx->Const.NativeIntegers) ? uniform_native : uniform_int_float;
2636 columns = 1;
2637 break;
2638 case GLSL_TYPE_FLOAT:
2639 format = uniform_native;
2640 columns = storage->type->matrix_columns;
2641 break;
2642 case GLSL_TYPE_BOOL:
2643 if (ctx->Const.NativeIntegers) {
2644 format = (ctx->Const.UniformBooleanTrue == 1)
2645 ? uniform_bool_int_0_1 : uniform_bool_int_0_not0;
2646 } else {
2647 format = uniform_bool_float;
2648 }
2649 columns = 1;
2650 break;
2651 case GLSL_TYPE_SAMPLER:
2652 format = uniform_native;
2653 columns = 1;
2654 break;
2655 default:
2656 assert(!"Should not get here.");
2657 break;
2658 }
2659
2660 _mesa_uniform_attach_driver_storage(storage,
2661 4 * sizeof(float) * columns,
2662 4 * sizeof(float),
2663 format,
2664 &params->ParameterValues[i]);
2665 last_location = location;
2666 }
2667 }
2668 }
2669
2670 static void
2671 set_uniform_initializer(struct gl_context *ctx, void *mem_ctx,
2672 struct gl_shader_program *shader_program,
2673 const char *name, const glsl_type *type,
2674 ir_constant *val)
2675 {
2676 if (type->is_record()) {
2677 ir_constant *field_constant;
2678
2679 field_constant = (ir_constant *)val->components.get_head();
2680
2681 for (unsigned int i = 0; i < type->length; i++) {
2682 const glsl_type *field_type = type->fields.structure[i].type;
2683 const char *field_name = ralloc_asprintf(mem_ctx, "%s.%s", name,
2684 type->fields.structure[i].name);
2685 set_uniform_initializer(ctx, mem_ctx, shader_program, field_name,
2686 field_type, field_constant);
2687 field_constant = (ir_constant *)field_constant->next;
2688 }
2689 return;
2690 }
2691
2692 int loc = _mesa_get_uniform_location(ctx, shader_program, name);
2693
2694 if (loc == -1) {
2695 linker_error(shader_program,
2696 "Couldn't find uniform for initializer %s\n", name);
2697 return;
2698 }
2699
2700 for (unsigned int i = 0; i < (type->is_array() ? type->length : 1); i++) {
2701 ir_constant *element;
2702 const glsl_type *element_type;
2703 if (type->is_array()) {
2704 element = val->array_elements[i];
2705 element_type = type->fields.array;
2706 } else {
2707 element = val;
2708 element_type = type;
2709 }
2710
2711 void *values;
2712
2713 if (element_type->base_type == GLSL_TYPE_BOOL) {
2714 int *conv = ralloc_array(mem_ctx, int, element_type->components());
2715 for (unsigned int j = 0; j < element_type->components(); j++) {
2716 conv[j] = element->value.b[j];
2717 }
2718 values = (void *)conv;
2719 element_type = glsl_type::get_instance(GLSL_TYPE_INT,
2720 element_type->vector_elements,
2721 1);
2722 } else {
2723 values = &element->value;
2724 }
2725
2726 if (element_type->is_matrix()) {
2727 _mesa_uniform_matrix(ctx, shader_program,
2728 element_type->matrix_columns,
2729 element_type->vector_elements,
2730 loc, 1, GL_FALSE, (GLfloat *)values);
2731 } else {
2732 _mesa_uniform(ctx, shader_program, loc, element_type->matrix_columns,
2733 values, element_type->gl_type);
2734 }
2735
2736 loc++;
2737 }
2738 }
2739
2740 static void
2741 set_uniform_initializers(struct gl_context *ctx,
2742 struct gl_shader_program *shader_program)
2743 {
2744 void *mem_ctx = NULL;
2745
2746 for (unsigned int i = 0; i < MESA_SHADER_TYPES; i++) {
2747 struct gl_shader *shader = shader_program->_LinkedShaders[i];
2748
2749 if (shader == NULL)
2750 continue;
2751
2752 foreach_iter(exec_list_iterator, iter, *shader->ir) {
2753 ir_instruction *ir = (ir_instruction *)iter.get();
2754 ir_variable *var = ir->as_variable();
2755
2756 if (!var || var->mode != ir_var_uniform || !var->constant_value)
2757 continue;
2758
2759 if (!mem_ctx)
2760 mem_ctx = ralloc_context(NULL);
2761
2762 set_uniform_initializer(ctx, mem_ctx, shader_program, var->name,
2763 var->type, var->constant_value);
2764 }
2765 }
2766
2767 ralloc_free(mem_ctx);
2768 }
2769
2770 /*
2771 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
2772 * channels for copy propagation and updates following instructions to
2773 * use the original versions.
2774 *
2775 * The ir_to_mesa_visitor lazily produces code assuming that this pass
2776 * will occur. As an example, a TXP production before this pass:
2777 *
2778 * 0: MOV TEMP[1], INPUT[4].xyyy;
2779 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2780 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
2781 *
2782 * and after:
2783 *
2784 * 0: MOV TEMP[1], INPUT[4].xyyy;
2785 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2786 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
2787 *
2788 * which allows for dead code elimination on TEMP[1]'s writes.
2789 */
2790 void
2791 ir_to_mesa_visitor::copy_propagate(void)
2792 {
2793 ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
2794 ir_to_mesa_instruction *,
2795 this->next_temp * 4);
2796 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
2797 int level = 0;
2798
2799 foreach_iter(exec_list_iterator, iter, this->instructions) {
2800 ir_to_mesa_instruction *inst = (ir_to_mesa_instruction *)iter.get();
2801
2802 assert(inst->dst.file != PROGRAM_TEMPORARY
2803 || inst->dst.index < this->next_temp);
2804
2805 /* First, do any copy propagation possible into the src regs. */
2806 for (int r = 0; r < 3; r++) {
2807 ir_to_mesa_instruction *first = NULL;
2808 bool good = true;
2809 int acp_base = inst->src[r].index * 4;
2810
2811 if (inst->src[r].file != PROGRAM_TEMPORARY ||
2812 inst->src[r].reladdr)
2813 continue;
2814
2815 /* See if we can find entries in the ACP consisting of MOVs
2816 * from the same src register for all the swizzled channels
2817 * of this src register reference.
2818 */
2819 for (int i = 0; i < 4; i++) {
2820 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2821 ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];
2822
2823 if (!copy_chan) {
2824 good = false;
2825 break;
2826 }
2827
2828 assert(acp_level[acp_base + src_chan] <= level);
2829
2830 if (!first) {
2831 first = copy_chan;
2832 } else {
2833 if (first->src[0].file != copy_chan->src[0].file ||
2834 first->src[0].index != copy_chan->src[0].index) {
2835 good = false;
2836 break;
2837 }
2838 }
2839 }
2840
2841 if (good) {
2842 /* We've now validated that we can copy-propagate to
2843 * replace this src register reference. Do it.
2844 */
2845 inst->src[r].file = first->src[0].file;
2846 inst->src[r].index = first->src[0].index;
2847
2848 int swizzle = 0;
2849 for (int i = 0; i < 4; i++) {
2850 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2851 ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
2852 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
2853 (3 * i));
2854 }
2855 inst->src[r].swizzle = swizzle;
2856 }
2857 }
2858
2859 switch (inst->op) {
2860 case OPCODE_BGNLOOP:
2861 case OPCODE_ENDLOOP:
2862 /* End of a basic block, clear the ACP entirely. */
2863 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2864 break;
2865
2866 case OPCODE_IF:
2867 ++level;
2868 break;
2869
2870 case OPCODE_ENDIF:
2871 case OPCODE_ELSE:
2872 /* Clear all channels written inside the block from the ACP, but
2873 * leaving those that were not touched.
2874 */
2875 for (int r = 0; r < this->next_temp; r++) {
2876 for (int c = 0; c < 4; c++) {
2877 if (!acp[4 * r + c])
2878 continue;
2879
2880 if (acp_level[4 * r + c] >= level)
2881 acp[4 * r + c] = NULL;
2882 }
2883 }
2884 if (inst->op == OPCODE_ENDIF)
2885 --level;
2886 break;
2887
2888 default:
2889 /* Continuing the block, clear any written channels from
2890 * the ACP.
2891 */
2892 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
2893 /* Any temporary might be written, so no copy propagation
2894 * across this instruction.
2895 */
2896 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2897 } else if (inst->dst.file == PROGRAM_OUTPUT &&
2898 inst->dst.reladdr) {
2899 /* Any output might be written, so no copy propagation
2900 * from outputs across this instruction.
2901 */
2902 for (int r = 0; r < this->next_temp; r++) {
2903 for (int c = 0; c < 4; c++) {
2904 if (!acp[4 * r + c])
2905 continue;
2906
2907 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
2908 acp[4 * r + c] = NULL;
2909 }
2910 }
2911 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
2912 inst->dst.file == PROGRAM_OUTPUT) {
2913 /* Clear where it's used as dst. */
2914 if (inst->dst.file == PROGRAM_TEMPORARY) {
2915 for (int c = 0; c < 4; c++) {
2916 if (inst->dst.writemask & (1 << c)) {
2917 acp[4 * inst->dst.index + c] = NULL;
2918 }
2919 }
2920 }
2921
2922 /* Clear where it's used as src. */
2923 for (int r = 0; r < this->next_temp; r++) {
2924 for (int c = 0; c < 4; c++) {
2925 if (!acp[4 * r + c])
2926 continue;
2927
2928 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
2929
2930 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
2931 acp[4 * r + c]->src[0].index == inst->dst.index &&
2932 inst->dst.writemask & (1 << src_chan))
2933 {
2934 acp[4 * r + c] = NULL;
2935 }
2936 }
2937 }
2938 }
2939 break;
2940 }
2941
2942 /* If this is a copy, add it to the ACP. */
2943 if (inst->op == OPCODE_MOV &&
2944 inst->dst.file == PROGRAM_TEMPORARY &&
2945 !inst->dst.reladdr &&
2946 !inst->saturate &&
2947 !inst->src[0].reladdr &&
2948 !inst->src[0].negate) {
2949 for (int i = 0; i < 4; i++) {
2950 if (inst->dst.writemask & (1 << i)) {
2951 acp[4 * inst->dst.index + i] = inst;
2952 acp_level[4 * inst->dst.index + i] = level;
2953 }
2954 }
2955 }
2956 }
2957
2958 ralloc_free(acp_level);
2959 ralloc_free(acp);
2960 }
2961
2962
2963 /**
2964 * Convert a shader's GLSL IR into a Mesa gl_program.
2965 */
2966 static struct gl_program *
2967 get_mesa_program(struct gl_context *ctx,
2968 struct gl_shader_program *shader_program,
2969 struct gl_shader *shader)
2970 {
2971 ir_to_mesa_visitor v;
2972 struct prog_instruction *mesa_instructions, *mesa_inst;
2973 ir_instruction **mesa_instruction_annotation;
2974 int i;
2975 struct gl_program *prog;
2976 GLenum target;
2977 const char *target_string;
2978 GLboolean progress;
2979 struct gl_shader_compiler_options *options =
2980 &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(shader->Type)];
2981
2982 switch (shader->Type) {
2983 case GL_VERTEX_SHADER:
2984 target = GL_VERTEX_PROGRAM_ARB;
2985 target_string = "vertex";
2986 break;
2987 case GL_FRAGMENT_SHADER:
2988 target = GL_FRAGMENT_PROGRAM_ARB;
2989 target_string = "fragment";
2990 break;
2991 case GL_GEOMETRY_SHADER:
2992 target = GL_GEOMETRY_PROGRAM_NV;
2993 target_string = "geometry";
2994 break;
2995 default:
2996 assert(!"should not be reached");
2997 return NULL;
2998 }
2999
3000 validate_ir_tree(shader->ir);
3001
3002 prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
3003 if (!prog)
3004 return NULL;
3005 prog->Parameters = _mesa_new_parameter_list();
3006 v.ctx = ctx;
3007 v.prog = prog;
3008 v.shader_program = shader_program;
3009 v.options = options;
3010
3011 _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
3012 prog->Parameters);
3013
3014 /* Emit Mesa IR for main(). */
3015 visit_exec_list(shader->ir, &v);
3016 v.emit(NULL, OPCODE_END);
3017
3018 /* Now emit bodies for any functions that were used. */
3019 do {
3020 progress = GL_FALSE;
3021
3022 foreach_iter(exec_list_iterator, iter, v.function_signatures) {
3023 function_entry *entry = (function_entry *)iter.get();
3024
3025 if (!entry->bgn_inst) {
3026 v.current_function = entry;
3027
3028 entry->bgn_inst = v.emit(NULL, OPCODE_BGNSUB);
3029 entry->bgn_inst->function = entry;
3030
3031 visit_exec_list(&entry->sig->body, &v);
3032
3033 ir_to_mesa_instruction *last;
3034 last = (ir_to_mesa_instruction *)v.instructions.get_tail();
3035 if (last->op != OPCODE_RET)
3036 v.emit(NULL, OPCODE_RET);
3037
3038 ir_to_mesa_instruction *end;
3039 end = v.emit(NULL, OPCODE_ENDSUB);
3040 end->function = entry;
3041
3042 progress = GL_TRUE;
3043 }
3044 }
3045 } while (progress);
3046
3047 prog->NumTemporaries = v.next_temp;
3048
3049 int num_instructions = 0;
3050 foreach_iter(exec_list_iterator, iter, v.instructions) {
3051 num_instructions++;
3052 }
3053
3054 mesa_instructions =
3055 (struct prog_instruction *)calloc(num_instructions,
3056 sizeof(*mesa_instructions));
3057 mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
3058 num_instructions);
3059
3060 v.copy_propagate();
3061
3062 /* Convert ir_mesa_instructions into prog_instructions.
3063 */
3064 mesa_inst = mesa_instructions;
3065 i = 0;
3066 foreach_iter(exec_list_iterator, iter, v.instructions) {
3067 const ir_to_mesa_instruction *inst = (ir_to_mesa_instruction *)iter.get();
3068
3069 mesa_inst->Opcode = inst->op;
3070 mesa_inst->CondUpdate = inst->cond_update;
3071 if (inst->saturate)
3072 mesa_inst->SaturateMode = SATURATE_ZERO_ONE;
3073 mesa_inst->DstReg.File = inst->dst.file;
3074 mesa_inst->DstReg.Index = inst->dst.index;
3075 mesa_inst->DstReg.CondMask = inst->dst.cond_mask;
3076 mesa_inst->DstReg.WriteMask = inst->dst.writemask;
3077 mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
3078 mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
3079 mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
3080 mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
3081 mesa_inst->TexSrcUnit = inst->sampler;
3082 mesa_inst->TexSrcTarget = inst->tex_target;
3083 mesa_inst->TexShadow = inst->tex_shadow;
3084 mesa_instruction_annotation[i] = inst->ir;
3085
3086 /* Set IndirectRegisterFiles. */
3087 if (mesa_inst->DstReg.RelAddr)
3088 prog->IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;
3089
3090 /* Update program's bitmask of indirectly accessed register files */
3091 for (unsigned src = 0; src < 3; src++)
3092 if (mesa_inst->SrcReg[src].RelAddr)
3093 prog->IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;
3094
3095 switch (mesa_inst->Opcode) {
3096 case OPCODE_IF:
3097 if (options->MaxIfDepth == 0) {
3098 linker_warning(shader_program,
3099 "Couldn't flatten if-statement. "
3100 "This will likely result in software "
3101 "rasterization.\n");
3102 }
3103 break;
3104 case OPCODE_BGNLOOP:
3105 if (options->EmitNoLoops) {
3106 linker_warning(shader_program,
3107 "Couldn't unroll loop. "
3108 "This will likely result in software "
3109 "rasterization.\n");
3110 }
3111 break;
3112 case OPCODE_CONT:
3113 if (options->EmitNoCont) {
3114 linker_warning(shader_program,
3115 "Couldn't lower continue-statement. "
3116 "This will likely result in software "
3117 "rasterization.\n");
3118 }
3119 break;
3120 case OPCODE_BGNSUB:
3121 inst->function->inst = i;
3122 mesa_inst->Comment = strdup(inst->function->sig->function_name());
3123 break;
3124 case OPCODE_ENDSUB:
3125 mesa_inst->Comment = strdup(inst->function->sig->function_name());
3126 break;
3127 case OPCODE_CAL:
3128 mesa_inst->BranchTarget = inst->function->sig_id; /* rewritten later */
3129 break;
3130 case OPCODE_ARL:
3131 prog->NumAddressRegs = 1;
3132 break;
3133 default:
3134 break;
3135 }
3136
3137 mesa_inst++;
3138 i++;
3139
3140 if (!shader_program->LinkStatus)
3141 break;
3142 }
3143
3144 if (!shader_program->LinkStatus) {
3145 goto fail_exit;
3146 }
3147
3148 set_branchtargets(&v, mesa_instructions, num_instructions);
3149
3150 if (ctx->Shader.Flags & GLSL_DUMP) {
3151 printf("\n");
3152 printf("GLSL IR for linked %s program %d:\n", target_string,
3153 shader_program->Name);
3154 _mesa_print_ir(shader->ir, NULL);
3155 printf("\n");
3156 printf("\n");
3157 printf("Mesa IR for linked %s program %d:\n", target_string,
3158 shader_program->Name);
3159 print_program(mesa_instructions, mesa_instruction_annotation,
3160 num_instructions);
3161 }
3162
3163 prog->Instructions = mesa_instructions;
3164 prog->NumInstructions = num_instructions;
3165
3166 /* Setting this to NULL prevents a possible double free in the fail_exit
3167 * path (far below).
3168 */
3169 mesa_instructions = NULL;
3170
3171 do_set_program_inouts(shader->ir, prog, shader->Type == GL_FRAGMENT_SHADER);
3172
3173 prog->SamplersUsed = shader->active_samplers;
3174 prog->ShadowSamplers = shader->shadow_samplers;
3175 _mesa_update_shader_textures_used(shader_program, prog);
3176
3177 /* Set the gl_FragDepth layout. */
3178 if (target == GL_FRAGMENT_PROGRAM_ARB) {
3179 struct gl_fragment_program *fp = (struct gl_fragment_program *)prog;
3180 fp->FragDepthLayout = shader_program->FragDepthLayout;
3181 }
3182
3183 _mesa_reference_program(ctx, &shader->Program, prog);
3184
3185 if ((ctx->Shader.Flags & GLSL_NO_OPT) == 0) {
3186 _mesa_optimize_program(ctx, prog);
3187 }
3188
3189 /* This has to be done last. Any operation that can cause
3190 * prog->ParameterValues to get reallocated (e.g., anything that adds a
3191 * program constant) has to happen before creating this linkage.
3192 */
3193 _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
3194 if (!shader_program->LinkStatus) {
3195 goto fail_exit;
3196 }
3197
3198 return prog;
3199
3200 fail_exit:
3201 free(mesa_instructions);
3202 _mesa_reference_program(ctx, &shader->Program, NULL);
3203 return NULL;
3204 }
3205
3206 extern "C" {
3207
3208 /**
3209 * Link a shader.
3210 * Called via ctx->Driver.LinkShader()
3211 * This actually involves converting GLSL IR into Mesa gl_programs with
3212 * code lowering and other optimizations.
3213 */
3214 GLboolean
3215 _mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3216 {
3217 assert(prog->LinkStatus);
3218
3219 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
3220 if (prog->_LinkedShaders[i] == NULL)
3221 continue;
3222
3223 bool progress;
3224 exec_list *ir = prog->_LinkedShaders[i]->ir;
3225 const struct gl_shader_compiler_options *options =
3226 &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(prog->_LinkedShaders[i]->Type)];
3227
3228 do {
3229 progress = false;
3230
3231 /* Lowering */
3232 do_mat_op_to_vec(ir);
3233 lower_instructions(ir, (MOD_TO_FRACT | DIV_TO_MUL_RCP | EXP_TO_EXP2
3234 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
3235 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
3236
3237 progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
3238
3239 progress = do_common_optimization(ir, true, true,
3240 options->MaxUnrollIterations)
3241 || progress;
3242
3243 progress = lower_quadop_vector(ir, true) || progress;
3244
3245 if (options->MaxIfDepth == 0)
3246 progress = lower_discard(ir) || progress;
3247
3248 progress = lower_if_to_cond_assign(ir, options->MaxIfDepth) || progress;
3249
3250 if (options->EmitNoNoise)
3251 progress = lower_noise(ir) || progress;
3252
3253 /* If there are forms of indirect addressing that the driver
3254 * cannot handle, perform the lowering pass.
3255 */
3256 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
3257 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
3258 progress =
3259 lower_variable_index_to_cond_assign(ir,
3260 options->EmitNoIndirectInput,
3261 options->EmitNoIndirectOutput,
3262 options->EmitNoIndirectTemp,
3263 options->EmitNoIndirectUniform)
3264 || progress;
3265
3266 progress = do_vec_index_to_cond_assign(ir) || progress;
3267 } while (progress);
3268
3269 validate_ir_tree(ir);
3270 }
3271
3272 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
3273 struct gl_program *linked_prog;
3274
3275 if (prog->_LinkedShaders[i] == NULL)
3276 continue;
3277
3278 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
3279
3280 if (linked_prog) {
3281 static const GLenum targets[] = {
3282 GL_VERTEX_PROGRAM_ARB,
3283 GL_FRAGMENT_PROGRAM_ARB,
3284 GL_GEOMETRY_PROGRAM_NV
3285 };
3286
3287 if (i == MESA_SHADER_VERTEX) {
3288 ((struct gl_vertex_program *)linked_prog)->UsesClipDistance
3289 = prog->Vert.UsesClipDistance;
3290 }
3291
3292 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
3293 linked_prog);
3294 if (!ctx->Driver.ProgramStringNotify(ctx, targets[i], linked_prog)) {
3295 return GL_FALSE;
3296 }
3297 }
3298
3299 _mesa_reference_program(ctx, &linked_prog, NULL);
3300 }
3301
3302 return prog->LinkStatus;
3303 }
3304
3305
3306 /**
3307 * Compile a GLSL shader. Called via glCompileShader().
3308 */
3309 void
3310 _mesa_glsl_compile_shader(struct gl_context *ctx, struct gl_shader *shader)
3311 {
3312 struct _mesa_glsl_parse_state *state =
3313 new(shader) _mesa_glsl_parse_state(ctx, shader->Type, shader);
3314
3315 const char *source = shader->Source;
3316 /* Check if the user called glCompileShader without first calling
3317 * glShaderSource. This should fail to compile, but not raise a GL_ERROR.
3318 */
3319 if (source == NULL) {
3320 shader->CompileStatus = GL_FALSE;
3321 return;
3322 }
3323
3324 state->error = preprocess(state, &source, &state->info_log,
3325 &ctx->Extensions, ctx->API);
3326
3327 if (ctx->Shader.Flags & GLSL_DUMP) {
3328 printf("GLSL source for %s shader %d:\n",
3329 _mesa_glsl_shader_target_name(state->target), shader->Name);
3330 printf("%s\n", shader->Source);
3331 }
3332
3333 if (!state->error) {
3334 _mesa_glsl_lexer_ctor(state, source);
3335 _mesa_glsl_parse(state);
3336 _mesa_glsl_lexer_dtor(state);
3337 }
3338
3339 ralloc_free(shader->ir);
3340 shader->ir = new(shader) exec_list;
3341 if (!state->error && !state->translation_unit.is_empty())
3342 _mesa_ast_to_hir(shader->ir, state);
3343
3344 if (!state->error && !shader->ir->is_empty()) {
3345 validate_ir_tree(shader->ir);
3346
3347 /* Do some optimization at compile time to reduce shader IR size
3348 * and reduce later work if the same shader is linked multiple times
3349 */
3350 while (do_common_optimization(shader->ir, false, false, 32))
3351 ;
3352
3353 validate_ir_tree(shader->ir);
3354 }
3355
3356 shader->symbols = state->symbols;
3357
3358 shader->CompileStatus = !state->error;
3359 shader->InfoLog = state->info_log;
3360 shader->Version = state->language_version;
3361 memcpy(shader->builtins_to_link, state->builtins_to_link,
3362 sizeof(shader->builtins_to_link[0]) * state->num_builtins_to_link);
3363 shader->num_builtins_to_link = state->num_builtins_to_link;
3364
3365 if (ctx->Shader.Flags & GLSL_LOG) {
3366 _mesa_write_shader_to_file(shader);
3367 }
3368
3369 if (ctx->Shader.Flags & GLSL_DUMP) {
3370 if (shader->CompileStatus) {
3371 printf("GLSL IR for shader %d:\n", shader->Name);
3372 _mesa_print_ir(shader->ir, NULL);
3373 printf("\n\n");
3374 } else {
3375 printf("GLSL shader %d failed to compile.\n", shader->Name);
3376 }
3377 if (shader->InfoLog && shader->InfoLog[0] != 0) {
3378 printf("GLSL shader %d info log:\n", shader->Name);
3379 printf("%s\n", shader->InfoLog);
3380 }
3381 }
3382
3383 /* Retain any live IR, but trash the rest. */
3384 reparent_ir(shader->ir, shader->ir);
3385
3386 ralloc_free(state);
3387 }
3388
3389
3390 /**
3391 * Link a GLSL shader program. Called via glLinkProgram().
3392 */
3393 void
3394 _mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3395 {
3396 unsigned int i;
3397
3398 _mesa_clear_shader_program_data(ctx, prog);
3399
3400 prog->LinkStatus = GL_TRUE;
3401
3402 for (i = 0; i < prog->NumShaders; i++) {
3403 if (!prog->Shaders[i]->CompileStatus) {
3404 linker_error(prog, "linking with uncompiled shader");
3405 prog->LinkStatus = GL_FALSE;
3406 }
3407 }
3408
3409 if (prog->LinkStatus) {
3410 link_shaders(ctx, prog);
3411 }
3412
3413 if (prog->LinkStatus) {
3414 if (!ctx->Driver.LinkShader(ctx, prog)) {
3415 prog->LinkStatus = GL_FALSE;
3416 }
3417 }
3418
3419 if (prog->LinkStatus) {
3420 set_uniform_initializers(ctx, prog);
3421 }
3422
3423 if (ctx->Shader.Flags & GLSL_DUMP) {
3424 if (!prog->LinkStatus) {
3425 printf("GLSL shader program %d failed to link\n", prog->Name);
3426 }
3427
3428 if (prog->InfoLog && prog->InfoLog[0] != 0) {
3429 printf("GLSL shader program %d info log:\n", prog->Name);
3430 printf("%s\n", prog->InfoLog);
3431 }
3432 }
3433 }
3434
3435 } /* extern "C" */