Merge commit '8b0fb1c152fe191768953aa8c77b89034a377f83' into vulkan
[mesa.git] / src / mesa / program / ir_to_mesa.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
24 */
25
26 /**
27 * \file ir_to_mesa.cpp
28 *
29 * Translate GLSL IR to Mesa's gl_program representation.
30 */
31
32 #include <stdio.h>
33 #include "main/compiler.h"
34 #include "main/mtypes.h"
35 #include "main/shaderapi.h"
36 #include "main/shaderobj.h"
37 #include "main/uniforms.h"
38 #include "compiler/glsl/ast.h"
39 #include "compiler/glsl/ir.h"
40 #include "compiler/glsl/ir_expression_flattening.h"
41 #include "compiler/glsl/ir_visitor.h"
42 #include "compiler/glsl/ir_optimization.h"
43 #include "compiler/glsl/ir_uniform.h"
44 #include "compiler/glsl/glsl_parser_extras.h"
45 #include "compiler/glsl_types.h"
46 #include "compiler/glsl/linker.h"
47 #include "compiler/glsl/program.h"
48 #include "program/hash_table.h"
49 #include "program/prog_instruction.h"
50 #include "program/prog_optimize.h"
51 #include "program/prog_print.h"
52 #include "program/program.h"
53 #include "program/prog_parameter.h"
54
55
56 static int swizzle_for_size(int size);
57
58 namespace {
59
60 class src_reg;
61 class dst_reg;
62
63 /**
64 * This struct is a corresponding struct to Mesa prog_src_register, with
65 * wider fields.
66 */
67 class src_reg {
68 public:
69 src_reg(gl_register_file file, int index, const glsl_type *type)
70 {
71 this->file = file;
72 this->index = index;
73 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
74 this->swizzle = swizzle_for_size(type->vector_elements);
75 else
76 this->swizzle = SWIZZLE_XYZW;
77 this->negate = 0;
78 this->reladdr = NULL;
79 }
80
81 src_reg()
82 {
83 this->file = PROGRAM_UNDEFINED;
84 this->index = 0;
85 this->swizzle = 0;
86 this->negate = 0;
87 this->reladdr = NULL;
88 }
89
90 explicit src_reg(dst_reg reg);
91
92 gl_register_file file; /**< PROGRAM_* from Mesa */
93 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
94 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
95 int negate; /**< NEGATE_XYZW mask from mesa */
96 /** Register index should be offset by the integer in this reg. */
97 src_reg *reladdr;
98 };
99
100 class dst_reg {
101 public:
102 dst_reg(gl_register_file file, int writemask)
103 {
104 this->file = file;
105 this->index = 0;
106 this->writemask = writemask;
107 this->cond_mask = COND_TR;
108 this->reladdr = NULL;
109 }
110
111 dst_reg()
112 {
113 this->file = PROGRAM_UNDEFINED;
114 this->index = 0;
115 this->writemask = 0;
116 this->cond_mask = COND_TR;
117 this->reladdr = NULL;
118 }
119
120 explicit dst_reg(src_reg reg);
121
122 gl_register_file file; /**< PROGRAM_* from Mesa */
123 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
124 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
125 GLuint cond_mask:4;
126 /** Register index should be offset by the integer in this reg. */
127 src_reg *reladdr;
128 };
129
130 } /* anonymous namespace */
131
132 src_reg::src_reg(dst_reg reg)
133 {
134 this->file = reg.file;
135 this->index = reg.index;
136 this->swizzle = SWIZZLE_XYZW;
137 this->negate = 0;
138 this->reladdr = reg.reladdr;
139 }
140
141 dst_reg::dst_reg(src_reg reg)
142 {
143 this->file = reg.file;
144 this->index = reg.index;
145 this->writemask = WRITEMASK_XYZW;
146 this->cond_mask = COND_TR;
147 this->reladdr = reg.reladdr;
148 }
149
150 namespace {
151
152 class ir_to_mesa_instruction : public exec_node {
153 public:
154 DECLARE_RALLOC_CXX_OPERATORS(ir_to_mesa_instruction)
155
156 enum prog_opcode op;
157 dst_reg dst;
158 src_reg src[3];
159 /** Pointer to the ir source this tree came from for debugging */
160 ir_instruction *ir;
161 GLboolean cond_update;
162 bool saturate;
163 int sampler; /**< sampler index */
164 int tex_target; /**< One of TEXTURE_*_INDEX */
165 GLboolean tex_shadow;
166 };
167
168 class variable_storage : public exec_node {
169 public:
170 variable_storage(ir_variable *var, gl_register_file file, int index)
171 : file(file), index(index), var(var)
172 {
173 /* empty */
174 }
175
176 gl_register_file file;
177 int index;
178 ir_variable *var; /* variable that maps to this, if any */
179 };
180
181 class function_entry : public exec_node {
182 public:
183 ir_function_signature *sig;
184
185 /**
186 * identifier of this function signature used by the program.
187 *
188 * At the point that Mesa instructions for function calls are
189 * generated, we don't know the address of the first instruction of
190 * the function body. So we make the BranchTarget that is called a
191 * small integer and rewrite them during set_branchtargets().
192 */
193 int sig_id;
194
195 /**
196 * Pointer to first instruction of the function body.
197 *
198 * Set during function body emits after main() is processed.
199 */
200 ir_to_mesa_instruction *bgn_inst;
201
202 /**
203 * Index of the first instruction of the function body in actual
204 * Mesa IR.
205 *
206 * Set after convertion from ir_to_mesa_instruction to prog_instruction.
207 */
208 int inst;
209
210 /** Storage for the return value. */
211 src_reg return_reg;
212 };
213
214 class ir_to_mesa_visitor : public ir_visitor {
215 public:
216 ir_to_mesa_visitor();
217 ~ir_to_mesa_visitor();
218
219 function_entry *current_function;
220
221 struct gl_context *ctx;
222 struct gl_program *prog;
223 struct gl_shader_program *shader_program;
224 struct gl_shader_compiler_options *options;
225
226 int next_temp;
227
228 variable_storage *find_variable_storage(const ir_variable *var);
229
230 src_reg get_temp(const glsl_type *type);
231 void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);
232
233 src_reg src_reg_for_float(float val);
234
235 /**
236 * \name Visit methods
237 *
238 * As typical for the visitor pattern, there must be one \c visit method for
239 * each concrete subclass of \c ir_instruction. Virtual base classes within
240 * the hierarchy should not have \c visit methods.
241 */
242 /*@{*/
243 virtual void visit(ir_variable *);
244 virtual void visit(ir_loop *);
245 virtual void visit(ir_loop_jump *);
246 virtual void visit(ir_function_signature *);
247 virtual void visit(ir_function *);
248 virtual void visit(ir_expression *);
249 virtual void visit(ir_swizzle *);
250 virtual void visit(ir_dereference_variable *);
251 virtual void visit(ir_dereference_array *);
252 virtual void visit(ir_dereference_record *);
253 virtual void visit(ir_assignment *);
254 virtual void visit(ir_constant *);
255 virtual void visit(ir_call *);
256 virtual void visit(ir_return *);
257 virtual void visit(ir_discard *);
258 virtual void visit(ir_texture *);
259 virtual void visit(ir_if *);
260 virtual void visit(ir_emit_vertex *);
261 virtual void visit(ir_end_primitive *);
262 virtual void visit(ir_barrier *);
263 /*@}*/
264
265 src_reg result;
266
267 /** List of variable_storage */
268 exec_list variables;
269
270 /** List of function_entry */
271 exec_list function_signatures;
272 int next_signature_id;
273
274 /** List of ir_to_mesa_instruction */
275 exec_list instructions;
276
277 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);
278
279 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
280 dst_reg dst, src_reg src0);
281
282 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
283 dst_reg dst, src_reg src0, src_reg src1);
284
285 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
286 dst_reg dst,
287 src_reg src0, src_reg src1, src_reg src2);
288
289 /**
290 * Emit the correct dot-product instruction for the type of arguments
291 */
292 ir_to_mesa_instruction * emit_dp(ir_instruction *ir,
293 dst_reg dst,
294 src_reg src0,
295 src_reg src1,
296 unsigned elements);
297
298 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
299 dst_reg dst, src_reg src0);
300
301 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
302 dst_reg dst, src_reg src0, src_reg src1);
303
304 bool try_emit_mad(ir_expression *ir,
305 int mul_operand);
306 bool try_emit_mad_for_and_not(ir_expression *ir,
307 int mul_operand);
308
309 void emit_swz(ir_expression *ir);
310
311 bool process_move_condition(ir_rvalue *ir);
312
313 void copy_propagate(void);
314
315 void *mem_ctx;
316 };
317
318 } /* anonymous namespace */
319
320 static src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);
321
322 static dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);
323
324 static dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);
325
326 static int
327 swizzle_for_size(int size)
328 {
329 static const int size_swizzles[4] = {
330 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
331 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
332 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
333 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
334 };
335
336 assert((size >= 1) && (size <= 4));
337 return size_swizzles[size - 1];
338 }
339
340 ir_to_mesa_instruction *
341 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
342 dst_reg dst,
343 src_reg src0, src_reg src1, src_reg src2)
344 {
345 ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
346 int num_reladdr = 0;
347
348 /* If we have to do relative addressing, we want to load the ARL
349 * reg directly for one of the regs, and preload the other reladdr
350 * sources into temps.
351 */
352 num_reladdr += dst.reladdr != NULL;
353 num_reladdr += src0.reladdr != NULL;
354 num_reladdr += src1.reladdr != NULL;
355 num_reladdr += src2.reladdr != NULL;
356
357 reladdr_to_temp(ir, &src2, &num_reladdr);
358 reladdr_to_temp(ir, &src1, &num_reladdr);
359 reladdr_to_temp(ir, &src0, &num_reladdr);
360
361 if (dst.reladdr) {
362 emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
363 num_reladdr--;
364 }
365 assert(num_reladdr == 0);
366
367 inst->op = op;
368 inst->dst = dst;
369 inst->src[0] = src0;
370 inst->src[1] = src1;
371 inst->src[2] = src2;
372 inst->ir = ir;
373
374 this->instructions.push_tail(inst);
375
376 return inst;
377 }
378
379
380 ir_to_mesa_instruction *
381 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
382 dst_reg dst, src_reg src0, src_reg src1)
383 {
384 return emit(ir, op, dst, src0, src1, undef_src);
385 }
386
387 ir_to_mesa_instruction *
388 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
389 dst_reg dst, src_reg src0)
390 {
391 assert(dst.writemask != 0);
392 return emit(ir, op, dst, src0, undef_src, undef_src);
393 }
394
395 ir_to_mesa_instruction *
396 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
397 {
398 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
399 }
400
401 ir_to_mesa_instruction *
402 ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
403 dst_reg dst, src_reg src0, src_reg src1,
404 unsigned elements)
405 {
406 static const enum prog_opcode dot_opcodes[] = {
407 OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
408 };
409
410 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
411 }
412
413 /**
414 * Emits Mesa scalar opcodes to produce unique answers across channels.
415 *
416 * Some Mesa opcodes are scalar-only, like ARB_fp/vp. The src X
417 * channel determines the result across all channels. So to do a vec4
418 * of this operation, we want to emit a scalar per source channel used
419 * to produce dest channels.
420 */
421 void
422 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
423 dst_reg dst,
424 src_reg orig_src0, src_reg orig_src1)
425 {
426 int i, j;
427 int done_mask = ~dst.writemask;
428
429 /* Mesa RCP is a scalar operation splatting results to all channels,
430 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
431 * dst channels.
432 */
433 for (i = 0; i < 4; i++) {
434 GLuint this_mask = (1 << i);
435 ir_to_mesa_instruction *inst;
436 src_reg src0 = orig_src0;
437 src_reg src1 = orig_src1;
438
439 if (done_mask & this_mask)
440 continue;
441
442 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
443 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
444 for (j = i + 1; j < 4; j++) {
445 /* If there is another enabled component in the destination that is
446 * derived from the same inputs, generate its value on this pass as
447 * well.
448 */
449 if (!(done_mask & (1 << j)) &&
450 GET_SWZ(src0.swizzle, j) == src0_swiz &&
451 GET_SWZ(src1.swizzle, j) == src1_swiz) {
452 this_mask |= (1 << j);
453 }
454 }
455 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
456 src0_swiz, src0_swiz);
457 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
458 src1_swiz, src1_swiz);
459
460 inst = emit(ir, op, dst, src0, src1);
461 inst->dst.writemask = this_mask;
462 done_mask |= this_mask;
463 }
464 }
465
466 void
467 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
468 dst_reg dst, src_reg src0)
469 {
470 src_reg undef = undef_src;
471
472 undef.swizzle = SWIZZLE_XXXX;
473
474 emit_scalar(ir, op, dst, src0, undef);
475 }
476
477 src_reg
478 ir_to_mesa_visitor::src_reg_for_float(float val)
479 {
480 src_reg src(PROGRAM_CONSTANT, -1, NULL);
481
482 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
483 (const gl_constant_value *)&val, 1, &src.swizzle);
484
485 return src;
486 }
487
488 static int
489 type_size(const struct glsl_type *type)
490 {
491 unsigned int i;
492 int size;
493
494 switch (type->base_type) {
495 case GLSL_TYPE_UINT:
496 case GLSL_TYPE_INT:
497 case GLSL_TYPE_FLOAT:
498 case GLSL_TYPE_BOOL:
499 if (type->is_matrix()) {
500 return type->matrix_columns;
501 } else {
502 /* Regardless of size of vector, it gets a vec4. This is bad
503 * packing for things like floats, but otherwise arrays become a
504 * mess. Hopefully a later pass over the code can pack scalars
505 * down if appropriate.
506 */
507 return 1;
508 }
509 break;
510 case GLSL_TYPE_DOUBLE:
511 if (type->is_matrix()) {
512 if (type->vector_elements > 2)
513 return type->matrix_columns * 2;
514 else
515 return type->matrix_columns;
516 } else {
517 if (type->vector_elements > 2)
518 return 2;
519 else
520 return 1;
521 }
522 break;
523 case GLSL_TYPE_ARRAY:
524 assert(type->length > 0);
525 return type_size(type->fields.array) * type->length;
526 case GLSL_TYPE_STRUCT:
527 size = 0;
528 for (i = 0; i < type->length; i++) {
529 size += type_size(type->fields.structure[i].type);
530 }
531 return size;
532 case GLSL_TYPE_SAMPLER:
533 case GLSL_TYPE_IMAGE:
534 case GLSL_TYPE_SUBROUTINE:
535 /* Samplers take up one slot in UNIFORMS[], but they're baked in
536 * at link time.
537 */
538 return 1;
539 case GLSL_TYPE_ATOMIC_UINT:
540 case GLSL_TYPE_VOID:
541 case GLSL_TYPE_ERROR:
542 case GLSL_TYPE_INTERFACE:
543 case GLSL_TYPE_FUNCTION:
544 assert(!"Invalid type in type_size");
545 break;
546 }
547
548 return 0;
549 }
550
551 /**
552 * In the initial pass of codegen, we assign temporary numbers to
553 * intermediate results. (not SSA -- variable assignments will reuse
554 * storage). Actual register allocation for the Mesa VM occurs in a
555 * pass over the Mesa IR later.
556 */
557 src_reg
558 ir_to_mesa_visitor::get_temp(const glsl_type *type)
559 {
560 src_reg src;
561
562 src.file = PROGRAM_TEMPORARY;
563 src.index = next_temp;
564 src.reladdr = NULL;
565 next_temp += type_size(type);
566
567 if (type->is_array() || type->is_record()) {
568 src.swizzle = SWIZZLE_NOOP;
569 } else {
570 src.swizzle = swizzle_for_size(type->vector_elements);
571 }
572 src.negate = 0;
573
574 return src;
575 }
576
577 variable_storage *
578 ir_to_mesa_visitor::find_variable_storage(const ir_variable *var)
579 {
580 foreach_in_list(variable_storage, entry, &this->variables) {
581 if (entry->var == var)
582 return entry;
583 }
584
585 return NULL;
586 }
587
588 void
589 ir_to_mesa_visitor::visit(ir_variable *ir)
590 {
591 if (strcmp(ir->name, "gl_FragCoord") == 0) {
592 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
593
594 fp->OriginUpperLeft = ir->data.origin_upper_left;
595 fp->PixelCenterInteger = ir->data.pixel_center_integer;
596 }
597
598 if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
599 unsigned int i;
600 const ir_state_slot *const slots = ir->get_state_slots();
601 assert(slots != NULL);
602
603 /* Check if this statevar's setup in the STATE file exactly
604 * matches how we'll want to reference it as a
605 * struct/array/whatever. If not, then we need to move it into
606 * temporary storage and hope that it'll get copy-propagated
607 * out.
608 */
609 for (i = 0; i < ir->get_num_state_slots(); i++) {
610 if (slots[i].swizzle != SWIZZLE_XYZW) {
611 break;
612 }
613 }
614
615 variable_storage *storage;
616 dst_reg dst;
617 if (i == ir->get_num_state_slots()) {
618 /* We'll set the index later. */
619 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
620 this->variables.push_tail(storage);
621
622 dst = undef_dst;
623 } else {
624 /* The variable_storage constructor allocates slots based on the size
625 * of the type. However, this had better match the number of state
626 * elements that we're going to copy into the new temporary.
627 */
628 assert((int) ir->get_num_state_slots() == type_size(ir->type));
629
630 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
631 this->next_temp);
632 this->variables.push_tail(storage);
633 this->next_temp += type_size(ir->type);
634
635 dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
636 }
637
638
639 for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
640 int index = _mesa_add_state_reference(this->prog->Parameters,
641 (gl_state_index *)slots[i].tokens);
642
643 if (storage->file == PROGRAM_STATE_VAR) {
644 if (storage->index == -1) {
645 storage->index = index;
646 } else {
647 assert(index == storage->index + (int)i);
648 }
649 } else {
650 src_reg src(PROGRAM_STATE_VAR, index, NULL);
651 src.swizzle = slots[i].swizzle;
652 emit(ir, OPCODE_MOV, dst, src);
653 /* even a float takes up a whole vec4 reg in a struct/array. */
654 dst.index++;
655 }
656 }
657
658 if (storage->file == PROGRAM_TEMPORARY &&
659 dst.index != storage->index + (int) ir->get_num_state_slots()) {
660 linker_error(this->shader_program,
661 "failed to load builtin uniform `%s' "
662 "(%d/%d regs loaded)\n",
663 ir->name, dst.index - storage->index,
664 type_size(ir->type));
665 }
666 }
667 }
668
669 void
670 ir_to_mesa_visitor::visit(ir_loop *ir)
671 {
672 emit(NULL, OPCODE_BGNLOOP);
673
674 visit_exec_list(&ir->body_instructions, this);
675
676 emit(NULL, OPCODE_ENDLOOP);
677 }
678
679 void
680 ir_to_mesa_visitor::visit(ir_loop_jump *ir)
681 {
682 switch (ir->mode) {
683 case ir_loop_jump::jump_break:
684 emit(NULL, OPCODE_BRK);
685 break;
686 case ir_loop_jump::jump_continue:
687 emit(NULL, OPCODE_CONT);
688 break;
689 }
690 }
691
692
693 void
694 ir_to_mesa_visitor::visit(ir_function_signature *ir)
695 {
696 assert(0);
697 (void)ir;
698 }
699
700 void
701 ir_to_mesa_visitor::visit(ir_function *ir)
702 {
703 /* Ignore function bodies other than main() -- we shouldn't see calls to
704 * them since they should all be inlined before we get to ir_to_mesa.
705 */
706 if (strcmp(ir->name, "main") == 0) {
707 const ir_function_signature *sig;
708 exec_list empty;
709
710 sig = ir->matching_signature(NULL, &empty, false);
711
712 assert(sig);
713
714 foreach_in_list(ir_instruction, ir, &sig->body) {
715 ir->accept(this);
716 }
717 }
718 }
719
720 bool
721 ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
722 {
723 int nonmul_operand = 1 - mul_operand;
724 src_reg a, b, c;
725
726 ir_expression *expr = ir->operands[mul_operand]->as_expression();
727 if (!expr || expr->operation != ir_binop_mul)
728 return false;
729
730 expr->operands[0]->accept(this);
731 a = this->result;
732 expr->operands[1]->accept(this);
733 b = this->result;
734 ir->operands[nonmul_operand]->accept(this);
735 c = this->result;
736
737 this->result = get_temp(ir->type);
738 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);
739
740 return true;
741 }
742
743 /**
744 * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b))
745 *
746 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
747 * implemented using multiplication, and logical-or is implemented using
748 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
749 * As result, the logical expression (a & !b) can be rewritten as:
750 *
751 * - a * !b
752 * - a * (1 - b)
753 * - (a * 1) - (a * b)
754 * - a + -(a * b)
755 * - a + (a * -b)
756 *
757 * This final expression can be implemented as a single MAD(a, -b, a)
758 * instruction.
759 */
760 bool
761 ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
762 {
763 const int other_operand = 1 - try_operand;
764 src_reg a, b;
765
766 ir_expression *expr = ir->operands[try_operand]->as_expression();
767 if (!expr || expr->operation != ir_unop_logic_not)
768 return false;
769
770 ir->operands[other_operand]->accept(this);
771 a = this->result;
772 expr->operands[0]->accept(this);
773 b = this->result;
774
775 b.negate = ~b.negate;
776
777 this->result = get_temp(ir->type);
778 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a);
779
780 return true;
781 }
782
783 void
784 ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
785 src_reg *reg, int *num_reladdr)
786 {
787 if (!reg->reladdr)
788 return;
789
790 emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);
791
792 if (*num_reladdr != 1) {
793 src_reg temp = get_temp(glsl_type::vec4_type);
794
795 emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
796 *reg = temp;
797 }
798
799 (*num_reladdr)--;
800 }
801
802 void
803 ir_to_mesa_visitor::emit_swz(ir_expression *ir)
804 {
805 /* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
806 * This means that each of the operands is either an immediate value of -1,
807 * 0, or 1, or is a component from one source register (possibly with
808 * negation).
809 */
810 uint8_t components[4] = { 0 };
811 bool negate[4] = { false };
812 ir_variable *var = NULL;
813
814 for (unsigned i = 0; i < ir->type->vector_elements; i++) {
815 ir_rvalue *op = ir->operands[i];
816
817 assert(op->type->is_scalar());
818
819 while (op != NULL) {
820 switch (op->ir_type) {
821 case ir_type_constant: {
822
823 assert(op->type->is_scalar());
824
825 const ir_constant *const c = op->as_constant();
826 if (c->is_one()) {
827 components[i] = SWIZZLE_ONE;
828 } else if (c->is_zero()) {
829 components[i] = SWIZZLE_ZERO;
830 } else if (c->is_negative_one()) {
831 components[i] = SWIZZLE_ONE;
832 negate[i] = true;
833 } else {
834 assert(!"SWZ constant must be 0.0 or 1.0.");
835 }
836
837 op = NULL;
838 break;
839 }
840
841 case ir_type_dereference_variable: {
842 ir_dereference_variable *const deref =
843 (ir_dereference_variable *) op;
844
845 assert((var == NULL) || (deref->var == var));
846 components[i] = SWIZZLE_X;
847 var = deref->var;
848 op = NULL;
849 break;
850 }
851
852 case ir_type_expression: {
853 ir_expression *const expr = (ir_expression *) op;
854
855 assert(expr->operation == ir_unop_neg);
856 negate[i] = true;
857
858 op = expr->operands[0];
859 break;
860 }
861
862 case ir_type_swizzle: {
863 ir_swizzle *const swiz = (ir_swizzle *) op;
864
865 components[i] = swiz->mask.x;
866 op = swiz->val;
867 break;
868 }
869
870 default:
871 assert(!"Should not get here.");
872 return;
873 }
874 }
875 }
876
877 assert(var != NULL);
878
879 ir_dereference_variable *const deref =
880 new(mem_ctx) ir_dereference_variable(var);
881
882 this->result.file = PROGRAM_UNDEFINED;
883 deref->accept(this);
884 if (this->result.file == PROGRAM_UNDEFINED) {
885 printf("Failed to get tree for expression operand:\n");
886 deref->print();
887 printf("\n");
888 exit(1);
889 }
890
891 src_reg src;
892
893 src = this->result;
894 src.swizzle = MAKE_SWIZZLE4(components[0],
895 components[1],
896 components[2],
897 components[3]);
898 src.negate = ((unsigned(negate[0]) << 0)
899 | (unsigned(negate[1]) << 1)
900 | (unsigned(negate[2]) << 2)
901 | (unsigned(negate[3]) << 3));
902
903 /* Storage for our result. Ideally for an assignment we'd be using the
904 * actual storage for the result here, instead.
905 */
906 const src_reg result_src = get_temp(ir->type);
907 dst_reg result_dst = dst_reg(result_src);
908
909 /* Limit writes to the channels that will be used by result_src later.
910 * This does limit this temp's use as a temporary for multi-instruction
911 * sequences.
912 */
913 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
914
915 emit(ir, OPCODE_SWZ, result_dst, src);
916 this->result = result_src;
917 }
918
919 void
920 ir_to_mesa_visitor::visit(ir_expression *ir)
921 {
922 unsigned int operand;
923 src_reg op[ARRAY_SIZE(ir->operands)];
924 src_reg result_src;
925 dst_reg result_dst;
926
927 /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
928 */
929 if (ir->operation == ir_binop_add) {
930 if (try_emit_mad(ir, 1))
931 return;
932 if (try_emit_mad(ir, 0))
933 return;
934 }
935
936 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
937 */
938 if (ir->operation == ir_binop_logic_and) {
939 if (try_emit_mad_for_and_not(ir, 1))
940 return;
941 if (try_emit_mad_for_and_not(ir, 0))
942 return;
943 }
944
945 if (ir->operation == ir_quadop_vector) {
946 this->emit_swz(ir);
947 return;
948 }
949
950 for (operand = 0; operand < ir->get_num_operands(); operand++) {
951 this->result.file = PROGRAM_UNDEFINED;
952 ir->operands[operand]->accept(this);
953 if (this->result.file == PROGRAM_UNDEFINED) {
954 printf("Failed to get tree for expression operand:\n");
955 ir->operands[operand]->print();
956 printf("\n");
957 exit(1);
958 }
959 op[operand] = this->result;
960
961 /* Matrix expression operands should have been broken down to vector
962 * operations already.
963 */
964 assert(!ir->operands[operand]->type->is_matrix());
965 }
966
967 int vector_elements = ir->operands[0]->type->vector_elements;
968 if (ir->operands[1]) {
969 vector_elements = MAX2(vector_elements,
970 ir->operands[1]->type->vector_elements);
971 }
972
973 this->result.file = PROGRAM_UNDEFINED;
974
975 /* Storage for our result. Ideally for an assignment we'd be using
976 * the actual storage for the result here, instead.
977 */
978 result_src = get_temp(ir->type);
979 /* convenience for the emit functions below. */
980 result_dst = dst_reg(result_src);
981 /* Limit writes to the channels that will be used by result_src later.
982 * This does limit this temp's use as a temporary for multi-instruction
983 * sequences.
984 */
985 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
986
987 switch (ir->operation) {
988 case ir_unop_logic_not:
989 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
990 * older GPUs implement SEQ using multiple instructions (i915 uses two
991 * SGE instructions and a MUL instruction). Since our logic values are
992 * 0.0 and 1.0, 1-x also implements !x.
993 */
994 op[0].negate = ~op[0].negate;
995 emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0));
996 break;
997 case ir_unop_neg:
998 op[0].negate = ~op[0].negate;
999 result_src = op[0];
1000 break;
1001 case ir_unop_abs:
1002 emit(ir, OPCODE_ABS, result_dst, op[0]);
1003 break;
1004 case ir_unop_sign:
1005 emit(ir, OPCODE_SSG, result_dst, op[0]);
1006 break;
1007 case ir_unop_rcp:
1008 emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
1009 break;
1010
1011 case ir_unop_exp2:
1012 emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
1013 break;
1014 case ir_unop_exp:
1015 case ir_unop_log:
1016 assert(!"not reached: should be handled by ir_explog_to_explog2");
1017 break;
1018 case ir_unop_log2:
1019 emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
1020 break;
1021 case ir_unop_sin:
1022 emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
1023 break;
1024 case ir_unop_cos:
1025 emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
1026 break;
1027
1028 case ir_unop_dFdx:
1029 emit(ir, OPCODE_DDX, result_dst, op[0]);
1030 break;
1031 case ir_unop_dFdy:
1032 emit(ir, OPCODE_DDY, result_dst, op[0]);
1033 break;
1034
1035 case ir_unop_saturate: {
1036 ir_to_mesa_instruction *inst = emit(ir, OPCODE_MOV,
1037 result_dst, op[0]);
1038 inst->saturate = true;
1039 break;
1040 }
1041 case ir_unop_noise: {
1042 const enum prog_opcode opcode =
1043 prog_opcode(OPCODE_NOISE1
1044 + (ir->operands[0]->type->vector_elements) - 1);
1045 assert((opcode >= OPCODE_NOISE1) && (opcode <= OPCODE_NOISE4));
1046
1047 emit(ir, opcode, result_dst, op[0]);
1048 break;
1049 }
1050
1051 case ir_binop_add:
1052 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1053 break;
1054 case ir_binop_sub:
1055 emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
1056 break;
1057
1058 case ir_binop_mul:
1059 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1060 break;
1061 case ir_binop_div:
1062 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1063 break;
1064 case ir_binop_mod:
1065 /* Floating point should be lowered by MOD_TO_FLOOR in the compiler. */
1066 assert(ir->type->is_integer());
1067 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1068 break;
1069
1070 case ir_binop_less:
1071 emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1072 break;
1073 case ir_binop_greater:
1074 emit(ir, OPCODE_SGT, result_dst, op[0], op[1]);
1075 break;
1076 case ir_binop_lequal:
1077 emit(ir, OPCODE_SLE, result_dst, op[0], op[1]);
1078 break;
1079 case ir_binop_gequal:
1080 emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1081 break;
1082 case ir_binop_equal:
1083 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1084 break;
1085 case ir_binop_nequal:
1086 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1087 break;
1088 case ir_binop_all_equal:
1089 /* "==" operator producing a scalar boolean. */
1090 if (ir->operands[0]->type->is_vector() ||
1091 ir->operands[1]->type->is_vector()) {
1092 src_reg temp = get_temp(glsl_type::vec4_type);
1093 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1094
1095 /* After the dot-product, the value will be an integer on the
1096 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1097 */
1098 emit_dp(ir, result_dst, temp, temp, vector_elements);
1099
1100 /* Negating the result of the dot-product gives values on the range
1101 * [-4, 0]. Zero becomes 1.0, and negative values become zero. This
1102 * achieved using SGE.
1103 */
1104 src_reg sge_src = result_src;
1105 sge_src.negate = ~sge_src.negate;
1106 emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0));
1107 } else {
1108 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1109 }
1110 break;
1111 case ir_binop_any_nequal:
1112 /* "!=" operator producing a scalar boolean. */
1113 if (ir->operands[0]->type->is_vector() ||
1114 ir->operands[1]->type->is_vector()) {
1115 src_reg temp = get_temp(glsl_type::vec4_type);
1116 if (ir->operands[0]->type->is_boolean() &&
1117 ir->operands[1]->as_constant() &&
1118 ir->operands[1]->as_constant()->is_zero()) {
1119 temp = op[0];
1120 } else {
1121 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1122 }
1123
1124 /* After the dot-product, the value will be an integer on the
1125 * range [0,4]. Zero stays zero, and positive values become 1.0.
1126 */
1127 ir_to_mesa_instruction *const dp =
1128 emit_dp(ir, result_dst, temp, temp, vector_elements);
1129 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1130 /* The clamping to [0,1] can be done for free in the fragment
1131 * shader with a saturate.
1132 */
1133 dp->saturate = true;
1134 } else {
1135 /* Negating the result of the dot-product gives values on the range
1136 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1137 * achieved using SLT.
1138 */
1139 src_reg slt_src = result_src;
1140 slt_src.negate = ~slt_src.negate;
1141 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1142 }
1143 } else {
1144 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1145 }
1146 break;
1147
1148 case ir_binop_logic_xor:
1149 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1150 break;
1151
1152 case ir_binop_logic_or: {
1153 /* After the addition, the value will be an integer on the
1154 * range [0,2]. Zero stays zero, and positive values become 1.0.
1155 */
1156 ir_to_mesa_instruction *add =
1157 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1158 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1159 /* The clamping to [0,1] can be done for free in the fragment
1160 * shader with a saturate.
1161 */
1162 add->saturate = true;
1163 } else {
1164 /* Negating the result of the addition gives values on the range
1165 * [-2, 0]. Zero stays zero, and negative values become 1.0. This
1166 * is achieved using SLT.
1167 */
1168 src_reg slt_src = result_src;
1169 slt_src.negate = ~slt_src.negate;
1170 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1171 }
1172 break;
1173 }
1174
1175 case ir_binop_logic_and:
1176 /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1177 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1178 break;
1179
1180 case ir_binop_dot:
1181 assert(ir->operands[0]->type->is_vector());
1182 assert(ir->operands[0]->type == ir->operands[1]->type);
1183 emit_dp(ir, result_dst, op[0], op[1],
1184 ir->operands[0]->type->vector_elements);
1185 break;
1186
1187 case ir_unop_sqrt:
1188 /* sqrt(x) = x * rsq(x). */
1189 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1190 emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
1191 /* For incoming channels <= 0, set the result to 0. */
1192 op[0].negate = ~op[0].negate;
1193 emit(ir, OPCODE_CMP, result_dst,
1194 op[0], result_src, src_reg_for_float(0.0));
1195 break;
1196 case ir_unop_rsq:
1197 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1198 break;
1199 case ir_unop_i2f:
1200 case ir_unop_u2f:
1201 case ir_unop_b2f:
1202 case ir_unop_b2i:
1203 case ir_unop_i2u:
1204 case ir_unop_u2i:
1205 /* Mesa IR lacks types, ints are stored as truncated floats. */
1206 result_src = op[0];
1207 break;
1208 case ir_unop_f2i:
1209 case ir_unop_f2u:
1210 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1211 break;
1212 case ir_unop_f2b:
1213 case ir_unop_i2b:
1214 emit(ir, OPCODE_SNE, result_dst,
1215 op[0], src_reg_for_float(0.0));
1216 break;
1217 case ir_unop_bitcast_f2i: // Ignore these 4, they can't happen here anyway
1218 case ir_unop_bitcast_f2u:
1219 case ir_unop_bitcast_i2f:
1220 case ir_unop_bitcast_u2f:
1221 break;
1222 case ir_unop_trunc:
1223 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1224 break;
1225 case ir_unop_ceil:
1226 op[0].negate = ~op[0].negate;
1227 emit(ir, OPCODE_FLR, result_dst, op[0]);
1228 result_src.negate = ~result_src.negate;
1229 break;
1230 case ir_unop_floor:
1231 emit(ir, OPCODE_FLR, result_dst, op[0]);
1232 break;
1233 case ir_unop_fract:
1234 emit(ir, OPCODE_FRC, result_dst, op[0]);
1235 break;
1236 case ir_unop_pack_snorm_2x16:
1237 case ir_unop_pack_snorm_4x8:
1238 case ir_unop_pack_unorm_2x16:
1239 case ir_unop_pack_unorm_4x8:
1240 case ir_unop_pack_half_2x16:
1241 case ir_unop_pack_double_2x32:
1242 case ir_unop_unpack_snorm_2x16:
1243 case ir_unop_unpack_snorm_4x8:
1244 case ir_unop_unpack_unorm_2x16:
1245 case ir_unop_unpack_unorm_4x8:
1246 case ir_unop_unpack_half_2x16:
1247 case ir_unop_unpack_double_2x32:
1248 case ir_unop_bitfield_reverse:
1249 case ir_unop_bit_count:
1250 case ir_unop_find_msb:
1251 case ir_unop_find_lsb:
1252 case ir_unop_d2f:
1253 case ir_unop_f2d:
1254 case ir_unop_d2i:
1255 case ir_unop_i2d:
1256 case ir_unop_d2u:
1257 case ir_unop_u2d:
1258 case ir_unop_d2b:
1259 case ir_unop_frexp_sig:
1260 case ir_unop_frexp_exp:
1261 assert(!"not supported");
1262 break;
1263 case ir_binop_min:
1264 emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
1265 break;
1266 case ir_binop_max:
1267 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1268 break;
1269 case ir_binop_pow:
1270 emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
1271 break;
1272
1273 /* GLSL 1.30 integer ops are unsupported in Mesa IR, but since
1274 * hardware backends have no way to avoid Mesa IR generation
1275 * even if they don't use it, we need to emit "something" and
1276 * continue.
1277 */
1278 case ir_binop_lshift:
1279 case ir_binop_rshift:
1280 case ir_binop_bit_and:
1281 case ir_binop_bit_xor:
1282 case ir_binop_bit_or:
1283 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1284 break;
1285
1286 case ir_unop_bit_not:
1287 case ir_unop_round_even:
1288 emit(ir, OPCODE_MOV, result_dst, op[0]);
1289 break;
1290
1291 case ir_binop_ubo_load:
1292 assert(!"not supported");
1293 break;
1294
1295 case ir_triop_lrp:
1296 /* ir_triop_lrp operands are (x, y, a) while
1297 * OPCODE_LRP operands are (a, y, x) to match ARB_fragment_program.
1298 */
1299 emit(ir, OPCODE_LRP, result_dst, op[2], op[1], op[0]);
1300 break;
1301
1302 case ir_binop_vector_extract:
1303 case ir_triop_fma:
1304 case ir_triop_bitfield_extract:
1305 case ir_triop_vector_insert:
1306 case ir_quadop_bitfield_insert:
1307 case ir_binop_ldexp:
1308 case ir_triop_csel:
1309 case ir_binop_carry:
1310 case ir_binop_borrow:
1311 case ir_binop_imul_high:
1312 case ir_unop_interpolate_at_centroid:
1313 case ir_binop_interpolate_at_offset:
1314 case ir_binop_interpolate_at_sample:
1315 case ir_unop_dFdx_coarse:
1316 case ir_unop_dFdx_fine:
1317 case ir_unop_dFdy_coarse:
1318 case ir_unop_dFdy_fine:
1319 case ir_unop_subroutine_to_int:
1320 case ir_unop_get_buffer_size:
1321 assert(!"not supported");
1322 break;
1323
1324 case ir_unop_ssbo_unsized_array_length:
1325 case ir_quadop_vector:
1326 /* This operation should have already been handled.
1327 */
1328 assert(!"Should not get here.");
1329 break;
1330 }
1331
1332 this->result = result_src;
1333 }
1334
1335
1336 void
1337 ir_to_mesa_visitor::visit(ir_swizzle *ir)
1338 {
1339 src_reg src;
1340 int i;
1341 int swizzle[4];
1342
1343 /* Note that this is only swizzles in expressions, not those on the left
1344 * hand side of an assignment, which do write masking. See ir_assignment
1345 * for that.
1346 */
1347
1348 ir->val->accept(this);
1349 src = this->result;
1350 assert(src.file != PROGRAM_UNDEFINED);
1351 assert(ir->type->vector_elements > 0);
1352
1353 for (i = 0; i < 4; i++) {
1354 if (i < ir->type->vector_elements) {
1355 switch (i) {
1356 case 0:
1357 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1358 break;
1359 case 1:
1360 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1361 break;
1362 case 2:
1363 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1364 break;
1365 case 3:
1366 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1367 break;
1368 }
1369 } else {
1370 /* If the type is smaller than a vec4, replicate the last
1371 * channel out.
1372 */
1373 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1374 }
1375 }
1376
1377 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1378
1379 this->result = src;
1380 }
1381
1382 void
1383 ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
1384 {
1385 variable_storage *entry = find_variable_storage(ir->var);
1386 ir_variable *var = ir->var;
1387
1388 if (!entry) {
1389 switch (var->data.mode) {
1390 case ir_var_uniform:
1391 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1392 var->data.param_index);
1393 this->variables.push_tail(entry);
1394 break;
1395 case ir_var_shader_in:
1396 /* The linker assigns locations for varyings and attributes,
1397 * including deprecated builtins (like gl_Color),
1398 * user-assigned generic attributes (glBindVertexLocation),
1399 * and user-defined varyings.
1400 */
1401 assert(var->data.location != -1);
1402 entry = new(mem_ctx) variable_storage(var,
1403 PROGRAM_INPUT,
1404 var->data.location);
1405 break;
1406 case ir_var_shader_out:
1407 assert(var->data.location != -1);
1408 entry = new(mem_ctx) variable_storage(var,
1409 PROGRAM_OUTPUT,
1410 var->data.location);
1411 break;
1412 case ir_var_system_value:
1413 entry = new(mem_ctx) variable_storage(var,
1414 PROGRAM_SYSTEM_VALUE,
1415 var->data.location);
1416 break;
1417 case ir_var_auto:
1418 case ir_var_temporary:
1419 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1420 this->next_temp);
1421 this->variables.push_tail(entry);
1422
1423 next_temp += type_size(var->type);
1424 break;
1425 }
1426
1427 if (!entry) {
1428 printf("Failed to make storage for %s\n", var->name);
1429 exit(1);
1430 }
1431 }
1432
1433 this->result = src_reg(entry->file, entry->index, var->type);
1434 }
1435
1436 void
1437 ir_to_mesa_visitor::visit(ir_dereference_array *ir)
1438 {
1439 ir_constant *index;
1440 src_reg src;
1441 int element_size = type_size(ir->type);
1442
1443 index = ir->array_index->constant_expression_value();
1444
1445 ir->array->accept(this);
1446 src = this->result;
1447
1448 if (index) {
1449 src.index += index->value.i[0] * element_size;
1450 } else {
1451 /* Variable index array dereference. It eats the "vec4" of the
1452 * base of the array and an index that offsets the Mesa register
1453 * index.
1454 */
1455 ir->array_index->accept(this);
1456
1457 src_reg index_reg;
1458
1459 if (element_size == 1) {
1460 index_reg = this->result;
1461 } else {
1462 index_reg = get_temp(glsl_type::float_type);
1463
1464 emit(ir, OPCODE_MUL, dst_reg(index_reg),
1465 this->result, src_reg_for_float(element_size));
1466 }
1467
1468 /* If there was already a relative address register involved, add the
1469 * new and the old together to get the new offset.
1470 */
1471 if (src.reladdr != NULL) {
1472 src_reg accum_reg = get_temp(glsl_type::float_type);
1473
1474 emit(ir, OPCODE_ADD, dst_reg(accum_reg),
1475 index_reg, *src.reladdr);
1476
1477 index_reg = accum_reg;
1478 }
1479
1480 src.reladdr = ralloc(mem_ctx, src_reg);
1481 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1482 }
1483
1484 /* If the type is smaller than a vec4, replicate the last channel out. */
1485 if (ir->type->is_scalar() || ir->type->is_vector())
1486 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1487 else
1488 src.swizzle = SWIZZLE_NOOP;
1489
1490 this->result = src;
1491 }
1492
1493 void
1494 ir_to_mesa_visitor::visit(ir_dereference_record *ir)
1495 {
1496 unsigned int i;
1497 const glsl_type *struct_type = ir->record->type;
1498 int offset = 0;
1499
1500 ir->record->accept(this);
1501
1502 for (i = 0; i < struct_type->length; i++) {
1503 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1504 break;
1505 offset += type_size(struct_type->fields.structure[i].type);
1506 }
1507
1508 /* If the type is smaller than a vec4, replicate the last channel out. */
1509 if (ir->type->is_scalar() || ir->type->is_vector())
1510 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1511 else
1512 this->result.swizzle = SWIZZLE_NOOP;
1513
1514 this->result.index += offset;
1515 }
1516
1517 /**
1518 * We want to be careful in assignment setup to hit the actual storage
1519 * instead of potentially using a temporary like we might with the
1520 * ir_dereference handler.
1521 */
1522 static dst_reg
1523 get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
1524 {
1525 /* The LHS must be a dereference. If the LHS is a variable indexed array
1526 * access of a vector, it must be separated into a series conditional moves
1527 * before reaching this point (see ir_vec_index_to_cond_assign).
1528 */
1529 assert(ir->as_dereference());
1530 ir_dereference_array *deref_array = ir->as_dereference_array();
1531 if (deref_array) {
1532 assert(!deref_array->array->type->is_vector());
1533 }
1534
1535 /* Use the rvalue deref handler for the most part. We'll ignore
1536 * swizzles in it and write swizzles using writemask, though.
1537 */
1538 ir->accept(v);
1539 return dst_reg(v->result);
1540 }
1541
1542 /* Calculate the sampler index and also calculate the base uniform location
1543 * for struct members.
1544 */
1545 static void
1546 calc_sampler_offsets(struct gl_shader_program *prog, ir_dereference *deref,
1547 unsigned *offset, unsigned *array_elements,
1548 unsigned *location)
1549 {
1550 if (deref->ir_type == ir_type_dereference_variable)
1551 return;
1552
1553 switch (deref->ir_type) {
1554 case ir_type_dereference_array: {
1555 ir_dereference_array *deref_arr = deref->as_dereference_array();
1556 ir_constant *array_index =
1557 deref_arr->array_index->constant_expression_value();
1558
1559 if (!array_index) {
1560 /* GLSL 1.10 and 1.20 allowed variable sampler array indices,
1561 * while GLSL 1.30 requires that the array indices be
1562 * constant integer expressions. We don't expect any driver
1563 * to actually work with a really variable array index, so
1564 * all that would work would be an unrolled loop counter that ends
1565 * up being constant above.
1566 */
1567 ralloc_strcat(&prog->InfoLog,
1568 "warning: Variable sampler array index unsupported.\n"
1569 "This feature of the language was removed in GLSL 1.20 "
1570 "and is unlikely to be supported for 1.10 in Mesa.\n");
1571 } else {
1572 *offset += array_index->value.u[0] * *array_elements;
1573 }
1574
1575 *array_elements *= deref_arr->array->type->length;
1576
1577 calc_sampler_offsets(prog, deref_arr->array->as_dereference(),
1578 offset, array_elements, location);
1579 break;
1580 }
1581
1582 case ir_type_dereference_record: {
1583 ir_dereference_record *deref_record = deref->as_dereference_record();
1584 unsigned field_index =
1585 deref_record->record->type->field_index(deref_record->field);
1586 *location +=
1587 deref_record->record->type->record_location_offset(field_index);
1588 calc_sampler_offsets(prog, deref_record->record->as_dereference(),
1589 offset, array_elements, location);
1590 break;
1591 }
1592
1593 default:
1594 unreachable("Invalid deref type");
1595 break;
1596 }
1597 }
1598
1599 static int
1600 get_sampler_uniform_value(class ir_dereference *sampler,
1601 struct gl_shader_program *shader_program,
1602 const struct gl_program *prog)
1603 {
1604 GLuint shader = _mesa_program_enum_to_shader_stage(prog->Target);
1605 ir_variable *var = sampler->variable_referenced();
1606 unsigned location = var->data.location;
1607 unsigned array_elements = 1;
1608 unsigned offset = 0;
1609
1610 calc_sampler_offsets(shader_program, sampler, &offset, &array_elements,
1611 &location);
1612
1613 assert(shader_program->UniformStorage[location].opaque[shader].active);
1614 return shader_program->UniformStorage[location].opaque[shader].index +
1615 offset;
1616 }
1617
1618 /**
1619 * Process the condition of a conditional assignment
1620 *
1621 * Examines the condition of a conditional assignment to generate the optimal
1622 * first operand of a \c CMP instruction. If the condition is a relational
1623 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1624 * used as the source for the \c CMP instruction. Otherwise the comparison
1625 * is processed to a boolean result, and the boolean result is used as the
1626 * operand to the CMP instruction.
1627 */
1628 bool
1629 ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
1630 {
1631 ir_rvalue *src_ir = ir;
1632 bool negate = true;
1633 bool switch_order = false;
1634
1635 ir_expression *const expr = ir->as_expression();
1636 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
1637 bool zero_on_left = false;
1638
1639 if (expr->operands[0]->is_zero()) {
1640 src_ir = expr->operands[1];
1641 zero_on_left = true;
1642 } else if (expr->operands[1]->is_zero()) {
1643 src_ir = expr->operands[0];
1644 zero_on_left = false;
1645 }
1646
1647 /* a is - 0 + - 0 +
1648 * (a < 0) T F F ( a < 0) T F F
1649 * (0 < a) F F T (-a < 0) F F T
1650 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
1651 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
1652 * (a > 0) F F T (-a < 0) F F T
1653 * (0 > a) T F F ( a < 0) T F F
1654 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
1655 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
1656 *
1657 * Note that exchanging the order of 0 and 'a' in the comparison simply
1658 * means that the value of 'a' should be negated.
1659 */
1660 if (src_ir != ir) {
1661 switch (expr->operation) {
1662 case ir_binop_less:
1663 switch_order = false;
1664 negate = zero_on_left;
1665 break;
1666
1667 case ir_binop_greater:
1668 switch_order = false;
1669 negate = !zero_on_left;
1670 break;
1671
1672 case ir_binop_lequal:
1673 switch_order = true;
1674 negate = !zero_on_left;
1675 break;
1676
1677 case ir_binop_gequal:
1678 switch_order = true;
1679 negate = zero_on_left;
1680 break;
1681
1682 default:
1683 /* This isn't the right kind of comparison afterall, so make sure
1684 * the whole condition is visited.
1685 */
1686 src_ir = ir;
1687 break;
1688 }
1689 }
1690 }
1691
1692 src_ir->accept(this);
1693
1694 /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1695 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
1696 * choose which value OPCODE_CMP produces without an extra instruction
1697 * computing the condition.
1698 */
1699 if (negate)
1700 this->result.negate = ~this->result.negate;
1701
1702 return switch_order;
1703 }
1704
1705 void
1706 ir_to_mesa_visitor::visit(ir_assignment *ir)
1707 {
1708 dst_reg l;
1709 src_reg r;
1710 int i;
1711
1712 ir->rhs->accept(this);
1713 r = this->result;
1714
1715 l = get_assignment_lhs(ir->lhs, this);
1716
1717 /* FINISHME: This should really set to the correct maximal writemask for each
1718 * FINISHME: component written (in the loops below). This case can only
1719 * FINISHME: occur for matrices, arrays, and structures.
1720 */
1721 if (ir->write_mask == 0) {
1722 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1723 l.writemask = WRITEMASK_XYZW;
1724 } else if (ir->lhs->type->is_scalar()) {
1725 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1726 * FINISHME: W component of fragment shader output zero, work correctly.
1727 */
1728 l.writemask = WRITEMASK_XYZW;
1729 } else {
1730 int swizzles[4];
1731 int first_enabled_chan = 0;
1732 int rhs_chan = 0;
1733
1734 assert(ir->lhs->type->is_vector());
1735 l.writemask = ir->write_mask;
1736
1737 for (int i = 0; i < 4; i++) {
1738 if (l.writemask & (1 << i)) {
1739 first_enabled_chan = GET_SWZ(r.swizzle, i);
1740 break;
1741 }
1742 }
1743
1744 /* Swizzle a small RHS vector into the channels being written.
1745 *
1746 * glsl ir treats write_mask as dictating how many channels are
1747 * present on the RHS while Mesa IR treats write_mask as just
1748 * showing which channels of the vec4 RHS get written.
1749 */
1750 for (int i = 0; i < 4; i++) {
1751 if (l.writemask & (1 << i))
1752 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1753 else
1754 swizzles[i] = first_enabled_chan;
1755 }
1756 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1757 swizzles[2], swizzles[3]);
1758 }
1759
1760 assert(l.file != PROGRAM_UNDEFINED);
1761 assert(r.file != PROGRAM_UNDEFINED);
1762
1763 if (ir->condition) {
1764 const bool switch_order = this->process_move_condition(ir->condition);
1765 src_reg condition = this->result;
1766
1767 for (i = 0; i < type_size(ir->lhs->type); i++) {
1768 if (switch_order) {
1769 emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
1770 } else {
1771 emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
1772 }
1773
1774 l.index++;
1775 r.index++;
1776 }
1777 } else {
1778 for (i = 0; i < type_size(ir->lhs->type); i++) {
1779 emit(ir, OPCODE_MOV, l, r);
1780 l.index++;
1781 r.index++;
1782 }
1783 }
1784 }
1785
1786
1787 void
1788 ir_to_mesa_visitor::visit(ir_constant *ir)
1789 {
1790 src_reg src;
1791 GLfloat stack_vals[4] = { 0 };
1792 GLfloat *values = stack_vals;
1793 unsigned int i;
1794
1795 /* Unfortunately, 4 floats is all we can get into
1796 * _mesa_add_unnamed_constant. So, make a temp to store an
1797 * aggregate constant and move each constant value into it. If we
1798 * get lucky, copy propagation will eliminate the extra moves.
1799 */
1800
1801 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
1802 src_reg temp_base = get_temp(ir->type);
1803 dst_reg temp = dst_reg(temp_base);
1804
1805 foreach_in_list(ir_constant, field_value, &ir->components) {
1806 int size = type_size(field_value->type);
1807
1808 assert(size > 0);
1809
1810 field_value->accept(this);
1811 src = this->result;
1812
1813 for (i = 0; i < (unsigned int)size; i++) {
1814 emit(ir, OPCODE_MOV, temp, src);
1815
1816 src.index++;
1817 temp.index++;
1818 }
1819 }
1820 this->result = temp_base;
1821 return;
1822 }
1823
1824 if (ir->type->is_array()) {
1825 src_reg temp_base = get_temp(ir->type);
1826 dst_reg temp = dst_reg(temp_base);
1827 int size = type_size(ir->type->fields.array);
1828
1829 assert(size > 0);
1830
1831 for (i = 0; i < ir->type->length; i++) {
1832 ir->array_elements[i]->accept(this);
1833 src = this->result;
1834 for (int j = 0; j < size; j++) {
1835 emit(ir, OPCODE_MOV, temp, src);
1836
1837 src.index++;
1838 temp.index++;
1839 }
1840 }
1841 this->result = temp_base;
1842 return;
1843 }
1844
1845 if (ir->type->is_matrix()) {
1846 src_reg mat = get_temp(ir->type);
1847 dst_reg mat_column = dst_reg(mat);
1848
1849 for (i = 0; i < ir->type->matrix_columns; i++) {
1850 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
1851 values = &ir->value.f[i * ir->type->vector_elements];
1852
1853 src = src_reg(PROGRAM_CONSTANT, -1, NULL);
1854 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1855 (gl_constant_value *) values,
1856 ir->type->vector_elements,
1857 &src.swizzle);
1858 emit(ir, OPCODE_MOV, mat_column, src);
1859
1860 mat_column.index++;
1861 }
1862
1863 this->result = mat;
1864 return;
1865 }
1866
1867 src.file = PROGRAM_CONSTANT;
1868 switch (ir->type->base_type) {
1869 case GLSL_TYPE_FLOAT:
1870 values = &ir->value.f[0];
1871 break;
1872 case GLSL_TYPE_UINT:
1873 for (i = 0; i < ir->type->vector_elements; i++) {
1874 values[i] = ir->value.u[i];
1875 }
1876 break;
1877 case GLSL_TYPE_INT:
1878 for (i = 0; i < ir->type->vector_elements; i++) {
1879 values[i] = ir->value.i[i];
1880 }
1881 break;
1882 case GLSL_TYPE_BOOL:
1883 for (i = 0; i < ir->type->vector_elements; i++) {
1884 values[i] = ir->value.b[i];
1885 }
1886 break;
1887 default:
1888 assert(!"Non-float/uint/int/bool constant");
1889 }
1890
1891 this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
1892 this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1893 (gl_constant_value *) values,
1894 ir->type->vector_elements,
1895 &this->result.swizzle);
1896 }
1897
1898 void
1899 ir_to_mesa_visitor::visit(ir_call *)
1900 {
1901 assert(!"ir_to_mesa: All function calls should have been inlined by now.");
1902 }
1903
1904 void
1905 ir_to_mesa_visitor::visit(ir_texture *ir)
1906 {
1907 src_reg result_src, coord, lod_info, projector, dx, dy;
1908 dst_reg result_dst, coord_dst;
1909 ir_to_mesa_instruction *inst = NULL;
1910 prog_opcode opcode = OPCODE_NOP;
1911
1912 if (ir->op == ir_txs)
1913 this->result = src_reg_for_float(0.0);
1914 else
1915 ir->coordinate->accept(this);
1916
1917 /* Put our coords in a temp. We'll need to modify them for shadow,
1918 * projection, or LOD, so the only case we'd use it as is is if
1919 * we're doing plain old texturing. Mesa IR optimization should
1920 * handle cleaning up our mess in that case.
1921 */
1922 coord = get_temp(glsl_type::vec4_type);
1923 coord_dst = dst_reg(coord);
1924 emit(ir, OPCODE_MOV, coord_dst, this->result);
1925
1926 if (ir->projector) {
1927 ir->projector->accept(this);
1928 projector = this->result;
1929 }
1930
1931 /* Storage for our result. Ideally for an assignment we'd be using
1932 * the actual storage for the result here, instead.
1933 */
1934 result_src = get_temp(glsl_type::vec4_type);
1935 result_dst = dst_reg(result_src);
1936
1937 switch (ir->op) {
1938 case ir_tex:
1939 case ir_txs:
1940 opcode = OPCODE_TEX;
1941 break;
1942 case ir_txb:
1943 opcode = OPCODE_TXB;
1944 ir->lod_info.bias->accept(this);
1945 lod_info = this->result;
1946 break;
1947 case ir_txf:
1948 /* Pretend to be TXL so the sampler, coordinate, lod are available */
1949 case ir_txl:
1950 opcode = OPCODE_TXL;
1951 ir->lod_info.lod->accept(this);
1952 lod_info = this->result;
1953 break;
1954 case ir_txd:
1955 opcode = OPCODE_TXD;
1956 ir->lod_info.grad.dPdx->accept(this);
1957 dx = this->result;
1958 ir->lod_info.grad.dPdy->accept(this);
1959 dy = this->result;
1960 break;
1961 case ir_txf_ms:
1962 assert(!"Unexpected ir_txf_ms opcode");
1963 break;
1964 case ir_lod:
1965 assert(!"Unexpected ir_lod opcode");
1966 break;
1967 case ir_tg4:
1968 assert(!"Unexpected ir_tg4 opcode");
1969 break;
1970 case ir_query_levels:
1971 assert(!"Unexpected ir_query_levels opcode");
1972 break;
1973 case ir_samples_identical:
1974 unreachable("Unexpected ir_samples_identical opcode");
1975 case ir_texture_samples:
1976 unreachable("Unexpected ir_texture_samples opcode");
1977 }
1978
1979 const glsl_type *sampler_type = ir->sampler->type;
1980
1981 if (ir->projector) {
1982 if (opcode == OPCODE_TEX) {
1983 /* Slot the projector in as the last component of the coord. */
1984 coord_dst.writemask = WRITEMASK_W;
1985 emit(ir, OPCODE_MOV, coord_dst, projector);
1986 coord_dst.writemask = WRITEMASK_XYZW;
1987 opcode = OPCODE_TXP;
1988 } else {
1989 src_reg coord_w = coord;
1990 coord_w.swizzle = SWIZZLE_WWWW;
1991
1992 /* For the other TEX opcodes there's no projective version
1993 * since the last slot is taken up by lod info. Do the
1994 * projective divide now.
1995 */
1996 coord_dst.writemask = WRITEMASK_W;
1997 emit(ir, OPCODE_RCP, coord_dst, projector);
1998
1999 /* In the case where we have to project the coordinates "by hand,"
2000 * the shadow comparitor value must also be projected.
2001 */
2002 src_reg tmp_src = coord;
2003 if (ir->shadow_comparitor) {
2004 /* Slot the shadow value in as the second to last component of the
2005 * coord.
2006 */
2007 ir->shadow_comparitor->accept(this);
2008
2009 tmp_src = get_temp(glsl_type::vec4_type);
2010 dst_reg tmp_dst = dst_reg(tmp_src);
2011
2012 /* Projective division not allowed for array samplers. */
2013 assert(!sampler_type->sampler_array);
2014
2015 tmp_dst.writemask = WRITEMASK_Z;
2016 emit(ir, OPCODE_MOV, tmp_dst, this->result);
2017
2018 tmp_dst.writemask = WRITEMASK_XY;
2019 emit(ir, OPCODE_MOV, tmp_dst, coord);
2020 }
2021
2022 coord_dst.writemask = WRITEMASK_XYZ;
2023 emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);
2024
2025 coord_dst.writemask = WRITEMASK_XYZW;
2026 coord.swizzle = SWIZZLE_XYZW;
2027 }
2028 }
2029
2030 /* If projection is done and the opcode is not OPCODE_TXP, then the shadow
2031 * comparitor was put in the correct place (and projected) by the code,
2032 * above, that handles by-hand projection.
2033 */
2034 if (ir->shadow_comparitor && (!ir->projector || opcode == OPCODE_TXP)) {
2035 /* Slot the shadow value in as the second to last component of the
2036 * coord.
2037 */
2038 ir->shadow_comparitor->accept(this);
2039
2040 /* XXX This will need to be updated for cubemap array samplers. */
2041 if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2042 sampler_type->sampler_array) {
2043 coord_dst.writemask = WRITEMASK_W;
2044 } else {
2045 coord_dst.writemask = WRITEMASK_Z;
2046 }
2047
2048 emit(ir, OPCODE_MOV, coord_dst, this->result);
2049 coord_dst.writemask = WRITEMASK_XYZW;
2050 }
2051
2052 if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
2053 /* Mesa IR stores lod or lod bias in the last channel of the coords. */
2054 coord_dst.writemask = WRITEMASK_W;
2055 emit(ir, OPCODE_MOV, coord_dst, lod_info);
2056 coord_dst.writemask = WRITEMASK_XYZW;
2057 }
2058
2059 if (opcode == OPCODE_TXD)
2060 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2061 else
2062 inst = emit(ir, opcode, result_dst, coord);
2063
2064 if (ir->shadow_comparitor)
2065 inst->tex_shadow = GL_TRUE;
2066
2067 inst->sampler = get_sampler_uniform_value(ir->sampler, shader_program,
2068 prog);
2069
2070 switch (sampler_type->sampler_dimensionality) {
2071 case GLSL_SAMPLER_DIM_1D:
2072 inst->tex_target = (sampler_type->sampler_array)
2073 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2074 break;
2075 case GLSL_SAMPLER_DIM_2D:
2076 inst->tex_target = (sampler_type->sampler_array)
2077 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2078 break;
2079 case GLSL_SAMPLER_DIM_3D:
2080 inst->tex_target = TEXTURE_3D_INDEX;
2081 break;
2082 case GLSL_SAMPLER_DIM_CUBE:
2083 inst->tex_target = TEXTURE_CUBE_INDEX;
2084 break;
2085 case GLSL_SAMPLER_DIM_RECT:
2086 inst->tex_target = TEXTURE_RECT_INDEX;
2087 break;
2088 case GLSL_SAMPLER_DIM_BUF:
2089 assert(!"FINISHME: Implement ARB_texture_buffer_object");
2090 break;
2091 case GLSL_SAMPLER_DIM_EXTERNAL:
2092 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2093 break;
2094 default:
2095 assert(!"Should not get here.");
2096 }
2097
2098 this->result = result_src;
2099 }
2100
2101 void
2102 ir_to_mesa_visitor::visit(ir_return *ir)
2103 {
2104 /* Non-void functions should have been inlined. We may still emit RETs
2105 * from main() unless the EmitNoMainReturn option is set.
2106 */
2107 assert(!ir->get_value());
2108 emit(ir, OPCODE_RET);
2109 }
2110
2111 void
2112 ir_to_mesa_visitor::visit(ir_discard *ir)
2113 {
2114 if (ir->condition) {
2115 ir->condition->accept(this);
2116 this->result.negate = ~this->result.negate;
2117 emit(ir, OPCODE_KIL, undef_dst, this->result);
2118 } else {
2119 emit(ir, OPCODE_KIL_NV);
2120 }
2121 }
2122
2123 void
2124 ir_to_mesa_visitor::visit(ir_if *ir)
2125 {
2126 ir_to_mesa_instruction *cond_inst, *if_inst;
2127 ir_to_mesa_instruction *prev_inst;
2128
2129 prev_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2130
2131 ir->condition->accept(this);
2132 assert(this->result.file != PROGRAM_UNDEFINED);
2133
2134 if (this->options->EmitCondCodes) {
2135 cond_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2136
2137 /* See if we actually generated any instruction for generating
2138 * the condition. If not, then cook up a move to a temp so we
2139 * have something to set cond_update on.
2140 */
2141 if (cond_inst == prev_inst) {
2142 src_reg temp = get_temp(glsl_type::bool_type);
2143 cond_inst = emit(ir->condition, OPCODE_MOV, dst_reg(temp), result);
2144 }
2145 cond_inst->cond_update = GL_TRUE;
2146
2147 if_inst = emit(ir->condition, OPCODE_IF);
2148 if_inst->dst.cond_mask = COND_NE;
2149 } else {
2150 if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);
2151 }
2152
2153 this->instructions.push_tail(if_inst);
2154
2155 visit_exec_list(&ir->then_instructions, this);
2156
2157 if (!ir->else_instructions.is_empty()) {
2158 emit(ir->condition, OPCODE_ELSE);
2159 visit_exec_list(&ir->else_instructions, this);
2160 }
2161
2162 emit(ir->condition, OPCODE_ENDIF);
2163 }
2164
2165 void
2166 ir_to_mesa_visitor::visit(ir_emit_vertex *)
2167 {
2168 assert(!"Geometry shaders not supported.");
2169 }
2170
2171 void
2172 ir_to_mesa_visitor::visit(ir_end_primitive *)
2173 {
2174 assert(!"Geometry shaders not supported.");
2175 }
2176
2177 void
2178 ir_to_mesa_visitor::visit(ir_barrier *)
2179 {
2180 unreachable("GLSL barrier() not supported.");
2181 }
2182
2183 ir_to_mesa_visitor::ir_to_mesa_visitor()
2184 {
2185 result.file = PROGRAM_UNDEFINED;
2186 next_temp = 1;
2187 next_signature_id = 1;
2188 current_function = NULL;
2189 mem_ctx = ralloc_context(NULL);
2190 }
2191
2192 ir_to_mesa_visitor::~ir_to_mesa_visitor()
2193 {
2194 ralloc_free(mem_ctx);
2195 }
2196
2197 static struct prog_src_register
2198 mesa_src_reg_from_ir_src_reg(src_reg reg)
2199 {
2200 struct prog_src_register mesa_reg;
2201
2202 mesa_reg.File = reg.file;
2203 assert(reg.index < (1 << INST_INDEX_BITS));
2204 mesa_reg.Index = reg.index;
2205 mesa_reg.Swizzle = reg.swizzle;
2206 mesa_reg.RelAddr = reg.reladdr != NULL;
2207 mesa_reg.Negate = reg.negate;
2208 mesa_reg.Abs = 0;
2209 mesa_reg.HasIndex2 = GL_FALSE;
2210 mesa_reg.RelAddr2 = 0;
2211 mesa_reg.Index2 = 0;
2212
2213 return mesa_reg;
2214 }
2215
2216 static void
2217 set_branchtargets(ir_to_mesa_visitor *v,
2218 struct prog_instruction *mesa_instructions,
2219 int num_instructions)
2220 {
2221 int if_count = 0, loop_count = 0;
2222 int *if_stack, *loop_stack;
2223 int if_stack_pos = 0, loop_stack_pos = 0;
2224 int i, j;
2225
2226 for (i = 0; i < num_instructions; i++) {
2227 switch (mesa_instructions[i].Opcode) {
2228 case OPCODE_IF:
2229 if_count++;
2230 break;
2231 case OPCODE_BGNLOOP:
2232 loop_count++;
2233 break;
2234 case OPCODE_BRK:
2235 case OPCODE_CONT:
2236 mesa_instructions[i].BranchTarget = -1;
2237 break;
2238 default:
2239 break;
2240 }
2241 }
2242
2243 if_stack = rzalloc_array(v->mem_ctx, int, if_count);
2244 loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);
2245
2246 for (i = 0; i < num_instructions; i++) {
2247 switch (mesa_instructions[i].Opcode) {
2248 case OPCODE_IF:
2249 if_stack[if_stack_pos] = i;
2250 if_stack_pos++;
2251 break;
2252 case OPCODE_ELSE:
2253 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2254 if_stack[if_stack_pos - 1] = i;
2255 break;
2256 case OPCODE_ENDIF:
2257 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2258 if_stack_pos--;
2259 break;
2260 case OPCODE_BGNLOOP:
2261 loop_stack[loop_stack_pos] = i;
2262 loop_stack_pos++;
2263 break;
2264 case OPCODE_ENDLOOP:
2265 loop_stack_pos--;
2266 /* Rewrite any breaks/conts at this nesting level (haven't
2267 * already had a BranchTarget assigned) to point to the end
2268 * of the loop.
2269 */
2270 for (j = loop_stack[loop_stack_pos]; j < i; j++) {
2271 if (mesa_instructions[j].Opcode == OPCODE_BRK ||
2272 mesa_instructions[j].Opcode == OPCODE_CONT) {
2273 if (mesa_instructions[j].BranchTarget == -1) {
2274 mesa_instructions[j].BranchTarget = i;
2275 }
2276 }
2277 }
2278 /* The loop ends point at each other. */
2279 mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
2280 mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
2281 break;
2282 case OPCODE_CAL:
2283 foreach_in_list(function_entry, entry, &v->function_signatures) {
2284 if (entry->sig_id == mesa_instructions[i].BranchTarget) {
2285 mesa_instructions[i].BranchTarget = entry->inst;
2286 break;
2287 }
2288 }
2289 break;
2290 default:
2291 break;
2292 }
2293 }
2294 }
2295
2296 static void
2297 print_program(struct prog_instruction *mesa_instructions,
2298 ir_instruction **mesa_instruction_annotation,
2299 int num_instructions)
2300 {
2301 ir_instruction *last_ir = NULL;
2302 int i;
2303 int indent = 0;
2304
2305 for (i = 0; i < num_instructions; i++) {
2306 struct prog_instruction *mesa_inst = mesa_instructions + i;
2307 ir_instruction *ir = mesa_instruction_annotation[i];
2308
2309 fprintf(stdout, "%3d: ", i);
2310
2311 if (last_ir != ir && ir) {
2312 int j;
2313
2314 for (j = 0; j < indent; j++) {
2315 fprintf(stdout, " ");
2316 }
2317 ir->print();
2318 printf("\n");
2319 last_ir = ir;
2320
2321 fprintf(stdout, " "); /* line number spacing. */
2322 }
2323
2324 indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
2325 PROG_PRINT_DEBUG, NULL);
2326 }
2327 }
2328
2329 namespace {
2330
2331 class add_uniform_to_shader : public program_resource_visitor {
2332 public:
2333 add_uniform_to_shader(struct gl_shader_program *shader_program,
2334 struct gl_program_parameter_list *params,
2335 gl_shader_stage shader_type)
2336 : shader_program(shader_program), params(params), idx(-1),
2337 shader_type(shader_type)
2338 {
2339 /* empty */
2340 }
2341
2342 void process(ir_variable *var)
2343 {
2344 this->idx = -1;
2345 this->program_resource_visitor::process(var);
2346 var->data.param_index = this->idx;
2347 }
2348
2349 private:
2350 virtual void visit_field(const glsl_type *type, const char *name,
2351 bool row_major);
2352
2353 struct gl_shader_program *shader_program;
2354 struct gl_program_parameter_list *params;
2355 int idx;
2356 gl_shader_stage shader_type;
2357 };
2358
2359 } /* anonymous namespace */
2360
2361 void
2362 add_uniform_to_shader::visit_field(const glsl_type *type, const char *name,
2363 bool row_major)
2364 {
2365 unsigned int size;
2366
2367 (void) row_major;
2368
2369 /* atomics don't get real storage */
2370 if (type->contains_atomic())
2371 return;
2372
2373 if (type->is_vector() || type->is_scalar()) {
2374 size = type->vector_elements;
2375 if (type->is_double())
2376 size *= 2;
2377 } else {
2378 size = type_size(type) * 4;
2379 }
2380
2381 gl_register_file file;
2382 if (type->without_array()->is_sampler()) {
2383 file = PROGRAM_SAMPLER;
2384 } else {
2385 file = PROGRAM_UNIFORM;
2386 }
2387
2388 int index = _mesa_lookup_parameter_index(params, -1, name);
2389 if (index < 0) {
2390 index = _mesa_add_parameter(params, file, name, size, type->gl_type,
2391 NULL, NULL);
2392
2393 /* Sampler uniform values are stored in prog->SamplerUnits,
2394 * and the entry in that array is selected by this index we
2395 * store in ParameterValues[].
2396 */
2397 if (file == PROGRAM_SAMPLER) {
2398 unsigned location;
2399 const bool found =
2400 this->shader_program->UniformHash->get(location,
2401 params->Parameters[index].Name);
2402 assert(found);
2403
2404 if (!found)
2405 return;
2406
2407 struct gl_uniform_storage *storage =
2408 &this->shader_program->UniformStorage[location];
2409
2410 assert(storage->type->is_sampler() &&
2411 storage->opaque[shader_type].active);
2412
2413 for (unsigned int j = 0; j < size / 4; j++)
2414 params->ParameterValues[index + j][0].f =
2415 storage->opaque[shader_type].index + j;
2416 }
2417 }
2418
2419 /* The first part of the uniform that's processed determines the base
2420 * location of the whole uniform (for structures).
2421 */
2422 if (this->idx < 0)
2423 this->idx = index;
2424 }
2425
2426 /**
2427 * Generate the program parameters list for the user uniforms in a shader
2428 *
2429 * \param shader_program Linked shader program. This is only used to
2430 * emit possible link errors to the info log.
2431 * \param sh Shader whose uniforms are to be processed.
2432 * \param params Parameter list to be filled in.
2433 */
2434 void
2435 _mesa_generate_parameters_list_for_uniforms(struct gl_shader_program
2436 *shader_program,
2437 struct gl_shader *sh,
2438 struct gl_program_parameter_list
2439 *params)
2440 {
2441 add_uniform_to_shader add(shader_program, params, sh->Stage);
2442
2443 foreach_in_list(ir_instruction, node, sh->ir) {
2444 ir_variable *var = node->as_variable();
2445
2446 if ((var == NULL) || (var->data.mode != ir_var_uniform)
2447 || var->is_in_buffer_block() || (strncmp(var->name, "gl_", 3) == 0))
2448 continue;
2449
2450 add.process(var);
2451 }
2452 }
2453
2454 void
2455 _mesa_associate_uniform_storage(struct gl_context *ctx,
2456 struct gl_shader_program *shader_program,
2457 struct gl_program_parameter_list *params)
2458 {
2459 /* After adding each uniform to the parameter list, connect the storage for
2460 * the parameter with the tracking structure used by the API for the
2461 * uniform.
2462 */
2463 unsigned last_location = unsigned(~0);
2464 for (unsigned i = 0; i < params->NumParameters; i++) {
2465 if (params->Parameters[i].Type != PROGRAM_UNIFORM)
2466 continue;
2467
2468 unsigned location;
2469 const bool found =
2470 shader_program->UniformHash->get(location, params->Parameters[i].Name);
2471 assert(found);
2472
2473 if (!found)
2474 continue;
2475
2476 struct gl_uniform_storage *storage =
2477 &shader_program->UniformStorage[location];
2478
2479 /* Do not associate any uniform storage to built-in uniforms */
2480 if (storage->builtin)
2481 continue;
2482
2483 if (location != last_location) {
2484 enum gl_uniform_driver_format format = uniform_native;
2485
2486 unsigned columns = 0;
2487 int dmul = 4 * sizeof(float);
2488 switch (storage->type->base_type) {
2489 case GLSL_TYPE_UINT:
2490 assert(ctx->Const.NativeIntegers);
2491 format = uniform_native;
2492 columns = 1;
2493 break;
2494 case GLSL_TYPE_INT:
2495 format =
2496 (ctx->Const.NativeIntegers) ? uniform_native : uniform_int_float;
2497 columns = 1;
2498 break;
2499
2500 case GLSL_TYPE_DOUBLE:
2501 if (storage->type->vector_elements > 2)
2502 dmul *= 2;
2503 /* fallthrough */
2504 case GLSL_TYPE_FLOAT:
2505 format = uniform_native;
2506 columns = storage->type->matrix_columns;
2507 break;
2508 case GLSL_TYPE_BOOL:
2509 format = uniform_native;
2510 columns = 1;
2511 break;
2512 case GLSL_TYPE_SAMPLER:
2513 case GLSL_TYPE_IMAGE:
2514 case GLSL_TYPE_SUBROUTINE:
2515 format = uniform_native;
2516 columns = 1;
2517 break;
2518 case GLSL_TYPE_ATOMIC_UINT:
2519 case GLSL_TYPE_ARRAY:
2520 case GLSL_TYPE_VOID:
2521 case GLSL_TYPE_STRUCT:
2522 case GLSL_TYPE_ERROR:
2523 case GLSL_TYPE_INTERFACE:
2524 case GLSL_TYPE_FUNCTION:
2525 assert(!"Should not get here.");
2526 break;
2527 }
2528
2529 _mesa_uniform_attach_driver_storage(storage,
2530 dmul * columns,
2531 dmul,
2532 format,
2533 &params->ParameterValues[i]);
2534
2535 /* After attaching the driver's storage to the uniform, propagate any
2536 * data from the linker's backing store. This will cause values from
2537 * initializers in the source code to be copied over.
2538 */
2539 _mesa_propagate_uniforms_to_driver_storage(storage,
2540 0,
2541 MAX2(1, storage->array_elements));
2542
2543 last_location = location;
2544 }
2545 }
2546 }
2547
2548 /*
2549 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
2550 * channels for copy propagation and updates following instructions to
2551 * use the original versions.
2552 *
2553 * The ir_to_mesa_visitor lazily produces code assuming that this pass
2554 * will occur. As an example, a TXP production before this pass:
2555 *
2556 * 0: MOV TEMP[1], INPUT[4].xyyy;
2557 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2558 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
2559 *
2560 * and after:
2561 *
2562 * 0: MOV TEMP[1], INPUT[4].xyyy;
2563 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2564 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
2565 *
2566 * which allows for dead code elimination on TEMP[1]'s writes.
2567 */
2568 void
2569 ir_to_mesa_visitor::copy_propagate(void)
2570 {
2571 ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
2572 ir_to_mesa_instruction *,
2573 this->next_temp * 4);
2574 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
2575 int level = 0;
2576
2577 foreach_in_list(ir_to_mesa_instruction, inst, &this->instructions) {
2578 assert(inst->dst.file != PROGRAM_TEMPORARY
2579 || inst->dst.index < this->next_temp);
2580
2581 /* First, do any copy propagation possible into the src regs. */
2582 for (int r = 0; r < 3; r++) {
2583 ir_to_mesa_instruction *first = NULL;
2584 bool good = true;
2585 int acp_base = inst->src[r].index * 4;
2586
2587 if (inst->src[r].file != PROGRAM_TEMPORARY ||
2588 inst->src[r].reladdr)
2589 continue;
2590
2591 /* See if we can find entries in the ACP consisting of MOVs
2592 * from the same src register for all the swizzled channels
2593 * of this src register reference.
2594 */
2595 for (int i = 0; i < 4; i++) {
2596 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2597 ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];
2598
2599 if (!copy_chan) {
2600 good = false;
2601 break;
2602 }
2603
2604 assert(acp_level[acp_base + src_chan] <= level);
2605
2606 if (!first) {
2607 first = copy_chan;
2608 } else {
2609 if (first->src[0].file != copy_chan->src[0].file ||
2610 first->src[0].index != copy_chan->src[0].index) {
2611 good = false;
2612 break;
2613 }
2614 }
2615 }
2616
2617 if (good) {
2618 /* We've now validated that we can copy-propagate to
2619 * replace this src register reference. Do it.
2620 */
2621 inst->src[r].file = first->src[0].file;
2622 inst->src[r].index = first->src[0].index;
2623
2624 int swizzle = 0;
2625 for (int i = 0; i < 4; i++) {
2626 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2627 ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
2628 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
2629 (3 * i));
2630 }
2631 inst->src[r].swizzle = swizzle;
2632 }
2633 }
2634
2635 switch (inst->op) {
2636 case OPCODE_BGNLOOP:
2637 case OPCODE_ENDLOOP:
2638 /* End of a basic block, clear the ACP entirely. */
2639 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2640 break;
2641
2642 case OPCODE_IF:
2643 ++level;
2644 break;
2645
2646 case OPCODE_ENDIF:
2647 case OPCODE_ELSE:
2648 /* Clear all channels written inside the block from the ACP, but
2649 * leaving those that were not touched.
2650 */
2651 for (int r = 0; r < this->next_temp; r++) {
2652 for (int c = 0; c < 4; c++) {
2653 if (!acp[4 * r + c])
2654 continue;
2655
2656 if (acp_level[4 * r + c] >= level)
2657 acp[4 * r + c] = NULL;
2658 }
2659 }
2660 if (inst->op == OPCODE_ENDIF)
2661 --level;
2662 break;
2663
2664 default:
2665 /* Continuing the block, clear any written channels from
2666 * the ACP.
2667 */
2668 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
2669 /* Any temporary might be written, so no copy propagation
2670 * across this instruction.
2671 */
2672 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2673 } else if (inst->dst.file == PROGRAM_OUTPUT &&
2674 inst->dst.reladdr) {
2675 /* Any output might be written, so no copy propagation
2676 * from outputs across this instruction.
2677 */
2678 for (int r = 0; r < this->next_temp; r++) {
2679 for (int c = 0; c < 4; c++) {
2680 if (!acp[4 * r + c])
2681 continue;
2682
2683 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
2684 acp[4 * r + c] = NULL;
2685 }
2686 }
2687 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
2688 inst->dst.file == PROGRAM_OUTPUT) {
2689 /* Clear where it's used as dst. */
2690 if (inst->dst.file == PROGRAM_TEMPORARY) {
2691 for (int c = 0; c < 4; c++) {
2692 if (inst->dst.writemask & (1 << c)) {
2693 acp[4 * inst->dst.index + c] = NULL;
2694 }
2695 }
2696 }
2697
2698 /* Clear where it's used as src. */
2699 for (int r = 0; r < this->next_temp; r++) {
2700 for (int c = 0; c < 4; c++) {
2701 if (!acp[4 * r + c])
2702 continue;
2703
2704 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
2705
2706 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
2707 acp[4 * r + c]->src[0].index == inst->dst.index &&
2708 inst->dst.writemask & (1 << src_chan))
2709 {
2710 acp[4 * r + c] = NULL;
2711 }
2712 }
2713 }
2714 }
2715 break;
2716 }
2717
2718 /* If this is a copy, add it to the ACP. */
2719 if (inst->op == OPCODE_MOV &&
2720 inst->dst.file == PROGRAM_TEMPORARY &&
2721 !(inst->dst.file == inst->src[0].file &&
2722 inst->dst.index == inst->src[0].index) &&
2723 !inst->dst.reladdr &&
2724 !inst->saturate &&
2725 !inst->src[0].reladdr &&
2726 !inst->src[0].negate) {
2727 for (int i = 0; i < 4; i++) {
2728 if (inst->dst.writemask & (1 << i)) {
2729 acp[4 * inst->dst.index + i] = inst;
2730 acp_level[4 * inst->dst.index + i] = level;
2731 }
2732 }
2733 }
2734 }
2735
2736 ralloc_free(acp_level);
2737 ralloc_free(acp);
2738 }
2739
2740
2741 /**
2742 * Convert a shader's GLSL IR into a Mesa gl_program.
2743 */
2744 static struct gl_program *
2745 get_mesa_program(struct gl_context *ctx,
2746 struct gl_shader_program *shader_program,
2747 struct gl_shader *shader)
2748 {
2749 ir_to_mesa_visitor v;
2750 struct prog_instruction *mesa_instructions, *mesa_inst;
2751 ir_instruction **mesa_instruction_annotation;
2752 int i;
2753 struct gl_program *prog;
2754 GLenum target = _mesa_shader_stage_to_program(shader->Stage);
2755 const char *target_string = _mesa_shader_stage_to_string(shader->Stage);
2756 struct gl_shader_compiler_options *options =
2757 &ctx->Const.ShaderCompilerOptions[shader->Stage];
2758
2759 validate_ir_tree(shader->ir);
2760
2761 prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
2762 if (!prog)
2763 return NULL;
2764 prog->Parameters = _mesa_new_parameter_list();
2765 v.ctx = ctx;
2766 v.prog = prog;
2767 v.shader_program = shader_program;
2768 v.options = options;
2769
2770 _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
2771 prog->Parameters);
2772
2773 /* Emit Mesa IR for main(). */
2774 visit_exec_list(shader->ir, &v);
2775 v.emit(NULL, OPCODE_END);
2776
2777 prog->NumTemporaries = v.next_temp;
2778
2779 unsigned num_instructions = v.instructions.length();
2780
2781 mesa_instructions =
2782 (struct prog_instruction *)calloc(num_instructions,
2783 sizeof(*mesa_instructions));
2784 mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
2785 num_instructions);
2786
2787 v.copy_propagate();
2788
2789 /* Convert ir_mesa_instructions into prog_instructions.
2790 */
2791 mesa_inst = mesa_instructions;
2792 i = 0;
2793 foreach_in_list(const ir_to_mesa_instruction, inst, &v.instructions) {
2794 mesa_inst->Opcode = inst->op;
2795 mesa_inst->CondUpdate = inst->cond_update;
2796 if (inst->saturate)
2797 mesa_inst->Saturate = GL_TRUE;
2798 mesa_inst->DstReg.File = inst->dst.file;
2799 mesa_inst->DstReg.Index = inst->dst.index;
2800 mesa_inst->DstReg.CondMask = inst->dst.cond_mask;
2801 mesa_inst->DstReg.WriteMask = inst->dst.writemask;
2802 mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
2803 mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
2804 mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
2805 mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
2806 mesa_inst->TexSrcUnit = inst->sampler;
2807 mesa_inst->TexSrcTarget = inst->tex_target;
2808 mesa_inst->TexShadow = inst->tex_shadow;
2809 mesa_instruction_annotation[i] = inst->ir;
2810
2811 /* Set IndirectRegisterFiles. */
2812 if (mesa_inst->DstReg.RelAddr)
2813 prog->IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;
2814
2815 /* Update program's bitmask of indirectly accessed register files */
2816 for (unsigned src = 0; src < 3; src++)
2817 if (mesa_inst->SrcReg[src].RelAddr)
2818 prog->IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;
2819
2820 switch (mesa_inst->Opcode) {
2821 case OPCODE_IF:
2822 if (options->MaxIfDepth == 0) {
2823 linker_warning(shader_program,
2824 "Couldn't flatten if-statement. "
2825 "This will likely result in software "
2826 "rasterization.\n");
2827 }
2828 break;
2829 case OPCODE_BGNLOOP:
2830 if (options->EmitNoLoops) {
2831 linker_warning(shader_program,
2832 "Couldn't unroll loop. "
2833 "This will likely result in software "
2834 "rasterization.\n");
2835 }
2836 break;
2837 case OPCODE_CONT:
2838 if (options->EmitNoCont) {
2839 linker_warning(shader_program,
2840 "Couldn't lower continue-statement. "
2841 "This will likely result in software "
2842 "rasterization.\n");
2843 }
2844 break;
2845 case OPCODE_ARL:
2846 prog->NumAddressRegs = 1;
2847 break;
2848 default:
2849 break;
2850 }
2851
2852 mesa_inst++;
2853 i++;
2854
2855 if (!shader_program->LinkStatus)
2856 break;
2857 }
2858
2859 if (!shader_program->LinkStatus) {
2860 goto fail_exit;
2861 }
2862
2863 set_branchtargets(&v, mesa_instructions, num_instructions);
2864
2865 if (ctx->_Shader->Flags & GLSL_DUMP) {
2866 fprintf(stderr, "\n");
2867 fprintf(stderr, "GLSL IR for linked %s program %d:\n", target_string,
2868 shader_program->Name);
2869 _mesa_print_ir(stderr, shader->ir, NULL);
2870 fprintf(stderr, "\n");
2871 fprintf(stderr, "\n");
2872 fprintf(stderr, "Mesa IR for linked %s program %d:\n", target_string,
2873 shader_program->Name);
2874 print_program(mesa_instructions, mesa_instruction_annotation,
2875 num_instructions);
2876 fflush(stderr);
2877 }
2878
2879 prog->Instructions = mesa_instructions;
2880 prog->NumInstructions = num_instructions;
2881
2882 /* Setting this to NULL prevents a possible double free in the fail_exit
2883 * path (far below).
2884 */
2885 mesa_instructions = NULL;
2886
2887 do_set_program_inouts(shader->ir, prog, shader->Stage);
2888
2889 prog->SamplersUsed = shader->active_samplers;
2890 prog->ShadowSamplers = shader->shadow_samplers;
2891 _mesa_update_shader_textures_used(shader_program, prog);
2892
2893 /* Set the gl_FragDepth layout. */
2894 if (target == GL_FRAGMENT_PROGRAM_ARB) {
2895 struct gl_fragment_program *fp = (struct gl_fragment_program *)prog;
2896 fp->FragDepthLayout = shader_program->FragDepthLayout;
2897 }
2898
2899 _mesa_reference_program(ctx, &shader->Program, prog);
2900
2901 if ((ctx->_Shader->Flags & GLSL_NO_OPT) == 0) {
2902 _mesa_optimize_program(ctx, prog);
2903 }
2904
2905 /* This has to be done last. Any operation that can cause
2906 * prog->ParameterValues to get reallocated (e.g., anything that adds a
2907 * program constant) has to happen before creating this linkage.
2908 */
2909 _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
2910 if (!shader_program->LinkStatus) {
2911 goto fail_exit;
2912 }
2913
2914 return prog;
2915
2916 fail_exit:
2917 free(mesa_instructions);
2918 _mesa_reference_program(ctx, &shader->Program, NULL);
2919 return NULL;
2920 }
2921
2922 extern "C" {
2923
2924 /**
2925 * Link a shader.
2926 * Called via ctx->Driver.LinkShader()
2927 * This actually involves converting GLSL IR into Mesa gl_programs with
2928 * code lowering and other optimizations.
2929 */
2930 GLboolean
2931 _mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
2932 {
2933 assert(prog->LinkStatus);
2934
2935 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2936 if (prog->_LinkedShaders[i] == NULL)
2937 continue;
2938
2939 bool progress;
2940 exec_list *ir = prog->_LinkedShaders[i]->ir;
2941 const struct gl_shader_compiler_options *options =
2942 &ctx->Const.ShaderCompilerOptions[prog->_LinkedShaders[i]->Stage];
2943
2944 do {
2945 progress = false;
2946
2947 /* Lowering */
2948 do_mat_op_to_vec(ir);
2949 lower_instructions(ir, (MOD_TO_FLOOR | DIV_TO_MUL_RCP | EXP_TO_EXP2
2950 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
2951 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
2952
2953 progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
2954
2955 progress = do_common_optimization(ir, true, true,
2956 options, ctx->Const.NativeIntegers)
2957 || progress;
2958
2959 progress = lower_quadop_vector(ir, true) || progress;
2960
2961 if (options->MaxIfDepth == 0)
2962 progress = lower_discard(ir) || progress;
2963
2964 progress = lower_if_to_cond_assign(ir, options->MaxIfDepth) || progress;
2965
2966 if (options->EmitNoNoise)
2967 progress = lower_noise(ir) || progress;
2968
2969 /* If there are forms of indirect addressing that the driver
2970 * cannot handle, perform the lowering pass.
2971 */
2972 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
2973 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
2974 progress =
2975 lower_variable_index_to_cond_assign(prog->_LinkedShaders[i]->Stage, ir,
2976 options->EmitNoIndirectInput,
2977 options->EmitNoIndirectOutput,
2978 options->EmitNoIndirectTemp,
2979 options->EmitNoIndirectUniform)
2980 || progress;
2981
2982 progress = do_vec_index_to_cond_assign(ir) || progress;
2983 progress = lower_vector_insert(ir, true) || progress;
2984 } while (progress);
2985
2986 validate_ir_tree(ir);
2987 }
2988
2989 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2990 struct gl_program *linked_prog;
2991
2992 if (prog->_LinkedShaders[i] == NULL)
2993 continue;
2994
2995 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
2996
2997 if (linked_prog) {
2998 _mesa_copy_linked_program_data((gl_shader_stage) i, prog, linked_prog);
2999
3000 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
3001 linked_prog);
3002 if (!ctx->Driver.ProgramStringNotify(ctx,
3003 _mesa_shader_stage_to_program(i),
3004 linked_prog)) {
3005 return GL_FALSE;
3006 }
3007 }
3008
3009 _mesa_reference_program(ctx, &linked_prog, NULL);
3010 }
3011
3012 return prog->LinkStatus;
3013 }
3014
3015 /**
3016 * Link a GLSL shader program. Called via glLinkProgram().
3017 */
3018 void
3019 _mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3020 {
3021 unsigned int i;
3022
3023 _mesa_clear_shader_program_data(prog);
3024
3025 prog->LinkStatus = GL_TRUE;
3026
3027 for (i = 0; i < prog->NumShaders; i++) {
3028 if (!prog->Shaders[i]->CompileStatus) {
3029 linker_error(prog, "linking with uncompiled shader");
3030 }
3031 }
3032
3033 if (prog->LinkStatus) {
3034 link_shaders(ctx, prog);
3035 }
3036
3037 if (prog->LinkStatus) {
3038 if (!ctx->Driver.LinkShader(ctx, prog)) {
3039 prog->LinkStatus = GL_FALSE;
3040 } else {
3041 build_program_resource_list(prog);
3042 }
3043 }
3044
3045 if (ctx->_Shader->Flags & GLSL_DUMP) {
3046 if (!prog->LinkStatus) {
3047 fprintf(stderr, "GLSL shader program %d failed to link\n", prog->Name);
3048 }
3049
3050 if (prog->InfoLog && prog->InfoLog[0] != 0) {
3051 fprintf(stderr, "GLSL shader program %d info log:\n", prog->Name);
3052 fprintf(stderr, "%s\n", prog->InfoLog);
3053 }
3054 }
3055 }
3056
3057 } /* extern "C" */