c833a12f2aab1608d8b1c7c02d5a9882973231a7
[mesa.git] / src / mesa / program / ir_to_mesa.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
24 */
25
26 /**
27 * \file ir_to_mesa.cpp
28 *
29 * Translate GLSL IR to Mesa's gl_program representation.
30 */
31
32 #include <stdio.h>
33 #include "main/compiler.h"
34 #include "ir.h"
35 #include "ir_visitor.h"
36 #include "ir_expression_flattening.h"
37 #include "ir_uniform.h"
38 #include "glsl_types.h"
39 #include "glsl_parser_extras.h"
40 #include "../glsl/program.h"
41 #include "ir_optimization.h"
42 #include "ast.h"
43 #include "linker.h"
44
45 #include "main/mtypes.h"
46 #include "main/shaderobj.h"
47 #include "main/uniforms.h"
48 #include "program/hash_table.h"
49
50 extern "C" {
51 #include "main/shaderapi.h"
52 #include "program/prog_instruction.h"
53 #include "program/prog_optimize.h"
54 #include "program/prog_print.h"
55 #include "program/program.h"
56 #include "program/prog_parameter.h"
57 #include "program/sampler.h"
58 }
59
60 static int swizzle_for_size(int size);
61
62 namespace {
63
64 class src_reg;
65 class dst_reg;
66
67 /**
68 * This struct is a corresponding struct to Mesa prog_src_register, with
69 * wider fields.
70 */
71 class src_reg {
72 public:
73 src_reg(gl_register_file file, int index, const glsl_type *type)
74 {
75 this->file = file;
76 this->index = index;
77 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
78 this->swizzle = swizzle_for_size(type->vector_elements);
79 else
80 this->swizzle = SWIZZLE_XYZW;
81 this->negate = 0;
82 this->reladdr = NULL;
83 }
84
85 src_reg()
86 {
87 this->file = PROGRAM_UNDEFINED;
88 this->index = 0;
89 this->swizzle = 0;
90 this->negate = 0;
91 this->reladdr = NULL;
92 }
93
94 explicit src_reg(dst_reg reg);
95
96 gl_register_file file; /**< PROGRAM_* from Mesa */
97 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
98 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
99 int negate; /**< NEGATE_XYZW mask from mesa */
100 /** Register index should be offset by the integer in this reg. */
101 src_reg *reladdr;
102 };
103
104 class dst_reg {
105 public:
106 dst_reg(gl_register_file file, int writemask)
107 {
108 this->file = file;
109 this->index = 0;
110 this->writemask = writemask;
111 this->cond_mask = COND_TR;
112 this->reladdr = NULL;
113 }
114
115 dst_reg()
116 {
117 this->file = PROGRAM_UNDEFINED;
118 this->index = 0;
119 this->writemask = 0;
120 this->cond_mask = COND_TR;
121 this->reladdr = NULL;
122 }
123
124 explicit dst_reg(src_reg reg);
125
126 gl_register_file file; /**< PROGRAM_* from Mesa */
127 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
128 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
129 GLuint cond_mask:4;
130 /** Register index should be offset by the integer in this reg. */
131 src_reg *reladdr;
132 };
133
134 } /* anonymous namespace */
135
136 src_reg::src_reg(dst_reg reg)
137 {
138 this->file = reg.file;
139 this->index = reg.index;
140 this->swizzle = SWIZZLE_XYZW;
141 this->negate = 0;
142 this->reladdr = reg.reladdr;
143 }
144
145 dst_reg::dst_reg(src_reg reg)
146 {
147 this->file = reg.file;
148 this->index = reg.index;
149 this->writemask = WRITEMASK_XYZW;
150 this->cond_mask = COND_TR;
151 this->reladdr = reg.reladdr;
152 }
153
154 namespace {
155
156 class ir_to_mesa_instruction : public exec_node {
157 public:
158 DECLARE_RALLOC_CXX_OPERATORS(ir_to_mesa_instruction)
159
160 enum prog_opcode op;
161 dst_reg dst;
162 src_reg src[3];
163 /** Pointer to the ir source this tree came from for debugging */
164 ir_instruction *ir;
165 GLboolean cond_update;
166 bool saturate;
167 int sampler; /**< sampler index */
168 int tex_target; /**< One of TEXTURE_*_INDEX */
169 GLboolean tex_shadow;
170 };
171
172 class variable_storage : public exec_node {
173 public:
174 variable_storage(ir_variable *var, gl_register_file file, int index)
175 : file(file), index(index), var(var)
176 {
177 /* empty */
178 }
179
180 gl_register_file file;
181 int index;
182 ir_variable *var; /* variable that maps to this, if any */
183 };
184
185 class function_entry : public exec_node {
186 public:
187 ir_function_signature *sig;
188
189 /**
190 * identifier of this function signature used by the program.
191 *
192 * At the point that Mesa instructions for function calls are
193 * generated, we don't know the address of the first instruction of
194 * the function body. So we make the BranchTarget that is called a
195 * small integer and rewrite them during set_branchtargets().
196 */
197 int sig_id;
198
199 /**
200 * Pointer to first instruction of the function body.
201 *
202 * Set during function body emits after main() is processed.
203 */
204 ir_to_mesa_instruction *bgn_inst;
205
206 /**
207 * Index of the first instruction of the function body in actual
208 * Mesa IR.
209 *
210 * Set after convertion from ir_to_mesa_instruction to prog_instruction.
211 */
212 int inst;
213
214 /** Storage for the return value. */
215 src_reg return_reg;
216 };
217
218 class ir_to_mesa_visitor : public ir_visitor {
219 public:
220 ir_to_mesa_visitor();
221 ~ir_to_mesa_visitor();
222
223 function_entry *current_function;
224
225 struct gl_context *ctx;
226 struct gl_program *prog;
227 struct gl_shader_program *shader_program;
228 struct gl_shader_compiler_options *options;
229
230 int next_temp;
231
232 variable_storage *find_variable_storage(ir_variable *var);
233
234 src_reg get_temp(const glsl_type *type);
235 void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);
236
237 src_reg src_reg_for_float(float val);
238
239 /**
240 * \name Visit methods
241 *
242 * As typical for the visitor pattern, there must be one \c visit method for
243 * each concrete subclass of \c ir_instruction. Virtual base classes within
244 * the hierarchy should not have \c visit methods.
245 */
246 /*@{*/
247 virtual void visit(ir_variable *);
248 virtual void visit(ir_loop *);
249 virtual void visit(ir_loop_jump *);
250 virtual void visit(ir_function_signature *);
251 virtual void visit(ir_function *);
252 virtual void visit(ir_expression *);
253 virtual void visit(ir_swizzle *);
254 virtual void visit(ir_dereference_variable *);
255 virtual void visit(ir_dereference_array *);
256 virtual void visit(ir_dereference_record *);
257 virtual void visit(ir_assignment *);
258 virtual void visit(ir_constant *);
259 virtual void visit(ir_call *);
260 virtual void visit(ir_return *);
261 virtual void visit(ir_discard *);
262 virtual void visit(ir_texture *);
263 virtual void visit(ir_if *);
264 virtual void visit(ir_emit_vertex *);
265 virtual void visit(ir_end_primitive *);
266 /*@}*/
267
268 src_reg result;
269
270 /** List of variable_storage */
271 exec_list variables;
272
273 /** List of function_entry */
274 exec_list function_signatures;
275 int next_signature_id;
276
277 /** List of ir_to_mesa_instruction */
278 exec_list instructions;
279
280 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);
281
282 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
283 dst_reg dst, src_reg src0);
284
285 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
286 dst_reg dst, src_reg src0, src_reg src1);
287
288 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
289 dst_reg dst,
290 src_reg src0, src_reg src1, src_reg src2);
291
292 /**
293 * Emit the correct dot-product instruction for the type of arguments
294 */
295 ir_to_mesa_instruction * emit_dp(ir_instruction *ir,
296 dst_reg dst,
297 src_reg src0,
298 src_reg src1,
299 unsigned elements);
300
301 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
302 dst_reg dst, src_reg src0);
303
304 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
305 dst_reg dst, src_reg src0, src_reg src1);
306
307 void emit_scs(ir_instruction *ir, enum prog_opcode op,
308 dst_reg dst, const src_reg &src);
309
310 bool try_emit_mad(ir_expression *ir,
311 int mul_operand);
312 bool try_emit_mad_for_and_not(ir_expression *ir,
313 int mul_operand);
314 bool try_emit_sat(ir_expression *ir);
315
316 void emit_swz(ir_expression *ir);
317
318 bool process_move_condition(ir_rvalue *ir);
319
320 void copy_propagate(void);
321
322 void *mem_ctx;
323 };
324
325 } /* anonymous namespace */
326
327 static src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);
328
329 static dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);
330
331 static dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);
332
333 static int
334 swizzle_for_size(int size)
335 {
336 static const int size_swizzles[4] = {
337 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
338 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
339 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
340 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
341 };
342
343 assert((size >= 1) && (size <= 4));
344 return size_swizzles[size - 1];
345 }
346
347 ir_to_mesa_instruction *
348 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
349 dst_reg dst,
350 src_reg src0, src_reg src1, src_reg src2)
351 {
352 ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
353 int num_reladdr = 0;
354
355 /* If we have to do relative addressing, we want to load the ARL
356 * reg directly for one of the regs, and preload the other reladdr
357 * sources into temps.
358 */
359 num_reladdr += dst.reladdr != NULL;
360 num_reladdr += src0.reladdr != NULL;
361 num_reladdr += src1.reladdr != NULL;
362 num_reladdr += src2.reladdr != NULL;
363
364 reladdr_to_temp(ir, &src2, &num_reladdr);
365 reladdr_to_temp(ir, &src1, &num_reladdr);
366 reladdr_to_temp(ir, &src0, &num_reladdr);
367
368 if (dst.reladdr) {
369 emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
370 num_reladdr--;
371 }
372 assert(num_reladdr == 0);
373
374 inst->op = op;
375 inst->dst = dst;
376 inst->src[0] = src0;
377 inst->src[1] = src1;
378 inst->src[2] = src2;
379 inst->ir = ir;
380
381 this->instructions.push_tail(inst);
382
383 return inst;
384 }
385
386
387 ir_to_mesa_instruction *
388 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
389 dst_reg dst, src_reg src0, src_reg src1)
390 {
391 return emit(ir, op, dst, src0, src1, undef_src);
392 }
393
394 ir_to_mesa_instruction *
395 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
396 dst_reg dst, src_reg src0)
397 {
398 assert(dst.writemask != 0);
399 return emit(ir, op, dst, src0, undef_src, undef_src);
400 }
401
402 ir_to_mesa_instruction *
403 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
404 {
405 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
406 }
407
408 ir_to_mesa_instruction *
409 ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
410 dst_reg dst, src_reg src0, src_reg src1,
411 unsigned elements)
412 {
413 static const gl_inst_opcode dot_opcodes[] = {
414 OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
415 };
416
417 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
418 }
419
420 /**
421 * Emits Mesa scalar opcodes to produce unique answers across channels.
422 *
423 * Some Mesa opcodes are scalar-only, like ARB_fp/vp. The src X
424 * channel determines the result across all channels. So to do a vec4
425 * of this operation, we want to emit a scalar per source channel used
426 * to produce dest channels.
427 */
428 void
429 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
430 dst_reg dst,
431 src_reg orig_src0, src_reg orig_src1)
432 {
433 int i, j;
434 int done_mask = ~dst.writemask;
435
436 /* Mesa RCP is a scalar operation splatting results to all channels,
437 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
438 * dst channels.
439 */
440 for (i = 0; i < 4; i++) {
441 GLuint this_mask = (1 << i);
442 ir_to_mesa_instruction *inst;
443 src_reg src0 = orig_src0;
444 src_reg src1 = orig_src1;
445
446 if (done_mask & this_mask)
447 continue;
448
449 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
450 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
451 for (j = i + 1; j < 4; j++) {
452 /* If there is another enabled component in the destination that is
453 * derived from the same inputs, generate its value on this pass as
454 * well.
455 */
456 if (!(done_mask & (1 << j)) &&
457 GET_SWZ(src0.swizzle, j) == src0_swiz &&
458 GET_SWZ(src1.swizzle, j) == src1_swiz) {
459 this_mask |= (1 << j);
460 }
461 }
462 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
463 src0_swiz, src0_swiz);
464 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
465 src1_swiz, src1_swiz);
466
467 inst = emit(ir, op, dst, src0, src1);
468 inst->dst.writemask = this_mask;
469 done_mask |= this_mask;
470 }
471 }
472
473 void
474 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
475 dst_reg dst, src_reg src0)
476 {
477 src_reg undef = undef_src;
478
479 undef.swizzle = SWIZZLE_XXXX;
480
481 emit_scalar(ir, op, dst, src0, undef);
482 }
483
484 /**
485 * Emit an OPCODE_SCS instruction
486 *
487 * The \c SCS opcode functions a bit differently than the other Mesa (or
488 * ARB_fragment_program) opcodes. Instead of splatting its result across all
489 * four components of the destination, it writes one value to the \c x
490 * component and another value to the \c y component.
491 *
492 * \param ir IR instruction being processed
493 * \param op Either \c OPCODE_SIN or \c OPCODE_COS depending on which
494 * value is desired.
495 * \param dst Destination register
496 * \param src Source register
497 */
498 void
499 ir_to_mesa_visitor::emit_scs(ir_instruction *ir, enum prog_opcode op,
500 dst_reg dst,
501 const src_reg &src)
502 {
503 /* Vertex programs cannot use the SCS opcode.
504 */
505 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB) {
506 emit_scalar(ir, op, dst, src);
507 return;
508 }
509
510 const unsigned component = (op == OPCODE_SIN) ? 0 : 1;
511 const unsigned scs_mask = (1U << component);
512 int done_mask = ~dst.writemask;
513 src_reg tmp;
514
515 assert(op == OPCODE_SIN || op == OPCODE_COS);
516
517 /* If there are compnents in the destination that differ from the component
518 * that will be written by the SCS instrution, we'll need a temporary.
519 */
520 if (scs_mask != unsigned(dst.writemask)) {
521 tmp = get_temp(glsl_type::vec4_type);
522 }
523
524 for (unsigned i = 0; i < 4; i++) {
525 unsigned this_mask = (1U << i);
526 src_reg src0 = src;
527
528 if ((done_mask & this_mask) != 0)
529 continue;
530
531 /* The source swizzle specified which component of the source generates
532 * sine / cosine for the current component in the destination. The SCS
533 * instruction requires that this value be swizzle to the X component.
534 * Replace the current swizzle with a swizzle that puts the source in
535 * the X component.
536 */
537 unsigned src0_swiz = GET_SWZ(src.swizzle, i);
538
539 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
540 src0_swiz, src0_swiz);
541 for (unsigned j = i + 1; j < 4; j++) {
542 /* If there is another enabled component in the destination that is
543 * derived from the same inputs, generate its value on this pass as
544 * well.
545 */
546 if (!(done_mask & (1 << j)) &&
547 GET_SWZ(src0.swizzle, j) == src0_swiz) {
548 this_mask |= (1 << j);
549 }
550 }
551
552 if (this_mask != scs_mask) {
553 ir_to_mesa_instruction *inst;
554 dst_reg tmp_dst = dst_reg(tmp);
555
556 /* Emit the SCS instruction.
557 */
558 inst = emit(ir, OPCODE_SCS, tmp_dst, src0);
559 inst->dst.writemask = scs_mask;
560
561 /* Move the result of the SCS instruction to the desired location in
562 * the destination.
563 */
564 tmp.swizzle = MAKE_SWIZZLE4(component, component,
565 component, component);
566 inst = emit(ir, OPCODE_SCS, dst, tmp);
567 inst->dst.writemask = this_mask;
568 } else {
569 /* Emit the SCS instruction to write directly to the destination.
570 */
571 ir_to_mesa_instruction *inst = emit(ir, OPCODE_SCS, dst, src0);
572 inst->dst.writemask = scs_mask;
573 }
574
575 done_mask |= this_mask;
576 }
577 }
578
579 src_reg
580 ir_to_mesa_visitor::src_reg_for_float(float val)
581 {
582 src_reg src(PROGRAM_CONSTANT, -1, NULL);
583
584 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
585 (const gl_constant_value *)&val, 1, &src.swizzle);
586
587 return src;
588 }
589
590 static int
591 type_size(const struct glsl_type *type)
592 {
593 unsigned int i;
594 int size;
595
596 switch (type->base_type) {
597 case GLSL_TYPE_UINT:
598 case GLSL_TYPE_INT:
599 case GLSL_TYPE_FLOAT:
600 case GLSL_TYPE_BOOL:
601 if (type->is_matrix()) {
602 return type->matrix_columns;
603 } else {
604 /* Regardless of size of vector, it gets a vec4. This is bad
605 * packing for things like floats, but otherwise arrays become a
606 * mess. Hopefully a later pass over the code can pack scalars
607 * down if appropriate.
608 */
609 return 1;
610 }
611 case GLSL_TYPE_ARRAY:
612 assert(type->length > 0);
613 return type_size(type->fields.array) * type->length;
614 case GLSL_TYPE_STRUCT:
615 size = 0;
616 for (i = 0; i < type->length; i++) {
617 size += type_size(type->fields.structure[i].type);
618 }
619 return size;
620 case GLSL_TYPE_SAMPLER:
621 /* Samplers take up one slot in UNIFORMS[], but they're baked in
622 * at link time.
623 */
624 return 1;
625 case GLSL_TYPE_ATOMIC_UINT:
626 case GLSL_TYPE_VOID:
627 case GLSL_TYPE_ERROR:
628 case GLSL_TYPE_INTERFACE:
629 assert(!"Invalid type in type_size");
630 break;
631 }
632
633 return 0;
634 }
635
636 /**
637 * In the initial pass of codegen, we assign temporary numbers to
638 * intermediate results. (not SSA -- variable assignments will reuse
639 * storage). Actual register allocation for the Mesa VM occurs in a
640 * pass over the Mesa IR later.
641 */
642 src_reg
643 ir_to_mesa_visitor::get_temp(const glsl_type *type)
644 {
645 src_reg src;
646
647 src.file = PROGRAM_TEMPORARY;
648 src.index = next_temp;
649 src.reladdr = NULL;
650 next_temp += type_size(type);
651
652 if (type->is_array() || type->is_record()) {
653 src.swizzle = SWIZZLE_NOOP;
654 } else {
655 src.swizzle = swizzle_for_size(type->vector_elements);
656 }
657 src.negate = 0;
658
659 return src;
660 }
661
662 variable_storage *
663 ir_to_mesa_visitor::find_variable_storage(ir_variable *var)
664 {
665
666 variable_storage *entry;
667
668 foreach_iter(exec_list_iterator, iter, this->variables) {
669 entry = (variable_storage *)iter.get();
670
671 if (entry->var == var)
672 return entry;
673 }
674
675 return NULL;
676 }
677
678 void
679 ir_to_mesa_visitor::visit(ir_variable *ir)
680 {
681 if (strcmp(ir->name, "gl_FragCoord") == 0) {
682 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
683
684 fp->OriginUpperLeft = ir->origin_upper_left;
685 fp->PixelCenterInteger = ir->pixel_center_integer;
686 }
687
688 if (ir->mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
689 unsigned int i;
690 const ir_state_slot *const slots = ir->state_slots;
691 assert(ir->state_slots != NULL);
692
693 /* Check if this statevar's setup in the STATE file exactly
694 * matches how we'll want to reference it as a
695 * struct/array/whatever. If not, then we need to move it into
696 * temporary storage and hope that it'll get copy-propagated
697 * out.
698 */
699 for (i = 0; i < ir->num_state_slots; i++) {
700 if (slots[i].swizzle != SWIZZLE_XYZW) {
701 break;
702 }
703 }
704
705 variable_storage *storage;
706 dst_reg dst;
707 if (i == ir->num_state_slots) {
708 /* We'll set the index later. */
709 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
710 this->variables.push_tail(storage);
711
712 dst = undef_dst;
713 } else {
714 /* The variable_storage constructor allocates slots based on the size
715 * of the type. However, this had better match the number of state
716 * elements that we're going to copy into the new temporary.
717 */
718 assert((int) ir->num_state_slots == type_size(ir->type));
719
720 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
721 this->next_temp);
722 this->variables.push_tail(storage);
723 this->next_temp += type_size(ir->type);
724
725 dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
726 }
727
728
729 for (unsigned int i = 0; i < ir->num_state_slots; i++) {
730 int index = _mesa_add_state_reference(this->prog->Parameters,
731 (gl_state_index *)slots[i].tokens);
732
733 if (storage->file == PROGRAM_STATE_VAR) {
734 if (storage->index == -1) {
735 storage->index = index;
736 } else {
737 assert(index == storage->index + (int)i);
738 }
739 } else {
740 src_reg src(PROGRAM_STATE_VAR, index, NULL);
741 src.swizzle = slots[i].swizzle;
742 emit(ir, OPCODE_MOV, dst, src);
743 /* even a float takes up a whole vec4 reg in a struct/array. */
744 dst.index++;
745 }
746 }
747
748 if (storage->file == PROGRAM_TEMPORARY &&
749 dst.index != storage->index + (int) ir->num_state_slots) {
750 linker_error(this->shader_program,
751 "failed to load builtin uniform `%s' "
752 "(%d/%d regs loaded)\n",
753 ir->name, dst.index - storage->index,
754 type_size(ir->type));
755 }
756 }
757 }
758
759 void
760 ir_to_mesa_visitor::visit(ir_loop *ir)
761 {
762 ir_dereference_variable *counter = NULL;
763
764 if (ir->counter != NULL)
765 counter = new(mem_ctx) ir_dereference_variable(ir->counter);
766
767 if (ir->from != NULL) {
768 assert(ir->counter != NULL);
769
770 ir_assignment *a =
771 new(mem_ctx) ir_assignment(counter, ir->from, NULL);
772
773 a->accept(this);
774 }
775
776 emit(NULL, OPCODE_BGNLOOP);
777
778 if (ir->to) {
779 ir_expression *e =
780 new(mem_ctx) ir_expression(ir->cmp, glsl_type::bool_type,
781 counter, ir->to);
782 ir_if *if_stmt = new(mem_ctx) ir_if(e);
783
784 ir_loop_jump *brk =
785 new(mem_ctx) ir_loop_jump(ir_loop_jump::jump_break);
786
787 if_stmt->then_instructions.push_tail(brk);
788
789 if_stmt->accept(this);
790 }
791
792 visit_exec_list(&ir->body_instructions, this);
793
794 if (ir->increment) {
795 ir_expression *e =
796 new(mem_ctx) ir_expression(ir_binop_add, counter->type,
797 counter, ir->increment);
798
799 ir_assignment *a =
800 new(mem_ctx) ir_assignment(counter, e, NULL);
801
802 a->accept(this);
803 }
804
805 emit(NULL, OPCODE_ENDLOOP);
806 }
807
808 void
809 ir_to_mesa_visitor::visit(ir_loop_jump *ir)
810 {
811 switch (ir->mode) {
812 case ir_loop_jump::jump_break:
813 emit(NULL, OPCODE_BRK);
814 break;
815 case ir_loop_jump::jump_continue:
816 emit(NULL, OPCODE_CONT);
817 break;
818 }
819 }
820
821
822 void
823 ir_to_mesa_visitor::visit(ir_function_signature *ir)
824 {
825 assert(0);
826 (void)ir;
827 }
828
829 void
830 ir_to_mesa_visitor::visit(ir_function *ir)
831 {
832 /* Ignore function bodies other than main() -- we shouldn't see calls to
833 * them since they should all be inlined before we get to ir_to_mesa.
834 */
835 if (strcmp(ir->name, "main") == 0) {
836 const ir_function_signature *sig;
837 exec_list empty;
838
839 sig = ir->matching_signature(NULL, &empty);
840
841 assert(sig);
842
843 foreach_iter(exec_list_iterator, iter, sig->body) {
844 ir_instruction *ir = (ir_instruction *)iter.get();
845
846 ir->accept(this);
847 }
848 }
849 }
850
851 bool
852 ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
853 {
854 int nonmul_operand = 1 - mul_operand;
855 src_reg a, b, c;
856
857 ir_expression *expr = ir->operands[mul_operand]->as_expression();
858 if (!expr || expr->operation != ir_binop_mul)
859 return false;
860
861 expr->operands[0]->accept(this);
862 a = this->result;
863 expr->operands[1]->accept(this);
864 b = this->result;
865 ir->operands[nonmul_operand]->accept(this);
866 c = this->result;
867
868 this->result = get_temp(ir->type);
869 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);
870
871 return true;
872 }
873
874 /**
875 * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b))
876 *
877 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
878 * implemented using multiplication, and logical-or is implemented using
879 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
880 * As result, the logical expression (a & !b) can be rewritten as:
881 *
882 * - a * !b
883 * - a * (1 - b)
884 * - (a * 1) - (a * b)
885 * - a + -(a * b)
886 * - a + (a * -b)
887 *
888 * This final expression can be implemented as a single MAD(a, -b, a)
889 * instruction.
890 */
891 bool
892 ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
893 {
894 const int other_operand = 1 - try_operand;
895 src_reg a, b;
896
897 ir_expression *expr = ir->operands[try_operand]->as_expression();
898 if (!expr || expr->operation != ir_unop_logic_not)
899 return false;
900
901 ir->operands[other_operand]->accept(this);
902 a = this->result;
903 expr->operands[0]->accept(this);
904 b = this->result;
905
906 b.negate = ~b.negate;
907
908 this->result = get_temp(ir->type);
909 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a);
910
911 return true;
912 }
913
914 bool
915 ir_to_mesa_visitor::try_emit_sat(ir_expression *ir)
916 {
917 /* Saturates were only introduced to vertex programs in
918 * NV_vertex_program3, so don't give them to drivers in the VP.
919 */
920 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB)
921 return false;
922
923 ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
924 if (!sat_src)
925 return false;
926
927 sat_src->accept(this);
928 src_reg src = this->result;
929
930 /* If we generated an expression instruction into a temporary in
931 * processing the saturate's operand, apply the saturate to that
932 * instruction. Otherwise, generate a MOV to do the saturate.
933 *
934 * Note that we have to be careful to only do this optimization if
935 * the instruction in question was what generated src->result. For
936 * example, ir_dereference_array might generate a MUL instruction
937 * to create the reladdr, and return us a src reg using that
938 * reladdr. That MUL result is not the value we're trying to
939 * saturate.
940 */
941 ir_expression *sat_src_expr = sat_src->as_expression();
942 ir_to_mesa_instruction *new_inst;
943 new_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
944 if (sat_src_expr && (sat_src_expr->operation == ir_binop_mul ||
945 sat_src_expr->operation == ir_binop_add ||
946 sat_src_expr->operation == ir_binop_dot)) {
947 new_inst->saturate = true;
948 } else {
949 this->result = get_temp(ir->type);
950 ir_to_mesa_instruction *inst;
951 inst = emit(ir, OPCODE_MOV, dst_reg(this->result), src);
952 inst->saturate = true;
953 }
954
955 return true;
956 }
957
958 void
959 ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
960 src_reg *reg, int *num_reladdr)
961 {
962 if (!reg->reladdr)
963 return;
964
965 emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);
966
967 if (*num_reladdr != 1) {
968 src_reg temp = get_temp(glsl_type::vec4_type);
969
970 emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
971 *reg = temp;
972 }
973
974 (*num_reladdr)--;
975 }
976
977 void
978 ir_to_mesa_visitor::emit_swz(ir_expression *ir)
979 {
980 /* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
981 * This means that each of the operands is either an immediate value of -1,
982 * 0, or 1, or is a component from one source register (possibly with
983 * negation).
984 */
985 uint8_t components[4] = { 0 };
986 bool negate[4] = { false };
987 ir_variable *var = NULL;
988
989 for (unsigned i = 0; i < ir->type->vector_elements; i++) {
990 ir_rvalue *op = ir->operands[i];
991
992 assert(op->type->is_scalar());
993
994 while (op != NULL) {
995 switch (op->ir_type) {
996 case ir_type_constant: {
997
998 assert(op->type->is_scalar());
999
1000 const ir_constant *const c = op->as_constant();
1001 if (c->is_one()) {
1002 components[i] = SWIZZLE_ONE;
1003 } else if (c->is_zero()) {
1004 components[i] = SWIZZLE_ZERO;
1005 } else if (c->is_negative_one()) {
1006 components[i] = SWIZZLE_ONE;
1007 negate[i] = true;
1008 } else {
1009 assert(!"SWZ constant must be 0.0 or 1.0.");
1010 }
1011
1012 op = NULL;
1013 break;
1014 }
1015
1016 case ir_type_dereference_variable: {
1017 ir_dereference_variable *const deref =
1018 (ir_dereference_variable *) op;
1019
1020 assert((var == NULL) || (deref->var == var));
1021 components[i] = SWIZZLE_X;
1022 var = deref->var;
1023 op = NULL;
1024 break;
1025 }
1026
1027 case ir_type_expression: {
1028 ir_expression *const expr = (ir_expression *) op;
1029
1030 assert(expr->operation == ir_unop_neg);
1031 negate[i] = true;
1032
1033 op = expr->operands[0];
1034 break;
1035 }
1036
1037 case ir_type_swizzle: {
1038 ir_swizzle *const swiz = (ir_swizzle *) op;
1039
1040 components[i] = swiz->mask.x;
1041 op = swiz->val;
1042 break;
1043 }
1044
1045 default:
1046 assert(!"Should not get here.");
1047 return;
1048 }
1049 }
1050 }
1051
1052 assert(var != NULL);
1053
1054 ir_dereference_variable *const deref =
1055 new(mem_ctx) ir_dereference_variable(var);
1056
1057 this->result.file = PROGRAM_UNDEFINED;
1058 deref->accept(this);
1059 if (this->result.file == PROGRAM_UNDEFINED) {
1060 printf("Failed to get tree for expression operand:\n");
1061 deref->print();
1062 printf("\n");
1063 exit(1);
1064 }
1065
1066 src_reg src;
1067
1068 src = this->result;
1069 src.swizzle = MAKE_SWIZZLE4(components[0],
1070 components[1],
1071 components[2],
1072 components[3]);
1073 src.negate = ((unsigned(negate[0]) << 0)
1074 | (unsigned(negate[1]) << 1)
1075 | (unsigned(negate[2]) << 2)
1076 | (unsigned(negate[3]) << 3));
1077
1078 /* Storage for our result. Ideally for an assignment we'd be using the
1079 * actual storage for the result here, instead.
1080 */
1081 const src_reg result_src = get_temp(ir->type);
1082 dst_reg result_dst = dst_reg(result_src);
1083
1084 /* Limit writes to the channels that will be used by result_src later.
1085 * This does limit this temp's use as a temporary for multi-instruction
1086 * sequences.
1087 */
1088 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1089
1090 emit(ir, OPCODE_SWZ, result_dst, src);
1091 this->result = result_src;
1092 }
1093
1094 void
1095 ir_to_mesa_visitor::visit(ir_expression *ir)
1096 {
1097 unsigned int operand;
1098 src_reg op[Elements(ir->operands)];
1099 src_reg result_src;
1100 dst_reg result_dst;
1101
1102 /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
1103 */
1104 if (ir->operation == ir_binop_add) {
1105 if (try_emit_mad(ir, 1))
1106 return;
1107 if (try_emit_mad(ir, 0))
1108 return;
1109 }
1110
1111 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1112 */
1113 if (ir->operation == ir_binop_logic_and) {
1114 if (try_emit_mad_for_and_not(ir, 1))
1115 return;
1116 if (try_emit_mad_for_and_not(ir, 0))
1117 return;
1118 }
1119
1120 if (try_emit_sat(ir))
1121 return;
1122
1123 if (ir->operation == ir_quadop_vector) {
1124 this->emit_swz(ir);
1125 return;
1126 }
1127
1128 for (operand = 0; operand < ir->get_num_operands(); operand++) {
1129 this->result.file = PROGRAM_UNDEFINED;
1130 ir->operands[operand]->accept(this);
1131 if (this->result.file == PROGRAM_UNDEFINED) {
1132 printf("Failed to get tree for expression operand:\n");
1133 ir->operands[operand]->print();
1134 printf("\n");
1135 exit(1);
1136 }
1137 op[operand] = this->result;
1138
1139 /* Matrix expression operands should have been broken down to vector
1140 * operations already.
1141 */
1142 assert(!ir->operands[operand]->type->is_matrix());
1143 }
1144
1145 int vector_elements = ir->operands[0]->type->vector_elements;
1146 if (ir->operands[1]) {
1147 vector_elements = MAX2(vector_elements,
1148 ir->operands[1]->type->vector_elements);
1149 }
1150
1151 this->result.file = PROGRAM_UNDEFINED;
1152
1153 /* Storage for our result. Ideally for an assignment we'd be using
1154 * the actual storage for the result here, instead.
1155 */
1156 result_src = get_temp(ir->type);
1157 /* convenience for the emit functions below. */
1158 result_dst = dst_reg(result_src);
1159 /* Limit writes to the channels that will be used by result_src later.
1160 * This does limit this temp's use as a temporary for multi-instruction
1161 * sequences.
1162 */
1163 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1164
1165 switch (ir->operation) {
1166 case ir_unop_logic_not:
1167 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
1168 * older GPUs implement SEQ using multiple instructions (i915 uses two
1169 * SGE instructions and a MUL instruction). Since our logic values are
1170 * 0.0 and 1.0, 1-x also implements !x.
1171 */
1172 op[0].negate = ~op[0].negate;
1173 emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0));
1174 break;
1175 case ir_unop_neg:
1176 op[0].negate = ~op[0].negate;
1177 result_src = op[0];
1178 break;
1179 case ir_unop_abs:
1180 emit(ir, OPCODE_ABS, result_dst, op[0]);
1181 break;
1182 case ir_unop_sign:
1183 emit(ir, OPCODE_SSG, result_dst, op[0]);
1184 break;
1185 case ir_unop_rcp:
1186 emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
1187 break;
1188
1189 case ir_unop_exp2:
1190 emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
1191 break;
1192 case ir_unop_exp:
1193 case ir_unop_log:
1194 assert(!"not reached: should be handled by ir_explog_to_explog2");
1195 break;
1196 case ir_unop_log2:
1197 emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
1198 break;
1199 case ir_unop_sin:
1200 emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
1201 break;
1202 case ir_unop_cos:
1203 emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
1204 break;
1205 case ir_unop_sin_reduced:
1206 emit_scs(ir, OPCODE_SIN, result_dst, op[0]);
1207 break;
1208 case ir_unop_cos_reduced:
1209 emit_scs(ir, OPCODE_COS, result_dst, op[0]);
1210 break;
1211
1212 case ir_unop_dFdx:
1213 emit(ir, OPCODE_DDX, result_dst, op[0]);
1214 break;
1215 case ir_unop_dFdy:
1216 emit(ir, OPCODE_DDY, result_dst, op[0]);
1217 break;
1218
1219 case ir_unop_noise: {
1220 const enum prog_opcode opcode =
1221 prog_opcode(OPCODE_NOISE1
1222 + (ir->operands[0]->type->vector_elements) - 1);
1223 assert((opcode >= OPCODE_NOISE1) && (opcode <= OPCODE_NOISE4));
1224
1225 emit(ir, opcode, result_dst, op[0]);
1226 break;
1227 }
1228
1229 case ir_binop_add:
1230 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1231 break;
1232 case ir_binop_sub:
1233 emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
1234 break;
1235
1236 case ir_binop_mul:
1237 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1238 break;
1239 case ir_binop_div:
1240 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1241 break;
1242 case ir_binop_mod:
1243 /* Floating point should be lowered by MOD_TO_FRACT in the compiler. */
1244 assert(ir->type->is_integer());
1245 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1246 break;
1247
1248 case ir_binop_less:
1249 emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1250 break;
1251 case ir_binop_greater:
1252 emit(ir, OPCODE_SGT, result_dst, op[0], op[1]);
1253 break;
1254 case ir_binop_lequal:
1255 emit(ir, OPCODE_SLE, result_dst, op[0], op[1]);
1256 break;
1257 case ir_binop_gequal:
1258 emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1259 break;
1260 case ir_binop_equal:
1261 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1262 break;
1263 case ir_binop_nequal:
1264 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1265 break;
1266 case ir_binop_all_equal:
1267 /* "==" operator producing a scalar boolean. */
1268 if (ir->operands[0]->type->is_vector() ||
1269 ir->operands[1]->type->is_vector()) {
1270 src_reg temp = get_temp(glsl_type::vec4_type);
1271 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1272
1273 /* After the dot-product, the value will be an integer on the
1274 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1275 */
1276 emit_dp(ir, result_dst, temp, temp, vector_elements);
1277
1278 /* Negating the result of the dot-product gives values on the range
1279 * [-4, 0]. Zero becomes 1.0, and negative values become zero. This
1280 * achieved using SGE.
1281 */
1282 src_reg sge_src = result_src;
1283 sge_src.negate = ~sge_src.negate;
1284 emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0));
1285 } else {
1286 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1287 }
1288 break;
1289 case ir_binop_any_nequal:
1290 /* "!=" operator producing a scalar boolean. */
1291 if (ir->operands[0]->type->is_vector() ||
1292 ir->operands[1]->type->is_vector()) {
1293 src_reg temp = get_temp(glsl_type::vec4_type);
1294 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1295
1296 /* After the dot-product, the value will be an integer on the
1297 * range [0,4]. Zero stays zero, and positive values become 1.0.
1298 */
1299 ir_to_mesa_instruction *const dp =
1300 emit_dp(ir, result_dst, temp, temp, vector_elements);
1301 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1302 /* The clamping to [0,1] can be done for free in the fragment
1303 * shader with a saturate.
1304 */
1305 dp->saturate = true;
1306 } else {
1307 /* Negating the result of the dot-product gives values on the range
1308 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1309 * achieved using SLT.
1310 */
1311 src_reg slt_src = result_src;
1312 slt_src.negate = ~slt_src.negate;
1313 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1314 }
1315 } else {
1316 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1317 }
1318 break;
1319
1320 case ir_unop_any: {
1321 assert(ir->operands[0]->type->is_vector());
1322
1323 /* After the dot-product, the value will be an integer on the
1324 * range [0,4]. Zero stays zero, and positive values become 1.0.
1325 */
1326 ir_to_mesa_instruction *const dp =
1327 emit_dp(ir, result_dst, op[0], op[0],
1328 ir->operands[0]->type->vector_elements);
1329 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1330 /* The clamping to [0,1] can be done for free in the fragment
1331 * shader with a saturate.
1332 */
1333 dp->saturate = true;
1334 } else {
1335 /* Negating the result of the dot-product gives values on the range
1336 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1337 * is achieved using SLT.
1338 */
1339 src_reg slt_src = result_src;
1340 slt_src.negate = ~slt_src.negate;
1341 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1342 }
1343 break;
1344 }
1345
1346 case ir_binop_logic_xor:
1347 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1348 break;
1349
1350 case ir_binop_logic_or: {
1351 /* After the addition, the value will be an integer on the
1352 * range [0,2]. Zero stays zero, and positive values become 1.0.
1353 */
1354 ir_to_mesa_instruction *add =
1355 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1356 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1357 /* The clamping to [0,1] can be done for free in the fragment
1358 * shader with a saturate.
1359 */
1360 add->saturate = true;
1361 } else {
1362 /* Negating the result of the addition gives values on the range
1363 * [-2, 0]. Zero stays zero, and negative values become 1.0. This
1364 * is achieved using SLT.
1365 */
1366 src_reg slt_src = result_src;
1367 slt_src.negate = ~slt_src.negate;
1368 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1369 }
1370 break;
1371 }
1372
1373 case ir_binop_logic_and:
1374 /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1375 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1376 break;
1377
1378 case ir_binop_dot:
1379 assert(ir->operands[0]->type->is_vector());
1380 assert(ir->operands[0]->type == ir->operands[1]->type);
1381 emit_dp(ir, result_dst, op[0], op[1],
1382 ir->operands[0]->type->vector_elements);
1383 break;
1384
1385 case ir_unop_sqrt:
1386 /* sqrt(x) = x * rsq(x). */
1387 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1388 emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
1389 /* For incoming channels <= 0, set the result to 0. */
1390 op[0].negate = ~op[0].negate;
1391 emit(ir, OPCODE_CMP, result_dst,
1392 op[0], result_src, src_reg_for_float(0.0));
1393 break;
1394 case ir_unop_rsq:
1395 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1396 break;
1397 case ir_unop_i2f:
1398 case ir_unop_u2f:
1399 case ir_unop_b2f:
1400 case ir_unop_b2i:
1401 case ir_unop_i2u:
1402 case ir_unop_u2i:
1403 /* Mesa IR lacks types, ints are stored as truncated floats. */
1404 result_src = op[0];
1405 break;
1406 case ir_unop_f2i:
1407 case ir_unop_f2u:
1408 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1409 break;
1410 case ir_unop_f2b:
1411 case ir_unop_i2b:
1412 emit(ir, OPCODE_SNE, result_dst,
1413 op[0], src_reg_for_float(0.0));
1414 break;
1415 case ir_unop_bitcast_f2i: // Ignore these 4, they can't happen here anyway
1416 case ir_unop_bitcast_f2u:
1417 case ir_unop_bitcast_i2f:
1418 case ir_unop_bitcast_u2f:
1419 break;
1420 case ir_unop_trunc:
1421 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1422 break;
1423 case ir_unop_ceil:
1424 op[0].negate = ~op[0].negate;
1425 emit(ir, OPCODE_FLR, result_dst, op[0]);
1426 result_src.negate = ~result_src.negate;
1427 break;
1428 case ir_unop_floor:
1429 emit(ir, OPCODE_FLR, result_dst, op[0]);
1430 break;
1431 case ir_unop_fract:
1432 emit(ir, OPCODE_FRC, result_dst, op[0]);
1433 break;
1434 case ir_unop_pack_snorm_2x16:
1435 case ir_unop_pack_snorm_4x8:
1436 case ir_unop_pack_unorm_2x16:
1437 case ir_unop_pack_unorm_4x8:
1438 case ir_unop_pack_half_2x16:
1439 case ir_unop_unpack_snorm_2x16:
1440 case ir_unop_unpack_snorm_4x8:
1441 case ir_unop_unpack_unorm_2x16:
1442 case ir_unop_unpack_unorm_4x8:
1443 case ir_unop_unpack_half_2x16:
1444 case ir_unop_unpack_half_2x16_split_x:
1445 case ir_unop_unpack_half_2x16_split_y:
1446 case ir_binop_pack_half_2x16_split:
1447 case ir_unop_bitfield_reverse:
1448 case ir_unop_bit_count:
1449 case ir_unop_find_msb:
1450 case ir_unop_find_lsb:
1451 assert(!"not supported");
1452 break;
1453 case ir_binop_min:
1454 emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
1455 break;
1456 case ir_binop_max:
1457 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1458 break;
1459 case ir_binop_pow:
1460 emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
1461 break;
1462
1463 /* GLSL 1.30 integer ops are unsupported in Mesa IR, but since
1464 * hardware backends have no way to avoid Mesa IR generation
1465 * even if they don't use it, we need to emit "something" and
1466 * continue.
1467 */
1468 case ir_binop_lshift:
1469 case ir_binop_rshift:
1470 case ir_binop_bit_and:
1471 case ir_binop_bit_xor:
1472 case ir_binop_bit_or:
1473 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1474 break;
1475
1476 case ir_unop_bit_not:
1477 case ir_unop_round_even:
1478 emit(ir, OPCODE_MOV, result_dst, op[0]);
1479 break;
1480
1481 case ir_binop_ubo_load:
1482 assert(!"not supported");
1483 break;
1484
1485 case ir_triop_lrp:
1486 /* ir_triop_lrp operands are (x, y, a) while
1487 * OPCODE_LRP operands are (a, y, x) to match ARB_fragment_program.
1488 */
1489 emit(ir, OPCODE_LRP, result_dst, op[2], op[1], op[0]);
1490 break;
1491
1492 case ir_binop_vector_extract:
1493 case ir_binop_bfm:
1494 case ir_triop_fma:
1495 case ir_triop_bfi:
1496 case ir_triop_bitfield_extract:
1497 case ir_triop_vector_insert:
1498 case ir_quadop_bitfield_insert:
1499 case ir_binop_ldexp:
1500 case ir_triop_csel:
1501 case ir_binop_carry:
1502 case ir_binop_borrow:
1503 case ir_binop_imul_high:
1504 assert(!"not supported");
1505 break;
1506
1507 case ir_quadop_vector:
1508 /* This operation should have already been handled.
1509 */
1510 assert(!"Should not get here.");
1511 break;
1512 }
1513
1514 this->result = result_src;
1515 }
1516
1517
1518 void
1519 ir_to_mesa_visitor::visit(ir_swizzle *ir)
1520 {
1521 src_reg src;
1522 int i;
1523 int swizzle[4];
1524
1525 /* Note that this is only swizzles in expressions, not those on the left
1526 * hand side of an assignment, which do write masking. See ir_assignment
1527 * for that.
1528 */
1529
1530 ir->val->accept(this);
1531 src = this->result;
1532 assert(src.file != PROGRAM_UNDEFINED);
1533
1534 for (i = 0; i < 4; i++) {
1535 if (i < ir->type->vector_elements) {
1536 switch (i) {
1537 case 0:
1538 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1539 break;
1540 case 1:
1541 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1542 break;
1543 case 2:
1544 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1545 break;
1546 case 3:
1547 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1548 break;
1549 }
1550 } else {
1551 /* If the type is smaller than a vec4, replicate the last
1552 * channel out.
1553 */
1554 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1555 }
1556 }
1557
1558 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1559
1560 this->result = src;
1561 }
1562
1563 void
1564 ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
1565 {
1566 variable_storage *entry = find_variable_storage(ir->var);
1567 ir_variable *var = ir->var;
1568
1569 if (!entry) {
1570 switch (var->mode) {
1571 case ir_var_uniform:
1572 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1573 var->location);
1574 this->variables.push_tail(entry);
1575 break;
1576 case ir_var_shader_in:
1577 /* The linker assigns locations for varyings and attributes,
1578 * including deprecated builtins (like gl_Color),
1579 * user-assigned generic attributes (glBindVertexLocation),
1580 * and user-defined varyings.
1581 */
1582 assert(var->location != -1);
1583 entry = new(mem_ctx) variable_storage(var,
1584 PROGRAM_INPUT,
1585 var->location);
1586 break;
1587 case ir_var_shader_out:
1588 assert(var->location != -1);
1589 entry = new(mem_ctx) variable_storage(var,
1590 PROGRAM_OUTPUT,
1591 var->location);
1592 break;
1593 case ir_var_system_value:
1594 entry = new(mem_ctx) variable_storage(var,
1595 PROGRAM_SYSTEM_VALUE,
1596 var->location);
1597 break;
1598 case ir_var_auto:
1599 case ir_var_temporary:
1600 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1601 this->next_temp);
1602 this->variables.push_tail(entry);
1603
1604 next_temp += type_size(var->type);
1605 break;
1606 }
1607
1608 if (!entry) {
1609 printf("Failed to make storage for %s\n", var->name);
1610 exit(1);
1611 }
1612 }
1613
1614 this->result = src_reg(entry->file, entry->index, var->type);
1615 }
1616
1617 void
1618 ir_to_mesa_visitor::visit(ir_dereference_array *ir)
1619 {
1620 ir_constant *index;
1621 src_reg src;
1622 int element_size = type_size(ir->type);
1623
1624 index = ir->array_index->constant_expression_value();
1625
1626 ir->array->accept(this);
1627 src = this->result;
1628
1629 if (index) {
1630 src.index += index->value.i[0] * element_size;
1631 } else {
1632 /* Variable index array dereference. It eats the "vec4" of the
1633 * base of the array and an index that offsets the Mesa register
1634 * index.
1635 */
1636 ir->array_index->accept(this);
1637
1638 src_reg index_reg;
1639
1640 if (element_size == 1) {
1641 index_reg = this->result;
1642 } else {
1643 index_reg = get_temp(glsl_type::float_type);
1644
1645 emit(ir, OPCODE_MUL, dst_reg(index_reg),
1646 this->result, src_reg_for_float(element_size));
1647 }
1648
1649 /* If there was already a relative address register involved, add the
1650 * new and the old together to get the new offset.
1651 */
1652 if (src.reladdr != NULL) {
1653 src_reg accum_reg = get_temp(glsl_type::float_type);
1654
1655 emit(ir, OPCODE_ADD, dst_reg(accum_reg),
1656 index_reg, *src.reladdr);
1657
1658 index_reg = accum_reg;
1659 }
1660
1661 src.reladdr = ralloc(mem_ctx, src_reg);
1662 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1663 }
1664
1665 /* If the type is smaller than a vec4, replicate the last channel out. */
1666 if (ir->type->is_scalar() || ir->type->is_vector())
1667 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1668 else
1669 src.swizzle = SWIZZLE_NOOP;
1670
1671 this->result = src;
1672 }
1673
1674 void
1675 ir_to_mesa_visitor::visit(ir_dereference_record *ir)
1676 {
1677 unsigned int i;
1678 const glsl_type *struct_type = ir->record->type;
1679 int offset = 0;
1680
1681 ir->record->accept(this);
1682
1683 for (i = 0; i < struct_type->length; i++) {
1684 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1685 break;
1686 offset += type_size(struct_type->fields.structure[i].type);
1687 }
1688
1689 /* If the type is smaller than a vec4, replicate the last channel out. */
1690 if (ir->type->is_scalar() || ir->type->is_vector())
1691 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1692 else
1693 this->result.swizzle = SWIZZLE_NOOP;
1694
1695 this->result.index += offset;
1696 }
1697
1698 /**
1699 * We want to be careful in assignment setup to hit the actual storage
1700 * instead of potentially using a temporary like we might with the
1701 * ir_dereference handler.
1702 */
1703 static dst_reg
1704 get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
1705 {
1706 /* The LHS must be a dereference. If the LHS is a variable indexed array
1707 * access of a vector, it must be separated into a series conditional moves
1708 * before reaching this point (see ir_vec_index_to_cond_assign).
1709 */
1710 assert(ir->as_dereference());
1711 ir_dereference_array *deref_array = ir->as_dereference_array();
1712 if (deref_array) {
1713 assert(!deref_array->array->type->is_vector());
1714 }
1715
1716 /* Use the rvalue deref handler for the most part. We'll ignore
1717 * swizzles in it and write swizzles using writemask, though.
1718 */
1719 ir->accept(v);
1720 return dst_reg(v->result);
1721 }
1722
1723 /**
1724 * Process the condition of a conditional assignment
1725 *
1726 * Examines the condition of a conditional assignment to generate the optimal
1727 * first operand of a \c CMP instruction. If the condition is a relational
1728 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1729 * used as the source for the \c CMP instruction. Otherwise the comparison
1730 * is processed to a boolean result, and the boolean result is used as the
1731 * operand to the CMP instruction.
1732 */
1733 bool
1734 ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
1735 {
1736 ir_rvalue *src_ir = ir;
1737 bool negate = true;
1738 bool switch_order = false;
1739
1740 ir_expression *const expr = ir->as_expression();
1741 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
1742 bool zero_on_left = false;
1743
1744 if (expr->operands[0]->is_zero()) {
1745 src_ir = expr->operands[1];
1746 zero_on_left = true;
1747 } else if (expr->operands[1]->is_zero()) {
1748 src_ir = expr->operands[0];
1749 zero_on_left = false;
1750 }
1751
1752 /* a is - 0 + - 0 +
1753 * (a < 0) T F F ( a < 0) T F F
1754 * (0 < a) F F T (-a < 0) F F T
1755 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
1756 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
1757 * (a > 0) F F T (-a < 0) F F T
1758 * (0 > a) T F F ( a < 0) T F F
1759 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
1760 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
1761 *
1762 * Note that exchanging the order of 0 and 'a' in the comparison simply
1763 * means that the value of 'a' should be negated.
1764 */
1765 if (src_ir != ir) {
1766 switch (expr->operation) {
1767 case ir_binop_less:
1768 switch_order = false;
1769 negate = zero_on_left;
1770 break;
1771
1772 case ir_binop_greater:
1773 switch_order = false;
1774 negate = !zero_on_left;
1775 break;
1776
1777 case ir_binop_lequal:
1778 switch_order = true;
1779 negate = !zero_on_left;
1780 break;
1781
1782 case ir_binop_gequal:
1783 switch_order = true;
1784 negate = zero_on_left;
1785 break;
1786
1787 default:
1788 /* This isn't the right kind of comparison afterall, so make sure
1789 * the whole condition is visited.
1790 */
1791 src_ir = ir;
1792 break;
1793 }
1794 }
1795 }
1796
1797 src_ir->accept(this);
1798
1799 /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1800 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
1801 * choose which value OPCODE_CMP produces without an extra instruction
1802 * computing the condition.
1803 */
1804 if (negate)
1805 this->result.negate = ~this->result.negate;
1806
1807 return switch_order;
1808 }
1809
1810 void
1811 ir_to_mesa_visitor::visit(ir_assignment *ir)
1812 {
1813 dst_reg l;
1814 src_reg r;
1815 int i;
1816
1817 ir->rhs->accept(this);
1818 r = this->result;
1819
1820 l = get_assignment_lhs(ir->lhs, this);
1821
1822 /* FINISHME: This should really set to the correct maximal writemask for each
1823 * FINISHME: component written (in the loops below). This case can only
1824 * FINISHME: occur for matrices, arrays, and structures.
1825 */
1826 if (ir->write_mask == 0) {
1827 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1828 l.writemask = WRITEMASK_XYZW;
1829 } else if (ir->lhs->type->is_scalar()) {
1830 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1831 * FINISHME: W component of fragment shader output zero, work correctly.
1832 */
1833 l.writemask = WRITEMASK_XYZW;
1834 } else {
1835 int swizzles[4];
1836 int first_enabled_chan = 0;
1837 int rhs_chan = 0;
1838
1839 assert(ir->lhs->type->is_vector());
1840 l.writemask = ir->write_mask;
1841
1842 for (int i = 0; i < 4; i++) {
1843 if (l.writemask & (1 << i)) {
1844 first_enabled_chan = GET_SWZ(r.swizzle, i);
1845 break;
1846 }
1847 }
1848
1849 /* Swizzle a small RHS vector into the channels being written.
1850 *
1851 * glsl ir treats write_mask as dictating how many channels are
1852 * present on the RHS while Mesa IR treats write_mask as just
1853 * showing which channels of the vec4 RHS get written.
1854 */
1855 for (int i = 0; i < 4; i++) {
1856 if (l.writemask & (1 << i))
1857 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1858 else
1859 swizzles[i] = first_enabled_chan;
1860 }
1861 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1862 swizzles[2], swizzles[3]);
1863 }
1864
1865 assert(l.file != PROGRAM_UNDEFINED);
1866 assert(r.file != PROGRAM_UNDEFINED);
1867
1868 if (ir->condition) {
1869 const bool switch_order = this->process_move_condition(ir->condition);
1870 src_reg condition = this->result;
1871
1872 for (i = 0; i < type_size(ir->lhs->type); i++) {
1873 if (switch_order) {
1874 emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
1875 } else {
1876 emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
1877 }
1878
1879 l.index++;
1880 r.index++;
1881 }
1882 } else {
1883 for (i = 0; i < type_size(ir->lhs->type); i++) {
1884 emit(ir, OPCODE_MOV, l, r);
1885 l.index++;
1886 r.index++;
1887 }
1888 }
1889 }
1890
1891
1892 void
1893 ir_to_mesa_visitor::visit(ir_constant *ir)
1894 {
1895 src_reg src;
1896 GLfloat stack_vals[4] = { 0 };
1897 GLfloat *values = stack_vals;
1898 unsigned int i;
1899
1900 /* Unfortunately, 4 floats is all we can get into
1901 * _mesa_add_unnamed_constant. So, make a temp to store an
1902 * aggregate constant and move each constant value into it. If we
1903 * get lucky, copy propagation will eliminate the extra moves.
1904 */
1905
1906 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
1907 src_reg temp_base = get_temp(ir->type);
1908 dst_reg temp = dst_reg(temp_base);
1909
1910 foreach_iter(exec_list_iterator, iter, ir->components) {
1911 ir_constant *field_value = (ir_constant *)iter.get();
1912 int size = type_size(field_value->type);
1913
1914 assert(size > 0);
1915
1916 field_value->accept(this);
1917 src = this->result;
1918
1919 for (i = 0; i < (unsigned int)size; i++) {
1920 emit(ir, OPCODE_MOV, temp, src);
1921
1922 src.index++;
1923 temp.index++;
1924 }
1925 }
1926 this->result = temp_base;
1927 return;
1928 }
1929
1930 if (ir->type->is_array()) {
1931 src_reg temp_base = get_temp(ir->type);
1932 dst_reg temp = dst_reg(temp_base);
1933 int size = type_size(ir->type->fields.array);
1934
1935 assert(size > 0);
1936
1937 for (i = 0; i < ir->type->length; i++) {
1938 ir->array_elements[i]->accept(this);
1939 src = this->result;
1940 for (int j = 0; j < size; j++) {
1941 emit(ir, OPCODE_MOV, temp, src);
1942
1943 src.index++;
1944 temp.index++;
1945 }
1946 }
1947 this->result = temp_base;
1948 return;
1949 }
1950
1951 if (ir->type->is_matrix()) {
1952 src_reg mat = get_temp(ir->type);
1953 dst_reg mat_column = dst_reg(mat);
1954
1955 for (i = 0; i < ir->type->matrix_columns; i++) {
1956 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
1957 values = &ir->value.f[i * ir->type->vector_elements];
1958
1959 src = src_reg(PROGRAM_CONSTANT, -1, NULL);
1960 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1961 (gl_constant_value *) values,
1962 ir->type->vector_elements,
1963 &src.swizzle);
1964 emit(ir, OPCODE_MOV, mat_column, src);
1965
1966 mat_column.index++;
1967 }
1968
1969 this->result = mat;
1970 return;
1971 }
1972
1973 src.file = PROGRAM_CONSTANT;
1974 switch (ir->type->base_type) {
1975 case GLSL_TYPE_FLOAT:
1976 values = &ir->value.f[0];
1977 break;
1978 case GLSL_TYPE_UINT:
1979 for (i = 0; i < ir->type->vector_elements; i++) {
1980 values[i] = ir->value.u[i];
1981 }
1982 break;
1983 case GLSL_TYPE_INT:
1984 for (i = 0; i < ir->type->vector_elements; i++) {
1985 values[i] = ir->value.i[i];
1986 }
1987 break;
1988 case GLSL_TYPE_BOOL:
1989 for (i = 0; i < ir->type->vector_elements; i++) {
1990 values[i] = ir->value.b[i];
1991 }
1992 break;
1993 default:
1994 assert(!"Non-float/uint/int/bool constant");
1995 }
1996
1997 this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
1998 this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1999 (gl_constant_value *) values,
2000 ir->type->vector_elements,
2001 &this->result.swizzle);
2002 }
2003
2004 void
2005 ir_to_mesa_visitor::visit(ir_call *ir)
2006 {
2007 assert(!"ir_to_mesa: All function calls should have been inlined by now.");
2008 }
2009
2010 void
2011 ir_to_mesa_visitor::visit(ir_texture *ir)
2012 {
2013 src_reg result_src, coord, lod_info, projector, dx, dy;
2014 dst_reg result_dst, coord_dst;
2015 ir_to_mesa_instruction *inst = NULL;
2016 prog_opcode opcode = OPCODE_NOP;
2017
2018 if (ir->op == ir_txs)
2019 this->result = src_reg_for_float(0.0);
2020 else
2021 ir->coordinate->accept(this);
2022
2023 /* Put our coords in a temp. We'll need to modify them for shadow,
2024 * projection, or LOD, so the only case we'd use it as is is if
2025 * we're doing plain old texturing. Mesa IR optimization should
2026 * handle cleaning up our mess in that case.
2027 */
2028 coord = get_temp(glsl_type::vec4_type);
2029 coord_dst = dst_reg(coord);
2030 emit(ir, OPCODE_MOV, coord_dst, this->result);
2031
2032 if (ir->projector) {
2033 ir->projector->accept(this);
2034 projector = this->result;
2035 }
2036
2037 /* Storage for our result. Ideally for an assignment we'd be using
2038 * the actual storage for the result here, instead.
2039 */
2040 result_src = get_temp(glsl_type::vec4_type);
2041 result_dst = dst_reg(result_src);
2042
2043 switch (ir->op) {
2044 case ir_tex:
2045 case ir_txs:
2046 opcode = OPCODE_TEX;
2047 break;
2048 case ir_txb:
2049 opcode = OPCODE_TXB;
2050 ir->lod_info.bias->accept(this);
2051 lod_info = this->result;
2052 break;
2053 case ir_txf:
2054 /* Pretend to be TXL so the sampler, coordinate, lod are available */
2055 case ir_txl:
2056 opcode = OPCODE_TXL;
2057 ir->lod_info.lod->accept(this);
2058 lod_info = this->result;
2059 break;
2060 case ir_txd:
2061 opcode = OPCODE_TXD;
2062 ir->lod_info.grad.dPdx->accept(this);
2063 dx = this->result;
2064 ir->lod_info.grad.dPdy->accept(this);
2065 dy = this->result;
2066 break;
2067 case ir_txf_ms:
2068 assert(!"Unexpected ir_txf_ms opcode");
2069 break;
2070 case ir_lod:
2071 assert(!"Unexpected ir_lod opcode");
2072 break;
2073 case ir_tg4:
2074 assert(!"Unexpected ir_tg4 opcode");
2075 break;
2076 case ir_query_levels:
2077 assert(!"Unexpected ir_query_levels opcode");
2078 break;
2079 }
2080
2081 const glsl_type *sampler_type = ir->sampler->type;
2082
2083 if (ir->projector) {
2084 if (opcode == OPCODE_TEX) {
2085 /* Slot the projector in as the last component of the coord. */
2086 coord_dst.writemask = WRITEMASK_W;
2087 emit(ir, OPCODE_MOV, coord_dst, projector);
2088 coord_dst.writemask = WRITEMASK_XYZW;
2089 opcode = OPCODE_TXP;
2090 } else {
2091 src_reg coord_w = coord;
2092 coord_w.swizzle = SWIZZLE_WWWW;
2093
2094 /* For the other TEX opcodes there's no projective version
2095 * since the last slot is taken up by lod info. Do the
2096 * projective divide now.
2097 */
2098 coord_dst.writemask = WRITEMASK_W;
2099 emit(ir, OPCODE_RCP, coord_dst, projector);
2100
2101 /* In the case where we have to project the coordinates "by hand,"
2102 * the shadow comparitor value must also be projected.
2103 */
2104 src_reg tmp_src = coord;
2105 if (ir->shadow_comparitor) {
2106 /* Slot the shadow value in as the second to last component of the
2107 * coord.
2108 */
2109 ir->shadow_comparitor->accept(this);
2110
2111 tmp_src = get_temp(glsl_type::vec4_type);
2112 dst_reg tmp_dst = dst_reg(tmp_src);
2113
2114 /* Projective division not allowed for array samplers. */
2115 assert(!sampler_type->sampler_array);
2116
2117 tmp_dst.writemask = WRITEMASK_Z;
2118 emit(ir, OPCODE_MOV, tmp_dst, this->result);
2119
2120 tmp_dst.writemask = WRITEMASK_XY;
2121 emit(ir, OPCODE_MOV, tmp_dst, coord);
2122 }
2123
2124 coord_dst.writemask = WRITEMASK_XYZ;
2125 emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);
2126
2127 coord_dst.writemask = WRITEMASK_XYZW;
2128 coord.swizzle = SWIZZLE_XYZW;
2129 }
2130 }
2131
2132 /* If projection is done and the opcode is not OPCODE_TXP, then the shadow
2133 * comparitor was put in the correct place (and projected) by the code,
2134 * above, that handles by-hand projection.
2135 */
2136 if (ir->shadow_comparitor && (!ir->projector || opcode == OPCODE_TXP)) {
2137 /* Slot the shadow value in as the second to last component of the
2138 * coord.
2139 */
2140 ir->shadow_comparitor->accept(this);
2141
2142 /* XXX This will need to be updated for cubemap array samplers. */
2143 if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2144 sampler_type->sampler_array) {
2145 coord_dst.writemask = WRITEMASK_W;
2146 } else {
2147 coord_dst.writemask = WRITEMASK_Z;
2148 }
2149
2150 emit(ir, OPCODE_MOV, coord_dst, this->result);
2151 coord_dst.writemask = WRITEMASK_XYZW;
2152 }
2153
2154 if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
2155 /* Mesa IR stores lod or lod bias in the last channel of the coords. */
2156 coord_dst.writemask = WRITEMASK_W;
2157 emit(ir, OPCODE_MOV, coord_dst, lod_info);
2158 coord_dst.writemask = WRITEMASK_XYZW;
2159 }
2160
2161 if (opcode == OPCODE_TXD)
2162 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2163 else
2164 inst = emit(ir, opcode, result_dst, coord);
2165
2166 if (ir->shadow_comparitor)
2167 inst->tex_shadow = GL_TRUE;
2168
2169 inst->sampler = _mesa_get_sampler_uniform_value(ir->sampler,
2170 this->shader_program,
2171 this->prog);
2172
2173 switch (sampler_type->sampler_dimensionality) {
2174 case GLSL_SAMPLER_DIM_1D:
2175 inst->tex_target = (sampler_type->sampler_array)
2176 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2177 break;
2178 case GLSL_SAMPLER_DIM_2D:
2179 inst->tex_target = (sampler_type->sampler_array)
2180 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2181 break;
2182 case GLSL_SAMPLER_DIM_3D:
2183 inst->tex_target = TEXTURE_3D_INDEX;
2184 break;
2185 case GLSL_SAMPLER_DIM_CUBE:
2186 inst->tex_target = TEXTURE_CUBE_INDEX;
2187 break;
2188 case GLSL_SAMPLER_DIM_RECT:
2189 inst->tex_target = TEXTURE_RECT_INDEX;
2190 break;
2191 case GLSL_SAMPLER_DIM_BUF:
2192 assert(!"FINISHME: Implement ARB_texture_buffer_object");
2193 break;
2194 case GLSL_SAMPLER_DIM_EXTERNAL:
2195 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2196 break;
2197 default:
2198 assert(!"Should not get here.");
2199 }
2200
2201 this->result = result_src;
2202 }
2203
2204 void
2205 ir_to_mesa_visitor::visit(ir_return *ir)
2206 {
2207 /* Non-void functions should have been inlined. We may still emit RETs
2208 * from main() unless the EmitNoMainReturn option is set.
2209 */
2210 assert(!ir->get_value());
2211 emit(ir, OPCODE_RET);
2212 }
2213
2214 void
2215 ir_to_mesa_visitor::visit(ir_discard *ir)
2216 {
2217 if (ir->condition) {
2218 ir->condition->accept(this);
2219 this->result.negate = ~this->result.negate;
2220 emit(ir, OPCODE_KIL, undef_dst, this->result);
2221 } else {
2222 emit(ir, OPCODE_KIL_NV);
2223 }
2224 }
2225
2226 void
2227 ir_to_mesa_visitor::visit(ir_if *ir)
2228 {
2229 ir_to_mesa_instruction *cond_inst, *if_inst;
2230 ir_to_mesa_instruction *prev_inst;
2231
2232 prev_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2233
2234 ir->condition->accept(this);
2235 assert(this->result.file != PROGRAM_UNDEFINED);
2236
2237 if (this->options->EmitCondCodes) {
2238 cond_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2239
2240 /* See if we actually generated any instruction for generating
2241 * the condition. If not, then cook up a move to a temp so we
2242 * have something to set cond_update on.
2243 */
2244 if (cond_inst == prev_inst) {
2245 src_reg temp = get_temp(glsl_type::bool_type);
2246 cond_inst = emit(ir->condition, OPCODE_MOV, dst_reg(temp), result);
2247 }
2248 cond_inst->cond_update = GL_TRUE;
2249
2250 if_inst = emit(ir->condition, OPCODE_IF);
2251 if_inst->dst.cond_mask = COND_NE;
2252 } else {
2253 if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);
2254 }
2255
2256 this->instructions.push_tail(if_inst);
2257
2258 visit_exec_list(&ir->then_instructions, this);
2259
2260 if (!ir->else_instructions.is_empty()) {
2261 emit(ir->condition, OPCODE_ELSE);
2262 visit_exec_list(&ir->else_instructions, this);
2263 }
2264
2265 emit(ir->condition, OPCODE_ENDIF);
2266 }
2267
2268 void
2269 ir_to_mesa_visitor::visit(ir_emit_vertex *ir)
2270 {
2271 assert(!"Geometry shaders not supported.");
2272 }
2273
2274 void
2275 ir_to_mesa_visitor::visit(ir_end_primitive *ir)
2276 {
2277 assert(!"Geometry shaders not supported.");
2278 }
2279
2280 ir_to_mesa_visitor::ir_to_mesa_visitor()
2281 {
2282 result.file = PROGRAM_UNDEFINED;
2283 next_temp = 1;
2284 next_signature_id = 1;
2285 current_function = NULL;
2286 mem_ctx = ralloc_context(NULL);
2287 }
2288
2289 ir_to_mesa_visitor::~ir_to_mesa_visitor()
2290 {
2291 ralloc_free(mem_ctx);
2292 }
2293
2294 static struct prog_src_register
2295 mesa_src_reg_from_ir_src_reg(src_reg reg)
2296 {
2297 struct prog_src_register mesa_reg;
2298
2299 mesa_reg.File = reg.file;
2300 assert(reg.index < (1 << INST_INDEX_BITS));
2301 mesa_reg.Index = reg.index;
2302 mesa_reg.Swizzle = reg.swizzle;
2303 mesa_reg.RelAddr = reg.reladdr != NULL;
2304 mesa_reg.Negate = reg.negate;
2305 mesa_reg.Abs = 0;
2306 mesa_reg.HasIndex2 = GL_FALSE;
2307 mesa_reg.RelAddr2 = 0;
2308 mesa_reg.Index2 = 0;
2309
2310 return mesa_reg;
2311 }
2312
2313 static void
2314 set_branchtargets(ir_to_mesa_visitor *v,
2315 struct prog_instruction *mesa_instructions,
2316 int num_instructions)
2317 {
2318 int if_count = 0, loop_count = 0;
2319 int *if_stack, *loop_stack;
2320 int if_stack_pos = 0, loop_stack_pos = 0;
2321 int i, j;
2322
2323 for (i = 0; i < num_instructions; i++) {
2324 switch (mesa_instructions[i].Opcode) {
2325 case OPCODE_IF:
2326 if_count++;
2327 break;
2328 case OPCODE_BGNLOOP:
2329 loop_count++;
2330 break;
2331 case OPCODE_BRK:
2332 case OPCODE_CONT:
2333 mesa_instructions[i].BranchTarget = -1;
2334 break;
2335 default:
2336 break;
2337 }
2338 }
2339
2340 if_stack = rzalloc_array(v->mem_ctx, int, if_count);
2341 loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);
2342
2343 for (i = 0; i < num_instructions; i++) {
2344 switch (mesa_instructions[i].Opcode) {
2345 case OPCODE_IF:
2346 if_stack[if_stack_pos] = i;
2347 if_stack_pos++;
2348 break;
2349 case OPCODE_ELSE:
2350 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2351 if_stack[if_stack_pos - 1] = i;
2352 break;
2353 case OPCODE_ENDIF:
2354 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2355 if_stack_pos--;
2356 break;
2357 case OPCODE_BGNLOOP:
2358 loop_stack[loop_stack_pos] = i;
2359 loop_stack_pos++;
2360 break;
2361 case OPCODE_ENDLOOP:
2362 loop_stack_pos--;
2363 /* Rewrite any breaks/conts at this nesting level (haven't
2364 * already had a BranchTarget assigned) to point to the end
2365 * of the loop.
2366 */
2367 for (j = loop_stack[loop_stack_pos]; j < i; j++) {
2368 if (mesa_instructions[j].Opcode == OPCODE_BRK ||
2369 mesa_instructions[j].Opcode == OPCODE_CONT) {
2370 if (mesa_instructions[j].BranchTarget == -1) {
2371 mesa_instructions[j].BranchTarget = i;
2372 }
2373 }
2374 }
2375 /* The loop ends point at each other. */
2376 mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
2377 mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
2378 break;
2379 case OPCODE_CAL:
2380 foreach_iter(exec_list_iterator, iter, v->function_signatures) {
2381 function_entry *entry = (function_entry *)iter.get();
2382
2383 if (entry->sig_id == mesa_instructions[i].BranchTarget) {
2384 mesa_instructions[i].BranchTarget = entry->inst;
2385 break;
2386 }
2387 }
2388 break;
2389 default:
2390 break;
2391 }
2392 }
2393 }
2394
2395 static void
2396 print_program(struct prog_instruction *mesa_instructions,
2397 ir_instruction **mesa_instruction_annotation,
2398 int num_instructions)
2399 {
2400 ir_instruction *last_ir = NULL;
2401 int i;
2402 int indent = 0;
2403
2404 for (i = 0; i < num_instructions; i++) {
2405 struct prog_instruction *mesa_inst = mesa_instructions + i;
2406 ir_instruction *ir = mesa_instruction_annotation[i];
2407
2408 fprintf(stdout, "%3d: ", i);
2409
2410 if (last_ir != ir && ir) {
2411 int j;
2412
2413 for (j = 0; j < indent; j++) {
2414 fprintf(stdout, " ");
2415 }
2416 ir->print();
2417 printf("\n");
2418 last_ir = ir;
2419
2420 fprintf(stdout, " "); /* line number spacing. */
2421 }
2422
2423 indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
2424 PROG_PRINT_DEBUG, NULL);
2425 }
2426 }
2427
2428 namespace {
2429
2430 class add_uniform_to_shader : public program_resource_visitor {
2431 public:
2432 add_uniform_to_shader(struct gl_shader_program *shader_program,
2433 struct gl_program_parameter_list *params,
2434 gl_shader_type shader_type)
2435 : shader_program(shader_program), params(params), idx(-1),
2436 shader_type(shader_type)
2437 {
2438 /* empty */
2439 }
2440
2441 void process(ir_variable *var)
2442 {
2443 this->idx = -1;
2444 this->program_resource_visitor::process(var);
2445
2446 var->location = this->idx;
2447 }
2448
2449 private:
2450 virtual void visit_field(const glsl_type *type, const char *name,
2451 bool row_major);
2452
2453 struct gl_shader_program *shader_program;
2454 struct gl_program_parameter_list *params;
2455 int idx;
2456 gl_shader_type shader_type;
2457 };
2458
2459 } /* anonymous namespace */
2460
2461 void
2462 add_uniform_to_shader::visit_field(const glsl_type *type, const char *name,
2463 bool row_major)
2464 {
2465 unsigned int size;
2466
2467 (void) row_major;
2468
2469 if (type->is_vector() || type->is_scalar()) {
2470 size = type->vector_elements;
2471 } else {
2472 size = type_size(type) * 4;
2473 }
2474
2475 gl_register_file file;
2476 if (type->is_sampler() ||
2477 (type->is_array() && type->fields.array->is_sampler())) {
2478 file = PROGRAM_SAMPLER;
2479 } else {
2480 file = PROGRAM_UNIFORM;
2481 }
2482
2483 int index = _mesa_lookup_parameter_index(params, -1, name);
2484 if (index < 0) {
2485 index = _mesa_add_parameter(params, file, name, size, type->gl_type,
2486 NULL, NULL);
2487
2488 /* Sampler uniform values are stored in prog->SamplerUnits,
2489 * and the entry in that array is selected by this index we
2490 * store in ParameterValues[].
2491 */
2492 if (file == PROGRAM_SAMPLER) {
2493 unsigned location;
2494 const bool found =
2495 this->shader_program->UniformHash->get(location,
2496 params->Parameters[index].Name);
2497 assert(found);
2498
2499 if (!found)
2500 return;
2501
2502 struct gl_uniform_storage *storage =
2503 &this->shader_program->UniformStorage[location];
2504
2505 assert(storage->sampler[shader_type].active);
2506
2507 for (unsigned int j = 0; j < size / 4; j++)
2508 params->ParameterValues[index + j][0].f =
2509 storage->sampler[shader_type].index + j;
2510 }
2511 }
2512
2513 /* The first part of the uniform that's processed determines the base
2514 * location of the whole uniform (for structures).
2515 */
2516 if (this->idx < 0)
2517 this->idx = index;
2518 }
2519
2520 /**
2521 * Generate the program parameters list for the user uniforms in a shader
2522 *
2523 * \param shader_program Linked shader program. This is only used to
2524 * emit possible link errors to the info log.
2525 * \param sh Shader whose uniforms are to be processed.
2526 * \param params Parameter list to be filled in.
2527 */
2528 void
2529 _mesa_generate_parameters_list_for_uniforms(struct gl_shader_program
2530 *shader_program,
2531 struct gl_shader *sh,
2532 struct gl_program_parameter_list
2533 *params)
2534 {
2535 add_uniform_to_shader add(shader_program, params,
2536 _mesa_shader_type_to_index(sh->Type));
2537
2538 foreach_list(node, sh->ir) {
2539 ir_variable *var = ((ir_instruction *) node)->as_variable();
2540
2541 if ((var == NULL) || (var->mode != ir_var_uniform)
2542 || var->is_in_uniform_block() || (strncmp(var->name, "gl_", 3) == 0))
2543 continue;
2544
2545 add.process(var);
2546 }
2547 }
2548
2549 void
2550 _mesa_associate_uniform_storage(struct gl_context *ctx,
2551 struct gl_shader_program *shader_program,
2552 struct gl_program_parameter_list *params)
2553 {
2554 /* After adding each uniform to the parameter list, connect the storage for
2555 * the parameter with the tracking structure used by the API for the
2556 * uniform.
2557 */
2558 unsigned last_location = unsigned(~0);
2559 for (unsigned i = 0; i < params->NumParameters; i++) {
2560 if (params->Parameters[i].Type != PROGRAM_UNIFORM)
2561 continue;
2562
2563 unsigned location;
2564 const bool found =
2565 shader_program->UniformHash->get(location, params->Parameters[i].Name);
2566 assert(found);
2567
2568 if (!found)
2569 continue;
2570
2571 if (location != last_location) {
2572 struct gl_uniform_storage *storage =
2573 &shader_program->UniformStorage[location];
2574 enum gl_uniform_driver_format format = uniform_native;
2575
2576 unsigned columns = 0;
2577 switch (storage->type->base_type) {
2578 case GLSL_TYPE_UINT:
2579 assert(ctx->Const.NativeIntegers);
2580 format = uniform_native;
2581 columns = 1;
2582 break;
2583 case GLSL_TYPE_INT:
2584 format =
2585 (ctx->Const.NativeIntegers) ? uniform_native : uniform_int_float;
2586 columns = 1;
2587 break;
2588 case GLSL_TYPE_FLOAT:
2589 format = uniform_native;
2590 columns = storage->type->matrix_columns;
2591 break;
2592 case GLSL_TYPE_BOOL:
2593 if (ctx->Const.NativeIntegers) {
2594 format = (ctx->Const.UniformBooleanTrue == 1)
2595 ? uniform_bool_int_0_1 : uniform_bool_int_0_not0;
2596 } else {
2597 format = uniform_bool_float;
2598 }
2599 columns = 1;
2600 break;
2601 case GLSL_TYPE_SAMPLER:
2602 format = uniform_native;
2603 columns = 1;
2604 break;
2605 case GLSL_TYPE_ATOMIC_UINT:
2606 case GLSL_TYPE_ARRAY:
2607 case GLSL_TYPE_VOID:
2608 case GLSL_TYPE_STRUCT:
2609 case GLSL_TYPE_ERROR:
2610 case GLSL_TYPE_INTERFACE:
2611 assert(!"Should not get here.");
2612 break;
2613 }
2614
2615 _mesa_uniform_attach_driver_storage(storage,
2616 4 * sizeof(float) * columns,
2617 4 * sizeof(float),
2618 format,
2619 &params->ParameterValues[i]);
2620
2621 /* After attaching the driver's storage to the uniform, propagate any
2622 * data from the linker's backing store. This will cause values from
2623 * initializers in the source code to be copied over.
2624 */
2625 _mesa_propagate_uniforms_to_driver_storage(storage,
2626 0,
2627 MAX2(1, storage->array_elements));
2628
2629 last_location = location;
2630 }
2631 }
2632 }
2633
2634 /*
2635 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
2636 * channels for copy propagation and updates following instructions to
2637 * use the original versions.
2638 *
2639 * The ir_to_mesa_visitor lazily produces code assuming that this pass
2640 * will occur. As an example, a TXP production before this pass:
2641 *
2642 * 0: MOV TEMP[1], INPUT[4].xyyy;
2643 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2644 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
2645 *
2646 * and after:
2647 *
2648 * 0: MOV TEMP[1], INPUT[4].xyyy;
2649 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2650 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
2651 *
2652 * which allows for dead code elimination on TEMP[1]'s writes.
2653 */
2654 void
2655 ir_to_mesa_visitor::copy_propagate(void)
2656 {
2657 ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
2658 ir_to_mesa_instruction *,
2659 this->next_temp * 4);
2660 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
2661 int level = 0;
2662
2663 foreach_iter(exec_list_iterator, iter, this->instructions) {
2664 ir_to_mesa_instruction *inst = (ir_to_mesa_instruction *)iter.get();
2665
2666 assert(inst->dst.file != PROGRAM_TEMPORARY
2667 || inst->dst.index < this->next_temp);
2668
2669 /* First, do any copy propagation possible into the src regs. */
2670 for (int r = 0; r < 3; r++) {
2671 ir_to_mesa_instruction *first = NULL;
2672 bool good = true;
2673 int acp_base = inst->src[r].index * 4;
2674
2675 if (inst->src[r].file != PROGRAM_TEMPORARY ||
2676 inst->src[r].reladdr)
2677 continue;
2678
2679 /* See if we can find entries in the ACP consisting of MOVs
2680 * from the same src register for all the swizzled channels
2681 * of this src register reference.
2682 */
2683 for (int i = 0; i < 4; i++) {
2684 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2685 ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];
2686
2687 if (!copy_chan) {
2688 good = false;
2689 break;
2690 }
2691
2692 assert(acp_level[acp_base + src_chan] <= level);
2693
2694 if (!first) {
2695 first = copy_chan;
2696 } else {
2697 if (first->src[0].file != copy_chan->src[0].file ||
2698 first->src[0].index != copy_chan->src[0].index) {
2699 good = false;
2700 break;
2701 }
2702 }
2703 }
2704
2705 if (good) {
2706 /* We've now validated that we can copy-propagate to
2707 * replace this src register reference. Do it.
2708 */
2709 inst->src[r].file = first->src[0].file;
2710 inst->src[r].index = first->src[0].index;
2711
2712 int swizzle = 0;
2713 for (int i = 0; i < 4; i++) {
2714 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2715 ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
2716 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
2717 (3 * i));
2718 }
2719 inst->src[r].swizzle = swizzle;
2720 }
2721 }
2722
2723 switch (inst->op) {
2724 case OPCODE_BGNLOOP:
2725 case OPCODE_ENDLOOP:
2726 /* End of a basic block, clear the ACP entirely. */
2727 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2728 break;
2729
2730 case OPCODE_IF:
2731 ++level;
2732 break;
2733
2734 case OPCODE_ENDIF:
2735 case OPCODE_ELSE:
2736 /* Clear all channels written inside the block from the ACP, but
2737 * leaving those that were not touched.
2738 */
2739 for (int r = 0; r < this->next_temp; r++) {
2740 for (int c = 0; c < 4; c++) {
2741 if (!acp[4 * r + c])
2742 continue;
2743
2744 if (acp_level[4 * r + c] >= level)
2745 acp[4 * r + c] = NULL;
2746 }
2747 }
2748 if (inst->op == OPCODE_ENDIF)
2749 --level;
2750 break;
2751
2752 default:
2753 /* Continuing the block, clear any written channels from
2754 * the ACP.
2755 */
2756 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
2757 /* Any temporary might be written, so no copy propagation
2758 * across this instruction.
2759 */
2760 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2761 } else if (inst->dst.file == PROGRAM_OUTPUT &&
2762 inst->dst.reladdr) {
2763 /* Any output might be written, so no copy propagation
2764 * from outputs across this instruction.
2765 */
2766 for (int r = 0; r < this->next_temp; r++) {
2767 for (int c = 0; c < 4; c++) {
2768 if (!acp[4 * r + c])
2769 continue;
2770
2771 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
2772 acp[4 * r + c] = NULL;
2773 }
2774 }
2775 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
2776 inst->dst.file == PROGRAM_OUTPUT) {
2777 /* Clear where it's used as dst. */
2778 if (inst->dst.file == PROGRAM_TEMPORARY) {
2779 for (int c = 0; c < 4; c++) {
2780 if (inst->dst.writemask & (1 << c)) {
2781 acp[4 * inst->dst.index + c] = NULL;
2782 }
2783 }
2784 }
2785
2786 /* Clear where it's used as src. */
2787 for (int r = 0; r < this->next_temp; r++) {
2788 for (int c = 0; c < 4; c++) {
2789 if (!acp[4 * r + c])
2790 continue;
2791
2792 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
2793
2794 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
2795 acp[4 * r + c]->src[0].index == inst->dst.index &&
2796 inst->dst.writemask & (1 << src_chan))
2797 {
2798 acp[4 * r + c] = NULL;
2799 }
2800 }
2801 }
2802 }
2803 break;
2804 }
2805
2806 /* If this is a copy, add it to the ACP. */
2807 if (inst->op == OPCODE_MOV &&
2808 inst->dst.file == PROGRAM_TEMPORARY &&
2809 !(inst->dst.file == inst->src[0].file &&
2810 inst->dst.index == inst->src[0].index) &&
2811 !inst->dst.reladdr &&
2812 !inst->saturate &&
2813 !inst->src[0].reladdr &&
2814 !inst->src[0].negate) {
2815 for (int i = 0; i < 4; i++) {
2816 if (inst->dst.writemask & (1 << i)) {
2817 acp[4 * inst->dst.index + i] = inst;
2818 acp_level[4 * inst->dst.index + i] = level;
2819 }
2820 }
2821 }
2822 }
2823
2824 ralloc_free(acp_level);
2825 ralloc_free(acp);
2826 }
2827
2828
2829 /**
2830 * Convert a shader's GLSL IR into a Mesa gl_program.
2831 */
2832 static struct gl_program *
2833 get_mesa_program(struct gl_context *ctx,
2834 struct gl_shader_program *shader_program,
2835 struct gl_shader *shader)
2836 {
2837 ir_to_mesa_visitor v;
2838 struct prog_instruction *mesa_instructions, *mesa_inst;
2839 ir_instruction **mesa_instruction_annotation;
2840 int i;
2841 struct gl_program *prog;
2842 GLenum target;
2843 const char *target_string = _mesa_glsl_shader_target_name(shader->Type);
2844 struct gl_shader_compiler_options *options =
2845 &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(shader->Type)];
2846
2847 switch (shader->Type) {
2848 case GL_VERTEX_SHADER:
2849 target = GL_VERTEX_PROGRAM_ARB;
2850 break;
2851 case GL_FRAGMENT_SHADER:
2852 target = GL_FRAGMENT_PROGRAM_ARB;
2853 break;
2854 case GL_GEOMETRY_SHADER:
2855 target = GL_GEOMETRY_PROGRAM_NV;
2856 break;
2857 default:
2858 assert(!"should not be reached");
2859 return NULL;
2860 }
2861
2862 validate_ir_tree(shader->ir);
2863
2864 prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
2865 if (!prog)
2866 return NULL;
2867 prog->Parameters = _mesa_new_parameter_list();
2868 v.ctx = ctx;
2869 v.prog = prog;
2870 v.shader_program = shader_program;
2871 v.options = options;
2872
2873 _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
2874 prog->Parameters);
2875
2876 /* Emit Mesa IR for main(). */
2877 visit_exec_list(shader->ir, &v);
2878 v.emit(NULL, OPCODE_END);
2879
2880 prog->NumTemporaries = v.next_temp;
2881
2882 int num_instructions = 0;
2883 foreach_iter(exec_list_iterator, iter, v.instructions) {
2884 num_instructions++;
2885 }
2886
2887 mesa_instructions =
2888 (struct prog_instruction *)calloc(num_instructions,
2889 sizeof(*mesa_instructions));
2890 mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
2891 num_instructions);
2892
2893 v.copy_propagate();
2894
2895 /* Convert ir_mesa_instructions into prog_instructions.
2896 */
2897 mesa_inst = mesa_instructions;
2898 i = 0;
2899 foreach_iter(exec_list_iterator, iter, v.instructions) {
2900 const ir_to_mesa_instruction *inst = (ir_to_mesa_instruction *)iter.get();
2901
2902 mesa_inst->Opcode = inst->op;
2903 mesa_inst->CondUpdate = inst->cond_update;
2904 if (inst->saturate)
2905 mesa_inst->SaturateMode = SATURATE_ZERO_ONE;
2906 mesa_inst->DstReg.File = inst->dst.file;
2907 mesa_inst->DstReg.Index = inst->dst.index;
2908 mesa_inst->DstReg.CondMask = inst->dst.cond_mask;
2909 mesa_inst->DstReg.WriteMask = inst->dst.writemask;
2910 mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
2911 mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
2912 mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
2913 mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
2914 mesa_inst->TexSrcUnit = inst->sampler;
2915 mesa_inst->TexSrcTarget = inst->tex_target;
2916 mesa_inst->TexShadow = inst->tex_shadow;
2917 mesa_instruction_annotation[i] = inst->ir;
2918
2919 /* Set IndirectRegisterFiles. */
2920 if (mesa_inst->DstReg.RelAddr)
2921 prog->IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;
2922
2923 /* Update program's bitmask of indirectly accessed register files */
2924 for (unsigned src = 0; src < 3; src++)
2925 if (mesa_inst->SrcReg[src].RelAddr)
2926 prog->IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;
2927
2928 switch (mesa_inst->Opcode) {
2929 case OPCODE_IF:
2930 if (options->MaxIfDepth == 0) {
2931 linker_warning(shader_program,
2932 "Couldn't flatten if-statement. "
2933 "This will likely result in software "
2934 "rasterization.\n");
2935 }
2936 break;
2937 case OPCODE_BGNLOOP:
2938 if (options->EmitNoLoops) {
2939 linker_warning(shader_program,
2940 "Couldn't unroll loop. "
2941 "This will likely result in software "
2942 "rasterization.\n");
2943 }
2944 break;
2945 case OPCODE_CONT:
2946 if (options->EmitNoCont) {
2947 linker_warning(shader_program,
2948 "Couldn't lower continue-statement. "
2949 "This will likely result in software "
2950 "rasterization.\n");
2951 }
2952 break;
2953 case OPCODE_ARL:
2954 prog->NumAddressRegs = 1;
2955 break;
2956 default:
2957 break;
2958 }
2959
2960 mesa_inst++;
2961 i++;
2962
2963 if (!shader_program->LinkStatus)
2964 break;
2965 }
2966
2967 if (!shader_program->LinkStatus) {
2968 goto fail_exit;
2969 }
2970
2971 set_branchtargets(&v, mesa_instructions, num_instructions);
2972
2973 if (ctx->Shader.Flags & GLSL_DUMP) {
2974 printf("\n");
2975 printf("GLSL IR for linked %s program %d:\n", target_string,
2976 shader_program->Name);
2977 _mesa_print_ir(shader->ir, NULL);
2978 printf("\n");
2979 printf("\n");
2980 printf("Mesa IR for linked %s program %d:\n", target_string,
2981 shader_program->Name);
2982 print_program(mesa_instructions, mesa_instruction_annotation,
2983 num_instructions);
2984 }
2985
2986 prog->Instructions = mesa_instructions;
2987 prog->NumInstructions = num_instructions;
2988
2989 /* Setting this to NULL prevents a possible double free in the fail_exit
2990 * path (far below).
2991 */
2992 mesa_instructions = NULL;
2993
2994 do_set_program_inouts(shader->ir, prog, shader->Type);
2995
2996 prog->SamplersUsed = shader->active_samplers;
2997 prog->ShadowSamplers = shader->shadow_samplers;
2998 _mesa_update_shader_textures_used(shader_program, prog);
2999
3000 /* Set the gl_FragDepth layout. */
3001 if (target == GL_FRAGMENT_PROGRAM_ARB) {
3002 struct gl_fragment_program *fp = (struct gl_fragment_program *)prog;
3003 fp->FragDepthLayout = shader_program->FragDepthLayout;
3004 }
3005
3006 _mesa_reference_program(ctx, &shader->Program, prog);
3007
3008 if ((ctx->Shader.Flags & GLSL_NO_OPT) == 0) {
3009 _mesa_optimize_program(ctx, prog);
3010 }
3011
3012 /* This has to be done last. Any operation that can cause
3013 * prog->ParameterValues to get reallocated (e.g., anything that adds a
3014 * program constant) has to happen before creating this linkage.
3015 */
3016 _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
3017 if (!shader_program->LinkStatus) {
3018 goto fail_exit;
3019 }
3020
3021 return prog;
3022
3023 fail_exit:
3024 free(mesa_instructions);
3025 _mesa_reference_program(ctx, &shader->Program, NULL);
3026 return NULL;
3027 }
3028
3029 extern "C" {
3030
3031 /**
3032 * Link a shader.
3033 * Called via ctx->Driver.LinkShader()
3034 * This actually involves converting GLSL IR into Mesa gl_programs with
3035 * code lowering and other optimizations.
3036 */
3037 GLboolean
3038 _mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3039 {
3040 assert(prog->LinkStatus);
3041
3042 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
3043 if (prog->_LinkedShaders[i] == NULL)
3044 continue;
3045
3046 bool progress;
3047 exec_list *ir = prog->_LinkedShaders[i]->ir;
3048 const struct gl_shader_compiler_options *options =
3049 &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(prog->_LinkedShaders[i]->Type)];
3050
3051 do {
3052 progress = false;
3053
3054 /* Lowering */
3055 do_mat_op_to_vec(ir);
3056 lower_instructions(ir, (MOD_TO_FRACT | DIV_TO_MUL_RCP | EXP_TO_EXP2
3057 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
3058 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
3059
3060 progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
3061
3062 progress = do_common_optimization(ir, true, true,
3063 options->MaxUnrollIterations,
3064 options)
3065 || progress;
3066
3067 progress = lower_quadop_vector(ir, true) || progress;
3068
3069 if (options->MaxIfDepth == 0)
3070 progress = lower_discard(ir) || progress;
3071
3072 progress = lower_if_to_cond_assign(ir, options->MaxIfDepth) || progress;
3073
3074 if (options->EmitNoNoise)
3075 progress = lower_noise(ir) || progress;
3076
3077 /* If there are forms of indirect addressing that the driver
3078 * cannot handle, perform the lowering pass.
3079 */
3080 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
3081 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
3082 progress =
3083 lower_variable_index_to_cond_assign(ir,
3084 options->EmitNoIndirectInput,
3085 options->EmitNoIndirectOutput,
3086 options->EmitNoIndirectTemp,
3087 options->EmitNoIndirectUniform)
3088 || progress;
3089
3090 progress = do_vec_index_to_cond_assign(ir) || progress;
3091 progress = lower_vector_insert(ir, true) || progress;
3092 } while (progress);
3093
3094 validate_ir_tree(ir);
3095 }
3096
3097 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
3098 struct gl_program *linked_prog;
3099
3100 if (prog->_LinkedShaders[i] == NULL)
3101 continue;
3102
3103 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
3104
3105 if (linked_prog) {
3106 _mesa_copy_linked_program_data((gl_shader_type) i, prog, linked_prog);
3107
3108 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
3109 linked_prog);
3110 if (!ctx->Driver.ProgramStringNotify(ctx,
3111 _mesa_program_index_to_target(i),
3112 linked_prog)) {
3113 return GL_FALSE;
3114 }
3115 }
3116
3117 _mesa_reference_program(ctx, &linked_prog, NULL);
3118 }
3119
3120 return prog->LinkStatus;
3121 }
3122
3123 /**
3124 * Link a GLSL shader program. Called via glLinkProgram().
3125 */
3126 void
3127 _mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3128 {
3129 unsigned int i;
3130
3131 _mesa_clear_shader_program_data(ctx, prog);
3132
3133 prog->LinkStatus = GL_TRUE;
3134
3135 for (i = 0; i < prog->NumShaders; i++) {
3136 if (!prog->Shaders[i]->CompileStatus) {
3137 linker_error(prog, "linking with uncompiled shader");
3138 }
3139 }
3140
3141 if (prog->LinkStatus) {
3142 link_shaders(ctx, prog);
3143 }
3144
3145 if (prog->LinkStatus) {
3146 if (!ctx->Driver.LinkShader(ctx, prog)) {
3147 prog->LinkStatus = GL_FALSE;
3148 }
3149 }
3150
3151 if (ctx->Shader.Flags & GLSL_DUMP) {
3152 if (!prog->LinkStatus) {
3153 printf("GLSL shader program %d failed to link\n", prog->Name);
3154 }
3155
3156 if (prog->InfoLog && prog->InfoLog[0] != 0) {
3157 printf("GLSL shader program %d info log:\n", prog->Name);
3158 printf("%s\n", prog->InfoLog);
3159 }
3160 }
3161 }
3162
3163 } /* extern "C" */