i965/blorp: Support blits between ARGB and XRGB formats.
[mesa.git] / src / mesa / program / ir_to_mesa.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
24 */
25
26 /**
27 * \file ir_to_mesa.cpp
28 *
29 * Translate GLSL IR to Mesa's gl_program representation.
30 */
31
32 #include <stdio.h>
33 #include "main/compiler.h"
34 #include "ir.h"
35 #include "ir_visitor.h"
36 #include "ir_print_visitor.h"
37 #include "ir_expression_flattening.h"
38 #include "ir_uniform.h"
39 #include "glsl_types.h"
40 #include "glsl_parser_extras.h"
41 #include "../glsl/program.h"
42 #include "ir_optimization.h"
43 #include "ast.h"
44 #include "linker.h"
45
46 #include "main/mtypes.h"
47 #include "main/shaderobj.h"
48 #include "program/hash_table.h"
49
50 extern "C" {
51 #include "main/shaderapi.h"
52 #include "main/uniforms.h"
53 #include "program/prog_instruction.h"
54 #include "program/prog_optimize.h"
55 #include "program/prog_print.h"
56 #include "program/program.h"
57 #include "program/prog_parameter.h"
58 #include "program/sampler.h"
59 }
60
61 class src_reg;
62 class dst_reg;
63
64 static int swizzle_for_size(int size);
65
66 /**
67 * This struct is a corresponding struct to Mesa prog_src_register, with
68 * wider fields.
69 */
70 class src_reg {
71 public:
72 src_reg(gl_register_file file, int index, const glsl_type *type)
73 {
74 this->file = file;
75 this->index = index;
76 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
77 this->swizzle = swizzle_for_size(type->vector_elements);
78 else
79 this->swizzle = SWIZZLE_XYZW;
80 this->negate = 0;
81 this->reladdr = NULL;
82 }
83
84 src_reg()
85 {
86 this->file = PROGRAM_UNDEFINED;
87 this->index = 0;
88 this->swizzle = 0;
89 this->negate = 0;
90 this->reladdr = NULL;
91 }
92
93 explicit src_reg(dst_reg reg);
94
95 gl_register_file file; /**< PROGRAM_* from Mesa */
96 int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */
97 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
98 int negate; /**< NEGATE_XYZW mask from mesa */
99 /** Register index should be offset by the integer in this reg. */
100 src_reg *reladdr;
101 };
102
103 class dst_reg {
104 public:
105 dst_reg(gl_register_file file, int writemask)
106 {
107 this->file = file;
108 this->index = 0;
109 this->writemask = writemask;
110 this->cond_mask = COND_TR;
111 this->reladdr = NULL;
112 }
113
114 dst_reg()
115 {
116 this->file = PROGRAM_UNDEFINED;
117 this->index = 0;
118 this->writemask = 0;
119 this->cond_mask = COND_TR;
120 this->reladdr = NULL;
121 }
122
123 explicit dst_reg(src_reg reg);
124
125 gl_register_file file; /**< PROGRAM_* from Mesa */
126 int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */
127 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
128 GLuint cond_mask:4;
129 /** Register index should be offset by the integer in this reg. */
130 src_reg *reladdr;
131 };
132
133 src_reg::src_reg(dst_reg reg)
134 {
135 this->file = reg.file;
136 this->index = reg.index;
137 this->swizzle = SWIZZLE_XYZW;
138 this->negate = 0;
139 this->reladdr = reg.reladdr;
140 }
141
142 dst_reg::dst_reg(src_reg reg)
143 {
144 this->file = reg.file;
145 this->index = reg.index;
146 this->writemask = WRITEMASK_XYZW;
147 this->cond_mask = COND_TR;
148 this->reladdr = reg.reladdr;
149 }
150
151 class ir_to_mesa_instruction : public exec_node {
152 public:
153 /* Callers of this ralloc-based new need not call delete. It's
154 * easier to just ralloc_free 'ctx' (or any of its ancestors). */
155 static void* operator new(size_t size, void *ctx)
156 {
157 void *node;
158
159 node = rzalloc_size(ctx, size);
160 assert(node != NULL);
161
162 return node;
163 }
164
165 enum prog_opcode op;
166 dst_reg dst;
167 src_reg src[3];
168 /** Pointer to the ir source this tree came from for debugging */
169 ir_instruction *ir;
170 GLboolean cond_update;
171 bool saturate;
172 int sampler; /**< sampler index */
173 int tex_target; /**< One of TEXTURE_*_INDEX */
174 GLboolean tex_shadow;
175 };
176
177 class variable_storage : public exec_node {
178 public:
179 variable_storage(ir_variable *var, gl_register_file file, int index)
180 : file(file), index(index), var(var)
181 {
182 /* empty */
183 }
184
185 gl_register_file file;
186 int index;
187 ir_variable *var; /* variable that maps to this, if any */
188 };
189
190 class function_entry : public exec_node {
191 public:
192 ir_function_signature *sig;
193
194 /**
195 * identifier of this function signature used by the program.
196 *
197 * At the point that Mesa instructions for function calls are
198 * generated, we don't know the address of the first instruction of
199 * the function body. So we make the BranchTarget that is called a
200 * small integer and rewrite them during set_branchtargets().
201 */
202 int sig_id;
203
204 /**
205 * Pointer to first instruction of the function body.
206 *
207 * Set during function body emits after main() is processed.
208 */
209 ir_to_mesa_instruction *bgn_inst;
210
211 /**
212 * Index of the first instruction of the function body in actual
213 * Mesa IR.
214 *
215 * Set after convertion from ir_to_mesa_instruction to prog_instruction.
216 */
217 int inst;
218
219 /** Storage for the return value. */
220 src_reg return_reg;
221 };
222
223 class ir_to_mesa_visitor : public ir_visitor {
224 public:
225 ir_to_mesa_visitor();
226 ~ir_to_mesa_visitor();
227
228 function_entry *current_function;
229
230 struct gl_context *ctx;
231 struct gl_program *prog;
232 struct gl_shader_program *shader_program;
233 struct gl_shader_compiler_options *options;
234
235 int next_temp;
236
237 variable_storage *find_variable_storage(ir_variable *var);
238
239 src_reg get_temp(const glsl_type *type);
240 void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);
241
242 src_reg src_reg_for_float(float val);
243
244 /**
245 * \name Visit methods
246 *
247 * As typical for the visitor pattern, there must be one \c visit method for
248 * each concrete subclass of \c ir_instruction. Virtual base classes within
249 * the hierarchy should not have \c visit methods.
250 */
251 /*@{*/
252 virtual void visit(ir_variable *);
253 virtual void visit(ir_loop *);
254 virtual void visit(ir_loop_jump *);
255 virtual void visit(ir_function_signature *);
256 virtual void visit(ir_function *);
257 virtual void visit(ir_expression *);
258 virtual void visit(ir_swizzle *);
259 virtual void visit(ir_dereference_variable *);
260 virtual void visit(ir_dereference_array *);
261 virtual void visit(ir_dereference_record *);
262 virtual void visit(ir_assignment *);
263 virtual void visit(ir_constant *);
264 virtual void visit(ir_call *);
265 virtual void visit(ir_return *);
266 virtual void visit(ir_discard *);
267 virtual void visit(ir_texture *);
268 virtual void visit(ir_if *);
269 /*@}*/
270
271 src_reg result;
272
273 /** List of variable_storage */
274 exec_list variables;
275
276 /** List of function_entry */
277 exec_list function_signatures;
278 int next_signature_id;
279
280 /** List of ir_to_mesa_instruction */
281 exec_list instructions;
282
283 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);
284
285 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
286 dst_reg dst, src_reg src0);
287
288 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
289 dst_reg dst, src_reg src0, src_reg src1);
290
291 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
292 dst_reg dst,
293 src_reg src0, src_reg src1, src_reg src2);
294
295 /**
296 * Emit the correct dot-product instruction for the type of arguments
297 */
298 ir_to_mesa_instruction * emit_dp(ir_instruction *ir,
299 dst_reg dst,
300 src_reg src0,
301 src_reg src1,
302 unsigned elements);
303
304 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
305 dst_reg dst, src_reg src0);
306
307 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
308 dst_reg dst, src_reg src0, src_reg src1);
309
310 void emit_scs(ir_instruction *ir, enum prog_opcode op,
311 dst_reg dst, const src_reg &src);
312
313 bool try_emit_mad(ir_expression *ir,
314 int mul_operand);
315 bool try_emit_mad_for_and_not(ir_expression *ir,
316 int mul_operand);
317 bool try_emit_sat(ir_expression *ir);
318
319 void emit_swz(ir_expression *ir);
320
321 bool process_move_condition(ir_rvalue *ir);
322
323 void copy_propagate(void);
324
325 void *mem_ctx;
326 };
327
328 static src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);
329
330 static dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);
331
332 static dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);
333
334 static int
335 swizzle_for_size(int size)
336 {
337 static const int size_swizzles[4] = {
338 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
339 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
340 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
341 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
342 };
343
344 assert((size >= 1) && (size <= 4));
345 return size_swizzles[size - 1];
346 }
347
348 ir_to_mesa_instruction *
349 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
350 dst_reg dst,
351 src_reg src0, src_reg src1, src_reg src2)
352 {
353 ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
354 int num_reladdr = 0;
355
356 /* If we have to do relative addressing, we want to load the ARL
357 * reg directly for one of the regs, and preload the other reladdr
358 * sources into temps.
359 */
360 num_reladdr += dst.reladdr != NULL;
361 num_reladdr += src0.reladdr != NULL;
362 num_reladdr += src1.reladdr != NULL;
363 num_reladdr += src2.reladdr != NULL;
364
365 reladdr_to_temp(ir, &src2, &num_reladdr);
366 reladdr_to_temp(ir, &src1, &num_reladdr);
367 reladdr_to_temp(ir, &src0, &num_reladdr);
368
369 if (dst.reladdr) {
370 emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
371 num_reladdr--;
372 }
373 assert(num_reladdr == 0);
374
375 inst->op = op;
376 inst->dst = dst;
377 inst->src[0] = src0;
378 inst->src[1] = src1;
379 inst->src[2] = src2;
380 inst->ir = ir;
381
382 this->instructions.push_tail(inst);
383
384 return inst;
385 }
386
387
388 ir_to_mesa_instruction *
389 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
390 dst_reg dst, src_reg src0, src_reg src1)
391 {
392 return emit(ir, op, dst, src0, src1, undef_src);
393 }
394
395 ir_to_mesa_instruction *
396 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
397 dst_reg dst, src_reg src0)
398 {
399 assert(dst.writemask != 0);
400 return emit(ir, op, dst, src0, undef_src, undef_src);
401 }
402
403 ir_to_mesa_instruction *
404 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
405 {
406 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
407 }
408
409 ir_to_mesa_instruction *
410 ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
411 dst_reg dst, src_reg src0, src_reg src1,
412 unsigned elements)
413 {
414 static const gl_inst_opcode dot_opcodes[] = {
415 OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
416 };
417
418 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
419 }
420
421 /**
422 * Emits Mesa scalar opcodes to produce unique answers across channels.
423 *
424 * Some Mesa opcodes are scalar-only, like ARB_fp/vp. The src X
425 * channel determines the result across all channels. So to do a vec4
426 * of this operation, we want to emit a scalar per source channel used
427 * to produce dest channels.
428 */
429 void
430 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
431 dst_reg dst,
432 src_reg orig_src0, src_reg orig_src1)
433 {
434 int i, j;
435 int done_mask = ~dst.writemask;
436
437 /* Mesa RCP is a scalar operation splatting results to all channels,
438 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
439 * dst channels.
440 */
441 for (i = 0; i < 4; i++) {
442 GLuint this_mask = (1 << i);
443 ir_to_mesa_instruction *inst;
444 src_reg src0 = orig_src0;
445 src_reg src1 = orig_src1;
446
447 if (done_mask & this_mask)
448 continue;
449
450 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
451 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
452 for (j = i + 1; j < 4; j++) {
453 /* If there is another enabled component in the destination that is
454 * derived from the same inputs, generate its value on this pass as
455 * well.
456 */
457 if (!(done_mask & (1 << j)) &&
458 GET_SWZ(src0.swizzle, j) == src0_swiz &&
459 GET_SWZ(src1.swizzle, j) == src1_swiz) {
460 this_mask |= (1 << j);
461 }
462 }
463 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
464 src0_swiz, src0_swiz);
465 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
466 src1_swiz, src1_swiz);
467
468 inst = emit(ir, op, dst, src0, src1);
469 inst->dst.writemask = this_mask;
470 done_mask |= this_mask;
471 }
472 }
473
474 void
475 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
476 dst_reg dst, src_reg src0)
477 {
478 src_reg undef = undef_src;
479
480 undef.swizzle = SWIZZLE_XXXX;
481
482 emit_scalar(ir, op, dst, src0, undef);
483 }
484
485 /**
486 * Emit an OPCODE_SCS instruction
487 *
488 * The \c SCS opcode functions a bit differently than the other Mesa (or
489 * ARB_fragment_program) opcodes. Instead of splatting its result across all
490 * four components of the destination, it writes one value to the \c x
491 * component and another value to the \c y component.
492 *
493 * \param ir IR instruction being processed
494 * \param op Either \c OPCODE_SIN or \c OPCODE_COS depending on which
495 * value is desired.
496 * \param dst Destination register
497 * \param src Source register
498 */
499 void
500 ir_to_mesa_visitor::emit_scs(ir_instruction *ir, enum prog_opcode op,
501 dst_reg dst,
502 const src_reg &src)
503 {
504 /* Vertex programs cannot use the SCS opcode.
505 */
506 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB) {
507 emit_scalar(ir, op, dst, src);
508 return;
509 }
510
511 const unsigned component = (op == OPCODE_SIN) ? 0 : 1;
512 const unsigned scs_mask = (1U << component);
513 int done_mask = ~dst.writemask;
514 src_reg tmp;
515
516 assert(op == OPCODE_SIN || op == OPCODE_COS);
517
518 /* If there are compnents in the destination that differ from the component
519 * that will be written by the SCS instrution, we'll need a temporary.
520 */
521 if (scs_mask != unsigned(dst.writemask)) {
522 tmp = get_temp(glsl_type::vec4_type);
523 }
524
525 for (unsigned i = 0; i < 4; i++) {
526 unsigned this_mask = (1U << i);
527 src_reg src0 = src;
528
529 if ((done_mask & this_mask) != 0)
530 continue;
531
532 /* The source swizzle specified which component of the source generates
533 * sine / cosine for the current component in the destination. The SCS
534 * instruction requires that this value be swizzle to the X component.
535 * Replace the current swizzle with a swizzle that puts the source in
536 * the X component.
537 */
538 unsigned src0_swiz = GET_SWZ(src.swizzle, i);
539
540 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
541 src0_swiz, src0_swiz);
542 for (unsigned j = i + 1; j < 4; j++) {
543 /* If there is another enabled component in the destination that is
544 * derived from the same inputs, generate its value on this pass as
545 * well.
546 */
547 if (!(done_mask & (1 << j)) &&
548 GET_SWZ(src0.swizzle, j) == src0_swiz) {
549 this_mask |= (1 << j);
550 }
551 }
552
553 if (this_mask != scs_mask) {
554 ir_to_mesa_instruction *inst;
555 dst_reg tmp_dst = dst_reg(tmp);
556
557 /* Emit the SCS instruction.
558 */
559 inst = emit(ir, OPCODE_SCS, tmp_dst, src0);
560 inst->dst.writemask = scs_mask;
561
562 /* Move the result of the SCS instruction to the desired location in
563 * the destination.
564 */
565 tmp.swizzle = MAKE_SWIZZLE4(component, component,
566 component, component);
567 inst = emit(ir, OPCODE_SCS, dst, tmp);
568 inst->dst.writemask = this_mask;
569 } else {
570 /* Emit the SCS instruction to write directly to the destination.
571 */
572 ir_to_mesa_instruction *inst = emit(ir, OPCODE_SCS, dst, src0);
573 inst->dst.writemask = scs_mask;
574 }
575
576 done_mask |= this_mask;
577 }
578 }
579
580 src_reg
581 ir_to_mesa_visitor::src_reg_for_float(float val)
582 {
583 src_reg src(PROGRAM_CONSTANT, -1, NULL);
584
585 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
586 (const gl_constant_value *)&val, 1, &src.swizzle);
587
588 return src;
589 }
590
591 static int
592 type_size(const struct glsl_type *type)
593 {
594 unsigned int i;
595 int size;
596
597 switch (type->base_type) {
598 case GLSL_TYPE_UINT:
599 case GLSL_TYPE_INT:
600 case GLSL_TYPE_FLOAT:
601 case GLSL_TYPE_BOOL:
602 if (type->is_matrix()) {
603 return type->matrix_columns;
604 } else {
605 /* Regardless of size of vector, it gets a vec4. This is bad
606 * packing for things like floats, but otherwise arrays become a
607 * mess. Hopefully a later pass over the code can pack scalars
608 * down if appropriate.
609 */
610 return 1;
611 }
612 case GLSL_TYPE_ARRAY:
613 assert(type->length > 0);
614 return type_size(type->fields.array) * type->length;
615 case GLSL_TYPE_STRUCT:
616 size = 0;
617 for (i = 0; i < type->length; i++) {
618 size += type_size(type->fields.structure[i].type);
619 }
620 return size;
621 case GLSL_TYPE_SAMPLER:
622 /* Samplers take up one slot in UNIFORMS[], but they're baked in
623 * at link time.
624 */
625 return 1;
626 case GLSL_TYPE_VOID:
627 case GLSL_TYPE_ERROR:
628 case GLSL_TYPE_INTERFACE:
629 assert(!"Invalid type in type_size");
630 break;
631 }
632
633 return 0;
634 }
635
636 /**
637 * In the initial pass of codegen, we assign temporary numbers to
638 * intermediate results. (not SSA -- variable assignments will reuse
639 * storage). Actual register allocation for the Mesa VM occurs in a
640 * pass over the Mesa IR later.
641 */
642 src_reg
643 ir_to_mesa_visitor::get_temp(const glsl_type *type)
644 {
645 src_reg src;
646
647 src.file = PROGRAM_TEMPORARY;
648 src.index = next_temp;
649 src.reladdr = NULL;
650 next_temp += type_size(type);
651
652 if (type->is_array() || type->is_record()) {
653 src.swizzle = SWIZZLE_NOOP;
654 } else {
655 src.swizzle = swizzle_for_size(type->vector_elements);
656 }
657 src.negate = 0;
658
659 return src;
660 }
661
662 variable_storage *
663 ir_to_mesa_visitor::find_variable_storage(ir_variable *var)
664 {
665
666 variable_storage *entry;
667
668 foreach_iter(exec_list_iterator, iter, this->variables) {
669 entry = (variable_storage *)iter.get();
670
671 if (entry->var == var)
672 return entry;
673 }
674
675 return NULL;
676 }
677
678 void
679 ir_to_mesa_visitor::visit(ir_variable *ir)
680 {
681 if (strcmp(ir->name, "gl_FragCoord") == 0) {
682 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
683
684 fp->OriginUpperLeft = ir->origin_upper_left;
685 fp->PixelCenterInteger = ir->pixel_center_integer;
686 }
687
688 if (ir->mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
689 unsigned int i;
690 const ir_state_slot *const slots = ir->state_slots;
691 assert(ir->state_slots != NULL);
692
693 /* Check if this statevar's setup in the STATE file exactly
694 * matches how we'll want to reference it as a
695 * struct/array/whatever. If not, then we need to move it into
696 * temporary storage and hope that it'll get copy-propagated
697 * out.
698 */
699 for (i = 0; i < ir->num_state_slots; i++) {
700 if (slots[i].swizzle != SWIZZLE_XYZW) {
701 break;
702 }
703 }
704
705 variable_storage *storage;
706 dst_reg dst;
707 if (i == ir->num_state_slots) {
708 /* We'll set the index later. */
709 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
710 this->variables.push_tail(storage);
711
712 dst = undef_dst;
713 } else {
714 /* The variable_storage constructor allocates slots based on the size
715 * of the type. However, this had better match the number of state
716 * elements that we're going to copy into the new temporary.
717 */
718 assert((int) ir->num_state_slots == type_size(ir->type));
719
720 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
721 this->next_temp);
722 this->variables.push_tail(storage);
723 this->next_temp += type_size(ir->type);
724
725 dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
726 }
727
728
729 for (unsigned int i = 0; i < ir->num_state_slots; i++) {
730 int index = _mesa_add_state_reference(this->prog->Parameters,
731 (gl_state_index *)slots[i].tokens);
732
733 if (storage->file == PROGRAM_STATE_VAR) {
734 if (storage->index == -1) {
735 storage->index = index;
736 } else {
737 assert(index == storage->index + (int)i);
738 }
739 } else {
740 src_reg src(PROGRAM_STATE_VAR, index, NULL);
741 src.swizzle = slots[i].swizzle;
742 emit(ir, OPCODE_MOV, dst, src);
743 /* even a float takes up a whole vec4 reg in a struct/array. */
744 dst.index++;
745 }
746 }
747
748 if (storage->file == PROGRAM_TEMPORARY &&
749 dst.index != storage->index + (int) ir->num_state_slots) {
750 linker_error(this->shader_program,
751 "failed to load builtin uniform `%s' "
752 "(%d/%d regs loaded)\n",
753 ir->name, dst.index - storage->index,
754 type_size(ir->type));
755 }
756 }
757 }
758
759 void
760 ir_to_mesa_visitor::visit(ir_loop *ir)
761 {
762 ir_dereference_variable *counter = NULL;
763
764 if (ir->counter != NULL)
765 counter = new(mem_ctx) ir_dereference_variable(ir->counter);
766
767 if (ir->from != NULL) {
768 assert(ir->counter != NULL);
769
770 ir_assignment *a =
771 new(mem_ctx) ir_assignment(counter, ir->from, NULL);
772
773 a->accept(this);
774 }
775
776 emit(NULL, OPCODE_BGNLOOP);
777
778 if (ir->to) {
779 ir_expression *e =
780 new(mem_ctx) ir_expression(ir->cmp, glsl_type::bool_type,
781 counter, ir->to);
782 ir_if *if_stmt = new(mem_ctx) ir_if(e);
783
784 ir_loop_jump *brk =
785 new(mem_ctx) ir_loop_jump(ir_loop_jump::jump_break);
786
787 if_stmt->then_instructions.push_tail(brk);
788
789 if_stmt->accept(this);
790 }
791
792 visit_exec_list(&ir->body_instructions, this);
793
794 if (ir->increment) {
795 ir_expression *e =
796 new(mem_ctx) ir_expression(ir_binop_add, counter->type,
797 counter, ir->increment);
798
799 ir_assignment *a =
800 new(mem_ctx) ir_assignment(counter, e, NULL);
801
802 a->accept(this);
803 }
804
805 emit(NULL, OPCODE_ENDLOOP);
806 }
807
808 void
809 ir_to_mesa_visitor::visit(ir_loop_jump *ir)
810 {
811 switch (ir->mode) {
812 case ir_loop_jump::jump_break:
813 emit(NULL, OPCODE_BRK);
814 break;
815 case ir_loop_jump::jump_continue:
816 emit(NULL, OPCODE_CONT);
817 break;
818 }
819 }
820
821
822 void
823 ir_to_mesa_visitor::visit(ir_function_signature *ir)
824 {
825 assert(0);
826 (void)ir;
827 }
828
829 void
830 ir_to_mesa_visitor::visit(ir_function *ir)
831 {
832 /* Ignore function bodies other than main() -- we shouldn't see calls to
833 * them since they should all be inlined before we get to ir_to_mesa.
834 */
835 if (strcmp(ir->name, "main") == 0) {
836 const ir_function_signature *sig;
837 exec_list empty;
838
839 sig = ir->matching_signature(&empty);
840
841 assert(sig);
842
843 foreach_iter(exec_list_iterator, iter, sig->body) {
844 ir_instruction *ir = (ir_instruction *)iter.get();
845
846 ir->accept(this);
847 }
848 }
849 }
850
851 bool
852 ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
853 {
854 int nonmul_operand = 1 - mul_operand;
855 src_reg a, b, c;
856
857 ir_expression *expr = ir->operands[mul_operand]->as_expression();
858 if (!expr || expr->operation != ir_binop_mul)
859 return false;
860
861 expr->operands[0]->accept(this);
862 a = this->result;
863 expr->operands[1]->accept(this);
864 b = this->result;
865 ir->operands[nonmul_operand]->accept(this);
866 c = this->result;
867
868 this->result = get_temp(ir->type);
869 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);
870
871 return true;
872 }
873
874 /**
875 * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b))
876 *
877 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
878 * implemented using multiplication, and logical-or is implemented using
879 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
880 * As result, the logical expression (a & !b) can be rewritten as:
881 *
882 * - a * !b
883 * - a * (1 - b)
884 * - (a * 1) - (a * b)
885 * - a + -(a * b)
886 * - a + (a * -b)
887 *
888 * This final expression can be implemented as a single MAD(a, -b, a)
889 * instruction.
890 */
891 bool
892 ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
893 {
894 const int other_operand = 1 - try_operand;
895 src_reg a, b;
896
897 ir_expression *expr = ir->operands[try_operand]->as_expression();
898 if (!expr || expr->operation != ir_unop_logic_not)
899 return false;
900
901 ir->operands[other_operand]->accept(this);
902 a = this->result;
903 expr->operands[0]->accept(this);
904 b = this->result;
905
906 b.negate = ~b.negate;
907
908 this->result = get_temp(ir->type);
909 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a);
910
911 return true;
912 }
913
914 bool
915 ir_to_mesa_visitor::try_emit_sat(ir_expression *ir)
916 {
917 /* Saturates were only introduced to vertex programs in
918 * NV_vertex_program3, so don't give them to drivers in the VP.
919 */
920 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB)
921 return false;
922
923 ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
924 if (!sat_src)
925 return false;
926
927 sat_src->accept(this);
928 src_reg src = this->result;
929
930 /* If we generated an expression instruction into a temporary in
931 * processing the saturate's operand, apply the saturate to that
932 * instruction. Otherwise, generate a MOV to do the saturate.
933 *
934 * Note that we have to be careful to only do this optimization if
935 * the instruction in question was what generated src->result. For
936 * example, ir_dereference_array might generate a MUL instruction
937 * to create the reladdr, and return us a src reg using that
938 * reladdr. That MUL result is not the value we're trying to
939 * saturate.
940 */
941 ir_expression *sat_src_expr = sat_src->as_expression();
942 ir_to_mesa_instruction *new_inst;
943 new_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
944 if (sat_src_expr && (sat_src_expr->operation == ir_binop_mul ||
945 sat_src_expr->operation == ir_binop_add ||
946 sat_src_expr->operation == ir_binop_dot)) {
947 new_inst->saturate = true;
948 } else {
949 this->result = get_temp(ir->type);
950 ir_to_mesa_instruction *inst;
951 inst = emit(ir, OPCODE_MOV, dst_reg(this->result), src);
952 inst->saturate = true;
953 }
954
955 return true;
956 }
957
958 void
959 ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
960 src_reg *reg, int *num_reladdr)
961 {
962 if (!reg->reladdr)
963 return;
964
965 emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);
966
967 if (*num_reladdr != 1) {
968 src_reg temp = get_temp(glsl_type::vec4_type);
969
970 emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
971 *reg = temp;
972 }
973
974 (*num_reladdr)--;
975 }
976
977 void
978 ir_to_mesa_visitor::emit_swz(ir_expression *ir)
979 {
980 /* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
981 * This means that each of the operands is either an immediate value of -1,
982 * 0, or 1, or is a component from one source register (possibly with
983 * negation).
984 */
985 uint8_t components[4] = { 0 };
986 bool negate[4] = { false };
987 ir_variable *var = NULL;
988
989 for (unsigned i = 0; i < ir->type->vector_elements; i++) {
990 ir_rvalue *op = ir->operands[i];
991
992 assert(op->type->is_scalar());
993
994 while (op != NULL) {
995 switch (op->ir_type) {
996 case ir_type_constant: {
997
998 assert(op->type->is_scalar());
999
1000 const ir_constant *const c = op->as_constant();
1001 if (c->is_one()) {
1002 components[i] = SWIZZLE_ONE;
1003 } else if (c->is_zero()) {
1004 components[i] = SWIZZLE_ZERO;
1005 } else if (c->is_negative_one()) {
1006 components[i] = SWIZZLE_ONE;
1007 negate[i] = true;
1008 } else {
1009 assert(!"SWZ constant must be 0.0 or 1.0.");
1010 }
1011
1012 op = NULL;
1013 break;
1014 }
1015
1016 case ir_type_dereference_variable: {
1017 ir_dereference_variable *const deref =
1018 (ir_dereference_variable *) op;
1019
1020 assert((var == NULL) || (deref->var == var));
1021 components[i] = SWIZZLE_X;
1022 var = deref->var;
1023 op = NULL;
1024 break;
1025 }
1026
1027 case ir_type_expression: {
1028 ir_expression *const expr = (ir_expression *) op;
1029
1030 assert(expr->operation == ir_unop_neg);
1031 negate[i] = true;
1032
1033 op = expr->operands[0];
1034 break;
1035 }
1036
1037 case ir_type_swizzle: {
1038 ir_swizzle *const swiz = (ir_swizzle *) op;
1039
1040 components[i] = swiz->mask.x;
1041 op = swiz->val;
1042 break;
1043 }
1044
1045 default:
1046 assert(!"Should not get here.");
1047 return;
1048 }
1049 }
1050 }
1051
1052 assert(var != NULL);
1053
1054 ir_dereference_variable *const deref =
1055 new(mem_ctx) ir_dereference_variable(var);
1056
1057 this->result.file = PROGRAM_UNDEFINED;
1058 deref->accept(this);
1059 if (this->result.file == PROGRAM_UNDEFINED) {
1060 ir_print_visitor v;
1061 printf("Failed to get tree for expression operand:\n");
1062 deref->accept(&v);
1063 exit(1);
1064 }
1065
1066 src_reg src;
1067
1068 src = this->result;
1069 src.swizzle = MAKE_SWIZZLE4(components[0],
1070 components[1],
1071 components[2],
1072 components[3]);
1073 src.negate = ((unsigned(negate[0]) << 0)
1074 | (unsigned(negate[1]) << 1)
1075 | (unsigned(negate[2]) << 2)
1076 | (unsigned(negate[3]) << 3));
1077
1078 /* Storage for our result. Ideally for an assignment we'd be using the
1079 * actual storage for the result here, instead.
1080 */
1081 const src_reg result_src = get_temp(ir->type);
1082 dst_reg result_dst = dst_reg(result_src);
1083
1084 /* Limit writes to the channels that will be used by result_src later.
1085 * This does limit this temp's use as a temporary for multi-instruction
1086 * sequences.
1087 */
1088 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1089
1090 emit(ir, OPCODE_SWZ, result_dst, src);
1091 this->result = result_src;
1092 }
1093
1094 void
1095 ir_to_mesa_visitor::visit(ir_expression *ir)
1096 {
1097 unsigned int operand;
1098 src_reg op[Elements(ir->operands)];
1099 src_reg result_src;
1100 dst_reg result_dst;
1101
1102 /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
1103 */
1104 if (ir->operation == ir_binop_add) {
1105 if (try_emit_mad(ir, 1))
1106 return;
1107 if (try_emit_mad(ir, 0))
1108 return;
1109 }
1110
1111 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1112 */
1113 if (ir->operation == ir_binop_logic_and) {
1114 if (try_emit_mad_for_and_not(ir, 1))
1115 return;
1116 if (try_emit_mad_for_and_not(ir, 0))
1117 return;
1118 }
1119
1120 if (try_emit_sat(ir))
1121 return;
1122
1123 if (ir->operation == ir_quadop_vector) {
1124 this->emit_swz(ir);
1125 return;
1126 }
1127
1128 for (operand = 0; operand < ir->get_num_operands(); operand++) {
1129 this->result.file = PROGRAM_UNDEFINED;
1130 ir->operands[operand]->accept(this);
1131 if (this->result.file == PROGRAM_UNDEFINED) {
1132 ir_print_visitor v;
1133 printf("Failed to get tree for expression operand:\n");
1134 ir->operands[operand]->accept(&v);
1135 exit(1);
1136 }
1137 op[operand] = this->result;
1138
1139 /* Matrix expression operands should have been broken down to vector
1140 * operations already.
1141 */
1142 assert(!ir->operands[operand]->type->is_matrix());
1143 }
1144
1145 int vector_elements = ir->operands[0]->type->vector_elements;
1146 if (ir->operands[1]) {
1147 vector_elements = MAX2(vector_elements,
1148 ir->operands[1]->type->vector_elements);
1149 }
1150
1151 this->result.file = PROGRAM_UNDEFINED;
1152
1153 /* Storage for our result. Ideally for an assignment we'd be using
1154 * the actual storage for the result here, instead.
1155 */
1156 result_src = get_temp(ir->type);
1157 /* convenience for the emit functions below. */
1158 result_dst = dst_reg(result_src);
1159 /* Limit writes to the channels that will be used by result_src later.
1160 * This does limit this temp's use as a temporary for multi-instruction
1161 * sequences.
1162 */
1163 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1164
1165 switch (ir->operation) {
1166 case ir_unop_logic_not:
1167 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
1168 * older GPUs implement SEQ using multiple instructions (i915 uses two
1169 * SGE instructions and a MUL instruction). Since our logic values are
1170 * 0.0 and 1.0, 1-x also implements !x.
1171 */
1172 op[0].negate = ~op[0].negate;
1173 emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0));
1174 break;
1175 case ir_unop_neg:
1176 op[0].negate = ~op[0].negate;
1177 result_src = op[0];
1178 break;
1179 case ir_unop_abs:
1180 emit(ir, OPCODE_ABS, result_dst, op[0]);
1181 break;
1182 case ir_unop_sign:
1183 emit(ir, OPCODE_SSG, result_dst, op[0]);
1184 break;
1185 case ir_unop_rcp:
1186 emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
1187 break;
1188
1189 case ir_unop_exp2:
1190 emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
1191 break;
1192 case ir_unop_exp:
1193 case ir_unop_log:
1194 assert(!"not reached: should be handled by ir_explog_to_explog2");
1195 break;
1196 case ir_unop_log2:
1197 emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
1198 break;
1199 case ir_unop_sin:
1200 emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
1201 break;
1202 case ir_unop_cos:
1203 emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
1204 break;
1205 case ir_unop_sin_reduced:
1206 emit_scs(ir, OPCODE_SIN, result_dst, op[0]);
1207 break;
1208 case ir_unop_cos_reduced:
1209 emit_scs(ir, OPCODE_COS, result_dst, op[0]);
1210 break;
1211
1212 case ir_unop_dFdx:
1213 emit(ir, OPCODE_DDX, result_dst, op[0]);
1214 break;
1215 case ir_unop_dFdy:
1216 emit(ir, OPCODE_DDY, result_dst, op[0]);
1217 break;
1218
1219 case ir_unop_noise: {
1220 const enum prog_opcode opcode =
1221 prog_opcode(OPCODE_NOISE1
1222 + (ir->operands[0]->type->vector_elements) - 1);
1223 assert((opcode >= OPCODE_NOISE1) && (opcode <= OPCODE_NOISE4));
1224
1225 emit(ir, opcode, result_dst, op[0]);
1226 break;
1227 }
1228
1229 case ir_binop_add:
1230 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1231 break;
1232 case ir_binop_sub:
1233 emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
1234 break;
1235
1236 case ir_binop_mul:
1237 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1238 break;
1239 case ir_binop_div:
1240 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1241 break;
1242 case ir_binop_mod:
1243 /* Floating point should be lowered by MOD_TO_FRACT in the compiler. */
1244 assert(ir->type->is_integer());
1245 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1246 break;
1247
1248 case ir_binop_less:
1249 emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1250 break;
1251 case ir_binop_greater:
1252 emit(ir, OPCODE_SGT, result_dst, op[0], op[1]);
1253 break;
1254 case ir_binop_lequal:
1255 emit(ir, OPCODE_SLE, result_dst, op[0], op[1]);
1256 break;
1257 case ir_binop_gequal:
1258 emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1259 break;
1260 case ir_binop_equal:
1261 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1262 break;
1263 case ir_binop_nequal:
1264 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1265 break;
1266 case ir_binop_all_equal:
1267 /* "==" operator producing a scalar boolean. */
1268 if (ir->operands[0]->type->is_vector() ||
1269 ir->operands[1]->type->is_vector()) {
1270 src_reg temp = get_temp(glsl_type::vec4_type);
1271 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1272
1273 /* After the dot-product, the value will be an integer on the
1274 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1275 */
1276 emit_dp(ir, result_dst, temp, temp, vector_elements);
1277
1278 /* Negating the result of the dot-product gives values on the range
1279 * [-4, 0]. Zero becomes 1.0, and negative values become zero. This
1280 * achieved using SGE.
1281 */
1282 src_reg sge_src = result_src;
1283 sge_src.negate = ~sge_src.negate;
1284 emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0));
1285 } else {
1286 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1287 }
1288 break;
1289 case ir_binop_any_nequal:
1290 /* "!=" operator producing a scalar boolean. */
1291 if (ir->operands[0]->type->is_vector() ||
1292 ir->operands[1]->type->is_vector()) {
1293 src_reg temp = get_temp(glsl_type::vec4_type);
1294 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1295
1296 /* After the dot-product, the value will be an integer on the
1297 * range [0,4]. Zero stays zero, and positive values become 1.0.
1298 */
1299 ir_to_mesa_instruction *const dp =
1300 emit_dp(ir, result_dst, temp, temp, vector_elements);
1301 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1302 /* The clamping to [0,1] can be done for free in the fragment
1303 * shader with a saturate.
1304 */
1305 dp->saturate = true;
1306 } else {
1307 /* Negating the result of the dot-product gives values on the range
1308 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1309 * achieved using SLT.
1310 */
1311 src_reg slt_src = result_src;
1312 slt_src.negate = ~slt_src.negate;
1313 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1314 }
1315 } else {
1316 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1317 }
1318 break;
1319
1320 case ir_unop_any: {
1321 assert(ir->operands[0]->type->is_vector());
1322
1323 /* After the dot-product, the value will be an integer on the
1324 * range [0,4]. Zero stays zero, and positive values become 1.0.
1325 */
1326 ir_to_mesa_instruction *const dp =
1327 emit_dp(ir, result_dst, op[0], op[0],
1328 ir->operands[0]->type->vector_elements);
1329 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1330 /* The clamping to [0,1] can be done for free in the fragment
1331 * shader with a saturate.
1332 */
1333 dp->saturate = true;
1334 } else {
1335 /* Negating the result of the dot-product gives values on the range
1336 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1337 * is achieved using SLT.
1338 */
1339 src_reg slt_src = result_src;
1340 slt_src.negate = ~slt_src.negate;
1341 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1342 }
1343 break;
1344 }
1345
1346 case ir_binop_logic_xor:
1347 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1348 break;
1349
1350 case ir_binop_logic_or: {
1351 /* After the addition, the value will be an integer on the
1352 * range [0,2]. Zero stays zero, and positive values become 1.0.
1353 */
1354 ir_to_mesa_instruction *add =
1355 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1356 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1357 /* The clamping to [0,1] can be done for free in the fragment
1358 * shader with a saturate.
1359 */
1360 add->saturate = true;
1361 } else {
1362 /* Negating the result of the addition gives values on the range
1363 * [-2, 0]. Zero stays zero, and negative values become 1.0. This
1364 * is achieved using SLT.
1365 */
1366 src_reg slt_src = result_src;
1367 slt_src.negate = ~slt_src.negate;
1368 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1369 }
1370 break;
1371 }
1372
1373 case ir_binop_logic_and:
1374 /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1375 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1376 break;
1377
1378 case ir_binop_dot:
1379 assert(ir->operands[0]->type->is_vector());
1380 assert(ir->operands[0]->type == ir->operands[1]->type);
1381 emit_dp(ir, result_dst, op[0], op[1],
1382 ir->operands[0]->type->vector_elements);
1383 break;
1384
1385 case ir_unop_sqrt:
1386 /* sqrt(x) = x * rsq(x). */
1387 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1388 emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
1389 /* For incoming channels <= 0, set the result to 0. */
1390 op[0].negate = ~op[0].negate;
1391 emit(ir, OPCODE_CMP, result_dst,
1392 op[0], result_src, src_reg_for_float(0.0));
1393 break;
1394 case ir_unop_rsq:
1395 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1396 break;
1397 case ir_unop_i2f:
1398 case ir_unop_u2f:
1399 case ir_unop_b2f:
1400 case ir_unop_b2i:
1401 case ir_unop_i2u:
1402 case ir_unop_u2i:
1403 /* Mesa IR lacks types, ints are stored as truncated floats. */
1404 result_src = op[0];
1405 break;
1406 case ir_unop_f2i:
1407 case ir_unop_f2u:
1408 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1409 break;
1410 case ir_unop_f2b:
1411 case ir_unop_i2b:
1412 emit(ir, OPCODE_SNE, result_dst,
1413 op[0], src_reg_for_float(0.0));
1414 break;
1415 case ir_unop_bitcast_f2i: // Ignore these 4, they can't happen here anyway
1416 case ir_unop_bitcast_f2u:
1417 case ir_unop_bitcast_i2f:
1418 case ir_unop_bitcast_u2f:
1419 break;
1420 case ir_unop_trunc:
1421 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1422 break;
1423 case ir_unop_ceil:
1424 op[0].negate = ~op[0].negate;
1425 emit(ir, OPCODE_FLR, result_dst, op[0]);
1426 result_src.negate = ~result_src.negate;
1427 break;
1428 case ir_unop_floor:
1429 emit(ir, OPCODE_FLR, result_dst, op[0]);
1430 break;
1431 case ir_unop_fract:
1432 emit(ir, OPCODE_FRC, result_dst, op[0]);
1433 break;
1434 case ir_unop_pack_snorm_2x16:
1435 case ir_unop_pack_snorm_4x8:
1436 case ir_unop_pack_unorm_2x16:
1437 case ir_unop_pack_unorm_4x8:
1438 case ir_unop_pack_half_2x16:
1439 case ir_unop_unpack_snorm_2x16:
1440 case ir_unop_unpack_snorm_4x8:
1441 case ir_unop_unpack_unorm_2x16:
1442 case ir_unop_unpack_unorm_4x8:
1443 case ir_unop_unpack_half_2x16:
1444 case ir_unop_unpack_half_2x16_split_x:
1445 case ir_unop_unpack_half_2x16_split_y:
1446 case ir_binop_pack_half_2x16_split:
1447 assert(!"not supported");
1448 break;
1449 case ir_binop_min:
1450 emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
1451 break;
1452 case ir_binop_max:
1453 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1454 break;
1455 case ir_binop_pow:
1456 emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
1457 break;
1458
1459 /* GLSL 1.30 integer ops are unsupported in Mesa IR, but since
1460 * hardware backends have no way to avoid Mesa IR generation
1461 * even if they don't use it, we need to emit "something" and
1462 * continue.
1463 */
1464 case ir_binop_lshift:
1465 case ir_binop_rshift:
1466 case ir_binop_bit_and:
1467 case ir_binop_bit_xor:
1468 case ir_binop_bit_or:
1469 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1470 break;
1471
1472 case ir_unop_bit_not:
1473 case ir_unop_round_even:
1474 emit(ir, OPCODE_MOV, result_dst, op[0]);
1475 break;
1476
1477 case ir_binop_ubo_load:
1478 assert(!"not supported");
1479 break;
1480
1481 case ir_quadop_vector:
1482 /* This operation should have already been handled.
1483 */
1484 assert(!"Should not get here.");
1485 break;
1486 }
1487
1488 this->result = result_src;
1489 }
1490
1491
1492 void
1493 ir_to_mesa_visitor::visit(ir_swizzle *ir)
1494 {
1495 src_reg src;
1496 int i;
1497 int swizzle[4];
1498
1499 /* Note that this is only swizzles in expressions, not those on the left
1500 * hand side of an assignment, which do write masking. See ir_assignment
1501 * for that.
1502 */
1503
1504 ir->val->accept(this);
1505 src = this->result;
1506 assert(src.file != PROGRAM_UNDEFINED);
1507
1508 for (i = 0; i < 4; i++) {
1509 if (i < ir->type->vector_elements) {
1510 switch (i) {
1511 case 0:
1512 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1513 break;
1514 case 1:
1515 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1516 break;
1517 case 2:
1518 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1519 break;
1520 case 3:
1521 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1522 break;
1523 }
1524 } else {
1525 /* If the type is smaller than a vec4, replicate the last
1526 * channel out.
1527 */
1528 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1529 }
1530 }
1531
1532 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1533
1534 this->result = src;
1535 }
1536
1537 void
1538 ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
1539 {
1540 variable_storage *entry = find_variable_storage(ir->var);
1541 ir_variable *var = ir->var;
1542
1543 if (!entry) {
1544 switch (var->mode) {
1545 case ir_var_uniform:
1546 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1547 var->location);
1548 this->variables.push_tail(entry);
1549 break;
1550 case ir_var_shader_in:
1551 /* The linker assigns locations for varyings and attributes,
1552 * including deprecated builtins (like gl_Color),
1553 * user-assigned generic attributes (glBindVertexLocation),
1554 * and user-defined varyings.
1555 */
1556 assert(var->location != -1);
1557 entry = new(mem_ctx) variable_storage(var,
1558 PROGRAM_INPUT,
1559 var->location);
1560 break;
1561 case ir_var_shader_out:
1562 assert(var->location != -1);
1563 entry = new(mem_ctx) variable_storage(var,
1564 PROGRAM_OUTPUT,
1565 var->location);
1566 break;
1567 case ir_var_system_value:
1568 entry = new(mem_ctx) variable_storage(var,
1569 PROGRAM_SYSTEM_VALUE,
1570 var->location);
1571 break;
1572 case ir_var_auto:
1573 case ir_var_temporary:
1574 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1575 this->next_temp);
1576 this->variables.push_tail(entry);
1577
1578 next_temp += type_size(var->type);
1579 break;
1580 }
1581
1582 if (!entry) {
1583 printf("Failed to make storage for %s\n", var->name);
1584 exit(1);
1585 }
1586 }
1587
1588 this->result = src_reg(entry->file, entry->index, var->type);
1589 }
1590
1591 void
1592 ir_to_mesa_visitor::visit(ir_dereference_array *ir)
1593 {
1594 ir_constant *index;
1595 src_reg src;
1596 int element_size = type_size(ir->type);
1597
1598 index = ir->array_index->constant_expression_value();
1599
1600 ir->array->accept(this);
1601 src = this->result;
1602
1603 if (index) {
1604 src.index += index->value.i[0] * element_size;
1605 } else {
1606 /* Variable index array dereference. It eats the "vec4" of the
1607 * base of the array and an index that offsets the Mesa register
1608 * index.
1609 */
1610 ir->array_index->accept(this);
1611
1612 src_reg index_reg;
1613
1614 if (element_size == 1) {
1615 index_reg = this->result;
1616 } else {
1617 index_reg = get_temp(glsl_type::float_type);
1618
1619 emit(ir, OPCODE_MUL, dst_reg(index_reg),
1620 this->result, src_reg_for_float(element_size));
1621 }
1622
1623 /* If there was already a relative address register involved, add the
1624 * new and the old together to get the new offset.
1625 */
1626 if (src.reladdr != NULL) {
1627 src_reg accum_reg = get_temp(glsl_type::float_type);
1628
1629 emit(ir, OPCODE_ADD, dst_reg(accum_reg),
1630 index_reg, *src.reladdr);
1631
1632 index_reg = accum_reg;
1633 }
1634
1635 src.reladdr = ralloc(mem_ctx, src_reg);
1636 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1637 }
1638
1639 /* If the type is smaller than a vec4, replicate the last channel out. */
1640 if (ir->type->is_scalar() || ir->type->is_vector())
1641 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1642 else
1643 src.swizzle = SWIZZLE_NOOP;
1644
1645 this->result = src;
1646 }
1647
1648 void
1649 ir_to_mesa_visitor::visit(ir_dereference_record *ir)
1650 {
1651 unsigned int i;
1652 const glsl_type *struct_type = ir->record->type;
1653 int offset = 0;
1654
1655 ir->record->accept(this);
1656
1657 for (i = 0; i < struct_type->length; i++) {
1658 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1659 break;
1660 offset += type_size(struct_type->fields.structure[i].type);
1661 }
1662
1663 /* If the type is smaller than a vec4, replicate the last channel out. */
1664 if (ir->type->is_scalar() || ir->type->is_vector())
1665 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1666 else
1667 this->result.swizzle = SWIZZLE_NOOP;
1668
1669 this->result.index += offset;
1670 }
1671
1672 /**
1673 * We want to be careful in assignment setup to hit the actual storage
1674 * instead of potentially using a temporary like we might with the
1675 * ir_dereference handler.
1676 */
1677 static dst_reg
1678 get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
1679 {
1680 /* The LHS must be a dereference. If the LHS is a variable indexed array
1681 * access of a vector, it must be separated into a series conditional moves
1682 * before reaching this point (see ir_vec_index_to_cond_assign).
1683 */
1684 assert(ir->as_dereference());
1685 ir_dereference_array *deref_array = ir->as_dereference_array();
1686 if (deref_array) {
1687 assert(!deref_array->array->type->is_vector());
1688 }
1689
1690 /* Use the rvalue deref handler for the most part. We'll ignore
1691 * swizzles in it and write swizzles using writemask, though.
1692 */
1693 ir->accept(v);
1694 return dst_reg(v->result);
1695 }
1696
1697 /**
1698 * Process the condition of a conditional assignment
1699 *
1700 * Examines the condition of a conditional assignment to generate the optimal
1701 * first operand of a \c CMP instruction. If the condition is a relational
1702 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1703 * used as the source for the \c CMP instruction. Otherwise the comparison
1704 * is processed to a boolean result, and the boolean result is used as the
1705 * operand to the CMP instruction.
1706 */
1707 bool
1708 ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
1709 {
1710 ir_rvalue *src_ir = ir;
1711 bool negate = true;
1712 bool switch_order = false;
1713
1714 ir_expression *const expr = ir->as_expression();
1715 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
1716 bool zero_on_left = false;
1717
1718 if (expr->operands[0]->is_zero()) {
1719 src_ir = expr->operands[1];
1720 zero_on_left = true;
1721 } else if (expr->operands[1]->is_zero()) {
1722 src_ir = expr->operands[0];
1723 zero_on_left = false;
1724 }
1725
1726 /* a is - 0 + - 0 +
1727 * (a < 0) T F F ( a < 0) T F F
1728 * (0 < a) F F T (-a < 0) F F T
1729 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
1730 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
1731 * (a > 0) F F T (-a < 0) F F T
1732 * (0 > a) T F F ( a < 0) T F F
1733 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
1734 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
1735 *
1736 * Note that exchanging the order of 0 and 'a' in the comparison simply
1737 * means that the value of 'a' should be negated.
1738 */
1739 if (src_ir != ir) {
1740 switch (expr->operation) {
1741 case ir_binop_less:
1742 switch_order = false;
1743 negate = zero_on_left;
1744 break;
1745
1746 case ir_binop_greater:
1747 switch_order = false;
1748 negate = !zero_on_left;
1749 break;
1750
1751 case ir_binop_lequal:
1752 switch_order = true;
1753 negate = !zero_on_left;
1754 break;
1755
1756 case ir_binop_gequal:
1757 switch_order = true;
1758 negate = zero_on_left;
1759 break;
1760
1761 default:
1762 /* This isn't the right kind of comparison afterall, so make sure
1763 * the whole condition is visited.
1764 */
1765 src_ir = ir;
1766 break;
1767 }
1768 }
1769 }
1770
1771 src_ir->accept(this);
1772
1773 /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1774 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
1775 * choose which value OPCODE_CMP produces without an extra instruction
1776 * computing the condition.
1777 */
1778 if (negate)
1779 this->result.negate = ~this->result.negate;
1780
1781 return switch_order;
1782 }
1783
1784 void
1785 ir_to_mesa_visitor::visit(ir_assignment *ir)
1786 {
1787 dst_reg l;
1788 src_reg r;
1789 int i;
1790
1791 ir->rhs->accept(this);
1792 r = this->result;
1793
1794 l = get_assignment_lhs(ir->lhs, this);
1795
1796 /* FINISHME: This should really set to the correct maximal writemask for each
1797 * FINISHME: component written (in the loops below). This case can only
1798 * FINISHME: occur for matrices, arrays, and structures.
1799 */
1800 if (ir->write_mask == 0) {
1801 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1802 l.writemask = WRITEMASK_XYZW;
1803 } else if (ir->lhs->type->is_scalar()) {
1804 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1805 * FINISHME: W component of fragment shader output zero, work correctly.
1806 */
1807 l.writemask = WRITEMASK_XYZW;
1808 } else {
1809 int swizzles[4];
1810 int first_enabled_chan = 0;
1811 int rhs_chan = 0;
1812
1813 assert(ir->lhs->type->is_vector());
1814 l.writemask = ir->write_mask;
1815
1816 for (int i = 0; i < 4; i++) {
1817 if (l.writemask & (1 << i)) {
1818 first_enabled_chan = GET_SWZ(r.swizzle, i);
1819 break;
1820 }
1821 }
1822
1823 /* Swizzle a small RHS vector into the channels being written.
1824 *
1825 * glsl ir treats write_mask as dictating how many channels are
1826 * present on the RHS while Mesa IR treats write_mask as just
1827 * showing which channels of the vec4 RHS get written.
1828 */
1829 for (int i = 0; i < 4; i++) {
1830 if (l.writemask & (1 << i))
1831 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1832 else
1833 swizzles[i] = first_enabled_chan;
1834 }
1835 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1836 swizzles[2], swizzles[3]);
1837 }
1838
1839 assert(l.file != PROGRAM_UNDEFINED);
1840 assert(r.file != PROGRAM_UNDEFINED);
1841
1842 if (ir->condition) {
1843 const bool switch_order = this->process_move_condition(ir->condition);
1844 src_reg condition = this->result;
1845
1846 for (i = 0; i < type_size(ir->lhs->type); i++) {
1847 if (switch_order) {
1848 emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
1849 } else {
1850 emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
1851 }
1852
1853 l.index++;
1854 r.index++;
1855 }
1856 } else {
1857 for (i = 0; i < type_size(ir->lhs->type); i++) {
1858 emit(ir, OPCODE_MOV, l, r);
1859 l.index++;
1860 r.index++;
1861 }
1862 }
1863 }
1864
1865
1866 void
1867 ir_to_mesa_visitor::visit(ir_constant *ir)
1868 {
1869 src_reg src;
1870 GLfloat stack_vals[4] = { 0 };
1871 GLfloat *values = stack_vals;
1872 unsigned int i;
1873
1874 /* Unfortunately, 4 floats is all we can get into
1875 * _mesa_add_unnamed_constant. So, make a temp to store an
1876 * aggregate constant and move each constant value into it. If we
1877 * get lucky, copy propagation will eliminate the extra moves.
1878 */
1879
1880 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
1881 src_reg temp_base = get_temp(ir->type);
1882 dst_reg temp = dst_reg(temp_base);
1883
1884 foreach_iter(exec_list_iterator, iter, ir->components) {
1885 ir_constant *field_value = (ir_constant *)iter.get();
1886 int size = type_size(field_value->type);
1887
1888 assert(size > 0);
1889
1890 field_value->accept(this);
1891 src = this->result;
1892
1893 for (i = 0; i < (unsigned int)size; i++) {
1894 emit(ir, OPCODE_MOV, temp, src);
1895
1896 src.index++;
1897 temp.index++;
1898 }
1899 }
1900 this->result = temp_base;
1901 return;
1902 }
1903
1904 if (ir->type->is_array()) {
1905 src_reg temp_base = get_temp(ir->type);
1906 dst_reg temp = dst_reg(temp_base);
1907 int size = type_size(ir->type->fields.array);
1908
1909 assert(size > 0);
1910
1911 for (i = 0; i < ir->type->length; i++) {
1912 ir->array_elements[i]->accept(this);
1913 src = this->result;
1914 for (int j = 0; j < size; j++) {
1915 emit(ir, OPCODE_MOV, temp, src);
1916
1917 src.index++;
1918 temp.index++;
1919 }
1920 }
1921 this->result = temp_base;
1922 return;
1923 }
1924
1925 if (ir->type->is_matrix()) {
1926 src_reg mat = get_temp(ir->type);
1927 dst_reg mat_column = dst_reg(mat);
1928
1929 for (i = 0; i < ir->type->matrix_columns; i++) {
1930 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
1931 values = &ir->value.f[i * ir->type->vector_elements];
1932
1933 src = src_reg(PROGRAM_CONSTANT, -1, NULL);
1934 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1935 (gl_constant_value *) values,
1936 ir->type->vector_elements,
1937 &src.swizzle);
1938 emit(ir, OPCODE_MOV, mat_column, src);
1939
1940 mat_column.index++;
1941 }
1942
1943 this->result = mat;
1944 return;
1945 }
1946
1947 src.file = PROGRAM_CONSTANT;
1948 switch (ir->type->base_type) {
1949 case GLSL_TYPE_FLOAT:
1950 values = &ir->value.f[0];
1951 break;
1952 case GLSL_TYPE_UINT:
1953 for (i = 0; i < ir->type->vector_elements; i++) {
1954 values[i] = ir->value.u[i];
1955 }
1956 break;
1957 case GLSL_TYPE_INT:
1958 for (i = 0; i < ir->type->vector_elements; i++) {
1959 values[i] = ir->value.i[i];
1960 }
1961 break;
1962 case GLSL_TYPE_BOOL:
1963 for (i = 0; i < ir->type->vector_elements; i++) {
1964 values[i] = ir->value.b[i];
1965 }
1966 break;
1967 default:
1968 assert(!"Non-float/uint/int/bool constant");
1969 }
1970
1971 this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
1972 this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1973 (gl_constant_value *) values,
1974 ir->type->vector_elements,
1975 &this->result.swizzle);
1976 }
1977
1978 void
1979 ir_to_mesa_visitor::visit(ir_call *ir)
1980 {
1981 assert(!"ir_to_mesa: All function calls should have been inlined by now.");
1982 }
1983
1984 void
1985 ir_to_mesa_visitor::visit(ir_texture *ir)
1986 {
1987 src_reg result_src, coord, lod_info, projector, dx, dy;
1988 dst_reg result_dst, coord_dst;
1989 ir_to_mesa_instruction *inst = NULL;
1990 prog_opcode opcode = OPCODE_NOP;
1991
1992 if (ir->op == ir_txs)
1993 this->result = src_reg_for_float(0.0);
1994 else
1995 ir->coordinate->accept(this);
1996
1997 /* Put our coords in a temp. We'll need to modify them for shadow,
1998 * projection, or LOD, so the only case we'd use it as is is if
1999 * we're doing plain old texturing. Mesa IR optimization should
2000 * handle cleaning up our mess in that case.
2001 */
2002 coord = get_temp(glsl_type::vec4_type);
2003 coord_dst = dst_reg(coord);
2004 emit(ir, OPCODE_MOV, coord_dst, this->result);
2005
2006 if (ir->projector) {
2007 ir->projector->accept(this);
2008 projector = this->result;
2009 }
2010
2011 /* Storage for our result. Ideally for an assignment we'd be using
2012 * the actual storage for the result here, instead.
2013 */
2014 result_src = get_temp(glsl_type::vec4_type);
2015 result_dst = dst_reg(result_src);
2016
2017 switch (ir->op) {
2018 case ir_tex:
2019 case ir_txs:
2020 opcode = OPCODE_TEX;
2021 break;
2022 case ir_txb:
2023 opcode = OPCODE_TXB;
2024 ir->lod_info.bias->accept(this);
2025 lod_info = this->result;
2026 break;
2027 case ir_txf:
2028 /* Pretend to be TXL so the sampler, coordinate, lod are available */
2029 case ir_txl:
2030 opcode = OPCODE_TXL;
2031 ir->lod_info.lod->accept(this);
2032 lod_info = this->result;
2033 break;
2034 case ir_txd:
2035 opcode = OPCODE_TXD;
2036 ir->lod_info.grad.dPdx->accept(this);
2037 dx = this->result;
2038 ir->lod_info.grad.dPdy->accept(this);
2039 dy = this->result;
2040 break;
2041 }
2042
2043 const glsl_type *sampler_type = ir->sampler->type;
2044
2045 if (ir->projector) {
2046 if (opcode == OPCODE_TEX) {
2047 /* Slot the projector in as the last component of the coord. */
2048 coord_dst.writemask = WRITEMASK_W;
2049 emit(ir, OPCODE_MOV, coord_dst, projector);
2050 coord_dst.writemask = WRITEMASK_XYZW;
2051 opcode = OPCODE_TXP;
2052 } else {
2053 src_reg coord_w = coord;
2054 coord_w.swizzle = SWIZZLE_WWWW;
2055
2056 /* For the other TEX opcodes there's no projective version
2057 * since the last slot is taken up by lod info. Do the
2058 * projective divide now.
2059 */
2060 coord_dst.writemask = WRITEMASK_W;
2061 emit(ir, OPCODE_RCP, coord_dst, projector);
2062
2063 /* In the case where we have to project the coordinates "by hand,"
2064 * the shadow comparitor value must also be projected.
2065 */
2066 src_reg tmp_src = coord;
2067 if (ir->shadow_comparitor) {
2068 /* Slot the shadow value in as the second to last component of the
2069 * coord.
2070 */
2071 ir->shadow_comparitor->accept(this);
2072
2073 tmp_src = get_temp(glsl_type::vec4_type);
2074 dst_reg tmp_dst = dst_reg(tmp_src);
2075
2076 /* Projective division not allowed for array samplers. */
2077 assert(!sampler_type->sampler_array);
2078
2079 tmp_dst.writemask = WRITEMASK_Z;
2080 emit(ir, OPCODE_MOV, tmp_dst, this->result);
2081
2082 tmp_dst.writemask = WRITEMASK_XY;
2083 emit(ir, OPCODE_MOV, tmp_dst, coord);
2084 }
2085
2086 coord_dst.writemask = WRITEMASK_XYZ;
2087 emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);
2088
2089 coord_dst.writemask = WRITEMASK_XYZW;
2090 coord.swizzle = SWIZZLE_XYZW;
2091 }
2092 }
2093
2094 /* If projection is done and the opcode is not OPCODE_TXP, then the shadow
2095 * comparitor was put in the correct place (and projected) by the code,
2096 * above, that handles by-hand projection.
2097 */
2098 if (ir->shadow_comparitor && (!ir->projector || opcode == OPCODE_TXP)) {
2099 /* Slot the shadow value in as the second to last component of the
2100 * coord.
2101 */
2102 ir->shadow_comparitor->accept(this);
2103
2104 /* XXX This will need to be updated for cubemap array samplers. */
2105 if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2106 sampler_type->sampler_array) {
2107 coord_dst.writemask = WRITEMASK_W;
2108 } else {
2109 coord_dst.writemask = WRITEMASK_Z;
2110 }
2111
2112 emit(ir, OPCODE_MOV, coord_dst, this->result);
2113 coord_dst.writemask = WRITEMASK_XYZW;
2114 }
2115
2116 if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
2117 /* Mesa IR stores lod or lod bias in the last channel of the coords. */
2118 coord_dst.writemask = WRITEMASK_W;
2119 emit(ir, OPCODE_MOV, coord_dst, lod_info);
2120 coord_dst.writemask = WRITEMASK_XYZW;
2121 }
2122
2123 if (opcode == OPCODE_TXD)
2124 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2125 else
2126 inst = emit(ir, opcode, result_dst, coord);
2127
2128 if (ir->shadow_comparitor)
2129 inst->tex_shadow = GL_TRUE;
2130
2131 inst->sampler = _mesa_get_sampler_uniform_value(ir->sampler,
2132 this->shader_program,
2133 this->prog);
2134
2135 switch (sampler_type->sampler_dimensionality) {
2136 case GLSL_SAMPLER_DIM_1D:
2137 inst->tex_target = (sampler_type->sampler_array)
2138 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2139 break;
2140 case GLSL_SAMPLER_DIM_2D:
2141 inst->tex_target = (sampler_type->sampler_array)
2142 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2143 break;
2144 case GLSL_SAMPLER_DIM_3D:
2145 inst->tex_target = TEXTURE_3D_INDEX;
2146 break;
2147 case GLSL_SAMPLER_DIM_CUBE:
2148 inst->tex_target = TEXTURE_CUBE_INDEX;
2149 break;
2150 case GLSL_SAMPLER_DIM_RECT:
2151 inst->tex_target = TEXTURE_RECT_INDEX;
2152 break;
2153 case GLSL_SAMPLER_DIM_BUF:
2154 assert(!"FINISHME: Implement ARB_texture_buffer_object");
2155 break;
2156 case GLSL_SAMPLER_DIM_EXTERNAL:
2157 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2158 break;
2159 default:
2160 assert(!"Should not get here.");
2161 }
2162
2163 this->result = result_src;
2164 }
2165
2166 void
2167 ir_to_mesa_visitor::visit(ir_return *ir)
2168 {
2169 /* Non-void functions should have been inlined. We may still emit RETs
2170 * from main() unless the EmitNoMainReturn option is set.
2171 */
2172 assert(!ir->get_value());
2173 emit(ir, OPCODE_RET);
2174 }
2175
2176 void
2177 ir_to_mesa_visitor::visit(ir_discard *ir)
2178 {
2179 if (ir->condition) {
2180 ir->condition->accept(this);
2181 this->result.negate = ~this->result.negate;
2182 emit(ir, OPCODE_KIL, undef_dst, this->result);
2183 } else {
2184 emit(ir, OPCODE_KIL_NV);
2185 }
2186 }
2187
2188 void
2189 ir_to_mesa_visitor::visit(ir_if *ir)
2190 {
2191 ir_to_mesa_instruction *cond_inst, *if_inst;
2192 ir_to_mesa_instruction *prev_inst;
2193
2194 prev_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2195
2196 ir->condition->accept(this);
2197 assert(this->result.file != PROGRAM_UNDEFINED);
2198
2199 if (this->options->EmitCondCodes) {
2200 cond_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2201
2202 /* See if we actually generated any instruction for generating
2203 * the condition. If not, then cook up a move to a temp so we
2204 * have something to set cond_update on.
2205 */
2206 if (cond_inst == prev_inst) {
2207 src_reg temp = get_temp(glsl_type::bool_type);
2208 cond_inst = emit(ir->condition, OPCODE_MOV, dst_reg(temp), result);
2209 }
2210 cond_inst->cond_update = GL_TRUE;
2211
2212 if_inst = emit(ir->condition, OPCODE_IF);
2213 if_inst->dst.cond_mask = COND_NE;
2214 } else {
2215 if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);
2216 }
2217
2218 this->instructions.push_tail(if_inst);
2219
2220 visit_exec_list(&ir->then_instructions, this);
2221
2222 if (!ir->else_instructions.is_empty()) {
2223 emit(ir->condition, OPCODE_ELSE);
2224 visit_exec_list(&ir->else_instructions, this);
2225 }
2226
2227 if_inst = emit(ir->condition, OPCODE_ENDIF);
2228 }
2229
2230 ir_to_mesa_visitor::ir_to_mesa_visitor()
2231 {
2232 result.file = PROGRAM_UNDEFINED;
2233 next_temp = 1;
2234 next_signature_id = 1;
2235 current_function = NULL;
2236 mem_ctx = ralloc_context(NULL);
2237 }
2238
2239 ir_to_mesa_visitor::~ir_to_mesa_visitor()
2240 {
2241 ralloc_free(mem_ctx);
2242 }
2243
2244 static struct prog_src_register
2245 mesa_src_reg_from_ir_src_reg(src_reg reg)
2246 {
2247 struct prog_src_register mesa_reg;
2248
2249 mesa_reg.File = reg.file;
2250 assert(reg.index < (1 << INST_INDEX_BITS));
2251 mesa_reg.Index = reg.index;
2252 mesa_reg.Swizzle = reg.swizzle;
2253 mesa_reg.RelAddr = reg.reladdr != NULL;
2254 mesa_reg.Negate = reg.negate;
2255 mesa_reg.Abs = 0;
2256 mesa_reg.HasIndex2 = GL_FALSE;
2257 mesa_reg.RelAddr2 = 0;
2258 mesa_reg.Index2 = 0;
2259
2260 return mesa_reg;
2261 }
2262
2263 static void
2264 set_branchtargets(ir_to_mesa_visitor *v,
2265 struct prog_instruction *mesa_instructions,
2266 int num_instructions)
2267 {
2268 int if_count = 0, loop_count = 0;
2269 int *if_stack, *loop_stack;
2270 int if_stack_pos = 0, loop_stack_pos = 0;
2271 int i, j;
2272
2273 for (i = 0; i < num_instructions; i++) {
2274 switch (mesa_instructions[i].Opcode) {
2275 case OPCODE_IF:
2276 if_count++;
2277 break;
2278 case OPCODE_BGNLOOP:
2279 loop_count++;
2280 break;
2281 case OPCODE_BRK:
2282 case OPCODE_CONT:
2283 mesa_instructions[i].BranchTarget = -1;
2284 break;
2285 default:
2286 break;
2287 }
2288 }
2289
2290 if_stack = rzalloc_array(v->mem_ctx, int, if_count);
2291 loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);
2292
2293 for (i = 0; i < num_instructions; i++) {
2294 switch (mesa_instructions[i].Opcode) {
2295 case OPCODE_IF:
2296 if_stack[if_stack_pos] = i;
2297 if_stack_pos++;
2298 break;
2299 case OPCODE_ELSE:
2300 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2301 if_stack[if_stack_pos - 1] = i;
2302 break;
2303 case OPCODE_ENDIF:
2304 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2305 if_stack_pos--;
2306 break;
2307 case OPCODE_BGNLOOP:
2308 loop_stack[loop_stack_pos] = i;
2309 loop_stack_pos++;
2310 break;
2311 case OPCODE_ENDLOOP:
2312 loop_stack_pos--;
2313 /* Rewrite any breaks/conts at this nesting level (haven't
2314 * already had a BranchTarget assigned) to point to the end
2315 * of the loop.
2316 */
2317 for (j = loop_stack[loop_stack_pos]; j < i; j++) {
2318 if (mesa_instructions[j].Opcode == OPCODE_BRK ||
2319 mesa_instructions[j].Opcode == OPCODE_CONT) {
2320 if (mesa_instructions[j].BranchTarget == -1) {
2321 mesa_instructions[j].BranchTarget = i;
2322 }
2323 }
2324 }
2325 /* The loop ends point at each other. */
2326 mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
2327 mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
2328 break;
2329 case OPCODE_CAL:
2330 foreach_iter(exec_list_iterator, iter, v->function_signatures) {
2331 function_entry *entry = (function_entry *)iter.get();
2332
2333 if (entry->sig_id == mesa_instructions[i].BranchTarget) {
2334 mesa_instructions[i].BranchTarget = entry->inst;
2335 break;
2336 }
2337 }
2338 break;
2339 default:
2340 break;
2341 }
2342 }
2343 }
2344
2345 static void
2346 print_program(struct prog_instruction *mesa_instructions,
2347 ir_instruction **mesa_instruction_annotation,
2348 int num_instructions)
2349 {
2350 ir_instruction *last_ir = NULL;
2351 int i;
2352 int indent = 0;
2353
2354 for (i = 0; i < num_instructions; i++) {
2355 struct prog_instruction *mesa_inst = mesa_instructions + i;
2356 ir_instruction *ir = mesa_instruction_annotation[i];
2357
2358 fprintf(stdout, "%3d: ", i);
2359
2360 if (last_ir != ir && ir) {
2361 int j;
2362
2363 for (j = 0; j < indent; j++) {
2364 fprintf(stdout, " ");
2365 }
2366 ir->print();
2367 printf("\n");
2368 last_ir = ir;
2369
2370 fprintf(stdout, " "); /* line number spacing. */
2371 }
2372
2373 indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
2374 PROG_PRINT_DEBUG, NULL);
2375 }
2376 }
2377
2378 class add_uniform_to_shader : public program_resource_visitor {
2379 public:
2380 add_uniform_to_shader(struct gl_shader_program *shader_program,
2381 struct gl_program_parameter_list *params)
2382 : shader_program(shader_program), params(params), idx(-1)
2383 {
2384 /* empty */
2385 }
2386
2387 void process(ir_variable *var)
2388 {
2389 this->idx = -1;
2390 this->program_resource_visitor::process(var);
2391
2392 var->location = this->idx;
2393 }
2394
2395 private:
2396 virtual void visit_field(const glsl_type *type, const char *name,
2397 bool row_major);
2398
2399 struct gl_shader_program *shader_program;
2400 struct gl_program_parameter_list *params;
2401 int idx;
2402 };
2403
2404 void
2405 add_uniform_to_shader::visit_field(const glsl_type *type, const char *name,
2406 bool row_major)
2407 {
2408 unsigned int size;
2409
2410 (void) row_major;
2411
2412 if (type->is_vector() || type->is_scalar()) {
2413 size = type->vector_elements;
2414 } else {
2415 size = type_size(type) * 4;
2416 }
2417
2418 gl_register_file file;
2419 if (type->is_sampler() ||
2420 (type->is_array() && type->fields.array->is_sampler())) {
2421 file = PROGRAM_SAMPLER;
2422 } else {
2423 file = PROGRAM_UNIFORM;
2424 }
2425
2426 int index = _mesa_lookup_parameter_index(params, -1, name);
2427 if (index < 0) {
2428 index = _mesa_add_parameter(params, file, name, size, type->gl_type,
2429 NULL, NULL);
2430
2431 /* Sampler uniform values are stored in prog->SamplerUnits,
2432 * and the entry in that array is selected by this index we
2433 * store in ParameterValues[].
2434 */
2435 if (file == PROGRAM_SAMPLER) {
2436 unsigned location;
2437 const bool found =
2438 this->shader_program->UniformHash->get(location,
2439 params->Parameters[index].Name);
2440 assert(found);
2441
2442 if (!found)
2443 return;
2444
2445 struct gl_uniform_storage *storage =
2446 &this->shader_program->UniformStorage[location];
2447
2448 for (unsigned int j = 0; j < size / 4; j++)
2449 params->ParameterValues[index + j][0].f = storage->sampler + j;
2450 }
2451 }
2452
2453 /* The first part of the uniform that's processed determines the base
2454 * location of the whole uniform (for structures).
2455 */
2456 if (this->idx < 0)
2457 this->idx = index;
2458 }
2459
2460 /**
2461 * Generate the program parameters list for the user uniforms in a shader
2462 *
2463 * \param shader_program Linked shader program. This is only used to
2464 * emit possible link errors to the info log.
2465 * \param sh Shader whose uniforms are to be processed.
2466 * \param params Parameter list to be filled in.
2467 */
2468 void
2469 _mesa_generate_parameters_list_for_uniforms(struct gl_shader_program
2470 *shader_program,
2471 struct gl_shader *sh,
2472 struct gl_program_parameter_list
2473 *params)
2474 {
2475 add_uniform_to_shader add(shader_program, params);
2476
2477 foreach_list(node, sh->ir) {
2478 ir_variable *var = ((ir_instruction *) node)->as_variable();
2479
2480 if ((var == NULL) || (var->mode != ir_var_uniform)
2481 || var->is_in_uniform_block() || (strncmp(var->name, "gl_", 3) == 0))
2482 continue;
2483
2484 add.process(var);
2485 }
2486 }
2487
2488 void
2489 _mesa_associate_uniform_storage(struct gl_context *ctx,
2490 struct gl_shader_program *shader_program,
2491 struct gl_program_parameter_list *params)
2492 {
2493 /* After adding each uniform to the parameter list, connect the storage for
2494 * the parameter with the tracking structure used by the API for the
2495 * uniform.
2496 */
2497 unsigned last_location = unsigned(~0);
2498 for (unsigned i = 0; i < params->NumParameters; i++) {
2499 if (params->Parameters[i].Type != PROGRAM_UNIFORM)
2500 continue;
2501
2502 unsigned location;
2503 const bool found =
2504 shader_program->UniformHash->get(location, params->Parameters[i].Name);
2505 assert(found);
2506
2507 if (!found)
2508 continue;
2509
2510 if (location != last_location) {
2511 struct gl_uniform_storage *storage =
2512 &shader_program->UniformStorage[location];
2513 enum gl_uniform_driver_format format = uniform_native;
2514
2515 unsigned columns = 0;
2516 switch (storage->type->base_type) {
2517 case GLSL_TYPE_UINT:
2518 assert(ctx->Const.NativeIntegers);
2519 format = uniform_native;
2520 columns = 1;
2521 break;
2522 case GLSL_TYPE_INT:
2523 format =
2524 (ctx->Const.NativeIntegers) ? uniform_native : uniform_int_float;
2525 columns = 1;
2526 break;
2527 case GLSL_TYPE_FLOAT:
2528 format = uniform_native;
2529 columns = storage->type->matrix_columns;
2530 break;
2531 case GLSL_TYPE_BOOL:
2532 if (ctx->Const.NativeIntegers) {
2533 format = (ctx->Const.UniformBooleanTrue == 1)
2534 ? uniform_bool_int_0_1 : uniform_bool_int_0_not0;
2535 } else {
2536 format = uniform_bool_float;
2537 }
2538 columns = 1;
2539 break;
2540 case GLSL_TYPE_SAMPLER:
2541 format = uniform_native;
2542 columns = 1;
2543 break;
2544 case GLSL_TYPE_ARRAY:
2545 case GLSL_TYPE_VOID:
2546 case GLSL_TYPE_STRUCT:
2547 case GLSL_TYPE_ERROR:
2548 case GLSL_TYPE_INTERFACE:
2549 assert(!"Should not get here.");
2550 break;
2551 }
2552
2553 _mesa_uniform_attach_driver_storage(storage,
2554 4 * sizeof(float) * columns,
2555 4 * sizeof(float),
2556 format,
2557 &params->ParameterValues[i]);
2558
2559 /* After attaching the driver's storage to the uniform, propagate any
2560 * data from the linker's backing store. This will cause values from
2561 * initializers in the source code to be copied over.
2562 */
2563 _mesa_propagate_uniforms_to_driver_storage(storage,
2564 0,
2565 MAX2(1, storage->array_elements));
2566
2567 last_location = location;
2568 }
2569 }
2570 }
2571
2572 /*
2573 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
2574 * channels for copy propagation and updates following instructions to
2575 * use the original versions.
2576 *
2577 * The ir_to_mesa_visitor lazily produces code assuming that this pass
2578 * will occur. As an example, a TXP production before this pass:
2579 *
2580 * 0: MOV TEMP[1], INPUT[4].xyyy;
2581 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2582 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
2583 *
2584 * and after:
2585 *
2586 * 0: MOV TEMP[1], INPUT[4].xyyy;
2587 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2588 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
2589 *
2590 * which allows for dead code elimination on TEMP[1]'s writes.
2591 */
2592 void
2593 ir_to_mesa_visitor::copy_propagate(void)
2594 {
2595 ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
2596 ir_to_mesa_instruction *,
2597 this->next_temp * 4);
2598 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
2599 int level = 0;
2600
2601 foreach_iter(exec_list_iterator, iter, this->instructions) {
2602 ir_to_mesa_instruction *inst = (ir_to_mesa_instruction *)iter.get();
2603
2604 assert(inst->dst.file != PROGRAM_TEMPORARY
2605 || inst->dst.index < this->next_temp);
2606
2607 /* First, do any copy propagation possible into the src regs. */
2608 for (int r = 0; r < 3; r++) {
2609 ir_to_mesa_instruction *first = NULL;
2610 bool good = true;
2611 int acp_base = inst->src[r].index * 4;
2612
2613 if (inst->src[r].file != PROGRAM_TEMPORARY ||
2614 inst->src[r].reladdr)
2615 continue;
2616
2617 /* See if we can find entries in the ACP consisting of MOVs
2618 * from the same src register for all the swizzled channels
2619 * of this src register reference.
2620 */
2621 for (int i = 0; i < 4; i++) {
2622 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2623 ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];
2624
2625 if (!copy_chan) {
2626 good = false;
2627 break;
2628 }
2629
2630 assert(acp_level[acp_base + src_chan] <= level);
2631
2632 if (!first) {
2633 first = copy_chan;
2634 } else {
2635 if (first->src[0].file != copy_chan->src[0].file ||
2636 first->src[0].index != copy_chan->src[0].index) {
2637 good = false;
2638 break;
2639 }
2640 }
2641 }
2642
2643 if (good) {
2644 /* We've now validated that we can copy-propagate to
2645 * replace this src register reference. Do it.
2646 */
2647 inst->src[r].file = first->src[0].file;
2648 inst->src[r].index = first->src[0].index;
2649
2650 int swizzle = 0;
2651 for (int i = 0; i < 4; i++) {
2652 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2653 ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
2654 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
2655 (3 * i));
2656 }
2657 inst->src[r].swizzle = swizzle;
2658 }
2659 }
2660
2661 switch (inst->op) {
2662 case OPCODE_BGNLOOP:
2663 case OPCODE_ENDLOOP:
2664 /* End of a basic block, clear the ACP entirely. */
2665 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2666 break;
2667
2668 case OPCODE_IF:
2669 ++level;
2670 break;
2671
2672 case OPCODE_ENDIF:
2673 case OPCODE_ELSE:
2674 /* Clear all channels written inside the block from the ACP, but
2675 * leaving those that were not touched.
2676 */
2677 for (int r = 0; r < this->next_temp; r++) {
2678 for (int c = 0; c < 4; c++) {
2679 if (!acp[4 * r + c])
2680 continue;
2681
2682 if (acp_level[4 * r + c] >= level)
2683 acp[4 * r + c] = NULL;
2684 }
2685 }
2686 if (inst->op == OPCODE_ENDIF)
2687 --level;
2688 break;
2689
2690 default:
2691 /* Continuing the block, clear any written channels from
2692 * the ACP.
2693 */
2694 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
2695 /* Any temporary might be written, so no copy propagation
2696 * across this instruction.
2697 */
2698 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2699 } else if (inst->dst.file == PROGRAM_OUTPUT &&
2700 inst->dst.reladdr) {
2701 /* Any output might be written, so no copy propagation
2702 * from outputs across this instruction.
2703 */
2704 for (int r = 0; r < this->next_temp; r++) {
2705 for (int c = 0; c < 4; c++) {
2706 if (!acp[4 * r + c])
2707 continue;
2708
2709 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
2710 acp[4 * r + c] = NULL;
2711 }
2712 }
2713 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
2714 inst->dst.file == PROGRAM_OUTPUT) {
2715 /* Clear where it's used as dst. */
2716 if (inst->dst.file == PROGRAM_TEMPORARY) {
2717 for (int c = 0; c < 4; c++) {
2718 if (inst->dst.writemask & (1 << c)) {
2719 acp[4 * inst->dst.index + c] = NULL;
2720 }
2721 }
2722 }
2723
2724 /* Clear where it's used as src. */
2725 for (int r = 0; r < this->next_temp; r++) {
2726 for (int c = 0; c < 4; c++) {
2727 if (!acp[4 * r + c])
2728 continue;
2729
2730 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
2731
2732 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
2733 acp[4 * r + c]->src[0].index == inst->dst.index &&
2734 inst->dst.writemask & (1 << src_chan))
2735 {
2736 acp[4 * r + c] = NULL;
2737 }
2738 }
2739 }
2740 }
2741 break;
2742 }
2743
2744 /* If this is a copy, add it to the ACP. */
2745 if (inst->op == OPCODE_MOV &&
2746 inst->dst.file == PROGRAM_TEMPORARY &&
2747 !inst->dst.reladdr &&
2748 !inst->saturate &&
2749 !inst->src[0].reladdr &&
2750 !inst->src[0].negate) {
2751 for (int i = 0; i < 4; i++) {
2752 if (inst->dst.writemask & (1 << i)) {
2753 acp[4 * inst->dst.index + i] = inst;
2754 acp_level[4 * inst->dst.index + i] = level;
2755 }
2756 }
2757 }
2758 }
2759
2760 ralloc_free(acp_level);
2761 ralloc_free(acp);
2762 }
2763
2764
2765 /**
2766 * Convert a shader's GLSL IR into a Mesa gl_program.
2767 */
2768 static struct gl_program *
2769 get_mesa_program(struct gl_context *ctx,
2770 struct gl_shader_program *shader_program,
2771 struct gl_shader *shader)
2772 {
2773 ir_to_mesa_visitor v;
2774 struct prog_instruction *mesa_instructions, *mesa_inst;
2775 ir_instruction **mesa_instruction_annotation;
2776 int i;
2777 struct gl_program *prog;
2778 GLenum target;
2779 const char *target_string;
2780 struct gl_shader_compiler_options *options =
2781 &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(shader->Type)];
2782
2783 switch (shader->Type) {
2784 case GL_VERTEX_SHADER:
2785 target = GL_VERTEX_PROGRAM_ARB;
2786 target_string = "vertex";
2787 break;
2788 case GL_FRAGMENT_SHADER:
2789 target = GL_FRAGMENT_PROGRAM_ARB;
2790 target_string = "fragment";
2791 break;
2792 case GL_GEOMETRY_SHADER:
2793 target = GL_GEOMETRY_PROGRAM_NV;
2794 target_string = "geometry";
2795 break;
2796 default:
2797 assert(!"should not be reached");
2798 return NULL;
2799 }
2800
2801 validate_ir_tree(shader->ir);
2802
2803 prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
2804 if (!prog)
2805 return NULL;
2806 prog->Parameters = _mesa_new_parameter_list();
2807 v.ctx = ctx;
2808 v.prog = prog;
2809 v.shader_program = shader_program;
2810 v.options = options;
2811
2812 _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
2813 prog->Parameters);
2814
2815 /* Emit Mesa IR for main(). */
2816 visit_exec_list(shader->ir, &v);
2817 v.emit(NULL, OPCODE_END);
2818
2819 prog->NumTemporaries = v.next_temp;
2820
2821 int num_instructions = 0;
2822 foreach_iter(exec_list_iterator, iter, v.instructions) {
2823 num_instructions++;
2824 }
2825
2826 mesa_instructions =
2827 (struct prog_instruction *)calloc(num_instructions,
2828 sizeof(*mesa_instructions));
2829 mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
2830 num_instructions);
2831
2832 v.copy_propagate();
2833
2834 /* Convert ir_mesa_instructions into prog_instructions.
2835 */
2836 mesa_inst = mesa_instructions;
2837 i = 0;
2838 foreach_iter(exec_list_iterator, iter, v.instructions) {
2839 const ir_to_mesa_instruction *inst = (ir_to_mesa_instruction *)iter.get();
2840
2841 mesa_inst->Opcode = inst->op;
2842 mesa_inst->CondUpdate = inst->cond_update;
2843 if (inst->saturate)
2844 mesa_inst->SaturateMode = SATURATE_ZERO_ONE;
2845 mesa_inst->DstReg.File = inst->dst.file;
2846 mesa_inst->DstReg.Index = inst->dst.index;
2847 mesa_inst->DstReg.CondMask = inst->dst.cond_mask;
2848 mesa_inst->DstReg.WriteMask = inst->dst.writemask;
2849 mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
2850 mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
2851 mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
2852 mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
2853 mesa_inst->TexSrcUnit = inst->sampler;
2854 mesa_inst->TexSrcTarget = inst->tex_target;
2855 mesa_inst->TexShadow = inst->tex_shadow;
2856 mesa_instruction_annotation[i] = inst->ir;
2857
2858 /* Set IndirectRegisterFiles. */
2859 if (mesa_inst->DstReg.RelAddr)
2860 prog->IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;
2861
2862 /* Update program's bitmask of indirectly accessed register files */
2863 for (unsigned src = 0; src < 3; src++)
2864 if (mesa_inst->SrcReg[src].RelAddr)
2865 prog->IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;
2866
2867 switch (mesa_inst->Opcode) {
2868 case OPCODE_IF:
2869 if (options->MaxIfDepth == 0) {
2870 linker_warning(shader_program,
2871 "Couldn't flatten if-statement. "
2872 "This will likely result in software "
2873 "rasterization.\n");
2874 }
2875 break;
2876 case OPCODE_BGNLOOP:
2877 if (options->EmitNoLoops) {
2878 linker_warning(shader_program,
2879 "Couldn't unroll loop. "
2880 "This will likely result in software "
2881 "rasterization.\n");
2882 }
2883 break;
2884 case OPCODE_CONT:
2885 if (options->EmitNoCont) {
2886 linker_warning(shader_program,
2887 "Couldn't lower continue-statement. "
2888 "This will likely result in software "
2889 "rasterization.\n");
2890 }
2891 break;
2892 case OPCODE_ARL:
2893 prog->NumAddressRegs = 1;
2894 break;
2895 default:
2896 break;
2897 }
2898
2899 mesa_inst++;
2900 i++;
2901
2902 if (!shader_program->LinkStatus)
2903 break;
2904 }
2905
2906 if (!shader_program->LinkStatus) {
2907 goto fail_exit;
2908 }
2909
2910 set_branchtargets(&v, mesa_instructions, num_instructions);
2911
2912 if (ctx->Shader.Flags & GLSL_DUMP) {
2913 printf("\n");
2914 printf("GLSL IR for linked %s program %d:\n", target_string,
2915 shader_program->Name);
2916 _mesa_print_ir(shader->ir, NULL);
2917 printf("\n");
2918 printf("\n");
2919 printf("Mesa IR for linked %s program %d:\n", target_string,
2920 shader_program->Name);
2921 print_program(mesa_instructions, mesa_instruction_annotation,
2922 num_instructions);
2923 }
2924
2925 prog->Instructions = mesa_instructions;
2926 prog->NumInstructions = num_instructions;
2927
2928 /* Setting this to NULL prevents a possible double free in the fail_exit
2929 * path (far below).
2930 */
2931 mesa_instructions = NULL;
2932
2933 do_set_program_inouts(shader->ir, prog, shader->Type == GL_FRAGMENT_SHADER);
2934
2935 prog->SamplersUsed = shader->active_samplers;
2936 prog->ShadowSamplers = shader->shadow_samplers;
2937 _mesa_update_shader_textures_used(shader_program, prog);
2938
2939 /* Set the gl_FragDepth layout. */
2940 if (target == GL_FRAGMENT_PROGRAM_ARB) {
2941 struct gl_fragment_program *fp = (struct gl_fragment_program *)prog;
2942 fp->FragDepthLayout = shader_program->FragDepthLayout;
2943 }
2944
2945 _mesa_reference_program(ctx, &shader->Program, prog);
2946
2947 if ((ctx->Shader.Flags & GLSL_NO_OPT) == 0) {
2948 _mesa_optimize_program(ctx, prog);
2949 }
2950
2951 /* This has to be done last. Any operation that can cause
2952 * prog->ParameterValues to get reallocated (e.g., anything that adds a
2953 * program constant) has to happen before creating this linkage.
2954 */
2955 _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
2956 if (!shader_program->LinkStatus) {
2957 goto fail_exit;
2958 }
2959
2960 return prog;
2961
2962 fail_exit:
2963 free(mesa_instructions);
2964 _mesa_reference_program(ctx, &shader->Program, NULL);
2965 return NULL;
2966 }
2967
2968 extern "C" {
2969
2970 /**
2971 * Link a shader.
2972 * Called via ctx->Driver.LinkShader()
2973 * This actually involves converting GLSL IR into Mesa gl_programs with
2974 * code lowering and other optimizations.
2975 */
2976 GLboolean
2977 _mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
2978 {
2979 assert(prog->LinkStatus);
2980
2981 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
2982 if (prog->_LinkedShaders[i] == NULL)
2983 continue;
2984
2985 bool progress;
2986 exec_list *ir = prog->_LinkedShaders[i]->ir;
2987 const struct gl_shader_compiler_options *options =
2988 &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(prog->_LinkedShaders[i]->Type)];
2989
2990 do {
2991 progress = false;
2992
2993 /* Lowering */
2994 do_mat_op_to_vec(ir);
2995 lower_instructions(ir, (MOD_TO_FRACT | DIV_TO_MUL_RCP | EXP_TO_EXP2
2996 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
2997 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
2998
2999 progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
3000
3001 progress = do_common_optimization(ir, true, true,
3002 options->MaxUnrollIterations)
3003 || progress;
3004
3005 progress = lower_quadop_vector(ir, true) || progress;
3006
3007 if (options->MaxIfDepth == 0)
3008 progress = lower_discard(ir) || progress;
3009
3010 progress = lower_if_to_cond_assign(ir, options->MaxIfDepth) || progress;
3011
3012 if (options->EmitNoNoise)
3013 progress = lower_noise(ir) || progress;
3014
3015 /* If there are forms of indirect addressing that the driver
3016 * cannot handle, perform the lowering pass.
3017 */
3018 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
3019 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
3020 progress =
3021 lower_variable_index_to_cond_assign(ir,
3022 options->EmitNoIndirectInput,
3023 options->EmitNoIndirectOutput,
3024 options->EmitNoIndirectTemp,
3025 options->EmitNoIndirectUniform)
3026 || progress;
3027
3028 progress = do_vec_index_to_cond_assign(ir) || progress;
3029 } while (progress);
3030
3031 validate_ir_tree(ir);
3032 }
3033
3034 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
3035 struct gl_program *linked_prog;
3036
3037 if (prog->_LinkedShaders[i] == NULL)
3038 continue;
3039
3040 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
3041
3042 if (linked_prog) {
3043 static const GLenum targets[] = {
3044 GL_VERTEX_PROGRAM_ARB,
3045 GL_FRAGMENT_PROGRAM_ARB,
3046 GL_GEOMETRY_PROGRAM_NV
3047 };
3048
3049 if (i == MESA_SHADER_VERTEX) {
3050 ((struct gl_vertex_program *)linked_prog)->UsesClipDistance
3051 = prog->Vert.UsesClipDistance;
3052 }
3053
3054 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
3055 linked_prog);
3056 if (!ctx->Driver.ProgramStringNotify(ctx, targets[i], linked_prog)) {
3057 return GL_FALSE;
3058 }
3059 }
3060
3061 _mesa_reference_program(ctx, &linked_prog, NULL);
3062 }
3063
3064 return prog->LinkStatus;
3065 }
3066
3067
3068 /**
3069 * Compile a GLSL shader. Called via glCompileShader().
3070 */
3071 void
3072 _mesa_glsl_compile_shader(struct gl_context *ctx, struct gl_shader *shader)
3073 {
3074 struct _mesa_glsl_parse_state *state =
3075 new(shader) _mesa_glsl_parse_state(ctx, shader->Type, shader);
3076
3077 const char *source = shader->Source;
3078 /* Check if the user called glCompileShader without first calling
3079 * glShaderSource. This should fail to compile, but not raise a GL_ERROR.
3080 */
3081 if (source == NULL) {
3082 shader->CompileStatus = GL_FALSE;
3083 return;
3084 }
3085
3086 state->error = glcpp_preprocess(state, &source, &state->info_log,
3087 &ctx->Extensions, ctx);
3088
3089 if (ctx->Shader.Flags & GLSL_DUMP) {
3090 printf("GLSL source for %s shader %d:\n",
3091 _mesa_glsl_shader_target_name(state->target), shader->Name);
3092 printf("%s\n", shader->Source);
3093 }
3094
3095 if (!state->error) {
3096 _mesa_glsl_lexer_ctor(state, source);
3097 _mesa_glsl_parse(state);
3098 _mesa_glsl_lexer_dtor(state);
3099 }
3100
3101 ralloc_free(shader->ir);
3102 shader->ir = new(shader) exec_list;
3103 if (!state->error && !state->translation_unit.is_empty())
3104 _mesa_ast_to_hir(shader->ir, state);
3105
3106 if (!state->error && !shader->ir->is_empty()) {
3107 validate_ir_tree(shader->ir);
3108
3109 /* Do some optimization at compile time to reduce shader IR size
3110 * and reduce later work if the same shader is linked multiple times
3111 */
3112 while (do_common_optimization(shader->ir, false, false, 32))
3113 ;
3114
3115 validate_ir_tree(shader->ir);
3116 }
3117
3118 shader->symbols = state->symbols;
3119
3120 shader->CompileStatus = !state->error;
3121 shader->InfoLog = state->info_log;
3122 shader->Version = state->language_version;
3123 memcpy(shader->builtins_to_link, state->builtins_to_link,
3124 sizeof(shader->builtins_to_link[0]) * state->num_builtins_to_link);
3125 shader->num_builtins_to_link = state->num_builtins_to_link;
3126
3127 if (ctx->Shader.Flags & GLSL_LOG) {
3128 _mesa_write_shader_to_file(shader);
3129 }
3130
3131 if (ctx->Shader.Flags & GLSL_DUMP) {
3132 if (shader->CompileStatus) {
3133 printf("GLSL IR for shader %d:\n", shader->Name);
3134 _mesa_print_ir(shader->ir, NULL);
3135 printf("\n\n");
3136 } else {
3137 printf("GLSL shader %d failed to compile.\n", shader->Name);
3138 }
3139 if (shader->InfoLog && shader->InfoLog[0] != 0) {
3140 printf("GLSL shader %d info log:\n", shader->Name);
3141 printf("%s\n", shader->InfoLog);
3142 }
3143 }
3144
3145 if (shader->UniformBlocks)
3146 ralloc_free(shader->UniformBlocks);
3147 shader->NumUniformBlocks = state->num_uniform_blocks;
3148 shader->UniformBlocks = state->uniform_blocks;
3149 ralloc_steal(shader, shader->UniformBlocks);
3150
3151 /* Retain any live IR, but trash the rest. */
3152 reparent_ir(shader->ir, shader->ir);
3153
3154 ralloc_free(state);
3155 }
3156
3157
3158 /**
3159 * Link a GLSL shader program. Called via glLinkProgram().
3160 */
3161 void
3162 _mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3163 {
3164 unsigned int i;
3165
3166 _mesa_clear_shader_program_data(ctx, prog);
3167
3168 prog->LinkStatus = GL_TRUE;
3169
3170 for (i = 0; i < prog->NumShaders; i++) {
3171 if (!prog->Shaders[i]->CompileStatus) {
3172 linker_error(prog, "linking with uncompiled shader");
3173 prog->LinkStatus = GL_FALSE;
3174 }
3175 }
3176
3177 if (prog->LinkStatus) {
3178 link_shaders(ctx, prog);
3179 }
3180
3181 if (prog->LinkStatus) {
3182 if (!ctx->Driver.LinkShader(ctx, prog)) {
3183 prog->LinkStatus = GL_FALSE;
3184 }
3185 }
3186
3187 if (ctx->Shader.Flags & GLSL_DUMP) {
3188 if (!prog->LinkStatus) {
3189 printf("GLSL shader program %d failed to link\n", prog->Name);
3190 }
3191
3192 if (prog->InfoLog && prog->InfoLog[0] != 0) {
3193 printf("GLSL shader program %d info log:\n", prog->Name);
3194 printf("%s\n", prog->InfoLog);
3195 }
3196 }
3197 }
3198
3199 } /* extern "C" */