dfc52e718d1cf164a9d6bd993be4cc79c5f6c0e4
[mesa.git] / src / mesa / program / ir_to_mesa.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
24 */
25
26 /**
27 * \file ir_to_mesa.cpp
28 *
29 * Translate GLSL IR to Mesa's gl_program representation.
30 */
31
32 #include <stdio.h>
33 #include "main/macros.h"
34 #include "main/mtypes.h"
35 #include "main/shaderapi.h"
36 #include "main/shaderobj.h"
37 #include "main/uniforms.h"
38 #include "main/glspirv.h"
39 #include "compiler/glsl/ast.h"
40 #include "compiler/glsl/ir.h"
41 #include "compiler/glsl/ir_expression_flattening.h"
42 #include "compiler/glsl/ir_visitor.h"
43 #include "compiler/glsl/ir_optimization.h"
44 #include "compiler/glsl/ir_uniform.h"
45 #include "compiler/glsl/glsl_parser_extras.h"
46 #include "compiler/glsl_types.h"
47 #include "compiler/glsl/linker.h"
48 #include "compiler/glsl/program.h"
49 #include "compiler/glsl/shader_cache.h"
50 #include "compiler/glsl/string_to_uint_map.h"
51 #include "program/prog_instruction.h"
52 #include "program/prog_optimize.h"
53 #include "program/prog_print.h"
54 #include "program/program.h"
55 #include "program/prog_parameter.h"
56
57
58 static int swizzle_for_size(int size);
59
60 namespace {
61
62 class src_reg;
63 class dst_reg;
64
65 /**
66 * This struct is a corresponding struct to Mesa prog_src_register, with
67 * wider fields.
68 */
69 class src_reg {
70 public:
71 src_reg(gl_register_file file, int index, const glsl_type *type)
72 {
73 this->file = file;
74 this->index = index;
75 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
76 this->swizzle = swizzle_for_size(type->vector_elements);
77 else
78 this->swizzle = SWIZZLE_XYZW;
79 this->negate = 0;
80 this->reladdr = NULL;
81 }
82
83 src_reg()
84 {
85 this->file = PROGRAM_UNDEFINED;
86 this->index = 0;
87 this->swizzle = 0;
88 this->negate = 0;
89 this->reladdr = NULL;
90 }
91
92 explicit src_reg(dst_reg reg);
93
94 gl_register_file file; /**< PROGRAM_* from Mesa */
95 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
96 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
97 int negate; /**< NEGATE_XYZW mask from mesa */
98 /** Register index should be offset by the integer in this reg. */
99 src_reg *reladdr;
100 };
101
102 class dst_reg {
103 public:
104 dst_reg(gl_register_file file, int writemask)
105 {
106 this->file = file;
107 this->index = 0;
108 this->writemask = writemask;
109 this->reladdr = NULL;
110 }
111
112 dst_reg()
113 {
114 this->file = PROGRAM_UNDEFINED;
115 this->index = 0;
116 this->writemask = 0;
117 this->reladdr = NULL;
118 }
119
120 explicit dst_reg(src_reg reg);
121
122 gl_register_file file; /**< PROGRAM_* from Mesa */
123 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
124 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
125 /** Register index should be offset by the integer in this reg. */
126 src_reg *reladdr;
127 };
128
129 } /* anonymous namespace */
130
131 src_reg::src_reg(dst_reg reg)
132 {
133 this->file = reg.file;
134 this->index = reg.index;
135 this->swizzle = SWIZZLE_XYZW;
136 this->negate = 0;
137 this->reladdr = reg.reladdr;
138 }
139
140 dst_reg::dst_reg(src_reg reg)
141 {
142 this->file = reg.file;
143 this->index = reg.index;
144 this->writemask = WRITEMASK_XYZW;
145 this->reladdr = reg.reladdr;
146 }
147
148 namespace {
149
150 class ir_to_mesa_instruction : public exec_node {
151 public:
152 DECLARE_RALLOC_CXX_OPERATORS(ir_to_mesa_instruction)
153
154 enum prog_opcode op;
155 dst_reg dst;
156 src_reg src[3];
157 /** Pointer to the ir source this tree came from for debugging */
158 ir_instruction *ir;
159 bool saturate;
160 int sampler; /**< sampler index */
161 int tex_target; /**< One of TEXTURE_*_INDEX */
162 GLboolean tex_shadow;
163 };
164
165 class variable_storage : public exec_node {
166 public:
167 variable_storage(ir_variable *var, gl_register_file file, int index)
168 : file(file), index(index), var(var)
169 {
170 /* empty */
171 }
172
173 gl_register_file file;
174 int index;
175 ir_variable *var; /* variable that maps to this, if any */
176 };
177
178 class function_entry : public exec_node {
179 public:
180 ir_function_signature *sig;
181
182 /**
183 * identifier of this function signature used by the program.
184 *
185 * At the point that Mesa instructions for function calls are
186 * generated, we don't know the address of the first instruction of
187 * the function body. So we make the BranchTarget that is called a
188 * small integer and rewrite them during set_branchtargets().
189 */
190 int sig_id;
191
192 /**
193 * Pointer to first instruction of the function body.
194 *
195 * Set during function body emits after main() is processed.
196 */
197 ir_to_mesa_instruction *bgn_inst;
198
199 /**
200 * Index of the first instruction of the function body in actual
201 * Mesa IR.
202 *
203 * Set after convertion from ir_to_mesa_instruction to prog_instruction.
204 */
205 int inst;
206
207 /** Storage for the return value. */
208 src_reg return_reg;
209 };
210
211 class ir_to_mesa_visitor : public ir_visitor {
212 public:
213 ir_to_mesa_visitor();
214 ~ir_to_mesa_visitor();
215
216 function_entry *current_function;
217
218 struct gl_context *ctx;
219 struct gl_program *prog;
220 struct gl_shader_program *shader_program;
221 struct gl_shader_compiler_options *options;
222
223 int next_temp;
224
225 variable_storage *find_variable_storage(const ir_variable *var);
226
227 src_reg get_temp(const glsl_type *type);
228 void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);
229
230 src_reg src_reg_for_float(float val);
231
232 /**
233 * \name Visit methods
234 *
235 * As typical for the visitor pattern, there must be one \c visit method for
236 * each concrete subclass of \c ir_instruction. Virtual base classes within
237 * the hierarchy should not have \c visit methods.
238 */
239 /*@{*/
240 virtual void visit(ir_variable *);
241 virtual void visit(ir_loop *);
242 virtual void visit(ir_loop_jump *);
243 virtual void visit(ir_function_signature *);
244 virtual void visit(ir_function *);
245 virtual void visit(ir_expression *);
246 virtual void visit(ir_swizzle *);
247 virtual void visit(ir_dereference_variable *);
248 virtual void visit(ir_dereference_array *);
249 virtual void visit(ir_dereference_record *);
250 virtual void visit(ir_assignment *);
251 virtual void visit(ir_constant *);
252 virtual void visit(ir_call *);
253 virtual void visit(ir_return *);
254 virtual void visit(ir_discard *);
255 virtual void visit(ir_demote *);
256 virtual void visit(ir_texture *);
257 virtual void visit(ir_if *);
258 virtual void visit(ir_emit_vertex *);
259 virtual void visit(ir_end_primitive *);
260 virtual void visit(ir_barrier *);
261 /*@}*/
262
263 src_reg result;
264
265 /** List of variable_storage */
266 exec_list variables;
267
268 /** List of function_entry */
269 exec_list function_signatures;
270 int next_signature_id;
271
272 /** List of ir_to_mesa_instruction */
273 exec_list instructions;
274
275 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);
276
277 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
278 dst_reg dst, src_reg src0);
279
280 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
281 dst_reg dst, src_reg src0, src_reg src1);
282
283 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
284 dst_reg dst,
285 src_reg src0, src_reg src1, src_reg src2);
286
287 /**
288 * Emit the correct dot-product instruction for the type of arguments
289 */
290 ir_to_mesa_instruction * emit_dp(ir_instruction *ir,
291 dst_reg dst,
292 src_reg src0,
293 src_reg src1,
294 unsigned elements);
295
296 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
297 dst_reg dst, src_reg src0);
298
299 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
300 dst_reg dst, src_reg src0, src_reg src1);
301
302 bool try_emit_mad(ir_expression *ir,
303 int mul_operand);
304 bool try_emit_mad_for_and_not(ir_expression *ir,
305 int mul_operand);
306
307 void emit_swz(ir_expression *ir);
308
309 void emit_equality_comparison(ir_expression *ir, enum prog_opcode op,
310 dst_reg dst,
311 const src_reg &src0, const src_reg &src1);
312
313 inline void emit_sne(ir_expression *ir, dst_reg dst,
314 const src_reg &src0, const src_reg &src1)
315 {
316 emit_equality_comparison(ir, OPCODE_SLT, dst, src0, src1);
317 }
318
319 inline void emit_seq(ir_expression *ir, dst_reg dst,
320 const src_reg &src0, const src_reg &src1)
321 {
322 emit_equality_comparison(ir, OPCODE_SGE, dst, src0, src1);
323 }
324
325 bool process_move_condition(ir_rvalue *ir);
326
327 void copy_propagate(void);
328
329 void *mem_ctx;
330 };
331
332 } /* anonymous namespace */
333
334 static src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);
335
336 static dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);
337
338 static dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);
339
340 static int
341 swizzle_for_size(int size)
342 {
343 static const int size_swizzles[4] = {
344 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
345 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
346 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
347 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
348 };
349
350 assert((size >= 1) && (size <= 4));
351 return size_swizzles[size - 1];
352 }
353
354 ir_to_mesa_instruction *
355 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
356 dst_reg dst,
357 src_reg src0, src_reg src1, src_reg src2)
358 {
359 ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
360 int num_reladdr = 0;
361
362 /* If we have to do relative addressing, we want to load the ARL
363 * reg directly for one of the regs, and preload the other reladdr
364 * sources into temps.
365 */
366 num_reladdr += dst.reladdr != NULL;
367 num_reladdr += src0.reladdr != NULL;
368 num_reladdr += src1.reladdr != NULL;
369 num_reladdr += src2.reladdr != NULL;
370
371 reladdr_to_temp(ir, &src2, &num_reladdr);
372 reladdr_to_temp(ir, &src1, &num_reladdr);
373 reladdr_to_temp(ir, &src0, &num_reladdr);
374
375 if (dst.reladdr) {
376 emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
377 num_reladdr--;
378 }
379 assert(num_reladdr == 0);
380
381 inst->op = op;
382 inst->dst = dst;
383 inst->src[0] = src0;
384 inst->src[1] = src1;
385 inst->src[2] = src2;
386 inst->ir = ir;
387
388 this->instructions.push_tail(inst);
389
390 return inst;
391 }
392
393
394 ir_to_mesa_instruction *
395 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
396 dst_reg dst, src_reg src0, src_reg src1)
397 {
398 return emit(ir, op, dst, src0, src1, undef_src);
399 }
400
401 ir_to_mesa_instruction *
402 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
403 dst_reg dst, src_reg src0)
404 {
405 assert(dst.writemask != 0);
406 return emit(ir, op, dst, src0, undef_src, undef_src);
407 }
408
409 ir_to_mesa_instruction *
410 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
411 {
412 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
413 }
414
415 ir_to_mesa_instruction *
416 ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
417 dst_reg dst, src_reg src0, src_reg src1,
418 unsigned elements)
419 {
420 static const enum prog_opcode dot_opcodes[] = {
421 OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
422 };
423
424 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
425 }
426
427 /**
428 * Emits Mesa scalar opcodes to produce unique answers across channels.
429 *
430 * Some Mesa opcodes are scalar-only, like ARB_fp/vp. The src X
431 * channel determines the result across all channels. So to do a vec4
432 * of this operation, we want to emit a scalar per source channel used
433 * to produce dest channels.
434 */
435 void
436 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
437 dst_reg dst,
438 src_reg orig_src0, src_reg orig_src1)
439 {
440 int i, j;
441 int done_mask = ~dst.writemask;
442
443 /* Mesa RCP is a scalar operation splatting results to all channels,
444 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
445 * dst channels.
446 */
447 for (i = 0; i < 4; i++) {
448 GLuint this_mask = (1 << i);
449 ir_to_mesa_instruction *inst;
450 src_reg src0 = orig_src0;
451 src_reg src1 = orig_src1;
452
453 if (done_mask & this_mask)
454 continue;
455
456 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
457 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
458 for (j = i + 1; j < 4; j++) {
459 /* If there is another enabled component in the destination that is
460 * derived from the same inputs, generate its value on this pass as
461 * well.
462 */
463 if (!(done_mask & (1 << j)) &&
464 GET_SWZ(src0.swizzle, j) == src0_swiz &&
465 GET_SWZ(src1.swizzle, j) == src1_swiz) {
466 this_mask |= (1 << j);
467 }
468 }
469 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
470 src0_swiz, src0_swiz);
471 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
472 src1_swiz, src1_swiz);
473
474 inst = emit(ir, op, dst, src0, src1);
475 inst->dst.writemask = this_mask;
476 done_mask |= this_mask;
477 }
478 }
479
480 void
481 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
482 dst_reg dst, src_reg src0)
483 {
484 src_reg undef = undef_src;
485
486 undef.swizzle = SWIZZLE_XXXX;
487
488 emit_scalar(ir, op, dst, src0, undef);
489 }
490
491 src_reg
492 ir_to_mesa_visitor::src_reg_for_float(float val)
493 {
494 src_reg src(PROGRAM_CONSTANT, -1, NULL);
495
496 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
497 (const gl_constant_value *)&val, 1, &src.swizzle);
498
499 return src;
500 }
501
502 static int
503 type_size(const struct glsl_type *type)
504 {
505 return type->count_vec4_slots(false, false);
506 }
507
508 /**
509 * In the initial pass of codegen, we assign temporary numbers to
510 * intermediate results. (not SSA -- variable assignments will reuse
511 * storage). Actual register allocation for the Mesa VM occurs in a
512 * pass over the Mesa IR later.
513 */
514 src_reg
515 ir_to_mesa_visitor::get_temp(const glsl_type *type)
516 {
517 src_reg src;
518
519 src.file = PROGRAM_TEMPORARY;
520 src.index = next_temp;
521 src.reladdr = NULL;
522 next_temp += type_size(type);
523
524 if (type->is_array() || type->is_struct()) {
525 src.swizzle = SWIZZLE_NOOP;
526 } else {
527 src.swizzle = swizzle_for_size(type->vector_elements);
528 }
529 src.negate = 0;
530
531 return src;
532 }
533
534 variable_storage *
535 ir_to_mesa_visitor::find_variable_storage(const ir_variable *var)
536 {
537 foreach_in_list(variable_storage, entry, &this->variables) {
538 if (entry->var == var)
539 return entry;
540 }
541
542 return NULL;
543 }
544
545 void
546 ir_to_mesa_visitor::visit(ir_variable *ir)
547 {
548 if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
549 unsigned int i;
550 const ir_state_slot *const slots = ir->get_state_slots();
551 assert(slots != NULL);
552
553 /* Check if this statevar's setup in the STATE file exactly
554 * matches how we'll want to reference it as a
555 * struct/array/whatever. If not, then we need to move it into
556 * temporary storage and hope that it'll get copy-propagated
557 * out.
558 */
559 for (i = 0; i < ir->get_num_state_slots(); i++) {
560 if (slots[i].swizzle != SWIZZLE_XYZW) {
561 break;
562 }
563 }
564
565 variable_storage *storage;
566 dst_reg dst;
567 if (i == ir->get_num_state_slots()) {
568 /* We'll set the index later. */
569 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
570 this->variables.push_tail(storage);
571
572 dst = undef_dst;
573 } else {
574 /* The variable_storage constructor allocates slots based on the size
575 * of the type. However, this had better match the number of state
576 * elements that we're going to copy into the new temporary.
577 */
578 assert((int) ir->get_num_state_slots() == type_size(ir->type));
579
580 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
581 this->next_temp);
582 this->variables.push_tail(storage);
583 this->next_temp += type_size(ir->type);
584
585 dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
586 }
587
588
589 for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
590 int index = _mesa_add_state_reference(this->prog->Parameters,
591 slots[i].tokens);
592
593 if (storage->file == PROGRAM_STATE_VAR) {
594 if (storage->index == -1) {
595 storage->index = index;
596 } else {
597 assert(index == storage->index + (int)i);
598 }
599 } else {
600 src_reg src(PROGRAM_STATE_VAR, index, NULL);
601 src.swizzle = slots[i].swizzle;
602 emit(ir, OPCODE_MOV, dst, src);
603 /* even a float takes up a whole vec4 reg in a struct/array. */
604 dst.index++;
605 }
606 }
607
608 if (storage->file == PROGRAM_TEMPORARY &&
609 dst.index != storage->index + (int) ir->get_num_state_slots()) {
610 linker_error(this->shader_program,
611 "failed to load builtin uniform `%s' "
612 "(%d/%d regs loaded)\n",
613 ir->name, dst.index - storage->index,
614 type_size(ir->type));
615 }
616 }
617 }
618
619 void
620 ir_to_mesa_visitor::visit(ir_loop *ir)
621 {
622 emit(NULL, OPCODE_BGNLOOP);
623
624 visit_exec_list(&ir->body_instructions, this);
625
626 emit(NULL, OPCODE_ENDLOOP);
627 }
628
629 void
630 ir_to_mesa_visitor::visit(ir_loop_jump *ir)
631 {
632 switch (ir->mode) {
633 case ir_loop_jump::jump_break:
634 emit(NULL, OPCODE_BRK);
635 break;
636 case ir_loop_jump::jump_continue:
637 emit(NULL, OPCODE_CONT);
638 break;
639 }
640 }
641
642
643 void
644 ir_to_mesa_visitor::visit(ir_function_signature *ir)
645 {
646 assert(0);
647 (void)ir;
648 }
649
650 void
651 ir_to_mesa_visitor::visit(ir_function *ir)
652 {
653 /* Ignore function bodies other than main() -- we shouldn't see calls to
654 * them since they should all be inlined before we get to ir_to_mesa.
655 */
656 if (strcmp(ir->name, "main") == 0) {
657 const ir_function_signature *sig;
658 exec_list empty;
659
660 sig = ir->matching_signature(NULL, &empty, false);
661
662 assert(sig);
663
664 foreach_in_list(ir_instruction, ir, &sig->body) {
665 ir->accept(this);
666 }
667 }
668 }
669
670 bool
671 ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
672 {
673 int nonmul_operand = 1 - mul_operand;
674 src_reg a, b, c;
675
676 ir_expression *expr = ir->operands[mul_operand]->as_expression();
677 if (!expr || expr->operation != ir_binop_mul)
678 return false;
679
680 expr->operands[0]->accept(this);
681 a = this->result;
682 expr->operands[1]->accept(this);
683 b = this->result;
684 ir->operands[nonmul_operand]->accept(this);
685 c = this->result;
686
687 this->result = get_temp(ir->type);
688 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);
689
690 return true;
691 }
692
693 /**
694 * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b))
695 *
696 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
697 * implemented using multiplication, and logical-or is implemented using
698 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
699 * As result, the logical expression (a & !b) can be rewritten as:
700 *
701 * - a * !b
702 * - a * (1 - b)
703 * - (a * 1) - (a * b)
704 * - a + -(a * b)
705 * - a + (a * -b)
706 *
707 * This final expression can be implemented as a single MAD(a, -b, a)
708 * instruction.
709 */
710 bool
711 ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
712 {
713 const int other_operand = 1 - try_operand;
714 src_reg a, b;
715
716 ir_expression *expr = ir->operands[try_operand]->as_expression();
717 if (!expr || expr->operation != ir_unop_logic_not)
718 return false;
719
720 ir->operands[other_operand]->accept(this);
721 a = this->result;
722 expr->operands[0]->accept(this);
723 b = this->result;
724
725 b.negate = ~b.negate;
726
727 this->result = get_temp(ir->type);
728 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a);
729
730 return true;
731 }
732
733 void
734 ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
735 src_reg *reg, int *num_reladdr)
736 {
737 if (!reg->reladdr)
738 return;
739
740 emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);
741
742 if (*num_reladdr != 1) {
743 src_reg temp = get_temp(glsl_type::vec4_type);
744
745 emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
746 *reg = temp;
747 }
748
749 (*num_reladdr)--;
750 }
751
752 void
753 ir_to_mesa_visitor::emit_swz(ir_expression *ir)
754 {
755 /* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
756 * This means that each of the operands is either an immediate value of -1,
757 * 0, or 1, or is a component from one source register (possibly with
758 * negation).
759 */
760 uint8_t components[4] = { 0 };
761 bool negate[4] = { false };
762 ir_variable *var = NULL;
763
764 for (unsigned i = 0; i < ir->type->vector_elements; i++) {
765 ir_rvalue *op = ir->operands[i];
766
767 assert(op->type->is_scalar());
768
769 while (op != NULL) {
770 switch (op->ir_type) {
771 case ir_type_constant: {
772
773 assert(op->type->is_scalar());
774
775 const ir_constant *const c = op->as_constant();
776 if (c->is_one()) {
777 components[i] = SWIZZLE_ONE;
778 } else if (c->is_zero()) {
779 components[i] = SWIZZLE_ZERO;
780 } else if (c->is_negative_one()) {
781 components[i] = SWIZZLE_ONE;
782 negate[i] = true;
783 } else {
784 assert(!"SWZ constant must be 0.0 or 1.0.");
785 }
786
787 op = NULL;
788 break;
789 }
790
791 case ir_type_dereference_variable: {
792 ir_dereference_variable *const deref =
793 (ir_dereference_variable *) op;
794
795 assert((var == NULL) || (deref->var == var));
796 components[i] = SWIZZLE_X;
797 var = deref->var;
798 op = NULL;
799 break;
800 }
801
802 case ir_type_expression: {
803 ir_expression *const expr = (ir_expression *) op;
804
805 assert(expr->operation == ir_unop_neg);
806 negate[i] = true;
807
808 op = expr->operands[0];
809 break;
810 }
811
812 case ir_type_swizzle: {
813 ir_swizzle *const swiz = (ir_swizzle *) op;
814
815 components[i] = swiz->mask.x;
816 op = swiz->val;
817 break;
818 }
819
820 default:
821 assert(!"Should not get here.");
822 return;
823 }
824 }
825 }
826
827 assert(var != NULL);
828
829 ir_dereference_variable *const deref =
830 new(mem_ctx) ir_dereference_variable(var);
831
832 this->result.file = PROGRAM_UNDEFINED;
833 deref->accept(this);
834 if (this->result.file == PROGRAM_UNDEFINED) {
835 printf("Failed to get tree for expression operand:\n");
836 deref->print();
837 printf("\n");
838 exit(1);
839 }
840
841 src_reg src;
842
843 src = this->result;
844 src.swizzle = MAKE_SWIZZLE4(components[0],
845 components[1],
846 components[2],
847 components[3]);
848 src.negate = ((unsigned(negate[0]) << 0)
849 | (unsigned(negate[1]) << 1)
850 | (unsigned(negate[2]) << 2)
851 | (unsigned(negate[3]) << 3));
852
853 /* Storage for our result. Ideally for an assignment we'd be using the
854 * actual storage for the result here, instead.
855 */
856 const src_reg result_src = get_temp(ir->type);
857 dst_reg result_dst = dst_reg(result_src);
858
859 /* Limit writes to the channels that will be used by result_src later.
860 * This does limit this temp's use as a temporary for multi-instruction
861 * sequences.
862 */
863 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
864
865 emit(ir, OPCODE_SWZ, result_dst, src);
866 this->result = result_src;
867 }
868
869 void
870 ir_to_mesa_visitor::emit_equality_comparison(ir_expression *ir,
871 enum prog_opcode op,
872 dst_reg dst,
873 const src_reg &src0,
874 const src_reg &src1)
875 {
876 src_reg difference;
877 src_reg abs_difference = get_temp(glsl_type::vec4_type);
878 const src_reg zero = src_reg_for_float(0.0);
879
880 /* x == y is equivalent to -abs(x-y) >= 0. Since all of the code that
881 * consumes the generated IR is pretty dumb, take special care when one
882 * of the operands is zero.
883 *
884 * Similarly, x != y is equivalent to -abs(x-y) < 0.
885 */
886 if (src0.file == zero.file &&
887 src0.index == zero.index &&
888 src0.swizzle == zero.swizzle) {
889 difference = src1;
890 } else if (src1.file == zero.file &&
891 src1.index == zero.index &&
892 src1.swizzle == zero.swizzle) {
893 difference = src0;
894 } else {
895 difference = get_temp(glsl_type::vec4_type);
896
897 src_reg tmp_src = src0;
898 tmp_src.negate = ~tmp_src.negate;
899
900 emit(ir, OPCODE_ADD, dst_reg(difference), tmp_src, src1);
901 }
902
903 emit(ir, OPCODE_ABS, dst_reg(abs_difference), difference);
904
905 abs_difference.negate = ~abs_difference.negate;
906 emit(ir, op, dst, abs_difference, zero);
907 }
908
909 void
910 ir_to_mesa_visitor::visit(ir_expression *ir)
911 {
912 unsigned int operand;
913 src_reg op[ARRAY_SIZE(ir->operands)];
914 src_reg result_src;
915 dst_reg result_dst;
916
917 /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
918 */
919 if (ir->operation == ir_binop_add) {
920 if (try_emit_mad(ir, 1))
921 return;
922 if (try_emit_mad(ir, 0))
923 return;
924 }
925
926 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
927 */
928 if (ir->operation == ir_binop_logic_and) {
929 if (try_emit_mad_for_and_not(ir, 1))
930 return;
931 if (try_emit_mad_for_and_not(ir, 0))
932 return;
933 }
934
935 if (ir->operation == ir_quadop_vector) {
936 this->emit_swz(ir);
937 return;
938 }
939
940 for (operand = 0; operand < ir->num_operands; operand++) {
941 this->result.file = PROGRAM_UNDEFINED;
942 ir->operands[operand]->accept(this);
943 if (this->result.file == PROGRAM_UNDEFINED) {
944 printf("Failed to get tree for expression operand:\n");
945 ir->operands[operand]->print();
946 printf("\n");
947 exit(1);
948 }
949 op[operand] = this->result;
950
951 /* Matrix expression operands should have been broken down to vector
952 * operations already.
953 */
954 assert(!ir->operands[operand]->type->is_matrix());
955 }
956
957 int vector_elements = ir->operands[0]->type->vector_elements;
958 if (ir->operands[1]) {
959 vector_elements = MAX2(vector_elements,
960 ir->operands[1]->type->vector_elements);
961 }
962
963 this->result.file = PROGRAM_UNDEFINED;
964
965 /* Storage for our result. Ideally for an assignment we'd be using
966 * the actual storage for the result here, instead.
967 */
968 result_src = get_temp(ir->type);
969 /* convenience for the emit functions below. */
970 result_dst = dst_reg(result_src);
971 /* Limit writes to the channels that will be used by result_src later.
972 * This does limit this temp's use as a temporary for multi-instruction
973 * sequences.
974 */
975 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
976
977 switch (ir->operation) {
978 case ir_unop_logic_not:
979 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
980 * older GPUs implement SEQ using multiple instructions (i915 uses two
981 * SGE instructions and a MUL instruction). Since our logic values are
982 * 0.0 and 1.0, 1-x also implements !x.
983 */
984 op[0].negate = ~op[0].negate;
985 emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0));
986 break;
987 case ir_unop_neg:
988 op[0].negate = ~op[0].negate;
989 result_src = op[0];
990 break;
991 case ir_unop_abs:
992 emit(ir, OPCODE_ABS, result_dst, op[0]);
993 break;
994 case ir_unop_sign:
995 emit(ir, OPCODE_SSG, result_dst, op[0]);
996 break;
997 case ir_unop_rcp:
998 emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
999 break;
1000
1001 case ir_unop_exp2:
1002 emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
1003 break;
1004 case ir_unop_exp:
1005 assert(!"not reached: should be handled by exp_to_exp2");
1006 break;
1007 case ir_unop_log:
1008 assert(!"not reached: should be handled by log_to_log2");
1009 break;
1010 case ir_unop_log2:
1011 emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
1012 break;
1013 case ir_unop_sin:
1014 emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
1015 break;
1016 case ir_unop_cos:
1017 emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
1018 break;
1019
1020 case ir_unop_dFdx:
1021 emit(ir, OPCODE_DDX, result_dst, op[0]);
1022 break;
1023 case ir_unop_dFdy:
1024 emit(ir, OPCODE_DDY, result_dst, op[0]);
1025 break;
1026
1027 case ir_unop_saturate: {
1028 ir_to_mesa_instruction *inst = emit(ir, OPCODE_MOV,
1029 result_dst, op[0]);
1030 inst->saturate = true;
1031 break;
1032 }
1033 case ir_unop_noise: {
1034 const enum prog_opcode opcode =
1035 prog_opcode(OPCODE_NOISE1
1036 + (ir->operands[0]->type->vector_elements) - 1);
1037 assert((opcode >= OPCODE_NOISE1) && (opcode <= OPCODE_NOISE4));
1038
1039 emit(ir, opcode, result_dst, op[0]);
1040 break;
1041 }
1042
1043 case ir_binop_add:
1044 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1045 break;
1046 case ir_binop_sub:
1047 emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
1048 break;
1049
1050 case ir_binop_mul:
1051 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1052 break;
1053 case ir_binop_div:
1054 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1055 break;
1056 case ir_binop_mod:
1057 /* Floating point should be lowered by MOD_TO_FLOOR in the compiler. */
1058 assert(ir->type->is_integer_32());
1059 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1060 break;
1061
1062 case ir_binop_less:
1063 emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1064 break;
1065 case ir_binop_gequal:
1066 emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1067 break;
1068 case ir_binop_equal:
1069 emit_seq(ir, result_dst, op[0], op[1]);
1070 break;
1071 case ir_binop_nequal:
1072 emit_sne(ir, result_dst, op[0], op[1]);
1073 break;
1074 case ir_binop_all_equal:
1075 /* "==" operator producing a scalar boolean. */
1076 if (ir->operands[0]->type->is_vector() ||
1077 ir->operands[1]->type->is_vector()) {
1078 src_reg temp = get_temp(glsl_type::vec4_type);
1079 emit_sne(ir, dst_reg(temp), op[0], op[1]);
1080
1081 /* After the dot-product, the value will be an integer on the
1082 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1083 */
1084 emit_dp(ir, result_dst, temp, temp, vector_elements);
1085
1086 /* Negating the result of the dot-product gives values on the range
1087 * [-4, 0]. Zero becomes 1.0, and negative values become zero. This
1088 * achieved using SGE.
1089 */
1090 src_reg sge_src = result_src;
1091 sge_src.negate = ~sge_src.negate;
1092 emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0));
1093 } else {
1094 emit_seq(ir, result_dst, op[0], op[1]);
1095 }
1096 break;
1097 case ir_binop_any_nequal:
1098 /* "!=" operator producing a scalar boolean. */
1099 if (ir->operands[0]->type->is_vector() ||
1100 ir->operands[1]->type->is_vector()) {
1101 src_reg temp = get_temp(glsl_type::vec4_type);
1102 if (ir->operands[0]->type->is_boolean() &&
1103 ir->operands[1]->as_constant() &&
1104 ir->operands[1]->as_constant()->is_zero()) {
1105 temp = op[0];
1106 } else {
1107 emit_sne(ir, dst_reg(temp), op[0], op[1]);
1108 }
1109
1110 /* After the dot-product, the value will be an integer on the
1111 * range [0,4]. Zero stays zero, and positive values become 1.0.
1112 */
1113 ir_to_mesa_instruction *const dp =
1114 emit_dp(ir, result_dst, temp, temp, vector_elements);
1115 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1116 /* The clamping to [0,1] can be done for free in the fragment
1117 * shader with a saturate.
1118 */
1119 dp->saturate = true;
1120 } else {
1121 /* Negating the result of the dot-product gives values on the range
1122 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1123 * achieved using SLT.
1124 */
1125 src_reg slt_src = result_src;
1126 slt_src.negate = ~slt_src.negate;
1127 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1128 }
1129 } else {
1130 emit_sne(ir, result_dst, op[0], op[1]);
1131 }
1132 break;
1133
1134 case ir_binop_logic_xor:
1135 emit_sne(ir, result_dst, op[0], op[1]);
1136 break;
1137
1138 case ir_binop_logic_or: {
1139 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1140 /* After the addition, the value will be an integer on the
1141 * range [0,2]. Zero stays zero, and positive values become 1.0.
1142 */
1143 ir_to_mesa_instruction *add =
1144 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1145 add->saturate = true;
1146 } else {
1147 /* The Boolean arguments are stored as float 0.0 and 1.0. If either
1148 * value is 1.0, the result of the logcal-or should be 1.0. If both
1149 * values are 0.0, the result should be 0.0. This is exactly what
1150 * MAX does.
1151 */
1152 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1153 }
1154 break;
1155 }
1156
1157 case ir_binop_logic_and:
1158 /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1159 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1160 break;
1161
1162 case ir_binop_dot:
1163 assert(ir->operands[0]->type->is_vector());
1164 assert(ir->operands[0]->type == ir->operands[1]->type);
1165 emit_dp(ir, result_dst, op[0], op[1],
1166 ir->operands[0]->type->vector_elements);
1167 break;
1168
1169 case ir_unop_sqrt:
1170 /* sqrt(x) = x * rsq(x). */
1171 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1172 emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
1173 /* For incoming channels <= 0, set the result to 0. */
1174 op[0].negate = ~op[0].negate;
1175 emit(ir, OPCODE_CMP, result_dst,
1176 op[0], result_src, src_reg_for_float(0.0));
1177 break;
1178 case ir_unop_rsq:
1179 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1180 break;
1181 case ir_unop_i2f:
1182 case ir_unop_u2f:
1183 case ir_unop_b2f:
1184 case ir_unop_b2i:
1185 case ir_unop_i2u:
1186 case ir_unop_u2i:
1187 /* Mesa IR lacks types, ints are stored as truncated floats. */
1188 result_src = op[0];
1189 break;
1190 case ir_unop_f2i:
1191 case ir_unop_f2u:
1192 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1193 break;
1194 case ir_unop_f2b:
1195 case ir_unop_i2b:
1196 emit_sne(ir, result_dst, op[0], src_reg_for_float(0.0));
1197 break;
1198 case ir_unop_bitcast_f2i: // Ignore these 4, they can't happen here anyway
1199 case ir_unop_bitcast_f2u:
1200 case ir_unop_bitcast_i2f:
1201 case ir_unop_bitcast_u2f:
1202 break;
1203 case ir_unop_trunc:
1204 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1205 break;
1206 case ir_unop_ceil:
1207 op[0].negate = ~op[0].negate;
1208 emit(ir, OPCODE_FLR, result_dst, op[0]);
1209 result_src.negate = ~result_src.negate;
1210 break;
1211 case ir_unop_floor:
1212 emit(ir, OPCODE_FLR, result_dst, op[0]);
1213 break;
1214 case ir_unop_fract:
1215 emit(ir, OPCODE_FRC, result_dst, op[0]);
1216 break;
1217 case ir_unop_pack_snorm_2x16:
1218 case ir_unop_pack_snorm_4x8:
1219 case ir_unop_pack_unorm_2x16:
1220 case ir_unop_pack_unorm_4x8:
1221 case ir_unop_pack_half_2x16:
1222 case ir_unop_pack_double_2x32:
1223 case ir_unop_unpack_snorm_2x16:
1224 case ir_unop_unpack_snorm_4x8:
1225 case ir_unop_unpack_unorm_2x16:
1226 case ir_unop_unpack_unorm_4x8:
1227 case ir_unop_unpack_half_2x16:
1228 case ir_unop_unpack_double_2x32:
1229 case ir_unop_bitfield_reverse:
1230 case ir_unop_bit_count:
1231 case ir_unop_find_msb:
1232 case ir_unop_find_lsb:
1233 case ir_unop_d2f:
1234 case ir_unop_f2d:
1235 case ir_unop_d2i:
1236 case ir_unop_i2d:
1237 case ir_unop_d2u:
1238 case ir_unop_u2d:
1239 case ir_unop_d2b:
1240 case ir_unop_frexp_sig:
1241 case ir_unop_frexp_exp:
1242 assert(!"not supported");
1243 break;
1244 case ir_binop_min:
1245 emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
1246 break;
1247 case ir_binop_max:
1248 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1249 break;
1250 case ir_binop_pow:
1251 emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
1252 break;
1253
1254 /* GLSL 1.30 integer ops are unsupported in Mesa IR, but since
1255 * hardware backends have no way to avoid Mesa IR generation
1256 * even if they don't use it, we need to emit "something" and
1257 * continue.
1258 */
1259 case ir_binop_lshift:
1260 case ir_binop_rshift:
1261 case ir_binop_bit_and:
1262 case ir_binop_bit_xor:
1263 case ir_binop_bit_or:
1264 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1265 break;
1266
1267 case ir_unop_bit_not:
1268 case ir_unop_round_even:
1269 emit(ir, OPCODE_MOV, result_dst, op[0]);
1270 break;
1271
1272 case ir_binop_ubo_load:
1273 assert(!"not supported");
1274 break;
1275
1276 case ir_triop_lrp:
1277 /* ir_triop_lrp operands are (x, y, a) while
1278 * OPCODE_LRP operands are (a, y, x) to match ARB_fragment_program.
1279 */
1280 emit(ir, OPCODE_LRP, result_dst, op[2], op[1], op[0]);
1281 break;
1282
1283 case ir_triop_csel:
1284 /* We assume that boolean true and false are 1.0 and 0.0. OPCODE_CMP
1285 * selects src1 if src0 is < 0, src2 otherwise.
1286 */
1287 op[0].negate = ~op[0].negate;
1288 emit(ir, OPCODE_CMP, result_dst, op[0], op[1], op[2]);
1289 break;
1290
1291 case ir_binop_vector_extract:
1292 case ir_triop_fma:
1293 case ir_triop_bitfield_extract:
1294 case ir_triop_vector_insert:
1295 case ir_quadop_bitfield_insert:
1296 case ir_binop_ldexp:
1297 case ir_binop_carry:
1298 case ir_binop_borrow:
1299 case ir_binop_imul_high:
1300 case ir_unop_interpolate_at_centroid:
1301 case ir_binop_interpolate_at_offset:
1302 case ir_binop_interpolate_at_sample:
1303 case ir_unop_dFdx_coarse:
1304 case ir_unop_dFdx_fine:
1305 case ir_unop_dFdy_coarse:
1306 case ir_unop_dFdy_fine:
1307 case ir_unop_subroutine_to_int:
1308 case ir_unop_get_buffer_size:
1309 case ir_unop_bitcast_u642d:
1310 case ir_unop_bitcast_i642d:
1311 case ir_unop_bitcast_d2u64:
1312 case ir_unop_bitcast_d2i64:
1313 case ir_unop_i642i:
1314 case ir_unop_u642i:
1315 case ir_unop_i642u:
1316 case ir_unop_u642u:
1317 case ir_unop_i642b:
1318 case ir_unop_i642f:
1319 case ir_unop_u642f:
1320 case ir_unop_i642d:
1321 case ir_unop_u642d:
1322 case ir_unop_i2i64:
1323 case ir_unop_u2i64:
1324 case ir_unop_b2i64:
1325 case ir_unop_f2i64:
1326 case ir_unop_d2i64:
1327 case ir_unop_i2u64:
1328 case ir_unop_u2u64:
1329 case ir_unop_f2u64:
1330 case ir_unop_d2u64:
1331 case ir_unop_u642i64:
1332 case ir_unop_i642u64:
1333 case ir_unop_pack_int_2x32:
1334 case ir_unop_unpack_int_2x32:
1335 case ir_unop_pack_uint_2x32:
1336 case ir_unop_unpack_uint_2x32:
1337 case ir_unop_pack_sampler_2x32:
1338 case ir_unop_unpack_sampler_2x32:
1339 case ir_unop_pack_image_2x32:
1340 case ir_unop_unpack_image_2x32:
1341 case ir_unop_atan:
1342 case ir_binop_atan2:
1343 assert(!"not supported");
1344 break;
1345
1346 case ir_unop_ssbo_unsized_array_length:
1347 case ir_quadop_vector:
1348 /* This operation should have already been handled.
1349 */
1350 assert(!"Should not get here.");
1351 break;
1352 }
1353
1354 this->result = result_src;
1355 }
1356
1357
1358 void
1359 ir_to_mesa_visitor::visit(ir_swizzle *ir)
1360 {
1361 src_reg src;
1362 int i;
1363 int swizzle[4];
1364
1365 /* Note that this is only swizzles in expressions, not those on the left
1366 * hand side of an assignment, which do write masking. See ir_assignment
1367 * for that.
1368 */
1369
1370 ir->val->accept(this);
1371 src = this->result;
1372 assert(src.file != PROGRAM_UNDEFINED);
1373 assert(ir->type->vector_elements > 0);
1374
1375 for (i = 0; i < 4; i++) {
1376 if (i < ir->type->vector_elements) {
1377 switch (i) {
1378 case 0:
1379 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1380 break;
1381 case 1:
1382 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1383 break;
1384 case 2:
1385 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1386 break;
1387 case 3:
1388 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1389 break;
1390 }
1391 } else {
1392 /* If the type is smaller than a vec4, replicate the last
1393 * channel out.
1394 */
1395 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1396 }
1397 }
1398
1399 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1400
1401 this->result = src;
1402 }
1403
1404 void
1405 ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
1406 {
1407 variable_storage *entry = find_variable_storage(ir->var);
1408 ir_variable *var = ir->var;
1409
1410 if (!entry) {
1411 switch (var->data.mode) {
1412 case ir_var_uniform:
1413 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1414 var->data.param_index);
1415 this->variables.push_tail(entry);
1416 break;
1417 case ir_var_shader_in:
1418 /* The linker assigns locations for varyings and attributes,
1419 * including deprecated builtins (like gl_Color),
1420 * user-assigned generic attributes (glBindVertexLocation),
1421 * and user-defined varyings.
1422 */
1423 assert(var->data.location != -1);
1424 entry = new(mem_ctx) variable_storage(var,
1425 PROGRAM_INPUT,
1426 var->data.location);
1427 break;
1428 case ir_var_shader_out:
1429 assert(var->data.location != -1);
1430 entry = new(mem_ctx) variable_storage(var,
1431 PROGRAM_OUTPUT,
1432 var->data.location);
1433 break;
1434 case ir_var_system_value:
1435 entry = new(mem_ctx) variable_storage(var,
1436 PROGRAM_SYSTEM_VALUE,
1437 var->data.location);
1438 break;
1439 case ir_var_auto:
1440 case ir_var_temporary:
1441 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1442 this->next_temp);
1443 this->variables.push_tail(entry);
1444
1445 next_temp += type_size(var->type);
1446 break;
1447 }
1448
1449 if (!entry) {
1450 printf("Failed to make storage for %s\n", var->name);
1451 exit(1);
1452 }
1453 }
1454
1455 this->result = src_reg(entry->file, entry->index, var->type);
1456 }
1457
1458 void
1459 ir_to_mesa_visitor::visit(ir_dereference_array *ir)
1460 {
1461 ir_constant *index;
1462 src_reg src;
1463 int element_size = type_size(ir->type);
1464
1465 index = ir->array_index->constant_expression_value(ralloc_parent(ir));
1466
1467 ir->array->accept(this);
1468 src = this->result;
1469
1470 if (index) {
1471 src.index += index->value.i[0] * element_size;
1472 } else {
1473 /* Variable index array dereference. It eats the "vec4" of the
1474 * base of the array and an index that offsets the Mesa register
1475 * index.
1476 */
1477 ir->array_index->accept(this);
1478
1479 src_reg index_reg;
1480
1481 if (element_size == 1) {
1482 index_reg = this->result;
1483 } else {
1484 index_reg = get_temp(glsl_type::float_type);
1485
1486 emit(ir, OPCODE_MUL, dst_reg(index_reg),
1487 this->result, src_reg_for_float(element_size));
1488 }
1489
1490 /* If there was already a relative address register involved, add the
1491 * new and the old together to get the new offset.
1492 */
1493 if (src.reladdr != NULL) {
1494 src_reg accum_reg = get_temp(glsl_type::float_type);
1495
1496 emit(ir, OPCODE_ADD, dst_reg(accum_reg),
1497 index_reg, *src.reladdr);
1498
1499 index_reg = accum_reg;
1500 }
1501
1502 src.reladdr = ralloc(mem_ctx, src_reg);
1503 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1504 }
1505
1506 /* If the type is smaller than a vec4, replicate the last channel out. */
1507 if (ir->type->is_scalar() || ir->type->is_vector())
1508 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1509 else
1510 src.swizzle = SWIZZLE_NOOP;
1511
1512 this->result = src;
1513 }
1514
1515 void
1516 ir_to_mesa_visitor::visit(ir_dereference_record *ir)
1517 {
1518 unsigned int i;
1519 const glsl_type *struct_type = ir->record->type;
1520 int offset = 0;
1521
1522 ir->record->accept(this);
1523
1524 assert(ir->field_idx >= 0);
1525 for (i = 0; i < struct_type->length; i++) {
1526 if (i == (unsigned) ir->field_idx)
1527 break;
1528 offset += type_size(struct_type->fields.structure[i].type);
1529 }
1530
1531 /* If the type is smaller than a vec4, replicate the last channel out. */
1532 if (ir->type->is_scalar() || ir->type->is_vector())
1533 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1534 else
1535 this->result.swizzle = SWIZZLE_NOOP;
1536
1537 this->result.index += offset;
1538 }
1539
1540 /**
1541 * We want to be careful in assignment setup to hit the actual storage
1542 * instead of potentially using a temporary like we might with the
1543 * ir_dereference handler.
1544 */
1545 static dst_reg
1546 get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
1547 {
1548 /* The LHS must be a dereference. If the LHS is a variable indexed array
1549 * access of a vector, it must be separated into a series conditional moves
1550 * before reaching this point (see ir_vec_index_to_cond_assign).
1551 */
1552 assert(ir->as_dereference());
1553 ir_dereference_array *deref_array = ir->as_dereference_array();
1554 if (deref_array) {
1555 assert(!deref_array->array->type->is_vector());
1556 }
1557
1558 /* Use the rvalue deref handler for the most part. We'll ignore
1559 * swizzles in it and write swizzles using writemask, though.
1560 */
1561 ir->accept(v);
1562 return dst_reg(v->result);
1563 }
1564
1565 /* Calculate the sampler index and also calculate the base uniform location
1566 * for struct members.
1567 */
1568 static void
1569 calc_sampler_offsets(struct gl_shader_program *prog, ir_dereference *deref,
1570 unsigned *offset, unsigned *array_elements,
1571 unsigned *location)
1572 {
1573 if (deref->ir_type == ir_type_dereference_variable)
1574 return;
1575
1576 switch (deref->ir_type) {
1577 case ir_type_dereference_array: {
1578 ir_dereference_array *deref_arr = deref->as_dereference_array();
1579
1580 void *mem_ctx = ralloc_parent(deref_arr);
1581 ir_constant *array_index =
1582 deref_arr->array_index->constant_expression_value(mem_ctx);
1583
1584 if (!array_index) {
1585 /* GLSL 1.10 and 1.20 allowed variable sampler array indices,
1586 * while GLSL 1.30 requires that the array indices be
1587 * constant integer expressions. We don't expect any driver
1588 * to actually work with a really variable array index, so
1589 * all that would work would be an unrolled loop counter that ends
1590 * up being constant above.
1591 */
1592 ralloc_strcat(&prog->data->InfoLog,
1593 "warning: Variable sampler array index unsupported.\n"
1594 "This feature of the language was removed in GLSL 1.20 "
1595 "and is unlikely to be supported for 1.10 in Mesa.\n");
1596 } else {
1597 *offset += array_index->value.u[0] * *array_elements;
1598 }
1599
1600 *array_elements *= deref_arr->array->type->length;
1601
1602 calc_sampler_offsets(prog, deref_arr->array->as_dereference(),
1603 offset, array_elements, location);
1604 break;
1605 }
1606
1607 case ir_type_dereference_record: {
1608 ir_dereference_record *deref_record = deref->as_dereference_record();
1609 unsigned field_index = deref_record->field_idx;
1610 *location +=
1611 deref_record->record->type->struct_location_offset(field_index);
1612 calc_sampler_offsets(prog, deref_record->record->as_dereference(),
1613 offset, array_elements, location);
1614 break;
1615 }
1616
1617 default:
1618 unreachable("Invalid deref type");
1619 break;
1620 }
1621 }
1622
1623 static int
1624 get_sampler_uniform_value(class ir_dereference *sampler,
1625 struct gl_shader_program *shader_program,
1626 const struct gl_program *prog)
1627 {
1628 GLuint shader = _mesa_program_enum_to_shader_stage(prog->Target);
1629 ir_variable *var = sampler->variable_referenced();
1630 unsigned location = var->data.location;
1631 unsigned array_elements = 1;
1632 unsigned offset = 0;
1633
1634 calc_sampler_offsets(shader_program, sampler, &offset, &array_elements,
1635 &location);
1636
1637 assert(shader_program->data->UniformStorage[location].opaque[shader].active);
1638 return shader_program->data->UniformStorage[location].opaque[shader].index +
1639 offset;
1640 }
1641
1642 /**
1643 * Process the condition of a conditional assignment
1644 *
1645 * Examines the condition of a conditional assignment to generate the optimal
1646 * first operand of a \c CMP instruction. If the condition is a relational
1647 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1648 * used as the source for the \c CMP instruction. Otherwise the comparison
1649 * is processed to a boolean result, and the boolean result is used as the
1650 * operand to the CMP instruction.
1651 */
1652 bool
1653 ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
1654 {
1655 ir_rvalue *src_ir = ir;
1656 bool negate = true;
1657 bool switch_order = false;
1658
1659 ir_expression *const expr = ir->as_expression();
1660 if ((expr != NULL) && (expr->num_operands == 2)) {
1661 bool zero_on_left = false;
1662
1663 if (expr->operands[0]->is_zero()) {
1664 src_ir = expr->operands[1];
1665 zero_on_left = true;
1666 } else if (expr->operands[1]->is_zero()) {
1667 src_ir = expr->operands[0];
1668 zero_on_left = false;
1669 }
1670
1671 /* a is - 0 + - 0 +
1672 * (a < 0) T F F ( a < 0) T F F
1673 * (0 < a) F F T (-a < 0) F F T
1674 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
1675 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
1676 *
1677 * Note that exchanging the order of 0 and 'a' in the comparison simply
1678 * means that the value of 'a' should be negated.
1679 */
1680 if (src_ir != ir) {
1681 switch (expr->operation) {
1682 case ir_binop_less:
1683 switch_order = false;
1684 negate = zero_on_left;
1685 break;
1686
1687 case ir_binop_gequal:
1688 switch_order = true;
1689 negate = zero_on_left;
1690 break;
1691
1692 default:
1693 /* This isn't the right kind of comparison afterall, so make sure
1694 * the whole condition is visited.
1695 */
1696 src_ir = ir;
1697 break;
1698 }
1699 }
1700 }
1701
1702 src_ir->accept(this);
1703
1704 /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1705 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
1706 * choose which value OPCODE_CMP produces without an extra instruction
1707 * computing the condition.
1708 */
1709 if (negate)
1710 this->result.negate = ~this->result.negate;
1711
1712 return switch_order;
1713 }
1714
1715 void
1716 ir_to_mesa_visitor::visit(ir_assignment *ir)
1717 {
1718 dst_reg l;
1719 src_reg r;
1720 int i;
1721
1722 ir->rhs->accept(this);
1723 r = this->result;
1724
1725 l = get_assignment_lhs(ir->lhs, this);
1726
1727 /* FINISHME: This should really set to the correct maximal writemask for each
1728 * FINISHME: component written (in the loops below). This case can only
1729 * FINISHME: occur for matrices, arrays, and structures.
1730 */
1731 if (ir->write_mask == 0) {
1732 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1733 l.writemask = WRITEMASK_XYZW;
1734 } else if (ir->lhs->type->is_scalar()) {
1735 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1736 * FINISHME: W component of fragment shader output zero, work correctly.
1737 */
1738 l.writemask = WRITEMASK_XYZW;
1739 } else {
1740 int swizzles[4];
1741 int first_enabled_chan = 0;
1742 int rhs_chan = 0;
1743
1744 assert(ir->lhs->type->is_vector());
1745 l.writemask = ir->write_mask;
1746
1747 for (int i = 0; i < 4; i++) {
1748 if (l.writemask & (1 << i)) {
1749 first_enabled_chan = GET_SWZ(r.swizzle, i);
1750 break;
1751 }
1752 }
1753
1754 /* Swizzle a small RHS vector into the channels being written.
1755 *
1756 * glsl ir treats write_mask as dictating how many channels are
1757 * present on the RHS while Mesa IR treats write_mask as just
1758 * showing which channels of the vec4 RHS get written.
1759 */
1760 for (int i = 0; i < 4; i++) {
1761 if (l.writemask & (1 << i))
1762 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1763 else
1764 swizzles[i] = first_enabled_chan;
1765 }
1766 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1767 swizzles[2], swizzles[3]);
1768 }
1769
1770 assert(l.file != PROGRAM_UNDEFINED);
1771 assert(r.file != PROGRAM_UNDEFINED);
1772
1773 if (ir->condition) {
1774 const bool switch_order = this->process_move_condition(ir->condition);
1775 src_reg condition = this->result;
1776
1777 for (i = 0; i < type_size(ir->lhs->type); i++) {
1778 if (switch_order) {
1779 emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
1780 } else {
1781 emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
1782 }
1783
1784 l.index++;
1785 r.index++;
1786 }
1787 } else {
1788 for (i = 0; i < type_size(ir->lhs->type); i++) {
1789 emit(ir, OPCODE_MOV, l, r);
1790 l.index++;
1791 r.index++;
1792 }
1793 }
1794 }
1795
1796
1797 void
1798 ir_to_mesa_visitor::visit(ir_constant *ir)
1799 {
1800 src_reg src;
1801 GLfloat stack_vals[4] = { 0 };
1802 GLfloat *values = stack_vals;
1803 unsigned int i;
1804
1805 /* Unfortunately, 4 floats is all we can get into
1806 * _mesa_add_unnamed_constant. So, make a temp to store an
1807 * aggregate constant and move each constant value into it. If we
1808 * get lucky, copy propagation will eliminate the extra moves.
1809 */
1810
1811 if (ir->type->is_struct()) {
1812 src_reg temp_base = get_temp(ir->type);
1813 dst_reg temp = dst_reg(temp_base);
1814
1815 for (i = 0; i < ir->type->length; i++) {
1816 ir_constant *const field_value = ir->get_record_field(i);
1817 int size = type_size(field_value->type);
1818
1819 assert(size > 0);
1820
1821 field_value->accept(this);
1822 src = this->result;
1823
1824 for (unsigned j = 0; j < (unsigned int)size; j++) {
1825 emit(ir, OPCODE_MOV, temp, src);
1826
1827 src.index++;
1828 temp.index++;
1829 }
1830 }
1831 this->result = temp_base;
1832 return;
1833 }
1834
1835 if (ir->type->is_array()) {
1836 src_reg temp_base = get_temp(ir->type);
1837 dst_reg temp = dst_reg(temp_base);
1838 int size = type_size(ir->type->fields.array);
1839
1840 assert(size > 0);
1841
1842 for (i = 0; i < ir->type->length; i++) {
1843 ir->const_elements[i]->accept(this);
1844 src = this->result;
1845 for (int j = 0; j < size; j++) {
1846 emit(ir, OPCODE_MOV, temp, src);
1847
1848 src.index++;
1849 temp.index++;
1850 }
1851 }
1852 this->result = temp_base;
1853 return;
1854 }
1855
1856 if (ir->type->is_matrix()) {
1857 src_reg mat = get_temp(ir->type);
1858 dst_reg mat_column = dst_reg(mat);
1859
1860 for (i = 0; i < ir->type->matrix_columns; i++) {
1861 assert(ir->type->is_float());
1862 values = &ir->value.f[i * ir->type->vector_elements];
1863
1864 src = src_reg(PROGRAM_CONSTANT, -1, NULL);
1865 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1866 (gl_constant_value *) values,
1867 ir->type->vector_elements,
1868 &src.swizzle);
1869 emit(ir, OPCODE_MOV, mat_column, src);
1870
1871 mat_column.index++;
1872 }
1873
1874 this->result = mat;
1875 return;
1876 }
1877
1878 src.file = PROGRAM_CONSTANT;
1879 switch (ir->type->base_type) {
1880 case GLSL_TYPE_FLOAT:
1881 values = &ir->value.f[0];
1882 break;
1883 case GLSL_TYPE_UINT:
1884 for (i = 0; i < ir->type->vector_elements; i++) {
1885 values[i] = ir->value.u[i];
1886 }
1887 break;
1888 case GLSL_TYPE_INT:
1889 for (i = 0; i < ir->type->vector_elements; i++) {
1890 values[i] = ir->value.i[i];
1891 }
1892 break;
1893 case GLSL_TYPE_BOOL:
1894 for (i = 0; i < ir->type->vector_elements; i++) {
1895 values[i] = ir->value.b[i];
1896 }
1897 break;
1898 default:
1899 assert(!"Non-float/uint/int/bool constant");
1900 }
1901
1902 this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
1903 this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1904 (gl_constant_value *) values,
1905 ir->type->vector_elements,
1906 &this->result.swizzle);
1907 }
1908
1909 void
1910 ir_to_mesa_visitor::visit(ir_call *)
1911 {
1912 assert(!"ir_to_mesa: All function calls should have been inlined by now.");
1913 }
1914
1915 void
1916 ir_to_mesa_visitor::visit(ir_texture *ir)
1917 {
1918 src_reg result_src, coord, lod_info, projector, dx, dy;
1919 dst_reg result_dst, coord_dst;
1920 ir_to_mesa_instruction *inst = NULL;
1921 prog_opcode opcode = OPCODE_NOP;
1922
1923 if (ir->op == ir_txs)
1924 this->result = src_reg_for_float(0.0);
1925 else
1926 ir->coordinate->accept(this);
1927
1928 /* Put our coords in a temp. We'll need to modify them for shadow,
1929 * projection, or LOD, so the only case we'd use it as-is is if
1930 * we're doing plain old texturing. Mesa IR optimization should
1931 * handle cleaning up our mess in that case.
1932 */
1933 coord = get_temp(glsl_type::vec4_type);
1934 coord_dst = dst_reg(coord);
1935 emit(ir, OPCODE_MOV, coord_dst, this->result);
1936
1937 if (ir->projector) {
1938 ir->projector->accept(this);
1939 projector = this->result;
1940 }
1941
1942 /* Storage for our result. Ideally for an assignment we'd be using
1943 * the actual storage for the result here, instead.
1944 */
1945 result_src = get_temp(glsl_type::vec4_type);
1946 result_dst = dst_reg(result_src);
1947
1948 switch (ir->op) {
1949 case ir_tex:
1950 case ir_txs:
1951 opcode = OPCODE_TEX;
1952 break;
1953 case ir_txb:
1954 opcode = OPCODE_TXB;
1955 ir->lod_info.bias->accept(this);
1956 lod_info = this->result;
1957 break;
1958 case ir_txf:
1959 /* Pretend to be TXL so the sampler, coordinate, lod are available */
1960 case ir_txl:
1961 opcode = OPCODE_TXL;
1962 ir->lod_info.lod->accept(this);
1963 lod_info = this->result;
1964 break;
1965 case ir_txd:
1966 opcode = OPCODE_TXD;
1967 ir->lod_info.grad.dPdx->accept(this);
1968 dx = this->result;
1969 ir->lod_info.grad.dPdy->accept(this);
1970 dy = this->result;
1971 break;
1972 case ir_txf_ms:
1973 assert(!"Unexpected ir_txf_ms opcode");
1974 break;
1975 case ir_lod:
1976 assert(!"Unexpected ir_lod opcode");
1977 break;
1978 case ir_tg4:
1979 assert(!"Unexpected ir_tg4 opcode");
1980 break;
1981 case ir_query_levels:
1982 assert(!"Unexpected ir_query_levels opcode");
1983 break;
1984 case ir_samples_identical:
1985 unreachable("Unexpected ir_samples_identical opcode");
1986 case ir_texture_samples:
1987 unreachable("Unexpected ir_texture_samples opcode");
1988 }
1989
1990 const glsl_type *sampler_type = ir->sampler->type;
1991
1992 if (ir->projector) {
1993 if (opcode == OPCODE_TEX) {
1994 /* Slot the projector in as the last component of the coord. */
1995 coord_dst.writemask = WRITEMASK_W;
1996 emit(ir, OPCODE_MOV, coord_dst, projector);
1997 coord_dst.writemask = WRITEMASK_XYZW;
1998 opcode = OPCODE_TXP;
1999 } else {
2000 src_reg coord_w = coord;
2001 coord_w.swizzle = SWIZZLE_WWWW;
2002
2003 /* For the other TEX opcodes there's no projective version
2004 * since the last slot is taken up by lod info. Do the
2005 * projective divide now.
2006 */
2007 coord_dst.writemask = WRITEMASK_W;
2008 emit(ir, OPCODE_RCP, coord_dst, projector);
2009
2010 /* In the case where we have to project the coordinates "by hand,"
2011 * the shadow comparator value must also be projected.
2012 */
2013 src_reg tmp_src = coord;
2014 if (ir->shadow_comparator) {
2015 /* Slot the shadow value in as the second to last component of the
2016 * coord.
2017 */
2018 ir->shadow_comparator->accept(this);
2019
2020 tmp_src = get_temp(glsl_type::vec4_type);
2021 dst_reg tmp_dst = dst_reg(tmp_src);
2022
2023 /* Projective division not allowed for array samplers. */
2024 assert(!sampler_type->sampler_array);
2025
2026 tmp_dst.writemask = WRITEMASK_Z;
2027 emit(ir, OPCODE_MOV, tmp_dst, this->result);
2028
2029 tmp_dst.writemask = WRITEMASK_XY;
2030 emit(ir, OPCODE_MOV, tmp_dst, coord);
2031 }
2032
2033 coord_dst.writemask = WRITEMASK_XYZ;
2034 emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);
2035
2036 coord_dst.writemask = WRITEMASK_XYZW;
2037 coord.swizzle = SWIZZLE_XYZW;
2038 }
2039 }
2040
2041 /* If projection is done and the opcode is not OPCODE_TXP, then the shadow
2042 * comparator was put in the correct place (and projected) by the code,
2043 * above, that handles by-hand projection.
2044 */
2045 if (ir->shadow_comparator && (!ir->projector || opcode == OPCODE_TXP)) {
2046 /* Slot the shadow value in as the second to last component of the
2047 * coord.
2048 */
2049 ir->shadow_comparator->accept(this);
2050
2051 /* XXX This will need to be updated for cubemap array samplers. */
2052 if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2053 sampler_type->sampler_array) {
2054 coord_dst.writemask = WRITEMASK_W;
2055 } else {
2056 coord_dst.writemask = WRITEMASK_Z;
2057 }
2058
2059 emit(ir, OPCODE_MOV, coord_dst, this->result);
2060 coord_dst.writemask = WRITEMASK_XYZW;
2061 }
2062
2063 if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
2064 /* Mesa IR stores lod or lod bias in the last channel of the coords. */
2065 coord_dst.writemask = WRITEMASK_W;
2066 emit(ir, OPCODE_MOV, coord_dst, lod_info);
2067 coord_dst.writemask = WRITEMASK_XYZW;
2068 }
2069
2070 if (opcode == OPCODE_TXD)
2071 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2072 else
2073 inst = emit(ir, opcode, result_dst, coord);
2074
2075 if (ir->shadow_comparator)
2076 inst->tex_shadow = GL_TRUE;
2077
2078 inst->sampler = get_sampler_uniform_value(ir->sampler, shader_program,
2079 prog);
2080
2081 switch (sampler_type->sampler_dimensionality) {
2082 case GLSL_SAMPLER_DIM_1D:
2083 inst->tex_target = (sampler_type->sampler_array)
2084 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2085 break;
2086 case GLSL_SAMPLER_DIM_2D:
2087 inst->tex_target = (sampler_type->sampler_array)
2088 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2089 break;
2090 case GLSL_SAMPLER_DIM_3D:
2091 inst->tex_target = TEXTURE_3D_INDEX;
2092 break;
2093 case GLSL_SAMPLER_DIM_CUBE:
2094 inst->tex_target = TEXTURE_CUBE_INDEX;
2095 break;
2096 case GLSL_SAMPLER_DIM_RECT:
2097 inst->tex_target = TEXTURE_RECT_INDEX;
2098 break;
2099 case GLSL_SAMPLER_DIM_BUF:
2100 assert(!"FINISHME: Implement ARB_texture_buffer_object");
2101 break;
2102 case GLSL_SAMPLER_DIM_EXTERNAL:
2103 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2104 break;
2105 default:
2106 assert(!"Should not get here.");
2107 }
2108
2109 this->result = result_src;
2110 }
2111
2112 void
2113 ir_to_mesa_visitor::visit(ir_return *ir)
2114 {
2115 /* Non-void functions should have been inlined. We may still emit RETs
2116 * from main() unless the EmitNoMainReturn option is set.
2117 */
2118 assert(!ir->get_value());
2119 emit(ir, OPCODE_RET);
2120 }
2121
2122 void
2123 ir_to_mesa_visitor::visit(ir_discard *ir)
2124 {
2125 if (!ir->condition)
2126 ir->condition = new(mem_ctx) ir_constant(true);
2127
2128 ir->condition->accept(this);
2129 this->result.negate = ~this->result.negate;
2130 emit(ir, OPCODE_KIL, undef_dst, this->result);
2131 }
2132
2133 void
2134 ir_to_mesa_visitor::visit(ir_demote *ir)
2135 {
2136 assert(!"demote statement unsupported");
2137 }
2138
2139 void
2140 ir_to_mesa_visitor::visit(ir_if *ir)
2141 {
2142 ir_to_mesa_instruction *if_inst;
2143
2144 ir->condition->accept(this);
2145 assert(this->result.file != PROGRAM_UNDEFINED);
2146
2147 if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);
2148
2149 this->instructions.push_tail(if_inst);
2150
2151 visit_exec_list(&ir->then_instructions, this);
2152
2153 if (!ir->else_instructions.is_empty()) {
2154 emit(ir->condition, OPCODE_ELSE);
2155 visit_exec_list(&ir->else_instructions, this);
2156 }
2157
2158 emit(ir->condition, OPCODE_ENDIF);
2159 }
2160
2161 void
2162 ir_to_mesa_visitor::visit(ir_emit_vertex *)
2163 {
2164 assert(!"Geometry shaders not supported.");
2165 }
2166
2167 void
2168 ir_to_mesa_visitor::visit(ir_end_primitive *)
2169 {
2170 assert(!"Geometry shaders not supported.");
2171 }
2172
2173 void
2174 ir_to_mesa_visitor::visit(ir_barrier *)
2175 {
2176 unreachable("GLSL barrier() not supported.");
2177 }
2178
2179 ir_to_mesa_visitor::ir_to_mesa_visitor()
2180 {
2181 result.file = PROGRAM_UNDEFINED;
2182 next_temp = 1;
2183 next_signature_id = 1;
2184 current_function = NULL;
2185 mem_ctx = ralloc_context(NULL);
2186 }
2187
2188 ir_to_mesa_visitor::~ir_to_mesa_visitor()
2189 {
2190 ralloc_free(mem_ctx);
2191 }
2192
2193 static struct prog_src_register
2194 mesa_src_reg_from_ir_src_reg(src_reg reg)
2195 {
2196 struct prog_src_register mesa_reg;
2197
2198 mesa_reg.File = reg.file;
2199 assert(reg.index < (1 << INST_INDEX_BITS));
2200 mesa_reg.Index = reg.index;
2201 mesa_reg.Swizzle = reg.swizzle;
2202 mesa_reg.RelAddr = reg.reladdr != NULL;
2203 mesa_reg.Negate = reg.negate;
2204
2205 return mesa_reg;
2206 }
2207
2208 static void
2209 set_branchtargets(ir_to_mesa_visitor *v,
2210 struct prog_instruction *mesa_instructions,
2211 int num_instructions)
2212 {
2213 int if_count = 0, loop_count = 0;
2214 int *if_stack, *loop_stack;
2215 int if_stack_pos = 0, loop_stack_pos = 0;
2216 int i, j;
2217
2218 for (i = 0; i < num_instructions; i++) {
2219 switch (mesa_instructions[i].Opcode) {
2220 case OPCODE_IF:
2221 if_count++;
2222 break;
2223 case OPCODE_BGNLOOP:
2224 loop_count++;
2225 break;
2226 case OPCODE_BRK:
2227 case OPCODE_CONT:
2228 mesa_instructions[i].BranchTarget = -1;
2229 break;
2230 default:
2231 break;
2232 }
2233 }
2234
2235 if_stack = rzalloc_array(v->mem_ctx, int, if_count);
2236 loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);
2237
2238 for (i = 0; i < num_instructions; i++) {
2239 switch (mesa_instructions[i].Opcode) {
2240 case OPCODE_IF:
2241 if_stack[if_stack_pos] = i;
2242 if_stack_pos++;
2243 break;
2244 case OPCODE_ELSE:
2245 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2246 if_stack[if_stack_pos - 1] = i;
2247 break;
2248 case OPCODE_ENDIF:
2249 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2250 if_stack_pos--;
2251 break;
2252 case OPCODE_BGNLOOP:
2253 loop_stack[loop_stack_pos] = i;
2254 loop_stack_pos++;
2255 break;
2256 case OPCODE_ENDLOOP:
2257 loop_stack_pos--;
2258 /* Rewrite any breaks/conts at this nesting level (haven't
2259 * already had a BranchTarget assigned) to point to the end
2260 * of the loop.
2261 */
2262 for (j = loop_stack[loop_stack_pos]; j < i; j++) {
2263 if (mesa_instructions[j].Opcode == OPCODE_BRK ||
2264 mesa_instructions[j].Opcode == OPCODE_CONT) {
2265 if (mesa_instructions[j].BranchTarget == -1) {
2266 mesa_instructions[j].BranchTarget = i;
2267 }
2268 }
2269 }
2270 /* The loop ends point at each other. */
2271 mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
2272 mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
2273 break;
2274 case OPCODE_CAL:
2275 foreach_in_list(function_entry, entry, &v->function_signatures) {
2276 if (entry->sig_id == mesa_instructions[i].BranchTarget) {
2277 mesa_instructions[i].BranchTarget = entry->inst;
2278 break;
2279 }
2280 }
2281 break;
2282 default:
2283 break;
2284 }
2285 }
2286 }
2287
2288 static void
2289 print_program(struct prog_instruction *mesa_instructions,
2290 ir_instruction **mesa_instruction_annotation,
2291 int num_instructions)
2292 {
2293 ir_instruction *last_ir = NULL;
2294 int i;
2295 int indent = 0;
2296
2297 for (i = 0; i < num_instructions; i++) {
2298 struct prog_instruction *mesa_inst = mesa_instructions + i;
2299 ir_instruction *ir = mesa_instruction_annotation[i];
2300
2301 fprintf(stdout, "%3d: ", i);
2302
2303 if (last_ir != ir && ir) {
2304 int j;
2305
2306 for (j = 0; j < indent; j++) {
2307 fprintf(stdout, " ");
2308 }
2309 ir->print();
2310 printf("\n");
2311 last_ir = ir;
2312
2313 fprintf(stdout, " "); /* line number spacing. */
2314 }
2315
2316 indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
2317 PROG_PRINT_DEBUG, NULL);
2318 }
2319 }
2320
2321 namespace {
2322
2323 class add_uniform_to_shader : public program_resource_visitor {
2324 public:
2325 add_uniform_to_shader(struct gl_context *ctx,
2326 struct gl_shader_program *shader_program,
2327 struct gl_program_parameter_list *params)
2328 : ctx(ctx), shader_program(shader_program), params(params), idx(-1)
2329 {
2330 /* empty */
2331 }
2332
2333 void process(ir_variable *var)
2334 {
2335 this->idx = -1;
2336 this->var = var;
2337 this->program_resource_visitor::process(var,
2338 ctx->Const.UseSTD430AsDefaultPacking);
2339 var->data.param_index = this->idx;
2340 }
2341
2342 private:
2343 virtual void visit_field(const glsl_type *type, const char *name,
2344 bool row_major, const glsl_type *record_type,
2345 const enum glsl_interface_packing packing,
2346 bool last_field);
2347
2348 struct gl_context *ctx;
2349 struct gl_shader_program *shader_program;
2350 struct gl_program_parameter_list *params;
2351 int idx;
2352 ir_variable *var;
2353 };
2354
2355 } /* anonymous namespace */
2356
2357 void
2358 add_uniform_to_shader::visit_field(const glsl_type *type, const char *name,
2359 bool /* row_major */,
2360 const glsl_type * /* record_type */,
2361 const enum glsl_interface_packing,
2362 bool /* last_field */)
2363 {
2364 /* opaque types don't use storage in the param list unless they are
2365 * bindless samplers or images.
2366 */
2367 if (type->contains_opaque() && !var->data.bindless)
2368 return;
2369
2370 /* Add the uniform to the param list */
2371 assert(_mesa_lookup_parameter_index(params, name) < 0);
2372 int index = _mesa_lookup_parameter_index(params, name);
2373
2374 unsigned num_params = type->arrays_of_arrays_size();
2375 num_params = MAX2(num_params, 1);
2376 num_params *= type->without_array()->matrix_columns;
2377
2378 bool is_dual_slot = type->without_array()->is_dual_slot();
2379 if (is_dual_slot)
2380 num_params *= 2;
2381
2382 _mesa_reserve_parameter_storage(params, num_params);
2383 index = params->NumParameters;
2384
2385 if (ctx->Const.PackedDriverUniformStorage) {
2386 for (unsigned i = 0; i < num_params; i++) {
2387 unsigned dmul = type->without_array()->is_64bit() ? 2 : 1;
2388 unsigned comps = type->without_array()->vector_elements * dmul;
2389 if (is_dual_slot) {
2390 if (i & 0x1)
2391 comps -= 4;
2392 else
2393 comps = 4;
2394 }
2395
2396 _mesa_add_parameter(params, PROGRAM_UNIFORM, name, comps,
2397 type->gl_type, NULL, NULL, false);
2398 }
2399 } else {
2400 for (unsigned i = 0; i < num_params; i++) {
2401 _mesa_add_parameter(params, PROGRAM_UNIFORM, name, 4,
2402 type->gl_type, NULL, NULL, true);
2403 }
2404 }
2405
2406 /* The first part of the uniform that's processed determines the base
2407 * location of the whole uniform (for structures).
2408 */
2409 if (this->idx < 0)
2410 this->idx = index;
2411
2412 /* Each Parameter will hold the index to the backing uniform storage.
2413 * This avoids relying on names to match parameters and uniform
2414 * storages later when associating uniform storage.
2415 */
2416 unsigned location;
2417 const bool found =
2418 shader_program->UniformHash->get(location, params->Parameters[index].Name);
2419 assert(found);
2420
2421 for (unsigned i = 0; i < num_params; i++) {
2422 struct gl_program_parameter *param = &params->Parameters[index + i];
2423 param->UniformStorageIndex = location;
2424 param->MainUniformStorageIndex = params->Parameters[this->idx].UniformStorageIndex;
2425 }
2426 }
2427
2428 /**
2429 * Generate the program parameters list for the user uniforms in a shader
2430 *
2431 * \param shader_program Linked shader program. This is only used to
2432 * emit possible link errors to the info log.
2433 * \param sh Shader whose uniforms are to be processed.
2434 * \param params Parameter list to be filled in.
2435 */
2436 void
2437 _mesa_generate_parameters_list_for_uniforms(struct gl_context *ctx,
2438 struct gl_shader_program
2439 *shader_program,
2440 struct gl_linked_shader *sh,
2441 struct gl_program_parameter_list
2442 *params)
2443 {
2444 add_uniform_to_shader add(ctx, shader_program, params);
2445
2446 foreach_in_list(ir_instruction, node, sh->ir) {
2447 ir_variable *var = node->as_variable();
2448
2449 if ((var == NULL) || (var->data.mode != ir_var_uniform)
2450 || var->is_in_buffer_block() || (strncmp(var->name, "gl_", 3) == 0))
2451 continue;
2452
2453 add.process(var);
2454 }
2455 }
2456
2457 void
2458 _mesa_associate_uniform_storage(struct gl_context *ctx,
2459 struct gl_shader_program *shader_program,
2460 struct gl_program *prog)
2461 {
2462 struct gl_program_parameter_list *params = prog->Parameters;
2463 gl_shader_stage shader_type = prog->info.stage;
2464
2465 /* After adding each uniform to the parameter list, connect the storage for
2466 * the parameter with the tracking structure used by the API for the
2467 * uniform.
2468 */
2469 unsigned last_location = unsigned(~0);
2470 for (unsigned i = 0; i < params->NumParameters; i++) {
2471 if (params->Parameters[i].Type != PROGRAM_UNIFORM)
2472 continue;
2473
2474 unsigned location = params->Parameters[i].UniformStorageIndex;
2475
2476 struct gl_uniform_storage *storage =
2477 &shader_program->data->UniformStorage[location];
2478
2479 /* Do not associate any uniform storage to built-in uniforms */
2480 if (storage->builtin)
2481 continue;
2482
2483 if (location != last_location) {
2484 enum gl_uniform_driver_format format = uniform_native;
2485 unsigned columns = 0;
2486
2487 int dmul;
2488 if (ctx->Const.PackedDriverUniformStorage && !prog->is_arb_asm) {
2489 dmul = storage->type->vector_elements * sizeof(float);
2490 } else {
2491 dmul = 4 * sizeof(float);
2492 }
2493
2494 switch (storage->type->base_type) {
2495 case GLSL_TYPE_UINT64:
2496 if (storage->type->vector_elements > 2)
2497 dmul *= 2;
2498 /* fallthrough */
2499 case GLSL_TYPE_UINT:
2500 case GLSL_TYPE_UINT16:
2501 case GLSL_TYPE_UINT8:
2502 assert(ctx->Const.NativeIntegers);
2503 format = uniform_native;
2504 columns = 1;
2505 break;
2506 case GLSL_TYPE_INT64:
2507 if (storage->type->vector_elements > 2)
2508 dmul *= 2;
2509 /* fallthrough */
2510 case GLSL_TYPE_INT:
2511 case GLSL_TYPE_INT16:
2512 case GLSL_TYPE_INT8:
2513 format =
2514 (ctx->Const.NativeIntegers) ? uniform_native : uniform_int_float;
2515 columns = 1;
2516 break;
2517 case GLSL_TYPE_DOUBLE:
2518 if (storage->type->vector_elements > 2)
2519 dmul *= 2;
2520 /* fallthrough */
2521 case GLSL_TYPE_FLOAT:
2522 case GLSL_TYPE_FLOAT16:
2523 format = uniform_native;
2524 columns = storage->type->matrix_columns;
2525 break;
2526 case GLSL_TYPE_BOOL:
2527 format = uniform_native;
2528 columns = 1;
2529 break;
2530 case GLSL_TYPE_SAMPLER:
2531 case GLSL_TYPE_IMAGE:
2532 case GLSL_TYPE_SUBROUTINE:
2533 format = uniform_native;
2534 columns = 1;
2535 break;
2536 case GLSL_TYPE_ATOMIC_UINT:
2537 case GLSL_TYPE_ARRAY:
2538 case GLSL_TYPE_VOID:
2539 case GLSL_TYPE_STRUCT:
2540 case GLSL_TYPE_ERROR:
2541 case GLSL_TYPE_INTERFACE:
2542 case GLSL_TYPE_FUNCTION:
2543 assert(!"Should not get here.");
2544 break;
2545 }
2546
2547 unsigned pvo = params->ParameterValueOffset[i];
2548 _mesa_uniform_attach_driver_storage(storage, dmul * columns, dmul,
2549 format,
2550 &params->ParameterValues[pvo]);
2551
2552 /* When a bindless sampler/image is bound to a texture/image unit, we
2553 * have to overwrite the constant value by the resident handle
2554 * directly in the constant buffer before the next draw. One solution
2555 * is to keep track a pointer to the base of the data.
2556 */
2557 if (storage->is_bindless && (prog->sh.NumBindlessSamplers ||
2558 prog->sh.NumBindlessImages)) {
2559 unsigned array_elements = MAX2(1, storage->array_elements);
2560
2561 for (unsigned j = 0; j < array_elements; ++j) {
2562 unsigned unit = storage->opaque[shader_type].index + j;
2563
2564 if (storage->type->without_array()->is_sampler()) {
2565 assert(unit >= 0 && unit < prog->sh.NumBindlessSamplers);
2566 prog->sh.BindlessSamplers[unit].data =
2567 &params->ParameterValues[pvo] + 4 * j;
2568 } else if (storage->type->without_array()->is_image()) {
2569 assert(unit >= 0 && unit < prog->sh.NumBindlessImages);
2570 prog->sh.BindlessImages[unit].data =
2571 &params->ParameterValues[pvo] + 4 * j;
2572 }
2573 }
2574 }
2575
2576 /* After attaching the driver's storage to the uniform, propagate any
2577 * data from the linker's backing store. This will cause values from
2578 * initializers in the source code to be copied over.
2579 */
2580 unsigned array_elements = MAX2(1, storage->array_elements);
2581 if (ctx->Const.PackedDriverUniformStorage && !prog->is_arb_asm &&
2582 (storage->is_bindless || !storage->type->contains_opaque())) {
2583 const int dmul = storage->type->is_64bit() ? 2 : 1;
2584 const unsigned components =
2585 storage->type->vector_elements *
2586 storage->type->matrix_columns;
2587
2588 for (unsigned s = 0; s < storage->num_driver_storage; s++) {
2589 gl_constant_value *uni_storage = (gl_constant_value *)
2590 storage->driver_storage[s].data;
2591 memcpy(uni_storage, storage->storage,
2592 sizeof(storage->storage[0]) * components *
2593 array_elements * dmul);
2594 }
2595 } else {
2596 _mesa_propagate_uniforms_to_driver_storage(storage, 0,
2597 array_elements);
2598 }
2599
2600 last_location = location;
2601 }
2602 }
2603 }
2604
2605 /*
2606 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
2607 * channels for copy propagation and updates following instructions to
2608 * use the original versions.
2609 *
2610 * The ir_to_mesa_visitor lazily produces code assuming that this pass
2611 * will occur. As an example, a TXP production before this pass:
2612 *
2613 * 0: MOV TEMP[1], INPUT[4].xyyy;
2614 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2615 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
2616 *
2617 * and after:
2618 *
2619 * 0: MOV TEMP[1], INPUT[4].xyyy;
2620 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2621 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
2622 *
2623 * which allows for dead code elimination on TEMP[1]'s writes.
2624 */
2625 void
2626 ir_to_mesa_visitor::copy_propagate(void)
2627 {
2628 ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
2629 ir_to_mesa_instruction *,
2630 this->next_temp * 4);
2631 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
2632 int level = 0;
2633
2634 foreach_in_list(ir_to_mesa_instruction, inst, &this->instructions) {
2635 assert(inst->dst.file != PROGRAM_TEMPORARY
2636 || inst->dst.index < this->next_temp);
2637
2638 /* First, do any copy propagation possible into the src regs. */
2639 for (int r = 0; r < 3; r++) {
2640 ir_to_mesa_instruction *first = NULL;
2641 bool good = true;
2642 int acp_base = inst->src[r].index * 4;
2643
2644 if (inst->src[r].file != PROGRAM_TEMPORARY ||
2645 inst->src[r].reladdr)
2646 continue;
2647
2648 /* See if we can find entries in the ACP consisting of MOVs
2649 * from the same src register for all the swizzled channels
2650 * of this src register reference.
2651 */
2652 for (int i = 0; i < 4; i++) {
2653 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2654 ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];
2655
2656 if (!copy_chan) {
2657 good = false;
2658 break;
2659 }
2660
2661 assert(acp_level[acp_base + src_chan] <= level);
2662
2663 if (!first) {
2664 first = copy_chan;
2665 } else {
2666 if (first->src[0].file != copy_chan->src[0].file ||
2667 first->src[0].index != copy_chan->src[0].index) {
2668 good = false;
2669 break;
2670 }
2671 }
2672 }
2673
2674 if (good) {
2675 /* We've now validated that we can copy-propagate to
2676 * replace this src register reference. Do it.
2677 */
2678 inst->src[r].file = first->src[0].file;
2679 inst->src[r].index = first->src[0].index;
2680
2681 int swizzle = 0;
2682 for (int i = 0; i < 4; i++) {
2683 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2684 ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
2685 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
2686 (3 * i));
2687 }
2688 inst->src[r].swizzle = swizzle;
2689 }
2690 }
2691
2692 switch (inst->op) {
2693 case OPCODE_BGNLOOP:
2694 case OPCODE_ENDLOOP:
2695 /* End of a basic block, clear the ACP entirely. */
2696 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2697 break;
2698
2699 case OPCODE_IF:
2700 ++level;
2701 break;
2702
2703 case OPCODE_ENDIF:
2704 case OPCODE_ELSE:
2705 /* Clear all channels written inside the block from the ACP, but
2706 * leaving those that were not touched.
2707 */
2708 for (int r = 0; r < this->next_temp; r++) {
2709 for (int c = 0; c < 4; c++) {
2710 if (!acp[4 * r + c])
2711 continue;
2712
2713 if (acp_level[4 * r + c] >= level)
2714 acp[4 * r + c] = NULL;
2715 }
2716 }
2717 if (inst->op == OPCODE_ENDIF)
2718 --level;
2719 break;
2720
2721 default:
2722 /* Continuing the block, clear any written channels from
2723 * the ACP.
2724 */
2725 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
2726 /* Any temporary might be written, so no copy propagation
2727 * across this instruction.
2728 */
2729 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2730 } else if (inst->dst.file == PROGRAM_OUTPUT &&
2731 inst->dst.reladdr) {
2732 /* Any output might be written, so no copy propagation
2733 * from outputs across this instruction.
2734 */
2735 for (int r = 0; r < this->next_temp; r++) {
2736 for (int c = 0; c < 4; c++) {
2737 if (!acp[4 * r + c])
2738 continue;
2739
2740 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
2741 acp[4 * r + c] = NULL;
2742 }
2743 }
2744 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
2745 inst->dst.file == PROGRAM_OUTPUT) {
2746 /* Clear where it's used as dst. */
2747 if (inst->dst.file == PROGRAM_TEMPORARY) {
2748 for (int c = 0; c < 4; c++) {
2749 if (inst->dst.writemask & (1 << c)) {
2750 acp[4 * inst->dst.index + c] = NULL;
2751 }
2752 }
2753 }
2754
2755 /* Clear where it's used as src. */
2756 for (int r = 0; r < this->next_temp; r++) {
2757 for (int c = 0; c < 4; c++) {
2758 if (!acp[4 * r + c])
2759 continue;
2760
2761 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
2762
2763 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
2764 acp[4 * r + c]->src[0].index == inst->dst.index &&
2765 inst->dst.writemask & (1 << src_chan))
2766 {
2767 acp[4 * r + c] = NULL;
2768 }
2769 }
2770 }
2771 }
2772 break;
2773 }
2774
2775 /* If this is a copy, add it to the ACP. */
2776 if (inst->op == OPCODE_MOV &&
2777 inst->dst.file == PROGRAM_TEMPORARY &&
2778 !(inst->dst.file == inst->src[0].file &&
2779 inst->dst.index == inst->src[0].index) &&
2780 !inst->dst.reladdr &&
2781 !inst->saturate &&
2782 !inst->src[0].reladdr &&
2783 !inst->src[0].negate) {
2784 for (int i = 0; i < 4; i++) {
2785 if (inst->dst.writemask & (1 << i)) {
2786 acp[4 * inst->dst.index + i] = inst;
2787 acp_level[4 * inst->dst.index + i] = level;
2788 }
2789 }
2790 }
2791 }
2792
2793 ralloc_free(acp_level);
2794 ralloc_free(acp);
2795 }
2796
2797
2798 /**
2799 * Convert a shader's GLSL IR into a Mesa gl_program.
2800 */
2801 static struct gl_program *
2802 get_mesa_program(struct gl_context *ctx,
2803 struct gl_shader_program *shader_program,
2804 struct gl_linked_shader *shader)
2805 {
2806 ir_to_mesa_visitor v;
2807 struct prog_instruction *mesa_instructions, *mesa_inst;
2808 ir_instruction **mesa_instruction_annotation;
2809 int i;
2810 struct gl_program *prog;
2811 GLenum target = _mesa_shader_stage_to_program(shader->Stage);
2812 const char *target_string = _mesa_shader_stage_to_string(shader->Stage);
2813 struct gl_shader_compiler_options *options =
2814 &ctx->Const.ShaderCompilerOptions[shader->Stage];
2815
2816 validate_ir_tree(shader->ir);
2817
2818 prog = shader->Program;
2819 prog->Parameters = _mesa_new_parameter_list();
2820 v.ctx = ctx;
2821 v.prog = prog;
2822 v.shader_program = shader_program;
2823 v.options = options;
2824
2825 _mesa_generate_parameters_list_for_uniforms(ctx, shader_program, shader,
2826 prog->Parameters);
2827
2828 /* Emit Mesa IR for main(). */
2829 visit_exec_list(shader->ir, &v);
2830 v.emit(NULL, OPCODE_END);
2831
2832 prog->arb.NumTemporaries = v.next_temp;
2833
2834 unsigned num_instructions = v.instructions.length();
2835
2836 mesa_instructions = rzalloc_array(prog, struct prog_instruction,
2837 num_instructions);
2838 mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
2839 num_instructions);
2840
2841 v.copy_propagate();
2842
2843 /* Convert ir_mesa_instructions into prog_instructions.
2844 */
2845 mesa_inst = mesa_instructions;
2846 i = 0;
2847 foreach_in_list(const ir_to_mesa_instruction, inst, &v.instructions) {
2848 mesa_inst->Opcode = inst->op;
2849 if (inst->saturate)
2850 mesa_inst->Saturate = GL_TRUE;
2851 mesa_inst->DstReg.File = inst->dst.file;
2852 mesa_inst->DstReg.Index = inst->dst.index;
2853 mesa_inst->DstReg.WriteMask = inst->dst.writemask;
2854 mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
2855 mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
2856 mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
2857 mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
2858 mesa_inst->TexSrcUnit = inst->sampler;
2859 mesa_inst->TexSrcTarget = inst->tex_target;
2860 mesa_inst->TexShadow = inst->tex_shadow;
2861 mesa_instruction_annotation[i] = inst->ir;
2862
2863 /* Set IndirectRegisterFiles. */
2864 if (mesa_inst->DstReg.RelAddr)
2865 prog->arb.IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;
2866
2867 /* Update program's bitmask of indirectly accessed register files */
2868 for (unsigned src = 0; src < 3; src++)
2869 if (mesa_inst->SrcReg[src].RelAddr)
2870 prog->arb.IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;
2871
2872 switch (mesa_inst->Opcode) {
2873 case OPCODE_IF:
2874 if (options->MaxIfDepth == 0) {
2875 linker_warning(shader_program,
2876 "Couldn't flatten if-statement. "
2877 "This will likely result in software "
2878 "rasterization.\n");
2879 }
2880 break;
2881 case OPCODE_BGNLOOP:
2882 if (options->EmitNoLoops) {
2883 linker_warning(shader_program,
2884 "Couldn't unroll loop. "
2885 "This will likely result in software "
2886 "rasterization.\n");
2887 }
2888 break;
2889 case OPCODE_CONT:
2890 if (options->EmitNoCont) {
2891 linker_warning(shader_program,
2892 "Couldn't lower continue-statement. "
2893 "This will likely result in software "
2894 "rasterization.\n");
2895 }
2896 break;
2897 case OPCODE_ARL:
2898 prog->arb.NumAddressRegs = 1;
2899 break;
2900 default:
2901 break;
2902 }
2903
2904 mesa_inst++;
2905 i++;
2906
2907 if (!shader_program->data->LinkStatus)
2908 break;
2909 }
2910
2911 if (!shader_program->data->LinkStatus) {
2912 goto fail_exit;
2913 }
2914
2915 set_branchtargets(&v, mesa_instructions, num_instructions);
2916
2917 if (ctx->_Shader->Flags & GLSL_DUMP) {
2918 fprintf(stderr, "\n");
2919 fprintf(stderr, "GLSL IR for linked %s program %d:\n", target_string,
2920 shader_program->Name);
2921 _mesa_print_ir(stderr, shader->ir, NULL);
2922 fprintf(stderr, "\n");
2923 fprintf(stderr, "\n");
2924 fprintf(stderr, "Mesa IR for linked %s program %d:\n", target_string,
2925 shader_program->Name);
2926 print_program(mesa_instructions, mesa_instruction_annotation,
2927 num_instructions);
2928 fflush(stderr);
2929 }
2930
2931 prog->arb.Instructions = mesa_instructions;
2932 prog->arb.NumInstructions = num_instructions;
2933
2934 /* Setting this to NULL prevents a possible double free in the fail_exit
2935 * path (far below).
2936 */
2937 mesa_instructions = NULL;
2938
2939 do_set_program_inouts(shader->ir, prog, shader->Stage);
2940
2941 prog->ShadowSamplers = shader->shadow_samplers;
2942 prog->ExternalSamplersUsed = gl_external_samplers(prog);
2943 _mesa_update_shader_textures_used(shader_program, prog);
2944
2945 /* Set the gl_FragDepth layout. */
2946 if (target == GL_FRAGMENT_PROGRAM_ARB) {
2947 prog->info.fs.depth_layout = shader_program->FragDepthLayout;
2948 }
2949
2950 _mesa_optimize_program(prog, prog);
2951
2952 /* This has to be done last. Any operation that can cause
2953 * prog->ParameterValues to get reallocated (e.g., anything that adds a
2954 * program constant) has to happen before creating this linkage.
2955 */
2956 _mesa_associate_uniform_storage(ctx, shader_program, prog);
2957 if (!shader_program->data->LinkStatus) {
2958 goto fail_exit;
2959 }
2960
2961 return prog;
2962
2963 fail_exit:
2964 ralloc_free(mesa_instructions);
2965 _mesa_reference_program(ctx, &shader->Program, NULL);
2966 return NULL;
2967 }
2968
2969 extern "C" {
2970
2971 /**
2972 * Link a shader.
2973 * Called via ctx->Driver.LinkShader()
2974 * This actually involves converting GLSL IR into Mesa gl_programs with
2975 * code lowering and other optimizations.
2976 */
2977 GLboolean
2978 _mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
2979 {
2980 assert(prog->data->LinkStatus);
2981
2982 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2983 if (prog->_LinkedShaders[i] == NULL)
2984 continue;
2985
2986 bool progress;
2987 exec_list *ir = prog->_LinkedShaders[i]->ir;
2988 const struct gl_shader_compiler_options *options =
2989 &ctx->Const.ShaderCompilerOptions[prog->_LinkedShaders[i]->Stage];
2990
2991 do {
2992 progress = false;
2993
2994 /* Lowering */
2995 do_mat_op_to_vec(ir);
2996 lower_instructions(ir, (MOD_TO_FLOOR | DIV_TO_MUL_RCP | EXP_TO_EXP2
2997 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
2998 | MUL64_TO_MUL_AND_MUL_HIGH
2999 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
3000
3001 progress = do_common_optimization(ir, true, true,
3002 options, ctx->Const.NativeIntegers)
3003 || progress;
3004
3005 progress = lower_quadop_vector(ir, true) || progress;
3006
3007 if (options->MaxIfDepth == 0)
3008 progress = lower_discard(ir) || progress;
3009
3010 progress = lower_if_to_cond_assign((gl_shader_stage)i, ir,
3011 options->MaxIfDepth) || progress;
3012
3013 progress = lower_noise(ir) || progress;
3014
3015 /* If there are forms of indirect addressing that the driver
3016 * cannot handle, perform the lowering pass.
3017 */
3018 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
3019 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
3020 progress =
3021 lower_variable_index_to_cond_assign(prog->_LinkedShaders[i]->Stage, ir,
3022 options->EmitNoIndirectInput,
3023 options->EmitNoIndirectOutput,
3024 options->EmitNoIndirectTemp,
3025 options->EmitNoIndirectUniform)
3026 || progress;
3027
3028 progress = do_vec_index_to_cond_assign(ir) || progress;
3029 progress = lower_vector_insert(ir, true) || progress;
3030 } while (progress);
3031
3032 validate_ir_tree(ir);
3033 }
3034
3035 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3036 struct gl_program *linked_prog;
3037
3038 if (prog->_LinkedShaders[i] == NULL)
3039 continue;
3040
3041 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
3042
3043 if (linked_prog) {
3044 _mesa_copy_linked_program_data(prog, prog->_LinkedShaders[i]);
3045
3046 if (!ctx->Driver.ProgramStringNotify(ctx,
3047 _mesa_shader_stage_to_program(i),
3048 linked_prog)) {
3049 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
3050 NULL);
3051 return GL_FALSE;
3052 }
3053 }
3054 }
3055
3056 build_program_resource_list(ctx, prog, false);
3057 return prog->data->LinkStatus;
3058 }
3059
3060 /**
3061 * Link a GLSL shader program. Called via glLinkProgram().
3062 */
3063 void
3064 _mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3065 {
3066 unsigned int i;
3067 bool spirv = false;
3068
3069 _mesa_clear_shader_program_data(ctx, prog);
3070
3071 prog->data = _mesa_create_shader_program_data();
3072
3073 prog->data->LinkStatus = LINKING_SUCCESS;
3074
3075 for (i = 0; i < prog->NumShaders; i++) {
3076 if (!prog->Shaders[i]->CompileStatus) {
3077 linker_error(prog, "linking with uncompiled/unspecialized shader");
3078 }
3079
3080 if (!i) {
3081 spirv = (prog->Shaders[i]->spirv_data != NULL);
3082 } else if (spirv && !prog->Shaders[i]->spirv_data) {
3083 /* The GL_ARB_gl_spirv spec adds a new bullet point to the list of
3084 * reasons LinkProgram can fail:
3085 *
3086 * "All the shader objects attached to <program> do not have the
3087 * same value for the SPIR_V_BINARY_ARB state."
3088 */
3089 linker_error(prog,
3090 "not all attached shaders have the same "
3091 "SPIR_V_BINARY_ARB state");
3092 }
3093 }
3094 prog->data->spirv = spirv;
3095
3096 if (prog->data->LinkStatus) {
3097 if (!spirv)
3098 link_shaders(ctx, prog);
3099 else
3100 _mesa_spirv_link_shaders(ctx, prog);
3101 }
3102
3103 /* If LinkStatus is LINKING_SUCCESS, then reset sampler validated to true.
3104 * Validation happens via the LinkShader call below. If LinkStatus is
3105 * LINKING_SKIPPED, then SamplersValidated will have been restored from the
3106 * shader cache.
3107 */
3108 if (prog->data->LinkStatus == LINKING_SUCCESS) {
3109 prog->SamplersValidated = GL_TRUE;
3110 }
3111
3112 if (prog->data->LinkStatus && !ctx->Driver.LinkShader(ctx, prog)) {
3113 prog->data->LinkStatus = LINKING_FAILURE;
3114 }
3115
3116 if (prog->data->LinkStatus != LINKING_FAILURE)
3117 _mesa_create_program_resource_hash(prog);
3118
3119 /* Return early if we are loading the shader from on-disk cache */
3120 if (prog->data->LinkStatus == LINKING_SKIPPED)
3121 return;
3122
3123 if (ctx->_Shader->Flags & GLSL_DUMP) {
3124 if (!prog->data->LinkStatus) {
3125 fprintf(stderr, "GLSL shader program %d failed to link\n", prog->Name);
3126 }
3127
3128 if (prog->data->InfoLog && prog->data->InfoLog[0] != 0) {
3129 fprintf(stderr, "GLSL shader program %d info log:\n", prog->Name);
3130 fprintf(stderr, "%s\n", prog->data->InfoLog);
3131 }
3132 }
3133
3134 #ifdef ENABLE_SHADER_CACHE
3135 if (prog->data->LinkStatus)
3136 shader_cache_write_program_metadata(ctx, prog);
3137 #endif
3138 }
3139
3140 } /* extern "C" */