ea74539cd76896990a9e74d394ee01942e80420c
[mesa.git] / src / mesa / program / ir_to_mesa.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
24 */
25
26 /**
27 * \file ir_to_mesa.cpp
28 *
29 * Translate GLSL IR to Mesa's gl_program representation.
30 */
31
32 #include <stdio.h>
33 #include "main/compiler.h"
34 #include "main/macros.h"
35 #include "main/mtypes.h"
36 #include "main/shaderapi.h"
37 #include "main/shaderobj.h"
38 #include "main/uniforms.h"
39 #include "compiler/glsl/ast.h"
40 #include "compiler/glsl/ir.h"
41 #include "compiler/glsl/ir_expression_flattening.h"
42 #include "compiler/glsl/ir_visitor.h"
43 #include "compiler/glsl/ir_optimization.h"
44 #include "compiler/glsl/ir_uniform.h"
45 #include "compiler/glsl/glsl_parser_extras.h"
46 #include "compiler/glsl_types.h"
47 #include "compiler/glsl/linker.h"
48 #include "compiler/glsl/program.h"
49 #include "compiler/glsl/shader_cache.h"
50 #include "compiler/glsl/string_to_uint_map.h"
51 #include "program/prog_instruction.h"
52 #include "program/prog_optimize.h"
53 #include "program/prog_print.h"
54 #include "program/program.h"
55 #include "program/prog_parameter.h"
56
57
58 static int swizzle_for_size(int size);
59
60 namespace {
61
62 class src_reg;
63 class dst_reg;
64
65 /**
66 * This struct is a corresponding struct to Mesa prog_src_register, with
67 * wider fields.
68 */
69 class src_reg {
70 public:
71 src_reg(gl_register_file file, int index, const glsl_type *type)
72 {
73 this->file = file;
74 this->index = index;
75 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
76 this->swizzle = swizzle_for_size(type->vector_elements);
77 else
78 this->swizzle = SWIZZLE_XYZW;
79 this->negate = 0;
80 this->reladdr = NULL;
81 }
82
83 src_reg()
84 {
85 this->file = PROGRAM_UNDEFINED;
86 this->index = 0;
87 this->swizzle = 0;
88 this->negate = 0;
89 this->reladdr = NULL;
90 }
91
92 explicit src_reg(dst_reg reg);
93
94 gl_register_file file; /**< PROGRAM_* from Mesa */
95 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
96 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
97 int negate; /**< NEGATE_XYZW mask from mesa */
98 /** Register index should be offset by the integer in this reg. */
99 src_reg *reladdr;
100 };
101
102 class dst_reg {
103 public:
104 dst_reg(gl_register_file file, int writemask)
105 {
106 this->file = file;
107 this->index = 0;
108 this->writemask = writemask;
109 this->reladdr = NULL;
110 }
111
112 dst_reg()
113 {
114 this->file = PROGRAM_UNDEFINED;
115 this->index = 0;
116 this->writemask = 0;
117 this->reladdr = NULL;
118 }
119
120 explicit dst_reg(src_reg reg);
121
122 gl_register_file file; /**< PROGRAM_* from Mesa */
123 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
124 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
125 /** Register index should be offset by the integer in this reg. */
126 src_reg *reladdr;
127 };
128
129 } /* anonymous namespace */
130
131 src_reg::src_reg(dst_reg reg)
132 {
133 this->file = reg.file;
134 this->index = reg.index;
135 this->swizzle = SWIZZLE_XYZW;
136 this->negate = 0;
137 this->reladdr = reg.reladdr;
138 }
139
140 dst_reg::dst_reg(src_reg reg)
141 {
142 this->file = reg.file;
143 this->index = reg.index;
144 this->writemask = WRITEMASK_XYZW;
145 this->reladdr = reg.reladdr;
146 }
147
148 namespace {
149
150 class ir_to_mesa_instruction : public exec_node {
151 public:
152 DECLARE_RALLOC_CXX_OPERATORS(ir_to_mesa_instruction)
153
154 enum prog_opcode op;
155 dst_reg dst;
156 src_reg src[3];
157 /** Pointer to the ir source this tree came from for debugging */
158 ir_instruction *ir;
159 bool saturate;
160 int sampler; /**< sampler index */
161 int tex_target; /**< One of TEXTURE_*_INDEX */
162 GLboolean tex_shadow;
163 };
164
165 class variable_storage : public exec_node {
166 public:
167 variable_storage(ir_variable *var, gl_register_file file, int index)
168 : file(file), index(index), var(var)
169 {
170 /* empty */
171 }
172
173 gl_register_file file;
174 int index;
175 ir_variable *var; /* variable that maps to this, if any */
176 };
177
178 class function_entry : public exec_node {
179 public:
180 ir_function_signature *sig;
181
182 /**
183 * identifier of this function signature used by the program.
184 *
185 * At the point that Mesa instructions for function calls are
186 * generated, we don't know the address of the first instruction of
187 * the function body. So we make the BranchTarget that is called a
188 * small integer and rewrite them during set_branchtargets().
189 */
190 int sig_id;
191
192 /**
193 * Pointer to first instruction of the function body.
194 *
195 * Set during function body emits after main() is processed.
196 */
197 ir_to_mesa_instruction *bgn_inst;
198
199 /**
200 * Index of the first instruction of the function body in actual
201 * Mesa IR.
202 *
203 * Set after convertion from ir_to_mesa_instruction to prog_instruction.
204 */
205 int inst;
206
207 /** Storage for the return value. */
208 src_reg return_reg;
209 };
210
211 class ir_to_mesa_visitor : public ir_visitor {
212 public:
213 ir_to_mesa_visitor();
214 ~ir_to_mesa_visitor();
215
216 function_entry *current_function;
217
218 struct gl_context *ctx;
219 struct gl_program *prog;
220 struct gl_shader_program *shader_program;
221 struct gl_shader_compiler_options *options;
222
223 int next_temp;
224
225 variable_storage *find_variable_storage(const ir_variable *var);
226
227 src_reg get_temp(const glsl_type *type);
228 void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);
229
230 src_reg src_reg_for_float(float val);
231
232 /**
233 * \name Visit methods
234 *
235 * As typical for the visitor pattern, there must be one \c visit method for
236 * each concrete subclass of \c ir_instruction. Virtual base classes within
237 * the hierarchy should not have \c visit methods.
238 */
239 /*@{*/
240 virtual void visit(ir_variable *);
241 virtual void visit(ir_loop *);
242 virtual void visit(ir_loop_jump *);
243 virtual void visit(ir_function_signature *);
244 virtual void visit(ir_function *);
245 virtual void visit(ir_expression *);
246 virtual void visit(ir_swizzle *);
247 virtual void visit(ir_dereference_variable *);
248 virtual void visit(ir_dereference_array *);
249 virtual void visit(ir_dereference_record *);
250 virtual void visit(ir_assignment *);
251 virtual void visit(ir_constant *);
252 virtual void visit(ir_call *);
253 virtual void visit(ir_return *);
254 virtual void visit(ir_discard *);
255 virtual void visit(ir_texture *);
256 virtual void visit(ir_if *);
257 virtual void visit(ir_emit_vertex *);
258 virtual void visit(ir_end_primitive *);
259 virtual void visit(ir_barrier *);
260 /*@}*/
261
262 src_reg result;
263
264 /** List of variable_storage */
265 exec_list variables;
266
267 /** List of function_entry */
268 exec_list function_signatures;
269 int next_signature_id;
270
271 /** List of ir_to_mesa_instruction */
272 exec_list instructions;
273
274 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);
275
276 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
277 dst_reg dst, src_reg src0);
278
279 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
280 dst_reg dst, src_reg src0, src_reg src1);
281
282 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
283 dst_reg dst,
284 src_reg src0, src_reg src1, src_reg src2);
285
286 /**
287 * Emit the correct dot-product instruction for the type of arguments
288 */
289 ir_to_mesa_instruction * emit_dp(ir_instruction *ir,
290 dst_reg dst,
291 src_reg src0,
292 src_reg src1,
293 unsigned elements);
294
295 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
296 dst_reg dst, src_reg src0);
297
298 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
299 dst_reg dst, src_reg src0, src_reg src1);
300
301 bool try_emit_mad(ir_expression *ir,
302 int mul_operand);
303 bool try_emit_mad_for_and_not(ir_expression *ir,
304 int mul_operand);
305
306 void emit_swz(ir_expression *ir);
307
308 void emit_equality_comparison(ir_expression *ir, enum prog_opcode op,
309 dst_reg dst,
310 const src_reg &src0, const src_reg &src1);
311
312 inline void emit_sne(ir_expression *ir, dst_reg dst,
313 const src_reg &src0, const src_reg &src1)
314 {
315 emit_equality_comparison(ir, OPCODE_SLT, dst, src0, src1);
316 }
317
318 inline void emit_seq(ir_expression *ir, dst_reg dst,
319 const src_reg &src0, const src_reg &src1)
320 {
321 emit_equality_comparison(ir, OPCODE_SGE, dst, src0, src1);
322 }
323
324 bool process_move_condition(ir_rvalue *ir);
325
326 void copy_propagate(void);
327
328 void *mem_ctx;
329 };
330
331 } /* anonymous namespace */
332
333 static src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);
334
335 static dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);
336
337 static dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);
338
339 static int
340 swizzle_for_size(int size)
341 {
342 static const int size_swizzles[4] = {
343 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
344 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
345 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
346 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
347 };
348
349 assert((size >= 1) && (size <= 4));
350 return size_swizzles[size - 1];
351 }
352
353 ir_to_mesa_instruction *
354 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
355 dst_reg dst,
356 src_reg src0, src_reg src1, src_reg src2)
357 {
358 ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
359 int num_reladdr = 0;
360
361 /* If we have to do relative addressing, we want to load the ARL
362 * reg directly for one of the regs, and preload the other reladdr
363 * sources into temps.
364 */
365 num_reladdr += dst.reladdr != NULL;
366 num_reladdr += src0.reladdr != NULL;
367 num_reladdr += src1.reladdr != NULL;
368 num_reladdr += src2.reladdr != NULL;
369
370 reladdr_to_temp(ir, &src2, &num_reladdr);
371 reladdr_to_temp(ir, &src1, &num_reladdr);
372 reladdr_to_temp(ir, &src0, &num_reladdr);
373
374 if (dst.reladdr) {
375 emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
376 num_reladdr--;
377 }
378 assert(num_reladdr == 0);
379
380 inst->op = op;
381 inst->dst = dst;
382 inst->src[0] = src0;
383 inst->src[1] = src1;
384 inst->src[2] = src2;
385 inst->ir = ir;
386
387 this->instructions.push_tail(inst);
388
389 return inst;
390 }
391
392
393 ir_to_mesa_instruction *
394 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
395 dst_reg dst, src_reg src0, src_reg src1)
396 {
397 return emit(ir, op, dst, src0, src1, undef_src);
398 }
399
400 ir_to_mesa_instruction *
401 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
402 dst_reg dst, src_reg src0)
403 {
404 assert(dst.writemask != 0);
405 return emit(ir, op, dst, src0, undef_src, undef_src);
406 }
407
408 ir_to_mesa_instruction *
409 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
410 {
411 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
412 }
413
414 ir_to_mesa_instruction *
415 ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
416 dst_reg dst, src_reg src0, src_reg src1,
417 unsigned elements)
418 {
419 static const enum prog_opcode dot_opcodes[] = {
420 OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
421 };
422
423 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
424 }
425
426 /**
427 * Emits Mesa scalar opcodes to produce unique answers across channels.
428 *
429 * Some Mesa opcodes are scalar-only, like ARB_fp/vp. The src X
430 * channel determines the result across all channels. So to do a vec4
431 * of this operation, we want to emit a scalar per source channel used
432 * to produce dest channels.
433 */
434 void
435 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
436 dst_reg dst,
437 src_reg orig_src0, src_reg orig_src1)
438 {
439 int i, j;
440 int done_mask = ~dst.writemask;
441
442 /* Mesa RCP is a scalar operation splatting results to all channels,
443 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
444 * dst channels.
445 */
446 for (i = 0; i < 4; i++) {
447 GLuint this_mask = (1 << i);
448 ir_to_mesa_instruction *inst;
449 src_reg src0 = orig_src0;
450 src_reg src1 = orig_src1;
451
452 if (done_mask & this_mask)
453 continue;
454
455 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
456 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
457 for (j = i + 1; j < 4; j++) {
458 /* If there is another enabled component in the destination that is
459 * derived from the same inputs, generate its value on this pass as
460 * well.
461 */
462 if (!(done_mask & (1 << j)) &&
463 GET_SWZ(src0.swizzle, j) == src0_swiz &&
464 GET_SWZ(src1.swizzle, j) == src1_swiz) {
465 this_mask |= (1 << j);
466 }
467 }
468 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
469 src0_swiz, src0_swiz);
470 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
471 src1_swiz, src1_swiz);
472
473 inst = emit(ir, op, dst, src0, src1);
474 inst->dst.writemask = this_mask;
475 done_mask |= this_mask;
476 }
477 }
478
479 void
480 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
481 dst_reg dst, src_reg src0)
482 {
483 src_reg undef = undef_src;
484
485 undef.swizzle = SWIZZLE_XXXX;
486
487 emit_scalar(ir, op, dst, src0, undef);
488 }
489
490 src_reg
491 ir_to_mesa_visitor::src_reg_for_float(float val)
492 {
493 src_reg src(PROGRAM_CONSTANT, -1, NULL);
494
495 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
496 (const gl_constant_value *)&val, 1, &src.swizzle);
497
498 return src;
499 }
500
501 static int
502 storage_type_size(const struct glsl_type *type, bool bindless)
503 {
504 unsigned int i;
505 int size;
506
507 switch (type->base_type) {
508 case GLSL_TYPE_UINT:
509 case GLSL_TYPE_INT:
510 case GLSL_TYPE_UINT16:
511 case GLSL_TYPE_INT16:
512 case GLSL_TYPE_FLOAT:
513 case GLSL_TYPE_FLOAT16:
514 case GLSL_TYPE_BOOL:
515 if (type->is_matrix()) {
516 return type->matrix_columns;
517 } else {
518 /* Regardless of size of vector, it gets a vec4. This is bad
519 * packing for things like floats, but otherwise arrays become a
520 * mess. Hopefully a later pass over the code can pack scalars
521 * down if appropriate.
522 */
523 return 1;
524 }
525 break;
526 case GLSL_TYPE_DOUBLE:
527 if (type->is_matrix()) {
528 if (type->vector_elements > 2)
529 return type->matrix_columns * 2;
530 else
531 return type->matrix_columns;
532 } else {
533 if (type->vector_elements > 2)
534 return 2;
535 else
536 return 1;
537 }
538 break;
539 case GLSL_TYPE_UINT64:
540 case GLSL_TYPE_INT64:
541 if (type->vector_elements > 2)
542 return 2;
543 else
544 return 1;
545 case GLSL_TYPE_ARRAY:
546 assert(type->length > 0);
547 return storage_type_size(type->fields.array, bindless) * type->length;
548 case GLSL_TYPE_STRUCT:
549 size = 0;
550 for (i = 0; i < type->length; i++) {
551 size += storage_type_size(type->fields.structure[i].type, bindless);
552 }
553 return size;
554 case GLSL_TYPE_SAMPLER:
555 case GLSL_TYPE_IMAGE:
556 if (!bindless)
557 return 0;
558 /* fall through */
559 case GLSL_TYPE_SUBROUTINE:
560 return 1;
561 case GLSL_TYPE_ATOMIC_UINT:
562 case GLSL_TYPE_VOID:
563 case GLSL_TYPE_ERROR:
564 case GLSL_TYPE_INTERFACE:
565 case GLSL_TYPE_FUNCTION:
566 assert(!"Invalid type in type_size");
567 break;
568 }
569
570 return 0;
571 }
572
573 static int
574 type_size(const struct glsl_type *type)
575 {
576 return storage_type_size(type, false);
577 }
578
579 /**
580 * In the initial pass of codegen, we assign temporary numbers to
581 * intermediate results. (not SSA -- variable assignments will reuse
582 * storage). Actual register allocation for the Mesa VM occurs in a
583 * pass over the Mesa IR later.
584 */
585 src_reg
586 ir_to_mesa_visitor::get_temp(const glsl_type *type)
587 {
588 src_reg src;
589
590 src.file = PROGRAM_TEMPORARY;
591 src.index = next_temp;
592 src.reladdr = NULL;
593 next_temp += type_size(type);
594
595 if (type->is_array() || type->is_record()) {
596 src.swizzle = SWIZZLE_NOOP;
597 } else {
598 src.swizzle = swizzle_for_size(type->vector_elements);
599 }
600 src.negate = 0;
601
602 return src;
603 }
604
605 variable_storage *
606 ir_to_mesa_visitor::find_variable_storage(const ir_variable *var)
607 {
608 foreach_in_list(variable_storage, entry, &this->variables) {
609 if (entry->var == var)
610 return entry;
611 }
612
613 return NULL;
614 }
615
616 void
617 ir_to_mesa_visitor::visit(ir_variable *ir)
618 {
619 if (strcmp(ir->name, "gl_FragCoord") == 0) {
620 this->prog->OriginUpperLeft = ir->data.origin_upper_left;
621 this->prog->PixelCenterInteger = ir->data.pixel_center_integer;
622 }
623
624 if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
625 unsigned int i;
626 const ir_state_slot *const slots = ir->get_state_slots();
627 assert(slots != NULL);
628
629 /* Check if this statevar's setup in the STATE file exactly
630 * matches how we'll want to reference it as a
631 * struct/array/whatever. If not, then we need to move it into
632 * temporary storage and hope that it'll get copy-propagated
633 * out.
634 */
635 for (i = 0; i < ir->get_num_state_slots(); i++) {
636 if (slots[i].swizzle != SWIZZLE_XYZW) {
637 break;
638 }
639 }
640
641 variable_storage *storage;
642 dst_reg dst;
643 if (i == ir->get_num_state_slots()) {
644 /* We'll set the index later. */
645 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
646 this->variables.push_tail(storage);
647
648 dst = undef_dst;
649 } else {
650 /* The variable_storage constructor allocates slots based on the size
651 * of the type. However, this had better match the number of state
652 * elements that we're going to copy into the new temporary.
653 */
654 assert((int) ir->get_num_state_slots() == type_size(ir->type));
655
656 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
657 this->next_temp);
658 this->variables.push_tail(storage);
659 this->next_temp += type_size(ir->type);
660
661 dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
662 }
663
664
665 for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
666 int index = _mesa_add_state_reference(this->prog->Parameters,
667 (gl_state_index *)slots[i].tokens);
668
669 if (storage->file == PROGRAM_STATE_VAR) {
670 if (storage->index == -1) {
671 storage->index = index;
672 } else {
673 assert(index == storage->index + (int)i);
674 }
675 } else {
676 src_reg src(PROGRAM_STATE_VAR, index, NULL);
677 src.swizzle = slots[i].swizzle;
678 emit(ir, OPCODE_MOV, dst, src);
679 /* even a float takes up a whole vec4 reg in a struct/array. */
680 dst.index++;
681 }
682 }
683
684 if (storage->file == PROGRAM_TEMPORARY &&
685 dst.index != storage->index + (int) ir->get_num_state_slots()) {
686 linker_error(this->shader_program,
687 "failed to load builtin uniform `%s' "
688 "(%d/%d regs loaded)\n",
689 ir->name, dst.index - storage->index,
690 type_size(ir->type));
691 }
692 }
693 }
694
695 void
696 ir_to_mesa_visitor::visit(ir_loop *ir)
697 {
698 emit(NULL, OPCODE_BGNLOOP);
699
700 visit_exec_list(&ir->body_instructions, this);
701
702 emit(NULL, OPCODE_ENDLOOP);
703 }
704
705 void
706 ir_to_mesa_visitor::visit(ir_loop_jump *ir)
707 {
708 switch (ir->mode) {
709 case ir_loop_jump::jump_break:
710 emit(NULL, OPCODE_BRK);
711 break;
712 case ir_loop_jump::jump_continue:
713 emit(NULL, OPCODE_CONT);
714 break;
715 }
716 }
717
718
719 void
720 ir_to_mesa_visitor::visit(ir_function_signature *ir)
721 {
722 assert(0);
723 (void)ir;
724 }
725
726 void
727 ir_to_mesa_visitor::visit(ir_function *ir)
728 {
729 /* Ignore function bodies other than main() -- we shouldn't see calls to
730 * them since they should all be inlined before we get to ir_to_mesa.
731 */
732 if (strcmp(ir->name, "main") == 0) {
733 const ir_function_signature *sig;
734 exec_list empty;
735
736 sig = ir->matching_signature(NULL, &empty, false);
737
738 assert(sig);
739
740 foreach_in_list(ir_instruction, ir, &sig->body) {
741 ir->accept(this);
742 }
743 }
744 }
745
746 bool
747 ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
748 {
749 int nonmul_operand = 1 - mul_operand;
750 src_reg a, b, c;
751
752 ir_expression *expr = ir->operands[mul_operand]->as_expression();
753 if (!expr || expr->operation != ir_binop_mul)
754 return false;
755
756 expr->operands[0]->accept(this);
757 a = this->result;
758 expr->operands[1]->accept(this);
759 b = this->result;
760 ir->operands[nonmul_operand]->accept(this);
761 c = this->result;
762
763 this->result = get_temp(ir->type);
764 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);
765
766 return true;
767 }
768
769 /**
770 * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b))
771 *
772 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
773 * implemented using multiplication, and logical-or is implemented using
774 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
775 * As result, the logical expression (a & !b) can be rewritten as:
776 *
777 * - a * !b
778 * - a * (1 - b)
779 * - (a * 1) - (a * b)
780 * - a + -(a * b)
781 * - a + (a * -b)
782 *
783 * This final expression can be implemented as a single MAD(a, -b, a)
784 * instruction.
785 */
786 bool
787 ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
788 {
789 const int other_operand = 1 - try_operand;
790 src_reg a, b;
791
792 ir_expression *expr = ir->operands[try_operand]->as_expression();
793 if (!expr || expr->operation != ir_unop_logic_not)
794 return false;
795
796 ir->operands[other_operand]->accept(this);
797 a = this->result;
798 expr->operands[0]->accept(this);
799 b = this->result;
800
801 b.negate = ~b.negate;
802
803 this->result = get_temp(ir->type);
804 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a);
805
806 return true;
807 }
808
809 void
810 ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
811 src_reg *reg, int *num_reladdr)
812 {
813 if (!reg->reladdr)
814 return;
815
816 emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);
817
818 if (*num_reladdr != 1) {
819 src_reg temp = get_temp(glsl_type::vec4_type);
820
821 emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
822 *reg = temp;
823 }
824
825 (*num_reladdr)--;
826 }
827
828 void
829 ir_to_mesa_visitor::emit_swz(ir_expression *ir)
830 {
831 /* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
832 * This means that each of the operands is either an immediate value of -1,
833 * 0, or 1, or is a component from one source register (possibly with
834 * negation).
835 */
836 uint8_t components[4] = { 0 };
837 bool negate[4] = { false };
838 ir_variable *var = NULL;
839
840 for (unsigned i = 0; i < ir->type->vector_elements; i++) {
841 ir_rvalue *op = ir->operands[i];
842
843 assert(op->type->is_scalar());
844
845 while (op != NULL) {
846 switch (op->ir_type) {
847 case ir_type_constant: {
848
849 assert(op->type->is_scalar());
850
851 const ir_constant *const c = op->as_constant();
852 if (c->is_one()) {
853 components[i] = SWIZZLE_ONE;
854 } else if (c->is_zero()) {
855 components[i] = SWIZZLE_ZERO;
856 } else if (c->is_negative_one()) {
857 components[i] = SWIZZLE_ONE;
858 negate[i] = true;
859 } else {
860 assert(!"SWZ constant must be 0.0 or 1.0.");
861 }
862
863 op = NULL;
864 break;
865 }
866
867 case ir_type_dereference_variable: {
868 ir_dereference_variable *const deref =
869 (ir_dereference_variable *) op;
870
871 assert((var == NULL) || (deref->var == var));
872 components[i] = SWIZZLE_X;
873 var = deref->var;
874 op = NULL;
875 break;
876 }
877
878 case ir_type_expression: {
879 ir_expression *const expr = (ir_expression *) op;
880
881 assert(expr->operation == ir_unop_neg);
882 negate[i] = true;
883
884 op = expr->operands[0];
885 break;
886 }
887
888 case ir_type_swizzle: {
889 ir_swizzle *const swiz = (ir_swizzle *) op;
890
891 components[i] = swiz->mask.x;
892 op = swiz->val;
893 break;
894 }
895
896 default:
897 assert(!"Should not get here.");
898 return;
899 }
900 }
901 }
902
903 assert(var != NULL);
904
905 ir_dereference_variable *const deref =
906 new(mem_ctx) ir_dereference_variable(var);
907
908 this->result.file = PROGRAM_UNDEFINED;
909 deref->accept(this);
910 if (this->result.file == PROGRAM_UNDEFINED) {
911 printf("Failed to get tree for expression operand:\n");
912 deref->print();
913 printf("\n");
914 exit(1);
915 }
916
917 src_reg src;
918
919 src = this->result;
920 src.swizzle = MAKE_SWIZZLE4(components[0],
921 components[1],
922 components[2],
923 components[3]);
924 src.negate = ((unsigned(negate[0]) << 0)
925 | (unsigned(negate[1]) << 1)
926 | (unsigned(negate[2]) << 2)
927 | (unsigned(negate[3]) << 3));
928
929 /* Storage for our result. Ideally for an assignment we'd be using the
930 * actual storage for the result here, instead.
931 */
932 const src_reg result_src = get_temp(ir->type);
933 dst_reg result_dst = dst_reg(result_src);
934
935 /* Limit writes to the channels that will be used by result_src later.
936 * This does limit this temp's use as a temporary for multi-instruction
937 * sequences.
938 */
939 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
940
941 emit(ir, OPCODE_SWZ, result_dst, src);
942 this->result = result_src;
943 }
944
945 void
946 ir_to_mesa_visitor::emit_equality_comparison(ir_expression *ir,
947 enum prog_opcode op,
948 dst_reg dst,
949 const src_reg &src0,
950 const src_reg &src1)
951 {
952 src_reg difference;
953 src_reg abs_difference = get_temp(glsl_type::vec4_type);
954 const src_reg zero = src_reg_for_float(0.0);
955
956 /* x == y is equivalent to -abs(x-y) >= 0. Since all of the code that
957 * consumes the generated IR is pretty dumb, take special care when one
958 * of the operands is zero.
959 *
960 * Similarly, x != y is equivalent to -abs(x-y) < 0.
961 */
962 if (src0.file == zero.file &&
963 src0.index == zero.index &&
964 src0.swizzle == zero.swizzle) {
965 difference = src1;
966 } else if (src1.file == zero.file &&
967 src1.index == zero.index &&
968 src1.swizzle == zero.swizzle) {
969 difference = src0;
970 } else {
971 difference = get_temp(glsl_type::vec4_type);
972
973 src_reg tmp_src = src0;
974 tmp_src.negate = ~tmp_src.negate;
975
976 emit(ir, OPCODE_ADD, dst_reg(difference), tmp_src, src1);
977 }
978
979 emit(ir, OPCODE_ABS, dst_reg(abs_difference), difference);
980
981 abs_difference.negate = ~abs_difference.negate;
982 emit(ir, op, dst, abs_difference, zero);
983 }
984
985 void
986 ir_to_mesa_visitor::visit(ir_expression *ir)
987 {
988 unsigned int operand;
989 src_reg op[ARRAY_SIZE(ir->operands)];
990 src_reg result_src;
991 dst_reg result_dst;
992
993 /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
994 */
995 if (ir->operation == ir_binop_add) {
996 if (try_emit_mad(ir, 1))
997 return;
998 if (try_emit_mad(ir, 0))
999 return;
1000 }
1001
1002 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1003 */
1004 if (ir->operation == ir_binop_logic_and) {
1005 if (try_emit_mad_for_and_not(ir, 1))
1006 return;
1007 if (try_emit_mad_for_and_not(ir, 0))
1008 return;
1009 }
1010
1011 if (ir->operation == ir_quadop_vector) {
1012 this->emit_swz(ir);
1013 return;
1014 }
1015
1016 for (operand = 0; operand < ir->num_operands; operand++) {
1017 this->result.file = PROGRAM_UNDEFINED;
1018 ir->operands[operand]->accept(this);
1019 if (this->result.file == PROGRAM_UNDEFINED) {
1020 printf("Failed to get tree for expression operand:\n");
1021 ir->operands[operand]->print();
1022 printf("\n");
1023 exit(1);
1024 }
1025 op[operand] = this->result;
1026
1027 /* Matrix expression operands should have been broken down to vector
1028 * operations already.
1029 */
1030 assert(!ir->operands[operand]->type->is_matrix());
1031 }
1032
1033 int vector_elements = ir->operands[0]->type->vector_elements;
1034 if (ir->operands[1]) {
1035 vector_elements = MAX2(vector_elements,
1036 ir->operands[1]->type->vector_elements);
1037 }
1038
1039 this->result.file = PROGRAM_UNDEFINED;
1040
1041 /* Storage for our result. Ideally for an assignment we'd be using
1042 * the actual storage for the result here, instead.
1043 */
1044 result_src = get_temp(ir->type);
1045 /* convenience for the emit functions below. */
1046 result_dst = dst_reg(result_src);
1047 /* Limit writes to the channels that will be used by result_src later.
1048 * This does limit this temp's use as a temporary for multi-instruction
1049 * sequences.
1050 */
1051 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1052
1053 switch (ir->operation) {
1054 case ir_unop_logic_not:
1055 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
1056 * older GPUs implement SEQ using multiple instructions (i915 uses two
1057 * SGE instructions and a MUL instruction). Since our logic values are
1058 * 0.0 and 1.0, 1-x also implements !x.
1059 */
1060 op[0].negate = ~op[0].negate;
1061 emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0));
1062 break;
1063 case ir_unop_neg:
1064 op[0].negate = ~op[0].negate;
1065 result_src = op[0];
1066 break;
1067 case ir_unop_abs:
1068 emit(ir, OPCODE_ABS, result_dst, op[0]);
1069 break;
1070 case ir_unop_sign:
1071 emit(ir, OPCODE_SSG, result_dst, op[0]);
1072 break;
1073 case ir_unop_rcp:
1074 emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
1075 break;
1076
1077 case ir_unop_exp2:
1078 emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
1079 break;
1080 case ir_unop_exp:
1081 assert(!"not reached: should be handled by exp_to_exp2");
1082 break;
1083 case ir_unop_log:
1084 assert(!"not reached: should be handled by log_to_log2");
1085 break;
1086 case ir_unop_log2:
1087 emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
1088 break;
1089 case ir_unop_sin:
1090 emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
1091 break;
1092 case ir_unop_cos:
1093 emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
1094 break;
1095
1096 case ir_unop_dFdx:
1097 emit(ir, OPCODE_DDX, result_dst, op[0]);
1098 break;
1099 case ir_unop_dFdy:
1100 emit(ir, OPCODE_DDY, result_dst, op[0]);
1101 break;
1102
1103 case ir_unop_saturate: {
1104 ir_to_mesa_instruction *inst = emit(ir, OPCODE_MOV,
1105 result_dst, op[0]);
1106 inst->saturate = true;
1107 break;
1108 }
1109 case ir_unop_noise: {
1110 const enum prog_opcode opcode =
1111 prog_opcode(OPCODE_NOISE1
1112 + (ir->operands[0]->type->vector_elements) - 1);
1113 assert((opcode >= OPCODE_NOISE1) && (opcode <= OPCODE_NOISE4));
1114
1115 emit(ir, opcode, result_dst, op[0]);
1116 break;
1117 }
1118
1119 case ir_binop_add:
1120 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1121 break;
1122 case ir_binop_sub:
1123 emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
1124 break;
1125
1126 case ir_binop_mul:
1127 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1128 break;
1129 case ir_binop_div:
1130 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1131 break;
1132 case ir_binop_mod:
1133 /* Floating point should be lowered by MOD_TO_FLOOR in the compiler. */
1134 assert(ir->type->is_integer());
1135 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1136 break;
1137
1138 case ir_binop_less:
1139 emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1140 break;
1141 case ir_binop_gequal:
1142 emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1143 break;
1144 case ir_binop_equal:
1145 emit_seq(ir, result_dst, op[0], op[1]);
1146 break;
1147 case ir_binop_nequal:
1148 emit_sne(ir, result_dst, op[0], op[1]);
1149 break;
1150 case ir_binop_all_equal:
1151 /* "==" operator producing a scalar boolean. */
1152 if (ir->operands[0]->type->is_vector() ||
1153 ir->operands[1]->type->is_vector()) {
1154 src_reg temp = get_temp(glsl_type::vec4_type);
1155 emit_sne(ir, dst_reg(temp), op[0], op[1]);
1156
1157 /* After the dot-product, the value will be an integer on the
1158 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1159 */
1160 emit_dp(ir, result_dst, temp, temp, vector_elements);
1161
1162 /* Negating the result of the dot-product gives values on the range
1163 * [-4, 0]. Zero becomes 1.0, and negative values become zero. This
1164 * achieved using SGE.
1165 */
1166 src_reg sge_src = result_src;
1167 sge_src.negate = ~sge_src.negate;
1168 emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0));
1169 } else {
1170 emit_seq(ir, result_dst, op[0], op[1]);
1171 }
1172 break;
1173 case ir_binop_any_nequal:
1174 /* "!=" operator producing a scalar boolean. */
1175 if (ir->operands[0]->type->is_vector() ||
1176 ir->operands[1]->type->is_vector()) {
1177 src_reg temp = get_temp(glsl_type::vec4_type);
1178 if (ir->operands[0]->type->is_boolean() &&
1179 ir->operands[1]->as_constant() &&
1180 ir->operands[1]->as_constant()->is_zero()) {
1181 temp = op[0];
1182 } else {
1183 emit_sne(ir, dst_reg(temp), op[0], op[1]);
1184 }
1185
1186 /* After the dot-product, the value will be an integer on the
1187 * range [0,4]. Zero stays zero, and positive values become 1.0.
1188 */
1189 ir_to_mesa_instruction *const dp =
1190 emit_dp(ir, result_dst, temp, temp, vector_elements);
1191 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1192 /* The clamping to [0,1] can be done for free in the fragment
1193 * shader with a saturate.
1194 */
1195 dp->saturate = true;
1196 } else {
1197 /* Negating the result of the dot-product gives values on the range
1198 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1199 * achieved using SLT.
1200 */
1201 src_reg slt_src = result_src;
1202 slt_src.negate = ~slt_src.negate;
1203 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1204 }
1205 } else {
1206 emit_sne(ir, result_dst, op[0], op[1]);
1207 }
1208 break;
1209
1210 case ir_binop_logic_xor:
1211 emit_sne(ir, result_dst, op[0], op[1]);
1212 break;
1213
1214 case ir_binop_logic_or: {
1215 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1216 /* After the addition, the value will be an integer on the
1217 * range [0,2]. Zero stays zero, and positive values become 1.0.
1218 */
1219 ir_to_mesa_instruction *add =
1220 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1221 add->saturate = true;
1222 } else {
1223 /* The Boolean arguments are stored as float 0.0 and 1.0. If either
1224 * value is 1.0, the result of the logcal-or should be 1.0. If both
1225 * values are 0.0, the result should be 0.0. This is exactly what
1226 * MAX does.
1227 */
1228 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1229 }
1230 break;
1231 }
1232
1233 case ir_binop_logic_and:
1234 /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1235 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1236 break;
1237
1238 case ir_binop_dot:
1239 assert(ir->operands[0]->type->is_vector());
1240 assert(ir->operands[0]->type == ir->operands[1]->type);
1241 emit_dp(ir, result_dst, op[0], op[1],
1242 ir->operands[0]->type->vector_elements);
1243 break;
1244
1245 case ir_unop_sqrt:
1246 /* sqrt(x) = x * rsq(x). */
1247 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1248 emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
1249 /* For incoming channels <= 0, set the result to 0. */
1250 op[0].negate = ~op[0].negate;
1251 emit(ir, OPCODE_CMP, result_dst,
1252 op[0], result_src, src_reg_for_float(0.0));
1253 break;
1254 case ir_unop_rsq:
1255 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1256 break;
1257 case ir_unop_i2f:
1258 case ir_unop_u2f:
1259 case ir_unop_b2f:
1260 case ir_unop_b2i:
1261 case ir_unop_i2u:
1262 case ir_unop_u2i:
1263 /* Mesa IR lacks types, ints are stored as truncated floats. */
1264 result_src = op[0];
1265 break;
1266 case ir_unop_f2i:
1267 case ir_unop_f2u:
1268 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1269 break;
1270 case ir_unop_f2b:
1271 case ir_unop_i2b:
1272 emit_sne(ir, result_dst, op[0], src_reg_for_float(0.0));
1273 break;
1274 case ir_unop_bitcast_f2i: // Ignore these 4, they can't happen here anyway
1275 case ir_unop_bitcast_f2u:
1276 case ir_unop_bitcast_i2f:
1277 case ir_unop_bitcast_u2f:
1278 break;
1279 case ir_unop_trunc:
1280 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1281 break;
1282 case ir_unop_ceil:
1283 op[0].negate = ~op[0].negate;
1284 emit(ir, OPCODE_FLR, result_dst, op[0]);
1285 result_src.negate = ~result_src.negate;
1286 break;
1287 case ir_unop_floor:
1288 emit(ir, OPCODE_FLR, result_dst, op[0]);
1289 break;
1290 case ir_unop_fract:
1291 emit(ir, OPCODE_FRC, result_dst, op[0]);
1292 break;
1293 case ir_unop_pack_snorm_2x16:
1294 case ir_unop_pack_snorm_4x8:
1295 case ir_unop_pack_unorm_2x16:
1296 case ir_unop_pack_unorm_4x8:
1297 case ir_unop_pack_half_2x16:
1298 case ir_unop_pack_double_2x32:
1299 case ir_unop_unpack_snorm_2x16:
1300 case ir_unop_unpack_snorm_4x8:
1301 case ir_unop_unpack_unorm_2x16:
1302 case ir_unop_unpack_unorm_4x8:
1303 case ir_unop_unpack_half_2x16:
1304 case ir_unop_unpack_double_2x32:
1305 case ir_unop_bitfield_reverse:
1306 case ir_unop_bit_count:
1307 case ir_unop_find_msb:
1308 case ir_unop_find_lsb:
1309 case ir_unop_d2f:
1310 case ir_unop_f2d:
1311 case ir_unop_d2i:
1312 case ir_unop_i2d:
1313 case ir_unop_d2u:
1314 case ir_unop_u2d:
1315 case ir_unop_d2b:
1316 case ir_unop_frexp_sig:
1317 case ir_unop_frexp_exp:
1318 assert(!"not supported");
1319 break;
1320 case ir_binop_min:
1321 emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
1322 break;
1323 case ir_binop_max:
1324 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1325 break;
1326 case ir_binop_pow:
1327 emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
1328 break;
1329
1330 /* GLSL 1.30 integer ops are unsupported in Mesa IR, but since
1331 * hardware backends have no way to avoid Mesa IR generation
1332 * even if they don't use it, we need to emit "something" and
1333 * continue.
1334 */
1335 case ir_binop_lshift:
1336 case ir_binop_rshift:
1337 case ir_binop_bit_and:
1338 case ir_binop_bit_xor:
1339 case ir_binop_bit_or:
1340 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1341 break;
1342
1343 case ir_unop_bit_not:
1344 case ir_unop_round_even:
1345 emit(ir, OPCODE_MOV, result_dst, op[0]);
1346 break;
1347
1348 case ir_binop_ubo_load:
1349 assert(!"not supported");
1350 break;
1351
1352 case ir_triop_lrp:
1353 /* ir_triop_lrp operands are (x, y, a) while
1354 * OPCODE_LRP operands are (a, y, x) to match ARB_fragment_program.
1355 */
1356 emit(ir, OPCODE_LRP, result_dst, op[2], op[1], op[0]);
1357 break;
1358
1359 case ir_triop_csel:
1360 /* We assume that boolean true and false are 1.0 and 0.0. OPCODE_CMP
1361 * selects src1 if src0 is < 0, src2 otherwise.
1362 */
1363 op[0].negate = ~op[0].negate;
1364 emit(ir, OPCODE_CMP, result_dst, op[0], op[1], op[2]);
1365 break;
1366
1367 case ir_binop_vector_extract:
1368 case ir_triop_fma:
1369 case ir_triop_bitfield_extract:
1370 case ir_triop_vector_insert:
1371 case ir_quadop_bitfield_insert:
1372 case ir_binop_ldexp:
1373 case ir_binop_carry:
1374 case ir_binop_borrow:
1375 case ir_binop_imul_high:
1376 case ir_unop_interpolate_at_centroid:
1377 case ir_binop_interpolate_at_offset:
1378 case ir_binop_interpolate_at_sample:
1379 case ir_unop_dFdx_coarse:
1380 case ir_unop_dFdx_fine:
1381 case ir_unop_dFdy_coarse:
1382 case ir_unop_dFdy_fine:
1383 case ir_unop_subroutine_to_int:
1384 case ir_unop_get_buffer_size:
1385 case ir_unop_bitcast_u642d:
1386 case ir_unop_bitcast_i642d:
1387 case ir_unop_bitcast_d2u64:
1388 case ir_unop_bitcast_d2i64:
1389 case ir_unop_i642i:
1390 case ir_unop_u642i:
1391 case ir_unop_i642u:
1392 case ir_unop_u642u:
1393 case ir_unop_i642b:
1394 case ir_unop_i642f:
1395 case ir_unop_u642f:
1396 case ir_unop_i642d:
1397 case ir_unop_u642d:
1398 case ir_unop_i2i64:
1399 case ir_unop_u2i64:
1400 case ir_unop_b2i64:
1401 case ir_unop_f2i64:
1402 case ir_unop_d2i64:
1403 case ir_unop_i2u64:
1404 case ir_unop_u2u64:
1405 case ir_unop_f2u64:
1406 case ir_unop_d2u64:
1407 case ir_unop_u642i64:
1408 case ir_unop_i642u64:
1409 case ir_unop_pack_int_2x32:
1410 case ir_unop_unpack_int_2x32:
1411 case ir_unop_pack_uint_2x32:
1412 case ir_unop_unpack_uint_2x32:
1413 case ir_unop_pack_sampler_2x32:
1414 case ir_unop_unpack_sampler_2x32:
1415 case ir_unop_pack_image_2x32:
1416 case ir_unop_unpack_image_2x32:
1417 assert(!"not supported");
1418 break;
1419
1420 case ir_unop_ssbo_unsized_array_length:
1421 case ir_quadop_vector:
1422 /* This operation should have already been handled.
1423 */
1424 assert(!"Should not get here.");
1425 break;
1426 }
1427
1428 this->result = result_src;
1429 }
1430
1431
1432 void
1433 ir_to_mesa_visitor::visit(ir_swizzle *ir)
1434 {
1435 src_reg src;
1436 int i;
1437 int swizzle[4];
1438
1439 /* Note that this is only swizzles in expressions, not those on the left
1440 * hand side of an assignment, which do write masking. See ir_assignment
1441 * for that.
1442 */
1443
1444 ir->val->accept(this);
1445 src = this->result;
1446 assert(src.file != PROGRAM_UNDEFINED);
1447 assert(ir->type->vector_elements > 0);
1448
1449 for (i = 0; i < 4; i++) {
1450 if (i < ir->type->vector_elements) {
1451 switch (i) {
1452 case 0:
1453 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1454 break;
1455 case 1:
1456 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1457 break;
1458 case 2:
1459 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1460 break;
1461 case 3:
1462 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1463 break;
1464 }
1465 } else {
1466 /* If the type is smaller than a vec4, replicate the last
1467 * channel out.
1468 */
1469 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1470 }
1471 }
1472
1473 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1474
1475 this->result = src;
1476 }
1477
1478 void
1479 ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
1480 {
1481 variable_storage *entry = find_variable_storage(ir->var);
1482 ir_variable *var = ir->var;
1483
1484 if (!entry) {
1485 switch (var->data.mode) {
1486 case ir_var_uniform:
1487 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1488 var->data.param_index);
1489 this->variables.push_tail(entry);
1490 break;
1491 case ir_var_shader_in:
1492 /* The linker assigns locations for varyings and attributes,
1493 * including deprecated builtins (like gl_Color),
1494 * user-assigned generic attributes (glBindVertexLocation),
1495 * and user-defined varyings.
1496 */
1497 assert(var->data.location != -1);
1498 entry = new(mem_ctx) variable_storage(var,
1499 PROGRAM_INPUT,
1500 var->data.location);
1501 break;
1502 case ir_var_shader_out:
1503 assert(var->data.location != -1);
1504 entry = new(mem_ctx) variable_storage(var,
1505 PROGRAM_OUTPUT,
1506 var->data.location);
1507 break;
1508 case ir_var_system_value:
1509 entry = new(mem_ctx) variable_storage(var,
1510 PROGRAM_SYSTEM_VALUE,
1511 var->data.location);
1512 break;
1513 case ir_var_auto:
1514 case ir_var_temporary:
1515 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1516 this->next_temp);
1517 this->variables.push_tail(entry);
1518
1519 next_temp += type_size(var->type);
1520 break;
1521 }
1522
1523 if (!entry) {
1524 printf("Failed to make storage for %s\n", var->name);
1525 exit(1);
1526 }
1527 }
1528
1529 this->result = src_reg(entry->file, entry->index, var->type);
1530 }
1531
1532 void
1533 ir_to_mesa_visitor::visit(ir_dereference_array *ir)
1534 {
1535 ir_constant *index;
1536 src_reg src;
1537 int element_size = type_size(ir->type);
1538
1539 index = ir->array_index->constant_expression_value(ralloc_parent(ir));
1540
1541 ir->array->accept(this);
1542 src = this->result;
1543
1544 if (index) {
1545 src.index += index->value.i[0] * element_size;
1546 } else {
1547 /* Variable index array dereference. It eats the "vec4" of the
1548 * base of the array and an index that offsets the Mesa register
1549 * index.
1550 */
1551 ir->array_index->accept(this);
1552
1553 src_reg index_reg;
1554
1555 if (element_size == 1) {
1556 index_reg = this->result;
1557 } else {
1558 index_reg = get_temp(glsl_type::float_type);
1559
1560 emit(ir, OPCODE_MUL, dst_reg(index_reg),
1561 this->result, src_reg_for_float(element_size));
1562 }
1563
1564 /* If there was already a relative address register involved, add the
1565 * new and the old together to get the new offset.
1566 */
1567 if (src.reladdr != NULL) {
1568 src_reg accum_reg = get_temp(glsl_type::float_type);
1569
1570 emit(ir, OPCODE_ADD, dst_reg(accum_reg),
1571 index_reg, *src.reladdr);
1572
1573 index_reg = accum_reg;
1574 }
1575
1576 src.reladdr = ralloc(mem_ctx, src_reg);
1577 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1578 }
1579
1580 /* If the type is smaller than a vec4, replicate the last channel out. */
1581 if (ir->type->is_scalar() || ir->type->is_vector())
1582 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1583 else
1584 src.swizzle = SWIZZLE_NOOP;
1585
1586 this->result = src;
1587 }
1588
1589 void
1590 ir_to_mesa_visitor::visit(ir_dereference_record *ir)
1591 {
1592 unsigned int i;
1593 const glsl_type *struct_type = ir->record->type;
1594 int offset = 0;
1595
1596 ir->record->accept(this);
1597
1598 assert(ir->field_idx >= 0);
1599 for (i = 0; i < struct_type->length; i++) {
1600 if (i == (unsigned) ir->field_idx)
1601 break;
1602 offset += type_size(struct_type->fields.structure[i].type);
1603 }
1604
1605 /* If the type is smaller than a vec4, replicate the last channel out. */
1606 if (ir->type->is_scalar() || ir->type->is_vector())
1607 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1608 else
1609 this->result.swizzle = SWIZZLE_NOOP;
1610
1611 this->result.index += offset;
1612 }
1613
1614 /**
1615 * We want to be careful in assignment setup to hit the actual storage
1616 * instead of potentially using a temporary like we might with the
1617 * ir_dereference handler.
1618 */
1619 static dst_reg
1620 get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
1621 {
1622 /* The LHS must be a dereference. If the LHS is a variable indexed array
1623 * access of a vector, it must be separated into a series conditional moves
1624 * before reaching this point (see ir_vec_index_to_cond_assign).
1625 */
1626 assert(ir->as_dereference());
1627 ir_dereference_array *deref_array = ir->as_dereference_array();
1628 if (deref_array) {
1629 assert(!deref_array->array->type->is_vector());
1630 }
1631
1632 /* Use the rvalue deref handler for the most part. We'll ignore
1633 * swizzles in it and write swizzles using writemask, though.
1634 */
1635 ir->accept(v);
1636 return dst_reg(v->result);
1637 }
1638
1639 /* Calculate the sampler index and also calculate the base uniform location
1640 * for struct members.
1641 */
1642 static void
1643 calc_sampler_offsets(struct gl_shader_program *prog, ir_dereference *deref,
1644 unsigned *offset, unsigned *array_elements,
1645 unsigned *location)
1646 {
1647 if (deref->ir_type == ir_type_dereference_variable)
1648 return;
1649
1650 switch (deref->ir_type) {
1651 case ir_type_dereference_array: {
1652 ir_dereference_array *deref_arr = deref->as_dereference_array();
1653
1654 void *mem_ctx = ralloc_parent(deref_arr);
1655 ir_constant *array_index =
1656 deref_arr->array_index->constant_expression_value(mem_ctx);
1657
1658 if (!array_index) {
1659 /* GLSL 1.10 and 1.20 allowed variable sampler array indices,
1660 * while GLSL 1.30 requires that the array indices be
1661 * constant integer expressions. We don't expect any driver
1662 * to actually work with a really variable array index, so
1663 * all that would work would be an unrolled loop counter that ends
1664 * up being constant above.
1665 */
1666 ralloc_strcat(&prog->data->InfoLog,
1667 "warning: Variable sampler array index unsupported.\n"
1668 "This feature of the language was removed in GLSL 1.20 "
1669 "and is unlikely to be supported for 1.10 in Mesa.\n");
1670 } else {
1671 *offset += array_index->value.u[0] * *array_elements;
1672 }
1673
1674 *array_elements *= deref_arr->array->type->length;
1675
1676 calc_sampler_offsets(prog, deref_arr->array->as_dereference(),
1677 offset, array_elements, location);
1678 break;
1679 }
1680
1681 case ir_type_dereference_record: {
1682 ir_dereference_record *deref_record = deref->as_dereference_record();
1683 unsigned field_index = deref_record->field_idx;
1684 *location +=
1685 deref_record->record->type->record_location_offset(field_index);
1686 calc_sampler_offsets(prog, deref_record->record->as_dereference(),
1687 offset, array_elements, location);
1688 break;
1689 }
1690
1691 default:
1692 unreachable("Invalid deref type");
1693 break;
1694 }
1695 }
1696
1697 static int
1698 get_sampler_uniform_value(class ir_dereference *sampler,
1699 struct gl_shader_program *shader_program,
1700 const struct gl_program *prog)
1701 {
1702 GLuint shader = _mesa_program_enum_to_shader_stage(prog->Target);
1703 ir_variable *var = sampler->variable_referenced();
1704 unsigned location = var->data.location;
1705 unsigned array_elements = 1;
1706 unsigned offset = 0;
1707
1708 calc_sampler_offsets(shader_program, sampler, &offset, &array_elements,
1709 &location);
1710
1711 assert(shader_program->data->UniformStorage[location].opaque[shader].active);
1712 return shader_program->data->UniformStorage[location].opaque[shader].index +
1713 offset;
1714 }
1715
1716 /**
1717 * Process the condition of a conditional assignment
1718 *
1719 * Examines the condition of a conditional assignment to generate the optimal
1720 * first operand of a \c CMP instruction. If the condition is a relational
1721 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1722 * used as the source for the \c CMP instruction. Otherwise the comparison
1723 * is processed to a boolean result, and the boolean result is used as the
1724 * operand to the CMP instruction.
1725 */
1726 bool
1727 ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
1728 {
1729 ir_rvalue *src_ir = ir;
1730 bool negate = true;
1731 bool switch_order = false;
1732
1733 ir_expression *const expr = ir->as_expression();
1734 if ((expr != NULL) && (expr->num_operands == 2)) {
1735 bool zero_on_left = false;
1736
1737 if (expr->operands[0]->is_zero()) {
1738 src_ir = expr->operands[1];
1739 zero_on_left = true;
1740 } else if (expr->operands[1]->is_zero()) {
1741 src_ir = expr->operands[0];
1742 zero_on_left = false;
1743 }
1744
1745 /* a is - 0 + - 0 +
1746 * (a < 0) T F F ( a < 0) T F F
1747 * (0 < a) F F T (-a < 0) F F T
1748 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
1749 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
1750 *
1751 * Note that exchanging the order of 0 and 'a' in the comparison simply
1752 * means that the value of 'a' should be negated.
1753 */
1754 if (src_ir != ir) {
1755 switch (expr->operation) {
1756 case ir_binop_less:
1757 switch_order = false;
1758 negate = zero_on_left;
1759 break;
1760
1761 case ir_binop_gequal:
1762 switch_order = true;
1763 negate = zero_on_left;
1764 break;
1765
1766 default:
1767 /* This isn't the right kind of comparison afterall, so make sure
1768 * the whole condition is visited.
1769 */
1770 src_ir = ir;
1771 break;
1772 }
1773 }
1774 }
1775
1776 src_ir->accept(this);
1777
1778 /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1779 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
1780 * choose which value OPCODE_CMP produces without an extra instruction
1781 * computing the condition.
1782 */
1783 if (negate)
1784 this->result.negate = ~this->result.negate;
1785
1786 return switch_order;
1787 }
1788
1789 void
1790 ir_to_mesa_visitor::visit(ir_assignment *ir)
1791 {
1792 dst_reg l;
1793 src_reg r;
1794 int i;
1795
1796 ir->rhs->accept(this);
1797 r = this->result;
1798
1799 l = get_assignment_lhs(ir->lhs, this);
1800
1801 /* FINISHME: This should really set to the correct maximal writemask for each
1802 * FINISHME: component written (in the loops below). This case can only
1803 * FINISHME: occur for matrices, arrays, and structures.
1804 */
1805 if (ir->write_mask == 0) {
1806 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1807 l.writemask = WRITEMASK_XYZW;
1808 } else if (ir->lhs->type->is_scalar()) {
1809 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1810 * FINISHME: W component of fragment shader output zero, work correctly.
1811 */
1812 l.writemask = WRITEMASK_XYZW;
1813 } else {
1814 int swizzles[4];
1815 int first_enabled_chan = 0;
1816 int rhs_chan = 0;
1817
1818 assert(ir->lhs->type->is_vector());
1819 l.writemask = ir->write_mask;
1820
1821 for (int i = 0; i < 4; i++) {
1822 if (l.writemask & (1 << i)) {
1823 first_enabled_chan = GET_SWZ(r.swizzle, i);
1824 break;
1825 }
1826 }
1827
1828 /* Swizzle a small RHS vector into the channels being written.
1829 *
1830 * glsl ir treats write_mask as dictating how many channels are
1831 * present on the RHS while Mesa IR treats write_mask as just
1832 * showing which channels of the vec4 RHS get written.
1833 */
1834 for (int i = 0; i < 4; i++) {
1835 if (l.writemask & (1 << i))
1836 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1837 else
1838 swizzles[i] = first_enabled_chan;
1839 }
1840 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1841 swizzles[2], swizzles[3]);
1842 }
1843
1844 assert(l.file != PROGRAM_UNDEFINED);
1845 assert(r.file != PROGRAM_UNDEFINED);
1846
1847 if (ir->condition) {
1848 const bool switch_order = this->process_move_condition(ir->condition);
1849 src_reg condition = this->result;
1850
1851 for (i = 0; i < type_size(ir->lhs->type); i++) {
1852 if (switch_order) {
1853 emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
1854 } else {
1855 emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
1856 }
1857
1858 l.index++;
1859 r.index++;
1860 }
1861 } else {
1862 for (i = 0; i < type_size(ir->lhs->type); i++) {
1863 emit(ir, OPCODE_MOV, l, r);
1864 l.index++;
1865 r.index++;
1866 }
1867 }
1868 }
1869
1870
1871 void
1872 ir_to_mesa_visitor::visit(ir_constant *ir)
1873 {
1874 src_reg src;
1875 GLfloat stack_vals[4] = { 0 };
1876 GLfloat *values = stack_vals;
1877 unsigned int i;
1878
1879 /* Unfortunately, 4 floats is all we can get into
1880 * _mesa_add_unnamed_constant. So, make a temp to store an
1881 * aggregate constant and move each constant value into it. If we
1882 * get lucky, copy propagation will eliminate the extra moves.
1883 */
1884
1885 if (ir->type->is_record()) {
1886 src_reg temp_base = get_temp(ir->type);
1887 dst_reg temp = dst_reg(temp_base);
1888
1889 for (i = 0; i < ir->type->length; i++) {
1890 ir_constant *const field_value = ir->get_record_field(i);
1891 int size = type_size(field_value->type);
1892
1893 assert(size > 0);
1894
1895 field_value->accept(this);
1896 src = this->result;
1897
1898 for (unsigned j = 0; j < (unsigned int)size; j++) {
1899 emit(ir, OPCODE_MOV, temp, src);
1900
1901 src.index++;
1902 temp.index++;
1903 }
1904 }
1905 this->result = temp_base;
1906 return;
1907 }
1908
1909 if (ir->type->is_array()) {
1910 src_reg temp_base = get_temp(ir->type);
1911 dst_reg temp = dst_reg(temp_base);
1912 int size = type_size(ir->type->fields.array);
1913
1914 assert(size > 0);
1915
1916 for (i = 0; i < ir->type->length; i++) {
1917 ir->const_elements[i]->accept(this);
1918 src = this->result;
1919 for (int j = 0; j < size; j++) {
1920 emit(ir, OPCODE_MOV, temp, src);
1921
1922 src.index++;
1923 temp.index++;
1924 }
1925 }
1926 this->result = temp_base;
1927 return;
1928 }
1929
1930 if (ir->type->is_matrix()) {
1931 src_reg mat = get_temp(ir->type);
1932 dst_reg mat_column = dst_reg(mat);
1933
1934 for (i = 0; i < ir->type->matrix_columns; i++) {
1935 assert(ir->type->is_float());
1936 values = &ir->value.f[i * ir->type->vector_elements];
1937
1938 src = src_reg(PROGRAM_CONSTANT, -1, NULL);
1939 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1940 (gl_constant_value *) values,
1941 ir->type->vector_elements,
1942 &src.swizzle);
1943 emit(ir, OPCODE_MOV, mat_column, src);
1944
1945 mat_column.index++;
1946 }
1947
1948 this->result = mat;
1949 return;
1950 }
1951
1952 src.file = PROGRAM_CONSTANT;
1953 switch (ir->type->base_type) {
1954 case GLSL_TYPE_FLOAT:
1955 values = &ir->value.f[0];
1956 break;
1957 case GLSL_TYPE_UINT:
1958 for (i = 0; i < ir->type->vector_elements; i++) {
1959 values[i] = ir->value.u[i];
1960 }
1961 break;
1962 case GLSL_TYPE_INT:
1963 for (i = 0; i < ir->type->vector_elements; i++) {
1964 values[i] = ir->value.i[i];
1965 }
1966 break;
1967 case GLSL_TYPE_BOOL:
1968 for (i = 0; i < ir->type->vector_elements; i++) {
1969 values[i] = ir->value.b[i];
1970 }
1971 break;
1972 default:
1973 assert(!"Non-float/uint/int/bool constant");
1974 }
1975
1976 this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
1977 this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1978 (gl_constant_value *) values,
1979 ir->type->vector_elements,
1980 &this->result.swizzle);
1981 }
1982
1983 void
1984 ir_to_mesa_visitor::visit(ir_call *)
1985 {
1986 assert(!"ir_to_mesa: All function calls should have been inlined by now.");
1987 }
1988
1989 void
1990 ir_to_mesa_visitor::visit(ir_texture *ir)
1991 {
1992 src_reg result_src, coord, lod_info, projector, dx, dy;
1993 dst_reg result_dst, coord_dst;
1994 ir_to_mesa_instruction *inst = NULL;
1995 prog_opcode opcode = OPCODE_NOP;
1996
1997 if (ir->op == ir_txs)
1998 this->result = src_reg_for_float(0.0);
1999 else
2000 ir->coordinate->accept(this);
2001
2002 /* Put our coords in a temp. We'll need to modify them for shadow,
2003 * projection, or LOD, so the only case we'd use it as-is is if
2004 * we're doing plain old texturing. Mesa IR optimization should
2005 * handle cleaning up our mess in that case.
2006 */
2007 coord = get_temp(glsl_type::vec4_type);
2008 coord_dst = dst_reg(coord);
2009 emit(ir, OPCODE_MOV, coord_dst, this->result);
2010
2011 if (ir->projector) {
2012 ir->projector->accept(this);
2013 projector = this->result;
2014 }
2015
2016 /* Storage for our result. Ideally for an assignment we'd be using
2017 * the actual storage for the result here, instead.
2018 */
2019 result_src = get_temp(glsl_type::vec4_type);
2020 result_dst = dst_reg(result_src);
2021
2022 switch (ir->op) {
2023 case ir_tex:
2024 case ir_txs:
2025 opcode = OPCODE_TEX;
2026 break;
2027 case ir_txb:
2028 opcode = OPCODE_TXB;
2029 ir->lod_info.bias->accept(this);
2030 lod_info = this->result;
2031 break;
2032 case ir_txf:
2033 /* Pretend to be TXL so the sampler, coordinate, lod are available */
2034 case ir_txl:
2035 opcode = OPCODE_TXL;
2036 ir->lod_info.lod->accept(this);
2037 lod_info = this->result;
2038 break;
2039 case ir_txd:
2040 opcode = OPCODE_TXD;
2041 ir->lod_info.grad.dPdx->accept(this);
2042 dx = this->result;
2043 ir->lod_info.grad.dPdy->accept(this);
2044 dy = this->result;
2045 break;
2046 case ir_txf_ms:
2047 assert(!"Unexpected ir_txf_ms opcode");
2048 break;
2049 case ir_lod:
2050 assert(!"Unexpected ir_lod opcode");
2051 break;
2052 case ir_tg4:
2053 assert(!"Unexpected ir_tg4 opcode");
2054 break;
2055 case ir_query_levels:
2056 assert(!"Unexpected ir_query_levels opcode");
2057 break;
2058 case ir_samples_identical:
2059 unreachable("Unexpected ir_samples_identical opcode");
2060 case ir_texture_samples:
2061 unreachable("Unexpected ir_texture_samples opcode");
2062 }
2063
2064 const glsl_type *sampler_type = ir->sampler->type;
2065
2066 if (ir->projector) {
2067 if (opcode == OPCODE_TEX) {
2068 /* Slot the projector in as the last component of the coord. */
2069 coord_dst.writemask = WRITEMASK_W;
2070 emit(ir, OPCODE_MOV, coord_dst, projector);
2071 coord_dst.writemask = WRITEMASK_XYZW;
2072 opcode = OPCODE_TXP;
2073 } else {
2074 src_reg coord_w = coord;
2075 coord_w.swizzle = SWIZZLE_WWWW;
2076
2077 /* For the other TEX opcodes there's no projective version
2078 * since the last slot is taken up by lod info. Do the
2079 * projective divide now.
2080 */
2081 coord_dst.writemask = WRITEMASK_W;
2082 emit(ir, OPCODE_RCP, coord_dst, projector);
2083
2084 /* In the case where we have to project the coordinates "by hand,"
2085 * the shadow comparator value must also be projected.
2086 */
2087 src_reg tmp_src = coord;
2088 if (ir->shadow_comparator) {
2089 /* Slot the shadow value in as the second to last component of the
2090 * coord.
2091 */
2092 ir->shadow_comparator->accept(this);
2093
2094 tmp_src = get_temp(glsl_type::vec4_type);
2095 dst_reg tmp_dst = dst_reg(tmp_src);
2096
2097 /* Projective division not allowed for array samplers. */
2098 assert(!sampler_type->sampler_array);
2099
2100 tmp_dst.writemask = WRITEMASK_Z;
2101 emit(ir, OPCODE_MOV, tmp_dst, this->result);
2102
2103 tmp_dst.writemask = WRITEMASK_XY;
2104 emit(ir, OPCODE_MOV, tmp_dst, coord);
2105 }
2106
2107 coord_dst.writemask = WRITEMASK_XYZ;
2108 emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);
2109
2110 coord_dst.writemask = WRITEMASK_XYZW;
2111 coord.swizzle = SWIZZLE_XYZW;
2112 }
2113 }
2114
2115 /* If projection is done and the opcode is not OPCODE_TXP, then the shadow
2116 * comparator was put in the correct place (and projected) by the code,
2117 * above, that handles by-hand projection.
2118 */
2119 if (ir->shadow_comparator && (!ir->projector || opcode == OPCODE_TXP)) {
2120 /* Slot the shadow value in as the second to last component of the
2121 * coord.
2122 */
2123 ir->shadow_comparator->accept(this);
2124
2125 /* XXX This will need to be updated for cubemap array samplers. */
2126 if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2127 sampler_type->sampler_array) {
2128 coord_dst.writemask = WRITEMASK_W;
2129 } else {
2130 coord_dst.writemask = WRITEMASK_Z;
2131 }
2132
2133 emit(ir, OPCODE_MOV, coord_dst, this->result);
2134 coord_dst.writemask = WRITEMASK_XYZW;
2135 }
2136
2137 if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
2138 /* Mesa IR stores lod or lod bias in the last channel of the coords. */
2139 coord_dst.writemask = WRITEMASK_W;
2140 emit(ir, OPCODE_MOV, coord_dst, lod_info);
2141 coord_dst.writemask = WRITEMASK_XYZW;
2142 }
2143
2144 if (opcode == OPCODE_TXD)
2145 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2146 else
2147 inst = emit(ir, opcode, result_dst, coord);
2148
2149 if (ir->shadow_comparator)
2150 inst->tex_shadow = GL_TRUE;
2151
2152 inst->sampler = get_sampler_uniform_value(ir->sampler, shader_program,
2153 prog);
2154
2155 switch (sampler_type->sampler_dimensionality) {
2156 case GLSL_SAMPLER_DIM_1D:
2157 inst->tex_target = (sampler_type->sampler_array)
2158 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2159 break;
2160 case GLSL_SAMPLER_DIM_2D:
2161 inst->tex_target = (sampler_type->sampler_array)
2162 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2163 break;
2164 case GLSL_SAMPLER_DIM_3D:
2165 inst->tex_target = TEXTURE_3D_INDEX;
2166 break;
2167 case GLSL_SAMPLER_DIM_CUBE:
2168 inst->tex_target = TEXTURE_CUBE_INDEX;
2169 break;
2170 case GLSL_SAMPLER_DIM_RECT:
2171 inst->tex_target = TEXTURE_RECT_INDEX;
2172 break;
2173 case GLSL_SAMPLER_DIM_BUF:
2174 assert(!"FINISHME: Implement ARB_texture_buffer_object");
2175 break;
2176 case GLSL_SAMPLER_DIM_EXTERNAL:
2177 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2178 break;
2179 default:
2180 assert(!"Should not get here.");
2181 }
2182
2183 this->result = result_src;
2184 }
2185
2186 void
2187 ir_to_mesa_visitor::visit(ir_return *ir)
2188 {
2189 /* Non-void functions should have been inlined. We may still emit RETs
2190 * from main() unless the EmitNoMainReturn option is set.
2191 */
2192 assert(!ir->get_value());
2193 emit(ir, OPCODE_RET);
2194 }
2195
2196 void
2197 ir_to_mesa_visitor::visit(ir_discard *ir)
2198 {
2199 if (!ir->condition)
2200 ir->condition = new(mem_ctx) ir_constant(true);
2201
2202 ir->condition->accept(this);
2203 this->result.negate = ~this->result.negate;
2204 emit(ir, OPCODE_KIL, undef_dst, this->result);
2205 }
2206
2207 void
2208 ir_to_mesa_visitor::visit(ir_if *ir)
2209 {
2210 ir_to_mesa_instruction *if_inst;
2211
2212 ir->condition->accept(this);
2213 assert(this->result.file != PROGRAM_UNDEFINED);
2214
2215 if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);
2216
2217 this->instructions.push_tail(if_inst);
2218
2219 visit_exec_list(&ir->then_instructions, this);
2220
2221 if (!ir->else_instructions.is_empty()) {
2222 emit(ir->condition, OPCODE_ELSE);
2223 visit_exec_list(&ir->else_instructions, this);
2224 }
2225
2226 emit(ir->condition, OPCODE_ENDIF);
2227 }
2228
2229 void
2230 ir_to_mesa_visitor::visit(ir_emit_vertex *)
2231 {
2232 assert(!"Geometry shaders not supported.");
2233 }
2234
2235 void
2236 ir_to_mesa_visitor::visit(ir_end_primitive *)
2237 {
2238 assert(!"Geometry shaders not supported.");
2239 }
2240
2241 void
2242 ir_to_mesa_visitor::visit(ir_barrier *)
2243 {
2244 unreachable("GLSL barrier() not supported.");
2245 }
2246
2247 ir_to_mesa_visitor::ir_to_mesa_visitor()
2248 {
2249 result.file = PROGRAM_UNDEFINED;
2250 next_temp = 1;
2251 next_signature_id = 1;
2252 current_function = NULL;
2253 mem_ctx = ralloc_context(NULL);
2254 }
2255
2256 ir_to_mesa_visitor::~ir_to_mesa_visitor()
2257 {
2258 ralloc_free(mem_ctx);
2259 }
2260
2261 static struct prog_src_register
2262 mesa_src_reg_from_ir_src_reg(src_reg reg)
2263 {
2264 struct prog_src_register mesa_reg;
2265
2266 mesa_reg.File = reg.file;
2267 assert(reg.index < (1 << INST_INDEX_BITS));
2268 mesa_reg.Index = reg.index;
2269 mesa_reg.Swizzle = reg.swizzle;
2270 mesa_reg.RelAddr = reg.reladdr != NULL;
2271 mesa_reg.Negate = reg.negate;
2272
2273 return mesa_reg;
2274 }
2275
2276 static void
2277 set_branchtargets(ir_to_mesa_visitor *v,
2278 struct prog_instruction *mesa_instructions,
2279 int num_instructions)
2280 {
2281 int if_count = 0, loop_count = 0;
2282 int *if_stack, *loop_stack;
2283 int if_stack_pos = 0, loop_stack_pos = 0;
2284 int i, j;
2285
2286 for (i = 0; i < num_instructions; i++) {
2287 switch (mesa_instructions[i].Opcode) {
2288 case OPCODE_IF:
2289 if_count++;
2290 break;
2291 case OPCODE_BGNLOOP:
2292 loop_count++;
2293 break;
2294 case OPCODE_BRK:
2295 case OPCODE_CONT:
2296 mesa_instructions[i].BranchTarget = -1;
2297 break;
2298 default:
2299 break;
2300 }
2301 }
2302
2303 if_stack = rzalloc_array(v->mem_ctx, int, if_count);
2304 loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);
2305
2306 for (i = 0; i < num_instructions; i++) {
2307 switch (mesa_instructions[i].Opcode) {
2308 case OPCODE_IF:
2309 if_stack[if_stack_pos] = i;
2310 if_stack_pos++;
2311 break;
2312 case OPCODE_ELSE:
2313 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2314 if_stack[if_stack_pos - 1] = i;
2315 break;
2316 case OPCODE_ENDIF:
2317 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2318 if_stack_pos--;
2319 break;
2320 case OPCODE_BGNLOOP:
2321 loop_stack[loop_stack_pos] = i;
2322 loop_stack_pos++;
2323 break;
2324 case OPCODE_ENDLOOP:
2325 loop_stack_pos--;
2326 /* Rewrite any breaks/conts at this nesting level (haven't
2327 * already had a BranchTarget assigned) to point to the end
2328 * of the loop.
2329 */
2330 for (j = loop_stack[loop_stack_pos]; j < i; j++) {
2331 if (mesa_instructions[j].Opcode == OPCODE_BRK ||
2332 mesa_instructions[j].Opcode == OPCODE_CONT) {
2333 if (mesa_instructions[j].BranchTarget == -1) {
2334 mesa_instructions[j].BranchTarget = i;
2335 }
2336 }
2337 }
2338 /* The loop ends point at each other. */
2339 mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
2340 mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
2341 break;
2342 case OPCODE_CAL:
2343 foreach_in_list(function_entry, entry, &v->function_signatures) {
2344 if (entry->sig_id == mesa_instructions[i].BranchTarget) {
2345 mesa_instructions[i].BranchTarget = entry->inst;
2346 break;
2347 }
2348 }
2349 break;
2350 default:
2351 break;
2352 }
2353 }
2354 }
2355
2356 static void
2357 print_program(struct prog_instruction *mesa_instructions,
2358 ir_instruction **mesa_instruction_annotation,
2359 int num_instructions)
2360 {
2361 ir_instruction *last_ir = NULL;
2362 int i;
2363 int indent = 0;
2364
2365 for (i = 0; i < num_instructions; i++) {
2366 struct prog_instruction *mesa_inst = mesa_instructions + i;
2367 ir_instruction *ir = mesa_instruction_annotation[i];
2368
2369 fprintf(stdout, "%3d: ", i);
2370
2371 if (last_ir != ir && ir) {
2372 int j;
2373
2374 for (j = 0; j < indent; j++) {
2375 fprintf(stdout, " ");
2376 }
2377 ir->print();
2378 printf("\n");
2379 last_ir = ir;
2380
2381 fprintf(stdout, " "); /* line number spacing. */
2382 }
2383
2384 indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
2385 PROG_PRINT_DEBUG, NULL);
2386 }
2387 }
2388
2389 namespace {
2390
2391 class add_uniform_to_shader : public program_resource_visitor {
2392 public:
2393 add_uniform_to_shader(struct gl_context *ctx,
2394 struct gl_shader_program *shader_program,
2395 struct gl_program_parameter_list *params)
2396 : ctx(ctx), params(params), idx(-1)
2397 {
2398 /* empty */
2399 }
2400
2401 void process(ir_variable *var)
2402 {
2403 this->idx = -1;
2404 this->var = var;
2405 this->program_resource_visitor::process(var,
2406 ctx->Const.UseSTD430AsDefaultPacking);
2407 var->data.param_index = this->idx;
2408 }
2409
2410 private:
2411 virtual void visit_field(const glsl_type *type, const char *name,
2412 bool row_major, const glsl_type *record_type,
2413 const enum glsl_interface_packing packing,
2414 bool last_field);
2415
2416 struct gl_context *ctx;
2417 struct gl_program_parameter_list *params;
2418 int idx;
2419 ir_variable *var;
2420 };
2421
2422 } /* anonymous namespace */
2423
2424 void
2425 add_uniform_to_shader::visit_field(const glsl_type *type, const char *name,
2426 bool /* row_major */,
2427 const glsl_type * /* record_type */,
2428 const enum glsl_interface_packing,
2429 bool /* last_field */)
2430 {
2431 /* opaque types don't use storage in the param list unless they are
2432 * bindless samplers or images.
2433 */
2434 if (type->contains_opaque() && !var->data.bindless)
2435 return;
2436
2437 /* Add the uniform to the param list */
2438 assert(_mesa_lookup_parameter_index(params, name) < 0);
2439 int index = _mesa_lookup_parameter_index(params, name);
2440
2441 unsigned num_params = type->arrays_of_arrays_size();
2442 num_params = MAX2(num_params, 1);
2443 num_params *= type->without_array()->matrix_columns;
2444
2445 bool is_dual_slot = type->without_array()->is_dual_slot();
2446 if (is_dual_slot)
2447 num_params *= 2;
2448
2449 _mesa_reserve_parameter_storage(params, num_params);
2450 index = params->NumParameters;
2451 for (unsigned i = 0; i < num_params; i++) {
2452 unsigned comps = 4;
2453 _mesa_add_parameter(params, PROGRAM_UNIFORM, name, comps,
2454 type->gl_type, NULL, NULL);
2455 }
2456
2457 /* The first part of the uniform that's processed determines the base
2458 * location of the whole uniform (for structures).
2459 */
2460 if (this->idx < 0)
2461 this->idx = index;
2462 }
2463
2464 /**
2465 * Generate the program parameters list for the user uniforms in a shader
2466 *
2467 * \param shader_program Linked shader program. This is only used to
2468 * emit possible link errors to the info log.
2469 * \param sh Shader whose uniforms are to be processed.
2470 * \param params Parameter list to be filled in.
2471 */
2472 void
2473 _mesa_generate_parameters_list_for_uniforms(struct gl_context *ctx,
2474 struct gl_shader_program
2475 *shader_program,
2476 struct gl_linked_shader *sh,
2477 struct gl_program_parameter_list
2478 *params)
2479 {
2480 add_uniform_to_shader add(ctx, shader_program, params);
2481
2482 foreach_in_list(ir_instruction, node, sh->ir) {
2483 ir_variable *var = node->as_variable();
2484
2485 if ((var == NULL) || (var->data.mode != ir_var_uniform)
2486 || var->is_in_buffer_block() || (strncmp(var->name, "gl_", 3) == 0))
2487 continue;
2488
2489 add.process(var);
2490 }
2491 }
2492
2493 void
2494 _mesa_associate_uniform_storage(struct gl_context *ctx,
2495 struct gl_shader_program *shader_program,
2496 struct gl_program *prog,
2497 bool propagate_to_storage)
2498 {
2499 struct gl_program_parameter_list *params = prog->Parameters;
2500 gl_shader_stage shader_type = prog->info.stage;
2501
2502 /* After adding each uniform to the parameter list, connect the storage for
2503 * the parameter with the tracking structure used by the API for the
2504 * uniform.
2505 */
2506 unsigned last_location = unsigned(~0);
2507 for (unsigned i = 0; i < params->NumParameters; i++) {
2508 if (params->Parameters[i].Type != PROGRAM_UNIFORM)
2509 continue;
2510
2511 unsigned location;
2512 const bool found =
2513 shader_program->UniformHash->get(location, params->Parameters[i].Name);
2514 assert(found);
2515
2516 if (!found)
2517 continue;
2518
2519 struct gl_uniform_storage *storage =
2520 &shader_program->data->UniformStorage[location];
2521
2522 /* Do not associate any uniform storage to built-in uniforms */
2523 if (storage->builtin)
2524 continue;
2525
2526 if (location != last_location) {
2527 enum gl_uniform_driver_format format = uniform_native;
2528 unsigned columns = 0;
2529 int dmul = 4 * sizeof(float);
2530
2531 switch (storage->type->base_type) {
2532 case GLSL_TYPE_UINT64:
2533 if (storage->type->vector_elements > 2)
2534 dmul *= 2;
2535 /* fallthrough */
2536 case GLSL_TYPE_UINT:
2537 case GLSL_TYPE_UINT16:
2538 assert(ctx->Const.NativeIntegers);
2539 format = uniform_native;
2540 columns = 1;
2541 break;
2542 case GLSL_TYPE_INT64:
2543 if (storage->type->vector_elements > 2)
2544 dmul *= 2;
2545 /* fallthrough */
2546 case GLSL_TYPE_INT:
2547 case GLSL_TYPE_INT16:
2548 format =
2549 (ctx->Const.NativeIntegers) ? uniform_native : uniform_int_float;
2550 columns = 1;
2551 break;
2552 case GLSL_TYPE_DOUBLE:
2553 if (storage->type->vector_elements > 2)
2554 dmul *= 2;
2555 /* fallthrough */
2556 case GLSL_TYPE_FLOAT:
2557 case GLSL_TYPE_FLOAT16:
2558 format = uniform_native;
2559 columns = storage->type->matrix_columns;
2560 break;
2561 case GLSL_TYPE_BOOL:
2562 format = uniform_native;
2563 columns = 1;
2564 break;
2565 case GLSL_TYPE_SAMPLER:
2566 case GLSL_TYPE_IMAGE:
2567 case GLSL_TYPE_SUBROUTINE:
2568 format = uniform_native;
2569 columns = 1;
2570 break;
2571 case GLSL_TYPE_ATOMIC_UINT:
2572 case GLSL_TYPE_ARRAY:
2573 case GLSL_TYPE_VOID:
2574 case GLSL_TYPE_STRUCT:
2575 case GLSL_TYPE_ERROR:
2576 case GLSL_TYPE_INTERFACE:
2577 case GLSL_TYPE_FUNCTION:
2578 assert(!"Should not get here.");
2579 break;
2580 }
2581
2582 _mesa_uniform_attach_driver_storage(storage, dmul * columns, dmul,
2583 format,
2584 &params->ParameterValues[i]);
2585
2586 /* When a bindless sampler/image is bound to a texture/image unit, we
2587 * have to overwrite the constant value by the resident handle
2588 * directly in the constant buffer before the next draw. One solution
2589 * is to keep track a pointer to the base of the data.
2590 */
2591 if (storage->is_bindless && (prog->sh.NumBindlessSamplers ||
2592 prog->sh.NumBindlessImages)) {
2593 unsigned array_elements = MAX2(1, storage->array_elements);
2594
2595 for (unsigned j = 0; j < array_elements; ++j) {
2596 unsigned unit = storage->opaque[shader_type].index + j;
2597
2598 if (storage->type->without_array()->is_sampler()) {
2599 assert(unit >= 0 && unit < prog->sh.NumBindlessSamplers);
2600 prog->sh.BindlessSamplers[unit].data =
2601 &params->ParameterValues[i] + j;
2602 } else if (storage->type->without_array()->is_image()) {
2603 assert(unit >= 0 && unit < prog->sh.NumBindlessImages);
2604 prog->sh.BindlessImages[unit].data =
2605 &params->ParameterValues[i] + j;
2606 }
2607 }
2608 }
2609
2610 /* After attaching the driver's storage to the uniform, propagate any
2611 * data from the linker's backing store. This will cause values from
2612 * initializers in the source code to be copied over.
2613 */
2614 if (propagate_to_storage) {
2615 unsigned array_elements = MAX2(1, storage->array_elements);
2616 _mesa_propagate_uniforms_to_driver_storage(storage, 0,
2617 array_elements);
2618 }
2619
2620 last_location = location;
2621 }
2622 }
2623 }
2624
2625 /*
2626 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
2627 * channels for copy propagation and updates following instructions to
2628 * use the original versions.
2629 *
2630 * The ir_to_mesa_visitor lazily produces code assuming that this pass
2631 * will occur. As an example, a TXP production before this pass:
2632 *
2633 * 0: MOV TEMP[1], INPUT[4].xyyy;
2634 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2635 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
2636 *
2637 * and after:
2638 *
2639 * 0: MOV TEMP[1], INPUT[4].xyyy;
2640 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2641 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
2642 *
2643 * which allows for dead code elimination on TEMP[1]'s writes.
2644 */
2645 void
2646 ir_to_mesa_visitor::copy_propagate(void)
2647 {
2648 ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
2649 ir_to_mesa_instruction *,
2650 this->next_temp * 4);
2651 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
2652 int level = 0;
2653
2654 foreach_in_list(ir_to_mesa_instruction, inst, &this->instructions) {
2655 assert(inst->dst.file != PROGRAM_TEMPORARY
2656 || inst->dst.index < this->next_temp);
2657
2658 /* First, do any copy propagation possible into the src regs. */
2659 for (int r = 0; r < 3; r++) {
2660 ir_to_mesa_instruction *first = NULL;
2661 bool good = true;
2662 int acp_base = inst->src[r].index * 4;
2663
2664 if (inst->src[r].file != PROGRAM_TEMPORARY ||
2665 inst->src[r].reladdr)
2666 continue;
2667
2668 /* See if we can find entries in the ACP consisting of MOVs
2669 * from the same src register for all the swizzled channels
2670 * of this src register reference.
2671 */
2672 for (int i = 0; i < 4; i++) {
2673 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2674 ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];
2675
2676 if (!copy_chan) {
2677 good = false;
2678 break;
2679 }
2680
2681 assert(acp_level[acp_base + src_chan] <= level);
2682
2683 if (!first) {
2684 first = copy_chan;
2685 } else {
2686 if (first->src[0].file != copy_chan->src[0].file ||
2687 first->src[0].index != copy_chan->src[0].index) {
2688 good = false;
2689 break;
2690 }
2691 }
2692 }
2693
2694 if (good) {
2695 /* We've now validated that we can copy-propagate to
2696 * replace this src register reference. Do it.
2697 */
2698 inst->src[r].file = first->src[0].file;
2699 inst->src[r].index = first->src[0].index;
2700
2701 int swizzle = 0;
2702 for (int i = 0; i < 4; i++) {
2703 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2704 ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
2705 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
2706 (3 * i));
2707 }
2708 inst->src[r].swizzle = swizzle;
2709 }
2710 }
2711
2712 switch (inst->op) {
2713 case OPCODE_BGNLOOP:
2714 case OPCODE_ENDLOOP:
2715 /* End of a basic block, clear the ACP entirely. */
2716 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2717 break;
2718
2719 case OPCODE_IF:
2720 ++level;
2721 break;
2722
2723 case OPCODE_ENDIF:
2724 case OPCODE_ELSE:
2725 /* Clear all channels written inside the block from the ACP, but
2726 * leaving those that were not touched.
2727 */
2728 for (int r = 0; r < this->next_temp; r++) {
2729 for (int c = 0; c < 4; c++) {
2730 if (!acp[4 * r + c])
2731 continue;
2732
2733 if (acp_level[4 * r + c] >= level)
2734 acp[4 * r + c] = NULL;
2735 }
2736 }
2737 if (inst->op == OPCODE_ENDIF)
2738 --level;
2739 break;
2740
2741 default:
2742 /* Continuing the block, clear any written channels from
2743 * the ACP.
2744 */
2745 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
2746 /* Any temporary might be written, so no copy propagation
2747 * across this instruction.
2748 */
2749 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2750 } else if (inst->dst.file == PROGRAM_OUTPUT &&
2751 inst->dst.reladdr) {
2752 /* Any output might be written, so no copy propagation
2753 * from outputs across this instruction.
2754 */
2755 for (int r = 0; r < this->next_temp; r++) {
2756 for (int c = 0; c < 4; c++) {
2757 if (!acp[4 * r + c])
2758 continue;
2759
2760 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
2761 acp[4 * r + c] = NULL;
2762 }
2763 }
2764 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
2765 inst->dst.file == PROGRAM_OUTPUT) {
2766 /* Clear where it's used as dst. */
2767 if (inst->dst.file == PROGRAM_TEMPORARY) {
2768 for (int c = 0; c < 4; c++) {
2769 if (inst->dst.writemask & (1 << c)) {
2770 acp[4 * inst->dst.index + c] = NULL;
2771 }
2772 }
2773 }
2774
2775 /* Clear where it's used as src. */
2776 for (int r = 0; r < this->next_temp; r++) {
2777 for (int c = 0; c < 4; c++) {
2778 if (!acp[4 * r + c])
2779 continue;
2780
2781 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
2782
2783 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
2784 acp[4 * r + c]->src[0].index == inst->dst.index &&
2785 inst->dst.writemask & (1 << src_chan))
2786 {
2787 acp[4 * r + c] = NULL;
2788 }
2789 }
2790 }
2791 }
2792 break;
2793 }
2794
2795 /* If this is a copy, add it to the ACP. */
2796 if (inst->op == OPCODE_MOV &&
2797 inst->dst.file == PROGRAM_TEMPORARY &&
2798 !(inst->dst.file == inst->src[0].file &&
2799 inst->dst.index == inst->src[0].index) &&
2800 !inst->dst.reladdr &&
2801 !inst->saturate &&
2802 !inst->src[0].reladdr &&
2803 !inst->src[0].negate) {
2804 for (int i = 0; i < 4; i++) {
2805 if (inst->dst.writemask & (1 << i)) {
2806 acp[4 * inst->dst.index + i] = inst;
2807 acp_level[4 * inst->dst.index + i] = level;
2808 }
2809 }
2810 }
2811 }
2812
2813 ralloc_free(acp_level);
2814 ralloc_free(acp);
2815 }
2816
2817
2818 /**
2819 * Convert a shader's GLSL IR into a Mesa gl_program.
2820 */
2821 static struct gl_program *
2822 get_mesa_program(struct gl_context *ctx,
2823 struct gl_shader_program *shader_program,
2824 struct gl_linked_shader *shader)
2825 {
2826 ir_to_mesa_visitor v;
2827 struct prog_instruction *mesa_instructions, *mesa_inst;
2828 ir_instruction **mesa_instruction_annotation;
2829 int i;
2830 struct gl_program *prog;
2831 GLenum target = _mesa_shader_stage_to_program(shader->Stage);
2832 const char *target_string = _mesa_shader_stage_to_string(shader->Stage);
2833 struct gl_shader_compiler_options *options =
2834 &ctx->Const.ShaderCompilerOptions[shader->Stage];
2835
2836 validate_ir_tree(shader->ir);
2837
2838 prog = shader->Program;
2839 prog->Parameters = _mesa_new_parameter_list();
2840 v.ctx = ctx;
2841 v.prog = prog;
2842 v.shader_program = shader_program;
2843 v.options = options;
2844
2845 _mesa_generate_parameters_list_for_uniforms(ctx, shader_program, shader,
2846 prog->Parameters);
2847
2848 /* Emit Mesa IR for main(). */
2849 visit_exec_list(shader->ir, &v);
2850 v.emit(NULL, OPCODE_END);
2851
2852 prog->arb.NumTemporaries = v.next_temp;
2853
2854 unsigned num_instructions = v.instructions.length();
2855
2856 mesa_instructions = rzalloc_array(prog, struct prog_instruction,
2857 num_instructions);
2858 mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
2859 num_instructions);
2860
2861 v.copy_propagate();
2862
2863 /* Convert ir_mesa_instructions into prog_instructions.
2864 */
2865 mesa_inst = mesa_instructions;
2866 i = 0;
2867 foreach_in_list(const ir_to_mesa_instruction, inst, &v.instructions) {
2868 mesa_inst->Opcode = inst->op;
2869 if (inst->saturate)
2870 mesa_inst->Saturate = GL_TRUE;
2871 mesa_inst->DstReg.File = inst->dst.file;
2872 mesa_inst->DstReg.Index = inst->dst.index;
2873 mesa_inst->DstReg.WriteMask = inst->dst.writemask;
2874 mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
2875 mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
2876 mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
2877 mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
2878 mesa_inst->TexSrcUnit = inst->sampler;
2879 mesa_inst->TexSrcTarget = inst->tex_target;
2880 mesa_inst->TexShadow = inst->tex_shadow;
2881 mesa_instruction_annotation[i] = inst->ir;
2882
2883 /* Set IndirectRegisterFiles. */
2884 if (mesa_inst->DstReg.RelAddr)
2885 prog->arb.IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;
2886
2887 /* Update program's bitmask of indirectly accessed register files */
2888 for (unsigned src = 0; src < 3; src++)
2889 if (mesa_inst->SrcReg[src].RelAddr)
2890 prog->arb.IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;
2891
2892 switch (mesa_inst->Opcode) {
2893 case OPCODE_IF:
2894 if (options->MaxIfDepth == 0) {
2895 linker_warning(shader_program,
2896 "Couldn't flatten if-statement. "
2897 "This will likely result in software "
2898 "rasterization.\n");
2899 }
2900 break;
2901 case OPCODE_BGNLOOP:
2902 if (options->EmitNoLoops) {
2903 linker_warning(shader_program,
2904 "Couldn't unroll loop. "
2905 "This will likely result in software "
2906 "rasterization.\n");
2907 }
2908 break;
2909 case OPCODE_CONT:
2910 if (options->EmitNoCont) {
2911 linker_warning(shader_program,
2912 "Couldn't lower continue-statement. "
2913 "This will likely result in software "
2914 "rasterization.\n");
2915 }
2916 break;
2917 case OPCODE_ARL:
2918 prog->arb.NumAddressRegs = 1;
2919 break;
2920 default:
2921 break;
2922 }
2923
2924 mesa_inst++;
2925 i++;
2926
2927 if (!shader_program->data->LinkStatus)
2928 break;
2929 }
2930
2931 if (!shader_program->data->LinkStatus) {
2932 goto fail_exit;
2933 }
2934
2935 set_branchtargets(&v, mesa_instructions, num_instructions);
2936
2937 if (ctx->_Shader->Flags & GLSL_DUMP) {
2938 fprintf(stderr, "\n");
2939 fprintf(stderr, "GLSL IR for linked %s program %d:\n", target_string,
2940 shader_program->Name);
2941 _mesa_print_ir(stderr, shader->ir, NULL);
2942 fprintf(stderr, "\n");
2943 fprintf(stderr, "\n");
2944 fprintf(stderr, "Mesa IR for linked %s program %d:\n", target_string,
2945 shader_program->Name);
2946 print_program(mesa_instructions, mesa_instruction_annotation,
2947 num_instructions);
2948 fflush(stderr);
2949 }
2950
2951 prog->arb.Instructions = mesa_instructions;
2952 prog->arb.NumInstructions = num_instructions;
2953
2954 /* Setting this to NULL prevents a possible double free in the fail_exit
2955 * path (far below).
2956 */
2957 mesa_instructions = NULL;
2958
2959 do_set_program_inouts(shader->ir, prog, shader->Stage);
2960
2961 prog->ShadowSamplers = shader->shadow_samplers;
2962 prog->ExternalSamplersUsed = gl_external_samplers(prog);
2963 _mesa_update_shader_textures_used(shader_program, prog);
2964
2965 /* Set the gl_FragDepth layout. */
2966 if (target == GL_FRAGMENT_PROGRAM_ARB) {
2967 prog->info.fs.depth_layout = shader_program->FragDepthLayout;
2968 }
2969
2970 _mesa_optimize_program(ctx, prog, prog);
2971
2972 /* This has to be done last. Any operation that can cause
2973 * prog->ParameterValues to get reallocated (e.g., anything that adds a
2974 * program constant) has to happen before creating this linkage.
2975 */
2976 _mesa_associate_uniform_storage(ctx, shader_program, prog, true);
2977 if (!shader_program->data->LinkStatus) {
2978 goto fail_exit;
2979 }
2980
2981 return prog;
2982
2983 fail_exit:
2984 ralloc_free(mesa_instructions);
2985 _mesa_reference_program(ctx, &shader->Program, NULL);
2986 return NULL;
2987 }
2988
2989 extern "C" {
2990
2991 /**
2992 * Link a shader.
2993 * Called via ctx->Driver.LinkShader()
2994 * This actually involves converting GLSL IR into Mesa gl_programs with
2995 * code lowering and other optimizations.
2996 */
2997 GLboolean
2998 _mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
2999 {
3000 assert(prog->data->LinkStatus);
3001
3002 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3003 if (prog->_LinkedShaders[i] == NULL)
3004 continue;
3005
3006 bool progress;
3007 exec_list *ir = prog->_LinkedShaders[i]->ir;
3008 const struct gl_shader_compiler_options *options =
3009 &ctx->Const.ShaderCompilerOptions[prog->_LinkedShaders[i]->Stage];
3010
3011 do {
3012 progress = false;
3013
3014 /* Lowering */
3015 do_mat_op_to_vec(ir);
3016 lower_instructions(ir, (MOD_TO_FLOOR | DIV_TO_MUL_RCP | EXP_TO_EXP2
3017 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
3018 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
3019
3020 progress = do_common_optimization(ir, true, true,
3021 options, ctx->Const.NativeIntegers)
3022 || progress;
3023
3024 progress = lower_quadop_vector(ir, true) || progress;
3025
3026 if (options->MaxIfDepth == 0)
3027 progress = lower_discard(ir) || progress;
3028
3029 progress = lower_if_to_cond_assign((gl_shader_stage)i, ir,
3030 options->MaxIfDepth) || progress;
3031
3032 progress = lower_noise(ir) || progress;
3033
3034 /* If there are forms of indirect addressing that the driver
3035 * cannot handle, perform the lowering pass.
3036 */
3037 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
3038 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
3039 progress =
3040 lower_variable_index_to_cond_assign(prog->_LinkedShaders[i]->Stage, ir,
3041 options->EmitNoIndirectInput,
3042 options->EmitNoIndirectOutput,
3043 options->EmitNoIndirectTemp,
3044 options->EmitNoIndirectUniform)
3045 || progress;
3046
3047 progress = do_vec_index_to_cond_assign(ir) || progress;
3048 progress = lower_vector_insert(ir, true) || progress;
3049 } while (progress);
3050
3051 validate_ir_tree(ir);
3052 }
3053
3054 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3055 struct gl_program *linked_prog;
3056
3057 if (prog->_LinkedShaders[i] == NULL)
3058 continue;
3059
3060 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
3061
3062 if (linked_prog) {
3063 _mesa_copy_linked_program_data(prog, prog->_LinkedShaders[i]);
3064
3065 if (!ctx->Driver.ProgramStringNotify(ctx,
3066 _mesa_shader_stage_to_program(i),
3067 linked_prog)) {
3068 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
3069 NULL);
3070 return GL_FALSE;
3071 }
3072 }
3073 }
3074
3075 build_program_resource_list(ctx, prog);
3076 return prog->data->LinkStatus;
3077 }
3078
3079 /**
3080 * Link a GLSL shader program. Called via glLinkProgram().
3081 */
3082 void
3083 _mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3084 {
3085 unsigned int i;
3086
3087 _mesa_clear_shader_program_data(ctx, prog);
3088
3089 prog->data = _mesa_create_shader_program_data();
3090
3091 prog->data->LinkStatus = linking_success;
3092
3093 for (i = 0; i < prog->NumShaders; i++) {
3094 if (!prog->Shaders[i]->CompileStatus) {
3095 linker_error(prog, "linking with uncompiled shader");
3096 }
3097 }
3098
3099 if (prog->data->LinkStatus) {
3100 link_shaders(ctx, prog);
3101 }
3102
3103 if (prog->data->LinkStatus) {
3104 /* Reset sampler validated to true, validation happens via the
3105 * LinkShader call below.
3106 */
3107 prog->SamplersValidated = GL_TRUE;
3108
3109 if (!ctx->Driver.LinkShader(ctx, prog)) {
3110 prog->data->LinkStatus = linking_failure;
3111 }
3112 }
3113
3114 /* Return early if we are loading the shader from on-disk cache */
3115 if (prog->data->LinkStatus == linking_skipped)
3116 return;
3117
3118 if (ctx->_Shader->Flags & GLSL_DUMP) {
3119 if (!prog->data->LinkStatus) {
3120 fprintf(stderr, "GLSL shader program %d failed to link\n", prog->Name);
3121 }
3122
3123 if (prog->data->InfoLog && prog->data->InfoLog[0] != 0) {
3124 fprintf(stderr, "GLSL shader program %d info log:\n", prog->Name);
3125 fprintf(stderr, "%s\n", prog->data->InfoLog);
3126 }
3127 }
3128
3129 #ifdef ENABLE_SHADER_CACHE
3130 if (prog->data->LinkStatus)
3131 shader_cache_write_program_metadata(ctx, prog);
3132 #endif
3133 }
3134
3135 } /* extern "C" */